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Abstract. In this work, we illustrate the underlying mathematical structure of mixed-dimensional models
arising from the composition of graphs and continuous domains. Such models are becoming popular in applications,
in particular, to model the human vasculature. We first discuss the model equations in the strong form which describes
the conservation of mass and Darcy’s law in the continuum and network as well as the coupling between them. By
introducing proper scaling, we propose a weak form that avoids degeneracy. Well-posedness of the weak form is
shown through standard Babuška-Brezzi theory. We also develop the mixed formulation finite-element method and
prove its well-posedness. A mass-lumping technique is introduced to derive the two-point flux approximation type
discretization as well, due to its importance in applications. Based on the Babuška-Brezzi theory, error estimates
can be obtained for both the finite-element scheme and the TPFA scheme. We also discuss efficient linear solvers
for discrete problems. Finally, we present some numerical examples to verify the theoretical results and demonstrate
the robustness of our proposed discretization schemes.
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1. Introduction. Coupled fluid flow in networks and porous domains arise in various appli-
cations, including blood flow in the human body as well as wells in geological applications. Such
models are referred to as mixed-dimensional when the network flow is simplified to a family of 1D
domains along with the network edges1. Moreover, when the coupling between the network and the
domain exceeds two topological dimensions, the model is referred to as having a high dimensional
gap [18, 17]. A high dimensional gap thus arises when the flow in the network is connected to a
domain of dimension d ≥ 2 through its leaf nodes, or when the flow in the network is connected to
a domain of dimension d ≥ 3 through its edges.

In this paper, we consider the problem composed of flow in one or more trees, coupled with a
(porous) domain. This setting is motivated by blood flow in the brain, wherein the networks are
the arterial and venous trees, and the domain is the sub-resolution capillary bed. This context is
shown in Figure 1, which we will return to in the numerical results. Recognizing that the leaf nodes
in the tree (referred to as ”terminals” hereafter) are in applications an artifact of limited imaging
resolution, we consider in our equations a mesoscale model wherein fluid is distributed into the
porous domain in a support region near the terminals. Such models have recently been introduced
in [13] and also considered in [14, 21], and are attractive also from a mathematical perspective,
as they avoid the singularities which otherwise characterize the coupled equations. In this work,
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Fig. 1. Illustration of a characteristic mixed-dimensional geometry associated with blood flow in the brain. This
illustration is based on the the data-set used in the full-brain simulation study in section 5.3. The arterial tree is
indicated in red, and the venous tree in blue. Note the complex geometry of the outer boundary of the brain (i.e.
the domain Ω).

we will not adopt the precise models used in [13, 14] directly, as they consider an explicitly given
structure of fluid distribution between the network and the porous domain. In contrast, we will use
a more canonical formulation, where the flow resistance is given, and the fluid distribution from
the terminal is calculated.

Previous mathematical analysis of models with high dimensional gap has to a large extent been
focused on how to handle the singularities arising when the coupling is ”point-wise” between the
network and the domain (see e.g. [10, 15, 11]). In contrast, the model discussed herein has to
our knowledge not been subjected to mathematical analysis before. In the absence of singularities,
we exploit in this paper the framework recently developed for problems with small dimensional
gap [5], and define mixed-dimensional variables and operators for the coupled problem. Together
with appropriately defined integration and inner products, we then observe that we have available
tools such as a mixed-dimensional Stokes’ theorem, integration by parts, and Hilbert spaces. This
forms the building blocks for our well-posedness results and numerical analysis.

The main results of the paper are thus as follows:
• A general, non-singular model for a class of problems with a large dimensional gap.
• Well-posedness theory for both the continuous and finite-dimensional problem.
• Convergence results for mixed finite-element approximation and a finite volume variant.
• Numerical validation and application to a high-resolution data-set of a real human brain.

We structure the paper as follows. In Section 2 we present the model equations in both strong
and weak forms and show well-posedness. In Section 3 and 4 we state and analyze the finite-element
and finite volume approximations, respectively. The theoretical results are validated in Section 5.
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Finally, we give some conclusions in Section 6.

2. Model Equations. In this section, we discuss the basic geometric setup and model equa-
tions for coupled network-Darcy flow in brain. We will both introduce the strong form and then
derive the weak form by introducing proper spaces.

2.1. Geometry. We are concerned with a domain Ω ⊂ Rn (which models the capillaries). In
addition, we are concerned with a finite collection of rooted trees T with node (vertex) set NT and
edge set ET (which model resolved arteries and veins). The arterial and venous trees are considered
disjoint and, therefore, form a forest F with node set N = ∪T ∈F NT and edge set E = ∪T ∈F ET .
We will refer to the composite (mixed-dimensional) problem domain of both Ω and F as the disjoint
union B = Ω t F .

We further distinguish the nodes of the forest as follows. The node set N can be subdivided
into three disjoint subsets, the first and last of which are assumed to be non-empty: root nodes NR,
interior nodes NI , and terminal nodes NT . Note that N = NR ∪ NI ∪ NT and we use NT ,R =
NT ∩NR, NT ,I = NT ∩NI , and NT ,T = NT ∩NT to denote the root nodes, interior nodes, and the
terminal nodes of a given tree T , respectively. Naturally, we also have NT = NT ,R ∪NT ,I ∪NT ,T .
We further divided the root nodes NR into two disjoint sets ND, which consists of the Dirichlet root
nodes, and NN , which consists of the Neumann root nodes. The Dirichlet root nodes will be treat
explicitly as Dirichlet boundary conditions and the Neumann root nodes will be implicitly handled
through the right-hand side of the conservation laws on the graph. Following the same convention,
NT ,D and NT ,N denotes the Dirichlet or Neumann root nodes of a given tree T , respectively.
Note that each tree can only have one root. Therefore, we can subdivide the forest into two
disjoint sub-forests, i.e., Dirichlet rooted forest FD, which contains all the Dirichlet rooted trees
TD, and Neumann rooted forest FN , which contains all the Neumann rooted trees TN . Naturally,
NFD

= ∪T ∈FD
NT and NFN

= ∪T ∈FN
NT . Furthermore, we define, NFD,R = NFD

∩NR, NFD,I =
NFD

∩NI , NFD,T = NFD
∩NT , NFN ,R = NFN

∩NR, NFN ,I = NFN
∩NI , and NFN ,T = NFN

∩NT .
We denote the set of the neighbors of the node i as Ni and the set of all the edges meeting at i ∈ N
as Ei. Note that, |Ni| = 1 and |Ei| = 1, if i ∈ NR ∪NT . These concepts are illustrated for n = 2 in
Figure 2.

