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ABSTRACT Unscheduled power disturbances cause severe consequences both for customers and grid
operators. To defend against such events, it is necessary to identify the causes of interruptions in the power
distribution network. In this work, we focus on the power grid of a Norwegian community in the Arctic
that experiences several faults whose sources are unknown. First, we construct a data set consisting of
relevant meteorological data and information about the current power quality logged by power-quality
meters. Then, we adopt machine-learning techniques to predict the occurrence of faults. Experimental results
show that both linear and non-linear classifiers achieve good classification performance. This indicates that
the considered power quality and weather variables explain well the power disturbances. Interpreting the
decision process of the classifiers provides valuable insights to understand the main causes of disturbances.
Traditional features selection methods can only indicate which are the variables that, on average, mostly
explain the fault occurrences in the dataset. Besides providing such a global interpretation, it is also important
to identify the specific set of variables that explain each individual fault. To address this challenge, we adopt
arecent technique to interpret the decision process of a deep learning model, called Integrated Gradients. The
proposed approach allows gaining detailed insights on the occurrence of a specific fault, which are valuable

for the distribution system operators to implement strategies to prevent and mitigate power disturbances.

INDEX TERMS Energy analytics, machine learning interpretability, power quality disturbances.

I. INTRODUCTION

Unscheduled power disturbances cause problems for cus-
tomers and grid operators as they affect all customers con-
nected to the power network, from single households to large
industries [1]-[4]. Power failures might have complex and
adverse socio-economic consequences in communities that
are heavily reliant on the electricity supply [5], [6]. The
distribution system operator (DSO) is contractually obliged to
provide a reliable power supply and to compensate customers
affected by power interruptions [7]. To meet the expected
energy demand, the DSOs must implement management
plans that account for the underlying infrastructure.
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In this study, we focus on disturbances on a power grid
in an Arctic region in Northern Norway, where the energy
demand from local food industries has increased greatly. The
growth in energy demand has resulted in more frequent power
disturbances, as the current power grid is operating close to
its maximum capacity. One way to improve the reliability of
the power supply is to build a new distribution grid that can
handle larger power demand. However, this is costly, time-
consuming, has a huge environmental impact, and contradicts
the vision of better utilizing the current electricity grid infras-
tructure™ [8]. An alternative solution is to limit the failures
and strengthen only the most vulnerable parts of the grid, but
this requires first identifying the factors that trigger power
disturbances.

*https://www.miljodirektoratet.no/publikasjoner/2020/januar-
2020/klimakur2030/
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The identification of causing factors of faults in the power
grid has proven to be a major challenge for the DSO [4].
However, the increased availability of energy-related data
makes it possible to exploit advanced data analytics tech-
niques to support the development of strategies for improving
the reliability of the power grid [9]-[15]. Recent studies based
on statistical data analysis and machine learning (ML), indi-
cated that extreme weather conditions are often an important
cause of faults in power grids [16]-[21]. However, other
factors besides weather could likely affect the power quality.

In this work, we explore a wide spectrum of potential
causing factors for power failures. We consider explanatory
variables relative both to weather and high-resolution power-
quality data. We adopt ML techniques to detect the power
disturbances and to identify the factors that mostly explain
the power disturbances.

This paper extends our previous study, which analyzed
fault data in the Arctic power grid during the year 2020 [22].
There were important shortcomings in the data used in our
previous work:

1) The machines of the local industries connected to the
power grid are so sensitive to the power quality that
they experience failures that are not registered in the
failure-reporting system of the DSO.

2) The resolution of data in 2020 was too low (1-hour) to
understand how power consumption truly affects power
quality.

To address these issues, new power quality meters were
installed on 19 February 2021 in the power grid under anal-
ysis. These meters log data every minute and register every
small voltage variation. In addition, they provide detailed
information about the power quality in the grid, such as the
specific phase where the fault is registered, the magnitude of
voltage variation, frequency imbalance, and the amount of
flicker.

Contributions: First, we build a power faults classification
dataset in collaboration with the DSO, by collecting variables
that are considered as most relevant in explaining power
disturbances. Then, we train different classifiers, including
linear classifiers and a deep learning architecture, to detect
an incoming fault from the weather and power-quality vari-
ables, registered one minute before the specific fault occurs.
As shown in the experimental results, the classifiers man-
age to detect most of the power disturbances before their
onset, demonstrating that high-resolution data from power
quality meters in conjunction with weather data are highly
informative.

To gain a better understanding of the relationships between
the different variables and the power disturbances, we analyze
the decision process of the classifiers. First, we consider
traditional features selection methods, which identify which
are the most important variables in the dataset that explain
the fault occurrence. While such an approach gives a global
overview of the variables that are, on average, the most
informative in the dataset, it does not allow to reason about
specific cases.
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To address this challenge, we adopt a recent technique
to interpret the decision process of a deep learning model,
called Integrated Gradients (IG). For each individual sample,
IG assigns to each feature a score, whose magnitude indicates
how much the value of such feature contributes to determine
the class of the sample. The proposed methodology shows
that the classifiers focus on heterogeneous sets of features
when processing different samples. This indicates that the
occurrence of faults can be explained by multiple different
patterns in the weather and power-quality variables. Our find-
ings are valuable to the DSO for implementing strategies to
prevent and mitigate power disturbances.

Il. RELATED WORK AND STUDIES

There exist a vast amount of literature about the detection of
different classes of power quality disturbances, such as devi-
ation in voltage, current, and frequency signals. For example,
Ref. [23] provides a comprehensive review of more than
150 research studies between 1986 and 2014 on detection and
classification of power quality disturbances. In another com-
prehensive and more recent survey, [24] reviewed 242 papers
on Power Quality and Classification (PQD&C) techniques
based on digital signal processing and ML. The survey per-
formed a comparative assessment on various PQD&C tech-
niques by considering several criteria, such as type of data
used, type of PQ disturbance, and classification accuracy.