2.2. Strong From. As primary variables we choose the domain pressure potential pD(x) :
Ω 7→ R and the node pressure potentials pN : N 7→ R. Furthermore, we consider the fluid mass
fluxes denoted in the domain as qD(x) : Ω 7→ Rn, fluid mass flow from node i to j denoted qNi,j :

N×N 7→ R and fluid mass flow transferring from terminal node i to point x denoted qTi (x) : Ω 7→ R.
This last variable models the flow in unresolved arteries and veins, and is a novel component our
this work.

First, we consider the model equations for mass conservation and they are given as follows
based on the above definitions and notation.

(Conservation of mass in brain tissue) ∇ · qD −
∑

i∈NT

qTi = rD, in Ω(2.1)

(Conservation of mass at interior nodes) −
∑

j∈Ni

qNj,i = rNi , for all i ∈ NI ∪NN(2.2)

(Conservation of mass at terminal nodes)

∫

Ω

qTi (x)dx− qNNi,i = rNi for all i ∈ NT(2.3)

Here, the signs in (2.1)-(2.3) are chosen such that the right-hand-side terms represent sources added
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Fig. 2. Schematic illustrating the mixed-dimensional geometry B, and its subdivision into a continuous domain
and a forest. Also shown is the coupling between the trees and the model domain.

to the system. Moreover, although both qNi,j and qNj,i are used in (2.2) for notational convenience,
they should be understood as one unknown with a sign difference.

Next we verify the global conservation of mass based on (2.1)-(2.3) as follows,

(Stokes’ Theorem)

∫

∂Ω

qD · ndx =

∫

Ω

∇ · qD dx

(By (2.1)) =
∑

i∈NT

∫

Ω

qTi (x) dx +

∫

Ω

rD dx

(By (2.3)) =
∑

i∈NT

qNNi,i +
∑

i∈NT

rNi +

∫

Ω

rD dx

(By (2.2)) =
∑

i∈ND

qNi,Ni
+

∑

i∈NN∪NI∪NT

rNi +

∫

Ω

rD dx.

Where the last step is also known as the Graph-Stokes’ Theorem, which is the counterpart of the
Stokes’ Theorem on graphs.

We now propose constitutive laws for the flow. As our exposition primarily is concerned with
the geometric complexity, we herein only consider linear constitutive laws, although it is reasonable
that non-linear extensions may be required in applications (see e.g. [22]). We therefore introduce
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material parameters, all of which are assumed to be non-negative (precise bounds are given later).
For each edge e(i, j) ∈ E , we assign a conductivity kNe(i,j), which can be considered as the edge

weights in certain sense. In the domain, for each x ∈ Ω we assign a permeability tensor kD(x) :
Ω 7→ Rn×n. For each terminal node i ∈ NT , we assign connectivity function kTi (x) : Ω 7→ R. Now
based on the assumption that the potential flow is linear, we have the following constitutive laws.

(Potential flow in brain (Darcy)) qD = −kD(x)∇pD, in Ω,(2.4)

(Potential flow in network (Poiseuille)) qNi,j = −kNe(i,j)
(
pNj − pNi

)
, for e(i, j) ∈ E ,(2.5)

(Potential flow from network to brain) qTi (x) = −kTi (x)
(
pD − pNi

)
, for i ∈ NT .(2.6)

The coefficient functions kTi (x), i ∈ NT , represent redistribution in a small region around the
terminal node i, thus, can be assumed to have compact support in some domain Bi ⊆ Ω.

Remark 2.1. In practice the characteristic length scale of Bi is comparable to the distance to
the nearest neighbor, i.e.

(2.7) diam(Bi) = O
(

min
j∈NT

|xi − xj |
)
.

Moreover, the grid is frequently given by the voxel resolution of the image and the terminals are
due to a finite resolution effect, and thus

(2.8) min
j∈NT

|xi − xj | = O (h) ,

where h is the mesh size. The constants hidden in the O notation in (2.7) and (2.8) are usually
between 2 to 10 in practical applications that we are interested in. Consequentially, qTi (x) also is
compactly supported in Bi. While these considerations could be applied to further refine some of
the constants in the proofs below, we will not exploit these details in this paper.

In addition to the conservation laws and constitutive laws, we also need boundary conditions
to close the system. For the sake of simplicity, we only consider the case of homogeneous Neumann
data on ∂Ω and the Dirichlet root nodes ND, i.e.,

(2.9) qD · n = 0 on ∂Ω and pNi = 0, i ∈ ND.
We want to point out that our results and analysis below also hold for other types of boundary
conditions as well only at the cost of extra notation. The choice of Neumann data on ∂Ω is in a
sense the most difficult case, as the inf-sup proofs can be simplified considerably in the case where
there is a measurable subset of the boundary with Dirichlet data.

We close this subsection by the observation that by definition qNi,j = −qNj,i. Therefore, although

the total number of qNi,j is 2|E|, we only use half of them as the unknowns, i.e., one unknown, qNi,j or

qNj,i, for each edge e(i, j) ∈ E . The choice is arbitrary. In this work, we choose the one follows the
direction from the root node to the terminal nodes. This direction is also the assigned orientation
of the corresponding edge e(i, j) ∈ E (i.e., if we choose qNi,j , which means the fluid mass flows from
node i to node j, the edge e(i, j) is oriented such that it starts at node i and ends at node j). This
allows us to define the following signed incidence matrix G ∈ R|E|×|N|, such that

(2.10) G`,i =





1, if flow on edge ` starts at node i

−1, if flow on edge ` ends at node i

0, otherwise
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We want to point out that the signed incidence matrix represents a discrete gradient on the graph
and its transpose serves as a discrete divergence.

2.3. Mixed-dimensional formulation and scaling. The model equations given above con-
tain essentially three expressions of fluxes (qD, qT and qN ), and two expressions of potentials (pD

and pN ). It will simplify the following exposition and analysis considerably to treat these as mixed-
dimensional variables on B, on which we define mixed-dimensional operators.

Therefore, let the mixed-dimensional pressure be denoted p : B → R, and defined as the
doublet of pressures p := [pD, pN ]. Equivalently, the mixed-dimensional flux is defined as the
triplet q := [qD, qT , qN ]. Now, we define the mixed-dimensional divergence operator D· as follows,

(2.11) D · q = D · [qD, qT , qN ] := [uD, uN ],

where

(2.12) uD := ∇ · qD −
∑

i∈NT

qTi and uNi =

{
−∑j∈Ni

qNj,i, i ∈ NI ∪NN ,∫
Bi
qTi (x) dx− qNNi,i

, i ∈ NT .