However, fault detection and classification is a reactive
process where models try to classify the fault after it has
occurred. On the other hand, it is often interesting to identify
the causing factors and predict the onset of a power fault.
A fault prediction model should be able to quantify the like-
lihood of observing a fault in the next period given a set
of conditions described by the explanatory variables in the
model. Additionally, the identification of causing factors for
faults will help the DSO to implement strategies to prevent
and mitigate incoming faults.

There exist some prior relevant work on identifying caus-
ing factors for faults in the power grid. The causing factors are
often divided into two different categories: i) weather condi-
tions, and ii) other factors such as human-related activities
(energy consumption).

A. WEATHER-RELATED FAULTS

Harsh and severe weather events are considered to be an
important source of faults, and several studies have been
conducted to address the impact of such events on power
quality.

Owerko et al. predicted power faults in New York City by
monitoring weather conditions [21]. The authors deployed
a Graph Neural Network to model the spatial relation-
ships between weather stations and improve the prediction
performance.

The impact of seasonal weather on forecasting power dis-
turbances was investigated in [25]. The authors tested the
performance of the proposed models by using two different
training sets: seasonal or all-year data. It was shown that,
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in some cases, the prediction performance of the models
improved when the training data is limited to a subset cor-
responding to a particular meteorological season.

The impact of weather variations and extreme weather
events on the resilience of energy systems was investigated
in [16]. The authors developed a stochastic-robust optimiza-
tion method to consider both low impact variations and
extreme events. The method was applied on 30 cities in
Sweden. The results indicated that 16% drop in power supply
reliability is due to extreme weather events.

Other examples of relevant work on weather-related faults
can be found in Refs. [17]-[20]. In addition, several risk
assessment studies on the impacts of extreme weather hazards
such as earthquakes, thunderstorms, and hurricanes can be
found in Refs. [26]-[32].

The works mentioned so far consider only severe weather
events and disregard other factors, such as heavy energy
load caused by human-related activities. Additionally, many
methodologies are tested on synthetic data or on public
benchmark datasets, which limits the scope of the evaluation
and poses constraints on the data acquisition procedure.

B. ALTERNATIVE APPROACHES FOR FAULT DETECTION

A methodology to predict power faults by analyzing
advanced measurement equipment such as Power Quality
Analyzers (PQAs) and Phasor Measurement Units (PMUs.)
has been proposed in [33]. The study used real-world mea-
surements from nine PQA nodes in the Norwegian grid to
predict incipient interruptions, voltage dips, and earth faults.
The authors find incipient interruptions easiest to predict,
while earth faults and voltage dips are more challenging to
predict.

The authors in [34], compared several ML methods to
predict power disturbance events such as voltage dips, ground
faults, rapid voltage changes, and power interruptions. The
Random Forest models achieved the highest performance
and the results indicated that voltage dips and rapid voltage
changes were the easiest to predict.

The challenge of detecting back-fed ground-faults has been
recently addressed in [35]. The authors show that faults can be
detected by integrating advanced metering infrastructure with
a distribution management system. However, the proposed
solution is relevant only for DSOs that adopt the OpenDSS
software.

The study in [36] investigated the possibility of predicting
voltage anomalies minutes in advance by using an ML model
trained on historical power quality analyzers (PQA) data. The
voltage data were collected from 49 measuring locations in
the Norwegian power grid. The model attempted to predict
voltage anomalies 10 minutes in advance based on the pres-
ence of early warning signs in the preceding 50 minutes.
It was found that the time passed since the previous fault is
a major factor that affects the probability of a new imminent
fault.

In [37], the application of clustering and dimension-
ality reductions techniques to predict unscheduled events
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was investigated. First, the authors used several techniques
to reduce the dimensionality of the data and to cluster events
based on analytical features. Then, the fault events were
separated from the normal operating conditions. The findings
show promising results when using balanced datasets, while
the predictive capability is significantly reduced in unbal-
anced datasets that, however, often appear in real-world case
studies.

Other relevant work on fault detection based on ML tech-
niques can be found in Refs. [38]-[43]. In addition, there
is some relevant work that adopts novel ML techniques
for detecting and localizing faults in the power distribution
network [9]-[12].

This section presented several relevant works in predicting
faults by assessing either weather effects or human activities.
One of the goals of our work is to consider, at the same
time, a larger amount of weather variables and electricity-
related measures as potential causes of power disturbances.
A close collaboration with the local DSO has provided us
with valuable insights about the relevant variables that should
be monitored to construct a new classification dataset. More
importantly, none of the previous work has focused on inter-
preting the decision process of the classifier, which is key to
understanding the causes of faults and can provide valuable
information to improve the power grid reliability.

IIl. POWER FAULTS DATASET

In this study, we focus on a power grid with a radial structure
located in the Arctic. A detailed description of the grid con-
figuration is deferred to Sect. A in the Appendix. The grid is
subject to frequent power faults, which could be caused by
weather factors or by the strain of the infrastructure from a
local industry, which dominates the load consumption in the
power grid.

We prepared a classification dataset where each sample
refers to a period when the grid is operating in normal con-
ditions or to a period preceding a fault, respectively. Each
sample is associated with a feature vector x € R!? and a label
y € {0, 1}, indicating the normal condition or the imminent
fault, respectively. The feature vector consists of 6 different
energy-related variables and 6 different weather variables,
summarized in Tab. 1. A fault is registered when there is
at least a 10% drop in voltage magnitude. Further details
about faults measurement, what the weather and power vari-
ables represent, and how they are collected, are described in
Sect. B in the Appendix.

The dataset contains 90 samples representing reported
faults (y = 1), which occurred in the period between
19.02.2021 to 30.04.2021. Naturally, the amount of samples
associated with normal operating conditions is much larger.
In addition, in normal operating conditions the values x from
neighboring hours are very similar to each other. To limit the
amount of class imbalance in the dataset and the redundancy
in the over-represented class, we arbitrarily subsampled the
non-fault class (y = 0) by taking 1 sample every 60. In the
final dataset, there are 90 samples representing a reported
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TABLE 1. Variables analyzed to detect faults in the power grid.

Weather variables
Wind speed of gust
Wind direction
Temperature
Pressure
Humidity
Precipitation
Power variables
Difference in Frequency
Difference in Voltage imbalance
Difference in Active Power
Minimum Power Factor
Difference in Reactive Power
Flicker

Feature ID

NN AW =

S8 vo=

fault and 1, 647 samples representing normal operating con-
ditions without any power disturbance.

IV. METHODOLOGY

Our approach consists of two steps. First, we train a clas-
sifier to predict the onset of power faults given the value
of the electricity and weather variables. If we obtain a high
classification accuracy, we can conclude that there are strong
relationships between the variables, x, and the occurrence of
faults, y. Then, we use two different techniques to highlight
the most informative features identified by the classifiers to
solve the task.

In Sect. IV-A and IV-B, we describe which classifiers
are considered in this study. In Sect. IV-C, we present an
approach for interpreting the decision process of a neural
network classifier.

A. LINEAR CLASSIFIERS

We consider three different linear classifiers. The first is a
Ridge regression classifier, which first converts the target
values into {1, 1} and then treats the problem as a regression
task [44]. The second model is Logistic regression, which
uses a logistic function to approximate the probability of
binary classification variable [44]. The third model is the Lin-
ear Support Vector Classification model (LinearSVC), which
is a type of Support Vector Machine (SVM) [45] endowed
with a linear kernel.

Due to the strong class imbalance, we configure each
model to assign a class weight that is inversely proportional
to the number of samples in each class. In this way, errors
on the underrepresented class (faults, y = 1) are penal-
ized much more than errors on the larger class (nominal
condition, y = 0).

One advantage of using linear classifiers is that they con-
struct a decision boundary directly in the input space, which
allows to easily interpreting the decision process of the classi-
fier. In particular, the linear models assign a weight w; to each
feature x; in the input space: the higher w;, the more the values
of x; impact the classification outcome. Therefore, looking
at the magnitude of the weights w; is a simple strategy to
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estimate the average importance of the features in the dataset
for the classification task.

B. NON-LINEAR CLASSIFIERS

We consider two non-linear classifiers. The first is a non-
linear SVC classifier equipped with a radial basis function
kernel (RBFSVC). As for the linear models, also in this case
we used class weights inversely proportional to the class
frequency.

The second non-linear classifier considered is a Multi-
Layer Perceptron (MLP) [46]. The MLP consists of an input
layer that takes input vectors x & RIZ, L hidden blocks,
an output layer that generates a 2-dimensional output 0 € R?,
and a softmax activation that gives the vector of class proba-
bilities y. Each block / consists of a dense layer with #; units,
a Batch Normalization layer [47], a non-linear activation
function, and a Dropout layer [48] with dropout probability p.
All trainable weights in the MLP, except the biases, are reg-
ularized with Ly-norm penalty with strength A. Fig. 1 depicts
the MLP architecture.

¢ OTTTTTTTTT]

[ Input Layer(\) ]

[ Block 1 ] al Dense(ni, \)

H BatchNorm
[ Bloik L ] Activation
Output Layer(\) Dropout(p)
-
y 0109

FIGURE 1. Architecture of the MLP.

The MLP is trained by minimizing a cross-entropy loss,
using batches of size b, and the Adam optimization algo-
rithm [49] with initial learning rate r. Due to the strong class
imbalance in the dataset, we initially trained the MLP by
weighting the loss of each sample with a value inversely
proportional to the class frequency, as we did for the other
classifiers. However, we found out that the MLP achieved
better performance by re-sampling the minority class during
training. This allows achieving class balance at the expense
of introducing redundancy, by re-proposing the same samples
multiple times. We also tried to achieve class balance by
subsampling the majority class but, due to the small number
of samples in the fault class, the total number of inputs in
each training epoch was too small and the samples from the
majority class were shown too few times during training.

C. INTERPRETATION OF THE MLP RESULTS WITH
INTEGRATED GRADIENTS

In the following, we introduce the technique adopted to
interpret the decision process of the MLP. A short review
of important approaches for interpretability in deep learning,
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which have been proposed over the past few years (and briefly
mentioned hereafter), is deferred to Sect. C in the Appendix.

Integrated Gradients (IG) [50] is a technique proposed to
satisfy two axioms, which are not jointly enforced by other
existing attribution schemes (see Sect. C for details). Accord-
ing to the first axiom, sensitivity, if the input and an uninfor-
mative baseline differ in exactly one feature, such a feature
should be given non-zero attribution. While interpretability
approaches such as LRP [51] and DeepLiFT [52] ensure
sensitivity due to the conservation of total relevance, gradient-
based methods [53]-[56] do not guarantee the sensitivity
axiom because the saturation at ReLU or MaxPool makes
the score function locally “flat” with respect to some input
features.

The second axiom, implementation invariance, states that
when two models are functionally equivalent, they must have
identical attributions to input features. While implementation
invariance is mathematically guaranteed by vanilla gradient
approaches, the coarse approximation to gradients in LRP and
DeepLiFT might break this assumption.

The attribution to feature i given by IG is

1 ! —

a=0 ax,-

where i is an input feature, x is a sample in the dataset, x’ is
the uninformative baseline, and « is an interpolation constant
used to perturb the features of the input sample. The above
definition ensures both the desirable assumptions:

o By the Fundamental Theorem of Calculus, IGs sum
up to the difference in feature scores and, thus, follow
sensitivity;

« Since the IG attribution is completely defined in terms
of gradients, it ensures implementation invariance.