Similarly, we define the mixed-dimensional gradient D as

(2.13) Dp = D[pD, pN ] := [vD, vT , vN ],

where

(2.14) vD := ∇pD and vTi (x) := pD(x)− pNi , i ∈ NT , and vN = GpN .
In addition, we introduce the function K which contains all the material functions kD, kTi (x),

i ∈ NT , and kNe(i,j), e(i, j) ∈ E , in (2.4) to (2.6), such that

K−1[qD, qT , qN ] := [(kD)−1qD, (kT )−1qT , (kN )−1qN ],

where kN = diag(kNe(i,j)). It is now straight forward to verify that with these definitions, the

conservation laws (2.1)-(2.3) can be summarized as

(2.15) D · q = r,

where r ≡ [rD, rN ]. Furthermore, the constitutive laws (2.4) to (2.6) can be summarized as

(2.16) q = −KDp.

While the physical model formulation is satisfactory for non-degenerate kTi (x), i ∈ NT , it will
be beneficial to rescale the coupling flux to avoid considering a degenerate inner product when
kTi (x) → 0 for some points or region in Bi. To that aim, we introduce the square-root of the

transfer coefficient kSi (x) =
√
kTi (x), i ∈ NT , and the scaled transfer mass flux qSi (x) : Ω 7→ R,

i ∈ NT , is defined as qSi (x) =
(
kSi (x)

)−1
qTi (x). Thus, we replace (2.1) (2.3), and (2.6) with

(Conservation of mass in brain tissue) ∇ · qD −
∑

i∈NT

kSi q
S
i = rD, in Ω,(2.17)

(Conservation of mass at terminal nodes)

∫

Bi

kSi q
S
i (x)dx− qNNi,i = rNi for all i ∈ NT ,(2.18)

(Potential flow from network to brain) qSi (x) = −kSi (x)
(
pD − pNi

)
, for i ∈ NT ,(2.19)
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respectively. In this setting, we allow for degeneracy of the coupling term in the sense that we
allow kSi (x) 7→ 0. However, we require that kSi is bounded from above, i.e., kSi (x) ≤ CkS for i ∈ NT
and x ∈ Ω. Furthermore, for all i, we require it to hold that

∫

Bi

kSi dx = ckSi ≥ ckS > 0,

where ckS is a generic constant. We note that a similar scaling has been applied previously to
handle degeneracies occurring in mantle dynamics [2] and flows in fractured porous media [6].

Equivalently, We denote the scaled mixed-dimensional flux on B as qS ≡ [qD, qS , qN ], and the
scaling S such that

S−1[qD, qT , qN ] := [qD, (kS)−1qT , qN ].

Thus, qS = Sq, and we can introduce the rescaled divergence and gradients as DS · := D ·S and
DS := SD, respectively. The rescaled conservation equations are then summarized as

(2.20) DS · qS = r.

The rescaled conservation equations are summarized as

(2.21) qS = −KSDSp,

where KS = S−1KS−1, and thus

(2.22) (KS)−1[qD, qS , qN ] := [(kD)−1qD, qS , (kN )−1qN ].

Note in particular that (KS)−1 applied to qS has unit weight, and therefore does not degenerate.

2.4. Weak Form. In this subsection, we derive the weak formulation of the system. The
development will be equally valid for both the original model, equations (2.15) and (2.16), as well
as the re-scaled model, equations (2.20) and (2.21). Thus we will omit the superscript S on the
mixed-dimensional operators and variables to reduce notational overload. Nevertheless, in order to
allow for degeneracies, we will always have the rescaled equations in mind, and thus when we need
to specifically refer to qS , and consider the coefficient kS to appear in the differential operator as
opposed to the material law.

We first introduce proper function spaces on B. We begin by defining a mixed-dimensional
square-integrable space for pressure as follows,

L2(B) := L2(Ω)× l2(N\ND),

where L2(Ω) is the standard L2 space defined on domain Ω and l2(N\ND) is the standard l2 space
defined on the node set N\ND. For flux, we consider a space with bounded mixed-dimensional
divergence as follows,

H(div,B) := H(div,Ω)×
∏

i∈NT

L2(Bi)× l2(E)

where H(div,Ω) is the space defined on Ω such that the functions and their divergence are both
square-integrable. In addition, L2(Bi) are standard L2 space defined on Bi, i ∈ NT , and l2(E) is
the standard l2 space defined on the edge set E .
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We associate the mixed-dimensional space L2(B) with the following inner product,

(p,w) = ([pD, pN ], [wD, wN ]) :=

∫

Ω

pDwD dx +
∑

i∈N\ND

pNi w
N
i , ∀ p,w ∈ L2(B).

Similarly, we introduce the following inner product on H(div,B),

(q, v) = ([qD, qS , qN ], [vD, vS , vN ]) :=

∫

Ω

qD · vD dx +
∑

i∈NT

∫

Bi

qSi v
S
i dx +

∑

e(i,j)∈E
qNi,jv

N
i,j .

It is important to note that the inner products are defined such that integration-by-parts holds
in for the mixed-dimensional operators (both original and re-scaled cases).

Lemma 2.2 (Integration by parts). For any q ∈ H(div,B) and p ∈ L2(B), we have

(2.23) (Dp, q) + (p,D · q) =

∫

∂Ω

pDqD · n dx +
∑

i∈ND

pNi q
N
Ni,i

Proof. By a direct calculation (using the re-scaled operators and variables, the derivation for
the original case is the same), we have that

(p,D · q) =

∫

Ω

pD

(
∇ · qD −

∑

i∈NT

kSi q
S
i

)
dx−

∑

i∈NI∪NN

pNi
∑

j∈Ni

qNj,i

+
∑

i∈NT

pNi

(∫

Bi

kSi q
S
i dx− qNNi,i

)

=−
∫

Ω

∇pD · qD dx +

∫

∂Ω

pDqD · ndx−
∑

e(i,j)∈E
(pNi − pNj )qNi,j

+
∑

i∈ND

pNi q
N
Ni,i −

∑

i∈NT

∫

Bi

kSi (pD − pNi )qSi dx

=

∫

∂Ω

pDqD · ndx +
∑

i∈ND

pNi q
N
Ni,i − (Dp, q),

which completes the proof.

To derive the weak formulation, we need to incorporate the boundary conditions. Recall that
we consider qD · n = 0 on ∂Ω, therefore, we define the following functions space with boundary
conditions,

H0(div,B) := H0(div,Ω)×
∏

i∈NT

L2(Bi)× l2(E) ⊂ H(div,B),

where H0(div,Ω) := {qD ∈ H(div,Ω) | qD ·n = 0, on ∂Ω}. In addition, with any material function
K, we introduce a weighted inner product on H(div,B) as follows,

(q, v)K−1 := (K−1q, v).
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Using the above function spaces and notation, together with the mixed-dimensional integration by
parts formula (2.23) and the homogeneous Dirichlet boundary conditions (2.9) on ND, i.e., pNi =
0, i ∈ ND, we have the following weak form for the conservation laws (2.20), and constitutive
laws (2.21): Find q ∈ H0(div,B) and p ∈ L2(B), such that

(q, v)K−1 − (p,D · v) = 0, ∀ v ∈ H0(div,B),(2.24)

− (D · q,w) = −(r,w), ∀ w ∈ L2(B).(2.25)

Note that due to the integration by parts formula, if non-homogeneous boundary data is considered,
this would appear as extra right-hand side terms in equation (2.24).

2.5. Well-posedness. In this subsection, we focus on the well-posedness of the weak formu-
lation (2.24)-(2.25). As in the previous subsection, it is understood that we are considering the
re-scaled formulation, even though the superscript S is suppressed. We first introduce the following
norm on L2(B),

(2.26) ‖p‖2L2(B) := (p, p).

And the following norm on H(div,B),

(2.27) ‖q‖2H(div,B) := ‖q‖2K−1 + ‖D · q‖2L2(B),

where

(2.28) ‖q‖2K−1 := (q, q)K−1 .

We emphasize that the weights in this norm do not degenerate for the re-scaled equations sine the
unite weight is applied to qS , see equation (2.22).

The next lemma shows that the bilinear forms in the weak formulation (2.24)-(2.25) are con-
tinuous.

Lemma 2.3 (Continuity of (2.24)-(2.25)). For any q, v ∈ H(div,B) and w ∈ L2(B), we have

(q, v)K−1 ≤ ‖q‖H(div,B)‖v‖H(div,B),

(D · q,w) ≤ ‖q‖H(div,B)‖w‖L2(B).

Proof. The continuity of both bilinear forms follow directly from the Cauchy-Schwarz inequality
and the definition of the norms (2.27) and (2.26).

Now we show the ellipticity of the inner product (·, ·)K−1 on the kernel of the mixed-dimensional
divergence operator D· in the following lemma.

Lemma 2.4 (Ellipticity of (2.24)-(2.25)). If q ∈ H(div,B) satisfies

(2.29) (D · q,w) = 0, ∀w ∈ L2(B),

then

(2.30) (q, q)K−1 = ‖q‖2H(div,B).
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Proof. Since D · q ∈ L2(B), from (2.29), we have

‖D · q‖L2(B) = 0.

Therefore, (2.30) follows directly from the above identity and the definition of the norm (2.27).

Next, we discuss the inf-sup condition of the bilinear form (r,D · q) in the following lemma.

Lemma 2.5 (Inf-sup condition of (2.24)-(2.25)). There exists a constant β > 0 such that, for
any given function r ∈ L2(B),

(2.31) sup
q∈H0(div,B)

(r,D · q)

‖q‖H(div,B)
≥ β‖r‖L2(B).

Here, the inf-sup constant β depends on |Bi| = measure(Bi), the maximal number of overlaps
between Bi, structure of the trees T ∈ F , the domain Ω, and the constants ckS and CkS .

Proof. Assume r = [rD, rN ] ∈ L2(B) given, we first aim to construct q = [qD, qS , qN ] ∈
H0(div,B) such that D · [qD, qS , qN ] = [rD, rN ].

First step is to construct qN based on the forest F . Based on the signed incidence matrix
G (2.10), we omit those columns that correspond to the Dirichlet root nodes to obtain the signed
incidence matrix with boundary conditions GF . Then, we consider the following mixed-formulation
graph Laplacian problem: Find qF ∈ R|E| and ψF ∈ R|N |−|ND|

K−1qF − GFψF = 0,(2.32)

GTFqF = rF .(2.33)

Here, for trees T ∈ FN , we set (rF )i = rNi , i ∈ NT ,N ∪ NT ,I , and for i ∈ NT ,T , we choose (rF )i
such that

∑
i∈NT (rF )i = 0. The choice is not unique, and here we choose

(2.34) (rF )i = rNi −
∑
i∈NT r

N
i

|NT ,T |
, i ∈ NT ,T , T ∈ FN .

For trees T ∈ FD, we set (rF )i = rNi , i ∈ NT ,T ∪NT ,I , and, for i ∈ NT ,T , we set

(rF )i = rNi +
1

|NFD,T |

∫

Ω

rD dx +
1

|NFD,T |
∑

i∈NFN

rNi , i ∈ NFD,T .

The reason of such a choice will be made clear later in the proof when we construct qD. Note that,
since the degree of node i ∈ NT ,T is one, once (rF )i is fixed, we natrually have (qF )e(Ni,i) = −(rF )i.
With this choice of rF , the mixed-formulation graph Laplacian problem (2.32)-(2.33) is well-posed
in the sense that ψF is unique (up to a constant on the trees T ∈ FN ) and qF is uniquely defined.
Once qF is obtained, we define qN by qNi,j = (qF )e(i,j), e(i, j) ∈ E .

From the mixed-formulation (2.32)-(2.33), we have the following estimates,

(2.35) ‖GTFqF‖2 = ‖rF‖2 and (K−1qF , qF ) ≤ (λFmin)−1‖rF‖2,

where λFmin is the smallest non-zero eigenvalue of the weighted graph Laplaican of the forest F , i.e,
LF = GTFKGF . We comment that λFmin is bounded below by the so-called Cheeger constant of the
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graph, so depends on the structure of the trees T in the forest F . Note that

‖rF‖2 =
∑

i∈NI∪NN

(rNi )2 +
∑

i∈NFD,T

((rF )i)
2 +

∑

i∈NFN,T

((rF )i)
2

and, due the choice (2.34), the last term on the right-hand-side can be bounded by

(2.36)
∑

i∈NFN,T

((rF )i)
2 ≤ CN

∑

i∈NFN

(rNi )2

with CN = 2
(

maxT ∈FN

|NT |
|NT ,T | + 1

)
. Similarly, by Cauchy-Schwarz inequality, the second term on

the right-hand-side can be bounded as follows,

(2.37)
∑

i∈NFD,T

((rF )i)
2 ≤ CD


 ∑

i∈NFD,T

(rNi )2 +
∑

i∈NFN

(rNi )2 +

∫

Ω

(rD)2 dx


 ,

where CD = 3 max
{

1, |Ω|
|NFD,T | ,

|NFN
|

|NFD,T |

}
.