IG has become a popular interpretability technique due to
its broad applicability to any differentiable neural network
model, ease of implementation, theoretical justifications, and
computational efficiency.

Implementation: 1G is a post-hoc explanatory technique
that works with any differentiable model, F'(-), regardless of
its implementation. In this paper, we let F(-) be the MLP
model described in Section IV-B that takes as input tensor the
feature vector x € R!Z and generates an output prediction ten-
sor, 0 = F(x), called logit. In our case, 0 € R? and softmax(o)
gives the probability of x being “‘fault” and ““non-fault”.

The baseline x” in (1) is an uninformative input used as
a starting point to compute the IG attributions. The base-
line is essential to interpret the IG attributions as a func-
tion of individual input features. It is important to choose
a baseline that encodes as much as possible the lack of
information about the target class c. In a classification task
with multiple classes, we want softmax[F(x')]. ~ 0. In a
binary classification task, like in our case, we can chose a
baseline that gives equal probability of belonging to both
classes, i.e., softmax[F(x")]g ~ softmax[F(x')]; ~ 0.5.
In computer vision tasks, a black image (all pixels at 0) is
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Class prob. Class prob. Class prob.

FIGURE 2. Class probabilities for different baselines on the power-faults
dataset.

commonly used as a baseline. However, in our dataset, the
value 0 might actually be informative because the absence
of some specific features can increase the probability of
belonging to a specific class (e.g., in the absence of wind
it is less likely to observe a fault). Fig. 2(left) shows that
the MLP assigns with high confidence the zero-baseline x/
to class O (non-fault). Therefore, different alternatives should
be considered as the baseline. One option is to cast the binary
classification problem into a 3-classes problem and re-train
the two that assign a vector of zeros to a third, dummy class.
In this way, when using the zero-baseline x/, we would get
softmax[F(x])]o ~ softmax[F(x])]; & 0. Other alternatives
are to use a mean-baseline, xjn, which is a vector computed
as a weighted average of the features across the two classes
or to use, or a random baseline x;. In the latter case, the final
result is given by averaging the IG attributions computed from
several random baselines. As shown in Figure 2, the mean
baseline gives almost the same probability to classes 0 and 1,
while the random baseline has the tendency to assign a strong
probability to one of the two classes. Therefore, we used the
mean baseline in all our experiments.

The default path used by the integral in (1) is a straight
line in the feature space from baseline to the actual input.
Since the choice of path is inconsequential with respect to
the above axioms, we use the straight-line path that has the
desirable property of being symmetric with respect to both
x and x’. The numerical computation of a definite integral
is often not tractable and is necessary to resort to numerical
approximations. The Riemann trapezoidal sums offer a good
trade-off between accuracy and convergence and changes (1)
into:

MO (X +E x(x — i |
IG?pme(x) c= (x _xl/) % ]; ( ’ng ( )) « n_/l’

@

where m is the number of finite steps used to approximate
the integral and & ~ k/m. The m samples X = {x’ + % X
(x —x' )}Z’=1 represent the linear interpolation between the
baseline and the input. Fig. 3 depicts such an interpolation
path from the mean-baseline to a specific sample of class
“fault” in our dataset.

After generating the set of interpolated samples X, we can

compute the gradients 81;5;\’) that quantify the relationship
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between the changes in the input features and the changes
in the predictions of the MLP F'. Important features will have
gradients with steep local slopes with respect to the probabil-
ity predicted by the model for the target class. Interestingly,
the largest gradient magnitudes generally occur during the
first interpolation steps. This happens because the neural
network can saturate, meaning that the magnitude of the local
feature gradients can become extremely small and go toward
zero resulting in important features having a small gradient.
Saturation can result in discontinuous feature importances
and important features can be missed. This is the key motiva-
tion why rather than simply using the gradients of the actual
input, or (X) , IG sums all the gradients accumulated during
the whole 1nterpolat10n path. This concept is exemplified in
Fig. 4(left), showing that the model prediction quickly con-
verges to the correct class in the beginning and then flattens
out. There could still be less relevant features that the model
relies on for correct prediction that differs from the baseline,
but the magnitudes of those feature gradients become really
small, as shown in Fig. 4(right). The Figure is obtained using
the same data of Fig. 3.

V. EXPERIMENTAL EVALUATION

After introducing the experimental setting, in Sect. V-A we
compare the classification performance of the different clas-
sifiers on our dataset. Then, in Sect. V-B we first analyze
the specific samples of class “fault” that are missed by the
classifiers and, then, we consider two techniques to interpret
the decision process of the classifiers.

Model Selection and Performance Evaluation: The linear
and the SVM classifiers are implemented with the scikit-
learn library,T while the MLP is implemented in Tensorflow.
To evaluate the model performance we first shuffle the data
and then perform a stratified k-fold, with £ = 5. In each fold,
80% of the data are used as a training set, and the remaining
20% is used as a test set. The training is further divided into
two parts: 80% is used to fit the model’s coefficients and 20%
is used as a validation set to find the optimal hyperparameters.

The hyperparameters of the linear models and the SVM
are optimized with a grid search. In particular, we optimize
the regularization strength in the Ridge regression classifier,
Logistic regression, and LinearSVC. For the non-linear SVM
classifier, we also optimize the width of the radial basis
function.