Therefore, combining the estimates (2.35), (2.36), (2.37), and the definitions of GF and qN , the
following estimate holds,

∑

e(i,j)∈E
(kNe(i,j))

−1|qNi,j |2 ≤ CqN
[ ∑

i∈NI∪NN

(rNi )2 +
∑

i∈NT

(rNi )2 +

∫

Ω

(rD)2 dx

]
,(2.38)

where CqN = (λFmin)−1(CN + CD + 1).
Next we construct qS from qN and rN so that (2.18) is satisfied exactly, i.e., we define, for each

terminal nodes i ∈ NT ,

(2.39) qSi (x) =
qNNi,i

+ rNi
cki

, x ∈ Bi.

From the construction, we have

∑

i∈NT

∫

Bi

|qSi (x)|2 dx ≤ 2|Bi|
c2
kS

[∑

i∈NT

|rNi |2 +
∑

i∈NT

|qNNi,i|2
]

≤ C1
qS


∑

i∈NT

|rNi |2 +
∑

i∈NFN

|rNi |2 +

∫

Ω

(rD)2 dx


 ,(2.40)

where C1
qS = 2|Bi|

c2
kS

(CN + CD). Here we use the fact that qNNi,i
= −(rF )i for i ∈ NT by our

construction of qN , and the estimates (2.36) and (2.37) in the last step. Similarly, we also have

(2.41)
∑

i∈NT

∫

Bi

|kSi qSi |2 dx ≤ C2
qS


∑

i∈NT

|rNi |2 +
∑

i∈NFN

|rNi |2 +

∫

Ω

(rD)2 dx
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with C2
qS = 2

CkS

ckS
(CN + CD + 1).

Finally, we consider the following mixed-formulation Laplacian problem

(kD)−1qD +∇ψ = 0(2.42)

∇ · qD = rD +
∑

i∈NT

kSi q
S
i(2.43)

with boundary condition qD · n = 0 on ∂Ω. This problem is well-posed because
∫

Ω

rD dx +
∑

i∈NT

∫

Bi

kSi (x)qSi (x) dx

=

∫

Ω

rD dx +
∑

i∈NT

∫

Bi

kSi (x)
qNNi,i

+ rNi
cki

dx

=

∫

Ω

rD dx +
∑

i∈NT

(
qNNi,i + rNi

)

=

∫

Ω

rD dx +
∑

i∈NFN,T

(
qNNi,i + rNi

)
+

∑

i∈NFD,T

(
qNNi,i + rNi

)

=

∫

Ω

rD dx +
∑

T ∈FN

∑

i∈NT

(
−rNi +

∑
i∈NT r

N
i

|NT ,T |
+ rNi

)

+
∑

i∈NFD,T


−rNi −

1

|NFD,T |

∫

Ω

rD dx− 1

|NFD,T |
∑

i∈NFN

rNi + rNi




= 0,

which verifies the consistency of the data with respect to the pure Nuemann boundary condition
qD · n = 0 on ∂Ω. Furthermore, the following estimate holds,

∫

Ω

|∇ · qD|2 dx =

∫

Ω

|rD +
∑

i∈NT

kSi q
S
i |2 dx

≤ 2

∫

Ω

|rD|2dx + 2NBi

∑

i∈NT

∫

Bi

|kSi qSi |2 dx

≤ C1
qD



∫

Ω

|rD|2 dx +
∑

i∈NT

|rNi |2 +
∑

i∈NFN

|rNi |2

(2.44)

where C1
qD = 2

(
NBi

C2
qS + 1

)
and NBi

is the maximal number of the overlapping between the Bi,

i ∈ NT . Similarly, we also have
∫

Ω

(kD)−1|qD|2 dx ≤ C−1
p

∫

Ω

|rD +
∑

i∈NT

kSi q
S
i |2 dx

≤ C2
qD



∫

Ω

|rD|2 dx +
∑

i∈NT

|rNi |2 +
∑

i∈NFN

|rNi |2

(2.45)
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where C2
qD = C−1

p C1
qD and Cp is the weighted Poincare constant, i.e, Cp(v, v) ≤ ((kD)∇v,∇v).

Now [qD, qS , qN ] has been constructed based on [rD, rN ] and it satisfies

(2.46) D · [qD, qS , qN ] = [rD, rN ],

and we have

‖[qD, qS , qN ]‖2H(div,B) = ‖[qD, qS , qN ]‖2K−1 + ‖D · [qD, qS , qN ]‖2L2

=

∫

Ω

(kD)−1|qD|2 dx +
∑

i∈NT

∫

Bi

|qSi |2 dx

+
∑

e(i,j)∈E
(kNe(i,j))

−1|qNi,j |2 + ‖[rD, rN ]‖L2(B).

Now, based on (2.38), (2.40), and (2.45), we can derive that

(2.47) ‖[qD, qS , qN ]‖2H(div,B) ≤ Cβ‖[rD, rN ]‖2L2(B)

with Cβ = 2C2
qD + 2C1

qS + CqN + 1. Then the inf-sup condition (2.31) hold with β = C−1
β .

Remark 2.6. The inf-sup proof shows the importance of the using the scaled equations (2.20)
and (2.21) in the case where kT goes to zero. Indeed, for the non-scaled equations, a similar approach
would lead to an inf-sup constant depending on the pointwise lower bound on infx∈Bi

(kTi (x)),
which may not be positive. In contrast, as seen in the proof above, for the scaled equations, inf-sup
constant depends on the much less restrictive integrated bound ckSi .

We now have the following well-posedness results.

Theorem 2.7 (Well-posedness of (2.24)-(2.25)). The weak formulation (2.24) and (2.25) is
well-posed with respect to the norms (2.27) and (2.26).

Proof. The result follows directly from the standard theory for saddle point problems, see,
e.g. [4], and Lemmas 2.3, 2.4, and 2.5.

3. Finite-element Approximation. In this section, we propose the finite-element approx-
imation for solving the weak formulation (2.24)-(2.25). The coupling between the graph and the
porous domain, as well as the heterogeneous nature of the parameters found in applications, sug-
gests that it is natural to consider low-order approximations. As a consequence, we only consider
the lowest-order approximation here, recognizing that higher-order spaces can be introduced in the
mixed formulation.