For the MLP, due to the higher amount of hyperparameters
and the longer training time, we used the Bayesian optimiza-
tion strategy implemented in Keras Tuner® and evaluated a
total of 5,000 configurations. In particular, we optimized the
number of layers L, the number of units n; in each layer,
the L, regularization coefficient A, the dropout probability p,
the learning rate r, and the type of activation function (ReL.U,
tanh, or ELU). We used a fixed batch size b = 32, an early

Thttps:// scikit-learn.org/
ihttps J/Iwww.tensorflow.org/
§https://keras.io/keras_tuner/
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stopping with patience of 30 epochs, and we reduced the
initial learning rate by a factor of 1/2 when the validation
loss was not decreasing for 10 epochs.

Before training the models, the input values x are normal-
ized feature-wise by subtracting the mean and dividing by the
standard deviation computed on the training set. The overall
performance of each classification model is the average per-
formance obtained on each test set of the 5 folds.

Performance Measures: The classification performance is
measured by looking at the confusion matrix, which reports
the following quantities: True Negatives (TN) — correctly
identified non-faults, False Positives (FN) — non-faults pre-
dicted as faults, False Negatives (FN) — faults missed, and
True Positives (TP) — faults correctly identified. To quantify
the performance with a single value we use the F1 score:

precision - recall TP

Fl=2. :
FP+FN
TP + 5

3
precision + recall )
Due to the strong class imbalance in the dataset, we com-
pute a weighted F1 score, i.e., we weight the Fl-score
obtained for each class by the number of samples in that class
and then we compute the average:
(nfaults - F Lfaults) + (Mnon-faults * & 1non-faults)

F 1wei h =
ghted ,
Nfaults + Mnon-faults
4)

where n_ and F'1_ indicate the number of samples and clas-
sification scores for each class, respectively.

Selecting the Number of Interpolation Steps in IG: The
result of the IG attribution depends on the number of steps
m (see Eq. 2). One of the properties of IG is completeness,
meaning that feature attributions encompass the entire pre-
diction of the model. As a consequence, the importance score
should capture the individual contribution of each feature to
the prediction. Therefore, by adding together all the impor-
tance scores is it possible to recover the entire prediction
value for a given sample x. In particular, we have that the
variation in classification score (e.g., the probability of being

a fault) is
5= IGi(x) -
i

where F(x). and F(x). are the prediction scores for class ¢
when the model takes as input x and x’, respectively. Since
we want the ), IG;(x) to explain the whole difference in the
class attributions, the number of integration steps m should be
increased until when 6 becomes as close as possible to zero.
Following this principle, we found m = 100 to be sufficiently
large for our experiments as it gives § < le — 2.

(F(x)e = F(x")e)

A. CLASSIFICATION PERFORMANCE OF THE

DIFFERENT METHODS

Here, we compare the classification performance obtained by
the linear methods, SVM classifier, and the MLP. The clas-
sification performance of each model is reported in Tab. 2 in
terms of average Weighted F1 score and the average number
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TABLE 2. Classification score for different models.

Classifier TN FP FN TP Weighted F1 score
Ridge Classifier 272 57 4 14 0.785
Linear  Logistic regression 275 54 5 13 0.756
LinearSVC 276 54 5 13 0.757
Non-linear RBFSVC 283 46 5 13 0.771
MLP 285 45 4 14 0.803

of TN, FP, FN, and TP obtained across the 5 folds. Note that
the TN, FP, FN, and TP are rounded to the closest integer.

The MLP classifier achieves top performance with a
weighted F1 score of 0.803, followed by the Ridge Classi-
fier and the SVC with RBF kernel that achieves weighted
F1 scores 0.785 and 0.771, respectively. In our case study,
is important to miss as few faults as possible, meaning that
solutions with very few FN (missed detection) are acceptable
even if the number of FP (false alarms) is significant. The
MLP and Ridge Classifier provides the most promising result
with 4 FN and 14 TP on average.

Finally, it is interesting to notice that linear and non-linear
models achieve similar performance. This suggests that the
two classes are almost linearly separable, i.e., most of the
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data samples can be separated reasonably well by an hyper-
plane in the input features space. On the other hand, the
data samples that are misclassified are very entangled, and
is difficult to find a decision boundary, even if is non-linear,
that can correctly separate them. The good performance of
the classification models motivates the feature interpretation
procedure discussed in the next section.

B. ANALYSIS AND INTERPRETATION OF THE RESULTS

For the next analysis, we generate a fixed random train/
validation/test split and used the same fold for each model.
This allows us to analyze in detail the solution obtained by the
different methods on a single test set, which contains 18 faults
and 330 non-faults. Interestingly, all models fail to correctly
classify as faults the same 5 data samples. A closer manual
investigation on such 5 samples shows the following:

1) 2021-02-22 at 19:29:00: is an empty measurement,

2) 2021-02-22 at 21:55:00: is a phase-to-ground fault;

3) 2021-02-22 at 22:12:00: is a phase-to-ground fault;

4) 2021-02-26 at 11:58:00: is an actual fault that was
missed by the classifiers;

2021-03-02 at 09:29:00: is a fault with an unusual long
duration.

The first FN could have been caused by some type
of error, such as a calibration error, in the measurement
instruments.

In the case of a ground fault, the electrical transformers
connected to the grid break, and the power that flows through
the transformer flows to the ground. When the end of the
electrical transformer station that contacts the ground level
is on the downstream side, a ground fault occurs [35]. The
ground fault is detected as a reduction of only one of the
three-phase voltages. Fig. 5 depicts the phase voltages when
the first ground fault occurred: it is possible to see that

5)
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FIGURE 5. The phases in a phase-to-ground fault incident. The ground
fault occurs on Phase A which is decreasing significantly (voltage drop),
while the other two in the three-phase system have a minor decrease
from nominal voltage level.

Phase A decreases significantly, while the other two stay
above the nominal voltage value. It is difficult to explicitly
detect ground faults from only weather and electricity load
measures considered as input variables, and therefore it is
reasonable that the models miss the faults number 2 and 3.

Similar to the ground faults, the 4™ FN could be caused by
a factor not described in the weather and electricity variables.
For example, it could have been caused by vegetation or
animals interacting with the power lines.

Finally, the 5" FN is a fault that lasts for 200 seconds,
while the usual duration of the faults is approximately
25-30 secs. This suggests that the fault is an anomaly that is
not well represented in the dataset and, therefore, is difficult
to be classified accurately.

To identify the most important variables that explain the
faults, we try to interpret the decision process of the differ-
ent models. First, we analyze the coefficients of the linear
models, which give a “global” interpretation of the variables
importance. Then, we use the IG technique for a ‘“local”
interpretability of the features that explain the class of a
specific data sample.

1) GLOBAL INTERPRETABILITY

As discussed in Sect. IV-A, when using linear models we can
interpret the magnitude of the weights assigned to the input
features as the global importance of the features for the classi-
fication problem. Fig. 6 reports the feature weights learned by
the three different classifiers. We observe that in each model
the Wind speed of gust variable is always associated with
a weight with a large magnitude. The Linear SVC and the
Logistic Regression classifiers attribute large importance also
to the Flicker variable, while the Ridge Regression classifiers
weight the other features more uniformly and assign weights
to Temperature and Humidity that are slightly larger than the
weight assigned to Flicker.

This analysis suggests that both the industrial activity and
the weather effects are important in discriminating between
the fault and non-fault classes. According to the linear
models, the most important among the power-related vari-
ables seems to be Flicker, while the Wind speed of gust is
consistently the most explanatory weather-related variable.
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FIGURE 6. Coefficients’ magnitude assigned to each feature by different
linear models. High magnitude indicates that the corresponding feature is
important.

These observations are aligned with the experiences of the
DSO and the local customers, as more faults seem to occur
when there is high activity at the industries and the machines
operates at full load. In addition, it has been noted that faults
are more likely to occur when there is a strong wind, which
could create collisions in the cables of the power lines.

2) LOCAL INTERPRETABILITY

The faults correctly classified by the different models are
reported in Tab. 3, together with the confidence score of the
MLP classifier. The confidence score can be interpreted as
the probability that the MLP believes a sample is a fault.
The MLP correctly classifies with high confidence most fault
samples and assigns a probability greater than 90% to 5 out
of 13 samples. As a side note, the faults do not appear to be
clustered around specific days or periods, but they seem to be
uniformly distributed over time.

We focus on the samples 52, 140, 227, 304, and 316 in
Tab. 3, which are those classified with the highest confidence,
and we use IG to identify which are the variables that are most
important for the MLP to determine the correct fault class.
The results are reported in Fig. 7. The top-left plot depicts
the uninformative baseline, which corresponds to what an
“average” sample in the dataset looks like. The blue bar
plots represent the value of the 12 features in the 5 selected
samples. Finally, the green and red bar plots are the output of
the IG procedure.

The green bars indicate that a feature is important for the
classification result. The higher the i-th green bar, the more
the feature value x; in the sample (blue bar) explains the
classification result, compared to the value x] in the baseline
(black bar). For example, in Sample 227, the value of Flicker
is much greater than in the baseline. IG assigns a high score
(tall green bar) to this difference, meaning that the MLP found
important the increment in Flicker compared to the baseline
level for deciding that Sample 227 is a fault. Similarly, the
MLP found important the decrement in Minimum Power
Factor compared to the baseline level, to classify Sample 227
as a fault.

A red bar, instead, indicates that a value x; decreases the
confidence in the classifier that the sample is actually a fault,
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FIGURE 7. The green bars denote that a feature is important for the classification result. The higher the green
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confidence of the classifier that the sample is actually a fault.

TABLE 3. True positives and confidence score assigned by the MLP
classifier.

Fault ID Confidence (MLP) Date Time
0 31 0.71 2021-03-02 14:30:00
1 35 0.72 2021-02-28 20:40:00
2 52 0.91 2021-03-24 13:39:00
3 140 0.92 2021-03-01 14:12:00
4 163 0.60 2021-04-07 05:16:00
5 189 0.71 2021-03-02 14:31:00
6 227 0.95 2021-03-01 15:04:00
7 235 0.88 2021-02-28 14:49:00
8 269 0.77 2021-02-28 19:28:00
9 271 0.86 2021-03-24 16:01:00
10 291 0.86 2021-03-01 14:03:00
11 304 0.92 2021-03-01 13:35:00
12 316 0.96 2021-03-24 13:38:00

compared to having a baseline value x/. For example, the
MLP would have been even more confident that Sample 52
and Sample 140 are faults if their Difference in Frequency
values would have been as in the baseline. In other words, for
these two samples, the increment of Difference in Frequency
is something that decreases the confidence of the classifier
that they are faults.

This analysis shows that each sample has different features
that are found important by the MLP for the classification.
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For example, Sample 227 is classified as a fault mainly
because of the above-average value in Flicker; Sample 52 is
a fault due to the high value of Wind speed of gust and low
value in Minimum Power Factor; for Sample 304 is important
that the Difference in Reactive Power is higher than average.
The Minimum Power Factor and Reactive Power are
important variables that contribute to explaining the current
power quality in a power grid. The Power Factor is the ratio of
the working power over the apparent power and quantifies the
energy efficiency: the lower the power factor, the less efficient
is the power usage of the end-customer. The Reactive Power is
the amount of power dissipated in the system. A high amount
of reactive power in the system could affect the power quality
negatively as there will be less amount of available active
power that can be used by the end-customer [57]. Therefore,
it is reasonable to observe a relationship between the low
value in the Minimum Power factor, and the high Difference
in Reactive Power for the fault samples 52 and 304.
Interestingly, the Minimum Power Factor and Difference in
Reactive Power were not emerging as important features with
the global interpretability approach, which is based on the
weights magnitude of the linear models. Indeed, an approach
that averages the contribution of the different factors across
the whole dataset is likely to conceal the importance of
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configurations in the features value that appears only in a
few samples. On the other hand, by analyzing samples indi-
vidually, IG can reveal new patterns in the data and allow to
gain deeper insights about the true causes underlying specific
faults.