3.1. Mixed Finite-Element Method. Given a mesh M of the domain Ω, e.g., trian-
gles/quadrilaterals in 2D and tetrahedrons/cuboids in 3D, we consider the standard RT0/P0 finite
element for approximating the fluid flux qD and pressure PD in the domain and denote them by
Hh(div,M) and P0(M), respectively. For node pressure potentials pN , we use vertex degrees of
freedom (DOFs) of the graph. For fluid flux on the tree edges, we use edge DOFs of the graph.
For the fluid flux transferring from terminal i to point x, it appears natural to consider the piece-
wise constant finite element on Mi (denoted as P0(Mi)), which is the restriction of M to Bi, i.e.
Mi =M∩Bi. In summary, we consider the following conforming finite-element spaces

Hh(div,B) := Hh(div,M)×
∏

i∈NT

P0(Mi)× l2(E) ⊂ H(div,B),
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its corresponding finite-element space with boundary conditions,

Hh,0(div,B) := Hh,0(div,M)×
∏

i∈NT

P0(Mi)× l2(E) ⊂ H0(div,B),

where Hh,0(div,M) := {qDh ∈ Hh(div,M) | qDh · n = 0, on ∂Ω}, and

L2
h := P0(M)× l2(N\ND) ⊂ L2(B).

Using the finite-element spaces introduced above, the mixed finite-element approximation of (2.24)-
(2.25) is: Find qh := [qDh , q

S
h , q

N
h ] ∈ Hh,0(div,B) and ph := [pDh , p

N
h ] ∈ L2

h, such that

(qh, vh)K−1 − (ph,D · qh) = 0, ∀ vh ∈ Hh,0(div,B),(3.1)

− (D · qh,wh) = −(r,wh), ∀ wh ∈ L2
h.(3.2)

Remark 3.1. By considering a test function wh which is constant on a Bi, we verify from
equations 2.17 and 2.18 that the physical flux qT = kSi q

S
i is conserved. We note that the lowest-order

mixed finite element approximation is locally conservative even when applied to scaled variables,
in contrast to the situation observed when similar scalings are applied in the physical dimensions
of Ω (see e.g. [2]).

3.2. Well-posedness. In this subsection, we consider the well-posedness of the mixed finite-
element approximation (3.1)-(3.2). It is essentially the same as the well-posedness analysis for the
weak formulation in Section 2.5, and our presentation will therefore be brief.

Since we use conforming finite-element spaces, the continuity results (Lemma 2.3) holds natu-
rally on the discrete level.

Lemma 3.2 (Continuity of (3.1)-(3.2)). For any qh, vh ∈ Hh,0(div,B) and wh ∈ L2
h, we have

(qh, vh)K−1 ≤ ‖qh‖H(div,B)‖vh‖H(div,B),

(D · qh,wh) ≤ ‖qh‖H(div,B)‖wh‖L2(B).

For the ellipticity (Lemma 2.4), using the fact that the finite dimensional spaces are conforming
in the sense that for qh ∈ Hh,0(div,B), then it holds that D · qh ∈ L2

h, then the continuous results
hold on the discrete level.

Lemma 3.3 (Ellipticity of (3.1)-(3.2)). If qh ∈ Hh(div,B) satisfies

(3.3) (D · qh,wh) = 0, ∀wh ∈ L2
h,

then

(3.4) (qh, qh)K−1 = ‖qh‖2H(div,B)

Moreover, the inf-sup condition (Lemma 2.5) can be derived in a similar fashion on the discrete
level as well.

Lemma 3.4 (Inf-sup condition of (3.1)-(3.2)). There exists a constant β > 0 such that, for
any given function rh ∈ L2

h(B),

(3.5) sup
qh∈Hh,0(div,B)

(rh,D · qh)

‖qh‖H(div,B)
≥ β‖rh‖L2(B).
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Here, the inf-sup constant β depends on |Mi| = measure(Mi) = O(hn), the maximal number of
overlaps between Bi, structure of the trees T ∈ F , the domain Ω, and the constants ckS and CkS .

Proof. Given [rDh , r
N
h ] ∈ L2

h(B), the construction of [qDh , q
S
h , q

N
h ] ∈ Hh,0(div,B) is similar to

the construction presented in the proof of Lemma 2.5. qNh can be constructed exactly the same as
the construction of qN . Then qSh can be defined as (2.39) as well since such construction also makes
sure that qSh ∈

∏
i∈NT

P0(Mi). The construction of qDh should be obtained by solving (2.42)-(2.43)
with a mixed finite-element method using Hh,0(div,M) and P0(M). Such construction also makes
sure that

D · [qDh , qSh , qNh ] = [rDh , r
N
h ],

and

‖[qDh , qSh , qNh ]‖H(div,B) ≤ Cβ‖[rDh , rNh ]‖L2 .

Therefore the inf-sup condition (3.5) follows directly.

Thus, the well-posedness of the mixed finite-element approximation (3.1)-(3.2) follows from
Lemmas 3.2, 3.3, and 3.4.

Theorem 3.5 (Well-posedness of (3.1)-(3.2)). The weak formulation (3.1) and (3.2) is well-
posed with respect to the norms (2.27) and (2.26).

3.3. Convergence. Based on Lemma 3.2, 3.3, and 3.4 and applying the general theory of
Galerkin methods, see [7, 4], we immediately gives a quasi-optimality error estimate.

Theorem 3.6. Suppose that q ∈ H0(div,B) and p ∈ L2(B) satisfy the weak formulation (2.24)-
(2.25), then the finite-element solution qh ∈ Hh,0(div,B) and ph ∈ L2

h of the mixed fintie-element
approximation (3.1)-(3.2) satisfy that

‖q− qh‖H(div,B) + ‖p− ph‖L2(B)

≤ c
(

inf
vh∈Hh,0(div,B)

‖q− vh‖H(div,B) + inf
wh∈L2

h

‖p−wh‖L2(B)

)
,(3.6)

where the constant c depends on β.

As usual, to obtain the final convergence result, we use interpolations to bound the right-hand-
side of the above error estimate (3.6). Here, we choose vDh = πdivq

D, where πdiv : H1(Ω) 7→
Hh(div,M) is the standard interpolation given by the Hh(div,M) degrees of freedom, vSh = π0q

S ,
where π0 denotes the standard piecewice constant interpolation, and vNh = qN . With those choices
and the classical error estimates for interpolations, together with Cauchy-Schwarz inequality, we
naturally have

‖[qD, qS , qN ]− [πdivq
D, π0q

S , qN ]‖H(div,B) ≤ ch
(
‖qD‖21 + ‖∇ · qD‖21 +

∑

i∈NT

‖qSi ‖21

) 1
2

.

Similarly, by choosing wDh = π0p
D and wNh = pN , we have

‖[pD, pN ]− [π0p
D, pN ]‖L2(B) ≤ ch‖pD‖1.