VI. CONCLUSION

In this work, we tackled the problem of detecting unscheduled
faults in the power grid, which have major consequences for
customers, such industries, relying on a stable power supply.
In collaboration with the DSO, we built a data set consisting
of meteorological and power data variables, which monitor
potentially relevant factors to cause power faults. Once the
dataset was constructed, we trained different classifiers to
detect imminent faults from the value of meteorological and
power variables.

The classification performance was compared in terms of
F1 score and the MLP classifier achieved the top perfor-
mance, followed by the Ridge Classifier. The good classi-
fication results motivated the interpretation of the decision
process learned by the model, as a tool to identify the
variables that mostly explain the onset of power faults.
We explored two different interpretability techniques. First,
we considered the magnitude of the coefficient of the linear
models to quantify the importance that, on average, the dif-
ferent features have to determine if a sample in the dataset
is a fault. The results indicated that the amount of Flicker
and Wind speed of gust are the most important variables
in explaining the power disturbances. Such a global inter-
pretability approach averages the contribution of the different
factors across the whole dataset and, therefore, might fail
to show interesting configurations in the features value that
appear only in a few samples.

As a second interpretability technique, we used the Inte-
grated Gradients to interpret the decision process taken by the
MLP classifier on individual samples. This second approach
allowed us to understand what features were considered
important to classify a specific sample as a fault. Interestingly,
some samples were classified as faults not only for having
high values in Flicker and Wind speed of gust. In fact, the IG
technique showed that the MLP classified as faults samples
where the Minimum Power Factor was below average or
where the Difference in Reactive Power was higher than
average.

The proposed interpretability techniques revealed impor-
tant patterns in the data, which allow us to gain deeper
insights into the underlying causes of power faults. This
type of knowledge will help the DSO to give more reliable
warnings to its customers (both producers and consumers)
that there is an enhanced risk for grid failure when certain
meteorological and power flow conditions are met. With this
information, the customers can take preemptive actions to
reduce the negative consequences occurring when a fault
strikes.

By understanding the major factors causing the faults, the
DSO will also be able to better plan how to strengthen the grid
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FIGURE 8. The SVAN22LY1 power grid. The power is distributed towards
the north from the south. Each green dot represents a unique position of
a utility pole.

to withstand incoming faults. Typical actions to improve the
grid stability are: i) make changes in grid topology, such as
optimizing coupling to make the grid stronger, isolating parts
of the grid more likely to fail, running island mode whenever
possible; ii) optimizing or even increasing the local produc-
tion by introducing new power sources, including renewable
ones; iii) reduce or adjust power flows by controlling flexible
loads.

These kinds of strategies to mitigate incoming grid faults
are currently being developed by the DSO operating the
grid in our study. In particular, the local power company is
installing a large battery system that should be activated right
before an incoming power fault, to provide additional power
and avoid instability in the power supply. Understanding
which variable should be monitored to detect an incoming
power fault is, therefore, fundamental to plan the installation
and management of the batteries.

APPENDIX A

THE INVESTIGATED POWER GRID

The power grid analyzed in this study is a radial distribution
system serving an Arctic community located approximately
at (69.257°N, 17.589°E). Arva Power Company, the DSO of
the power grid, has named this specific grid as SVAN22LY 1.
Fig. 8 shows an overview of the whole SVAN22LY1 grid,
indicated by green dots. The SVAN22LY1 grid spans over
60 kilometers from the south to the northernmost point and
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has several branches to various communities towards the
north. There are 978 unique utility poles (marked by green
dots in Fig. 8) that support the power lines. The black boxes
in Fig. 8 represent the electric transformer stations connected
to the power grids. The red lines represent a power grid
with an operating voltage of 66 kV, while the blue lines
represent a power grid with an operating voltage of 22 kV.
The SVAN22LY1 radial grid covered by green dots has an
operating voltage of 22 kV. The largest customers connected
to the SVAN22LY 1 grid are located at the end of the north-
ernmost point of the radial.

The total energy demand in the SVAN22LY 1 grid is dom-
inated by the load consumption of the local industry. The
industry performs fish processing activities that are highly
seasonal and uses many electrical machines in the production
line that require stable power quality. Even minor power
disturbances in the power supply trigger significantly long
interruptions since the automated production line needs to
be reset. In particular, for every short-term power interrup-
tion that occurs, is necessary to wait from 40 minutes to
1 hour before resuming the production. The consequences
of the power disturbances are exacerbated by the topology
of the power grid, which has a radial distribution with no
alternative power supply in periods with disturbances.

APPENDIX B

DATASET CONSTRUCTION

A. FAULT REPORTS

The reported faults used in this study are logged by a
power-quality (PQ) metering system, which was installed
in February 2021 in the proximity of the local industries to
continuously measure the power quality.

The PQ meter installed by the DSO is Dranetz HDPQ-DN,
and is a monitoring instrument that is used for continuous
monitoring of power systems. Such PQ meters are valuable
tools to get better insight and knowledge about the actual
power quality. More technical details about the PQ meter
are provided in [58]. The PQ metering system reports all
incidents with a voltage variation of +10% from the nom-
inal values on each phase of a three-phase system with
phases A, B, C. According to the standard definition, all
variations of £10% from normal conditions are defined as
a voltage variation, and a drop larger than 10% is referred to
as a voltage dip [59]. Voltage dips could provoke tripping of
sensitive components such as industrial machines.

B. WEATHER MEASUREMENTS

The weather variables that are considered relevant in causing
power faults are: wind speed of gust, wind direction, tem-
perature, pressure, humidity, and precipitation. The weather
data are collected from areas that are more exposed to harsh
weather conditions, such as hills and cliffs near the sea coast.
To collect the weather data in the Arctic region of interest,
we used the AROME-Arctic weather model .Y This model is

1 https://www.met.no/en/projects/The-weather-model-AROME-Arctic
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developed by the meteorological institute of Norway (MET)
and provides a reanalysis of historical weather data since
November 2015 with a spatial resolution of 2.5 kilometers
and a temporal resolution of 1 hour.

To collect the weather variables, the geographical coordi-
nates from the weather-exposed areas in the power grid are
used as inputs to the AROME-Arctic model. The output from
the AROME-Arctic model is a dataset of 6 weather variables
from the weather-exposed areas that are analyzed.

C. ELECTRICITY LOAD MEASUREMENTS

It is reasonable to assume that some types of fault are not
caused by weather phenomena but originate from external
factors that influence the power flows on the grid. To capture
these effects, 6 different power-related variables from the
largest industry connected to SVAN22LY| are collected. The
variables selected as relevant to explain power faults are:
difference in frequency, voltage imbalance, the difference
in active and reactive power, minimum power factor, and,
finally, the amount of flicker in the system. All variables are
metered on three different phases (phases A, B, and C).

A change in power frequency could be caused if there is
an imbalance between energy production and consumption
in the system. If there is a change in the power frequency
(50 Hz is the normal frequency), the imbalance could cause
power disturbances for the end-use customers.

Voltage imbalance is a voltage variation in the power
system in which the voltage magnitudes or the phase angle
between the different phases are not equal. It is believed that
rapid changes (big changes within seconds/minutes) in power
consumption at large industries could affect the power qual-
ity. Therefore, the difference in active and reactive power for
each phase within each minute is computed. If the difference
is large, there is a high activity at the industries, which are
reported by the locals to result in a larger probability for
faults.

The minimum power factor represents the relationship
between the amount of active and reactive power in the
system. If the minimum power factor is low, there is an
increased amount of reactive power in the system. In the end,
the amount of flicker in the system is collected.

Flicker is considered as a phenomenon in the power system
and is closely connected to voltage fluctuations over a certain
time frame [60]. A voltage fluctuation is a regular change in
voltage that happens when the machinery that requires a high
load is starting. In addition, rapid changes in load demand
could cause voltage fluctuations. If there are several start-up
situations, or the load varies significantly during a given time
frame, it will be measured a high amount of flicker in the
system. The amount of flicker is particularly relevant in the
industry considered in this study, as they have several large
machines that require high loads and have a cyclical varying
load pattern. In this study, the time frame of the flicker is
10-minutes, which is the standard for measuring the short-
term flicker [7].
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The PQ metering system has a 1-minute resolution, while
the weather data have a 1-hour resolution. To align the
temporal resolution of the different types of variables, the
power consumption data are sub-sampled by taking one
sample every 60. As an alternative sub-sampling technique,
we tested taking the average of the values within each batch
of 60 consecutive samples of power measurements. However,
the results did not change significantly and, therefore, the
former sub-sampling method was adopted.

APPENDIX C

A BRIEF HISTORY OF EXPLAINABILITY

IN DEEP LEARNING

Due to the presence of many non-linear transformations, it is
difficult to interpret the decision process of a neural network.
During the last decade, considerable research effort has been
devoted towards developing insights into what a neural net-
work learns and how it makes its decisions. While most of
the explanatory techniques were originally developed in the
field of computer vision, some of them can be applied also to
neural networks that process sequential or vectorial data.

Gradient-based approaches aim at identifying which inputs
have the most influence on the model scoring function for
a given class. The pioneering work of Simonyan at al. [53]
proposed to compute a saliency map by taking the gradient
of the class activation score (usually, the input to the last
softmax) with respect to each input feature. The visualization
of the saliency maps was successively improved by using
tricks such as clipping the gradients, averaging the gradients
after adding Gaussian noise to the original images, and taking
the absolute value of the gradients [54].

In [55], the authors propose a method to project the activa-
tions of an intermediate hidden layer back to the input space.
The procedure consists in approximately inverting the oper-
ations of a CNN (affine transformations, ReLLU activations,
MaxPooling) from the hidden layer to the input layer. The
result gives an insight into which details the hidden layer has
captured from the input image.

The Guided Back Propagation approach performs the
standard gradient back-propagation but, when a ReLU is
encountered, the gradient is back-propagated only if both the
gradient and the ReLU activation in the forward pass are
positive [56].

As a drawback, gradient-based methods attribute zero con-
tribution to inputs that saturate the ReLU or MaxPool. To cap-
ture such shortcomings, a formal notion of explainability
(or relevance) was introduced in [51]. In particular, the
authors introduced an axiom on the conservation of total
relevance, which states that the sum of the relevance of all
pixels must equal the class score of the model. The authors
propose to distribute the total relevance of the class score to
the input features with a method called Layer-wise Relevance
Propagation (LRP). The class score is computed as the dif-
ference between the score obtained by the actual input and
the score obtained by an uninformative input, called baseline.
Each time the relevance is passed down from a neuron to the
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contributing neurons in the layer below, the total relevance of
contributing neurons is preserved. All incoming relevances to
a neuron from the layer above are collected and summed up
before passing down further. By doing this recursively from
layer to layer, the input layer is eventually reached, which
gives the relevance of each input feature. The relevance of a
neuron to its contributing inputs can be distributed based on
the magnitude of the weights of the neural network layers.

While LRP followed the conservation axiom, it did not
formalize how to distribute the relevance among the input
features. To address this problem DeepLiFT [52] enforces an
additional axiom on how to propagate the relevance down,
by following the chain rule like gradients.
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