Therefore, we have the overall convergence result for the finite-element method (3.1)-(3.2) as follows.
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Corollary 3.7. Suppose that q ∈ H0(div,B) and p ∈ L2(B) satisfy the weak formula-
tion (2.24)-(2.25), then the finite-element solution qh ∈ Hh,0(div,B) and ph ∈ L2

h of the mixed
finite-element approximation (3.1)-(3.2) satisfy that

‖q− qh‖H(div,B) + ‖p− ph‖L2(B) ≤ ch
(
‖qD‖1 + ‖∇ · qD‖21 +

∑

i∈NT

‖qSi ‖1 + ‖pD‖1
)
,

where the constant c depends on β and the quasi-uniformity of the mesh M.

Remark 3.8. In Corollary 3.7, we require ∇ · qD ∈ H1(Ω) because the convergence analysis is
derived by following the standard Babuška-Brezzi theory. As it is well-known for the error analysis of
the fixed-dimensional mixed finite-element method for second-order elliptic problem, this regularity
requirement can be relaxed in the mixed-dimensional setting as well, i.e., we have the following
error estimates

‖q− qh‖H(div,B) + ‖p− ph‖L2(B) ≤ ch
(
‖qD‖1 + ‖rD‖1 +

∑

i∈NT

‖qSi ‖1 + ‖pD‖1
)
,

Due to space constraints, we omit the derivation here but comment that it is essentially the same
as the derivation for the fixed-dimensional case as shown in [4].

4. Mass Lumping and Two-Point Flux Approximation Scheme. In practice, when the
triangulation of the domain Ω is uniform, it is possible to simply the discretization scheme and
use two-point flux approximation (TPFA) to discretize the PDE system given by the conservation
laws (2.17), (2.2), (2.18) and the constitutive laws (2.4), (2.5), (2.19). This is particularly relevant
for medical applications, where the data is frequently specified on voxels (i.e. regular Cartesian
grids in 3D).

In this section, we, therefore, discuss the TPFA scheme for our coupled Network-Darcy model
through its relationship with the mixed finite-element approximation (3.1) and (3.2) discussed in
Section 3.

4.1. TPFA Scheme. On a given meshM, similar to standard diffusion problems, the TPFA
scheme can obtained by applying mass lumping to the mixed finite-element scheme (3.1)-(3.2) and
then eliminating the flux qh. To this end, we define the following inner product on the finite element
spaces Hh(div,B), for qh and vh ∈ Hh(div,B),

(qh, vh)K−1,h :=
∑

τ∈M

∑

f∈∂τ
ωf
(
qD · nf

) (
vD · nf

)

+
∑

i∈NT

∫

Bi

qSi v
S
i dx +

∑

e(i,j)∈E

(
kNe(i,j)

)−1

qNi,jv
N
i,j ,(4.1)

where ωf =
(
kDτ
)−1 df

2|f | with kDτ being the average of kD on the element τ ∈ M and df being

the distance between the face f ∈ ∂τ and the cell center of τ . Now we define the mass lumping
finite-element scheme as follows: Find qh ∈ Hh,0(div,B) and ph ∈ L2

h(B), such that,

(qh, vh)K−1,h − (ph,D · vh) = 0, ∀ vh ∈ Hh,0(div,B),(4.2)

− (D · qh,wh) = −(r,wh), ∀ wh ∈ L2
h.(4.3)
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Based on the inner product (4.1), we define a discrete gradient Dh : L2
h(B) 7→ Hh(div,B) via

integration by part (Lemma 2.2), for any vh ∈ Hh(div,B) and ph ∈ L2
h(B), such that,

(Dhph, vh)K−1,h := −(ph,D · vh) +

∫

∂Ω

pDh v
D
h · ndx +

∑

i∈ND

(pNh )i(v
N
h )Ni,i.

Note that, due to the boundary conditions, vDh · n = 0 on ∂Ω and (pNh )i = 0, i ∈ ND, we simply
have (Dhph, vh)K−1,h = −(ph,D · vh). Then the mass lumping mixed-formulation (4.2) and (4.3)
can be written as, find qh ∈ Hh,0(div,B) and ph ∈ L2

h(B), such that,

(qh, vh)K−1,h + (Dhph, vh)K−1,h = 0, ∀ vh ∈ Hh,0(div,B),

(Dhwh, qh)K−1,h = −(r,wh), ∀ wh ∈ L2
h.

The above formulation allows us to eliminate qh and obtain the TPFA scheme as follows, find
ph ∈ L2

h(B), such that

(4.4) (Dhph,Dhwh)K−1,h = (rh,wh), ∀ wh ∈ L2
h.

Next we will explain the TPFA scheme (4.4) using matrix notation. The matrix form of the
mass lumping finite-element scheme (4.2)-(4.3) can be written as




DD 0 0 GDD 0
0 DS 0 GSD GSN
0 0 DN 0 GNN

GTDD GTSD 0 0 0
0 GTSN GTNN 0 0







qDh
qSh
qNh
pDh
pNh




=




0
0
0
−rD
−rN



,

where

∑

τ∈M

∑

f∈∂τ
ωf
(
qD · nf

) (
vD · nf

)
7→ DD,

∑

i∈NT

∫

Bi

qSi v
S
i dx 7→ DS ,

∑

e(i,j)∈E

(
kNe(i,j)

)−1

qNi,jv
N
i,j 7→ DN ,

−
∫

Ω

pD∇ · vD dx 7→ GDD,
∑

i∈NT

∫

Bi

kSi v
S
i p

D dx 7→ GSD,

∑

i∈NT

(

∫

Bi

kSi v
S
i dx)pNi 7→ GSN , and

∑

i∈NI∪NN

(
∑

j∈Ni

vNj,i)p
h
i +

∑

i∈NT

vNNi,ip
N
i 7→ GNN .

Since DD, Ds, and DN are diagonal matrices, we can eliminate them by block Gaussian elimination
and end up with a linear system only involves solving for pDh and pNh as follows,

(
GTDD GTSD 0
0 GTSN GTNN

)

DD 0 0
0 DS 0
0 0 DN



−1

GDD 0
GSD GSN
0 GNN



(
pDh
pNh

)
=

(
rD

rN

)
,

which is exactly the matrix form of the TPFA scheme (4.4).
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4.2. Well-posedness. Next we consider the well-posedness of the TPFA scheme (4.4). As
we showed in the previous section, the TPFA scheme (4.4) is obtained from the mass lumpping
mixed-formulation (4.2)-(4.3) by block Gaussian elimination. Therefore, we first show the well-
posedness of the mass lumpping mixed-formulation (4.2)-(4.3) and then the well-posedness of the
TPFA scheme (4.4) follows directly.

Since the only difference between the mixed-formulation (3.1)-(3.2) and the mass lumpping
mixed-formulation (4.2)-(4.3) is the inner product used for Hh(div,B), we first introduce the norm
induced by the inner product (4.1) as follows,

‖qh‖2K−1,h := (qh, qh)K−1,h, ∀ qh ∈ Hh(div,B),

and show it is spectrally equivalent to the norm (2.28) in the following lemma.

Lemma 4.1. For any qh ∈ Hh(div,B), we have

(4.5) c1‖qh‖2K−1,h ≤ ‖qh‖2K−1 ≤ c2‖qh‖2K−1,h,

where c1 > 0 and c2 > 0 are constants only depending on the shape regularity of the mesh M.

Proof. Based on the standard result, e.g., [12], we have

c̄1
∑

τ∈M

∑

f∈∂τ
ωf
(
qDh · nf

)2 ≤
∫

Ω

(
kD
)−1 |qDh |2 dx ≤ c̄2

∑

τ∈M

∑

f∈∂τ
ωf
(
qDh · nf

)2

where the positive constants c̄1 and c̄2 depend only the shape regularity of the mesh M. Then the
spectral equivalence (4.5) follows directly from the definitions of the norms.

Define

(4.6) ‖qh‖2Hh(div,B) := ‖qh‖2K−1,h + ‖D · qh‖2L2(B).

We have the following lemmas concerning the continuity, ellipticity, and inf-sup condition for the
mass lumping mixed-formulation (4.2)-(4.3).

Lemma 4.2 (Continuity of (4.2)-(4.3)). For any qh, vh ∈ Hh(div,B) and wh ∈ L2
h, we have

(qh, vh)K−1,h ≤ ‖qh‖Hh(div,B)‖vh‖Hh(div,B),

(D · qh,wh) ≤ ‖qh‖Hh(div,B)‖wh‖L2(B).

For the ellipticity, again using the fact that, for qh ∈ Hh(div,B), D · qh ∈ L2
h, we have

Lemma 4.3 (Ellipticity of (4.2)-(4.3)). If qh ∈ Hh(div,B) satisfies

(D · qh,wh) = 0, ∀wh ∈ L2
h,

then

(qh, qh)K−1,h = ‖qh‖2Hh(div,B)

Moreover, the inf-sup condition can be derived from the inf-sup condition (Lemma 3.4) and the
spectral equivalence lemma (Lemma 4.1)
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Lemma 4.4 (Inf-sup condition of (4.2)-(4.3)). There exists a constant β > 0 such that, for
any given function rh ∈ L2(B),

(4.7) sup
qh∈Hh,0(div,B)

(rh,D · qh)

‖qh‖Hh(div,B)
≥ β‖rh‖L2(B).

Here, the inf-sup constant β depends on |Mi| = measure(Mi) = O(hn), the maximal number of
overlaps between Bi, structure of the trees T ∈ F , the domain Ω, the constants ckS and CkS , and
the shape regularity of the mesh M.

Proof. The inf-sup condition (4.7) can be derived from the inf-sup condition (3.5) and the
spectral equivalence result (4.5).

Now the well-posedness of the mass lumping mixed formulation (4.2) and (4.3) follows from
Lemmas 4.2, 4.3, and 4.4.

Theorem 4.5 (Well-posedness of (4.2)-(4.3)). The mass lumping mixed formulation (4.2)-
(4.3) is well-posed with respect to the norms (4.6) and (2.26).

Finally, the well-posedness of the TPFA scheme (4.4) follows directly from Theorem (4.5) and
the equivalence between the TPFA scheme (4.4) and the mass lumpping mixed-formulation (4.2)-
(4.3). The result is summarized in the following theorem.

Theorem 4.6 (Well-posedness of (4.4)). The TPFA scheme (4.4) is well-posed.

4.3. Convergence. Regarding the convergence result of the TPFA scheme, since we use
mass-lumping technique to derive it, existing theoretical tools developed in [3, 8] can be adopted
here. For the sake of the simplicity, in this subsection, we assume that kD is constant on each
element τ ∈ M and the mesh M is uniform (e.g., rectangle/equilateral triangle in 2D, rectan-
gular cuboid/regular tetrahedra in 3D). Under those conditions, as shown in [3], for τ ∈ M,∑
f∈∂τ ωf

(
qD · nf

) (
vD · nf

)
used in the definition (4.1) provides a numerical integration formula

of
∫
τ
(kD)−1qDvD dx and such a numerical integration is exact for constant functions on each

element τ . Moreover, the following perturbation result holds for qD,vD ∈ Hh,0(div,M),

(4.8) |
∫

τ

(kD)−1qDvD dx−
∑

f∈∂τ
ωf
(
qD · nf

) (
vD · nf

)
| ≤ ch2

τ‖qD‖H(div,τ)‖vD‖H(div,τ).

Based on the above result, we can easily verify that, for qh, vh ∈ Hh(div,B),

|(qh, vh)K−1 − (qh, qh)K−1,h| ≤ ch2‖qh‖H(div,B)‖vh‖H(div,B).

Now, we can use the theory developed in [19] and conclude the convergence result of the TPFA
scheme in the following theorem.

Theorem 4.7. Suppose that q ∈ H0(div,B) and p ∈ L2(B) satisfy the weak formulation (2.24)-
(2.25), then the finite-element solution qh ∈ Hh,0(div,B) and ph ∈ L2

h of the mass lumping mixed
finite-element approximation (4.2)-(4.3) satisfy that

‖q− qh‖H(div,B) + ‖p− ph‖L2(B) ≤ ch
(
‖qD‖1 + ‖∇ · qD‖1 +

∑

i∈NT

‖qSi ‖1 + ‖pD‖1
)

(4.9)

where the constant c depends only on β, kD, the maximal number of the overlap between Mi,
maxi{|Mi|}, and quasi-uniformity of the mesh M.
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Consequentially, this also implies the convergence result of the TPFA scheme because of
the equivalence between the TPFA scheme (4.4) and the mass lumpping mixed-formulation (4.2)
and (4.3).

Remark 4.8. As pointed out in Remark 3.8, the regularity requirement ∇ · qD ∈ H1(Ω) can be
relaxed here as well and similar convergence analysis still holds.

Remark 4.9. As shown in [3, 8], similar results hold for some more general meshes. For example,
the perturbation result (4.8) hold for general triangles in 2D with order h instead of order h2.
However, this still leads to the error estimate (4.9) based on the same procedure. For general
triangulation in 3D, convergence analysis for standard mixed-formulation Poisson problem with
mass lumping was derived based on a different approach in [8]. We can also adopt a similar
approach to derive the convergence result for our mass lumping mixed finite-element scheme as well
to obtain the error estimate (4.9) for general triangulation as well.

5. Numerical Results. In this section, we include three numerical results to validate and
explore the discretization and solver presented above. In particular, the first case contains the
simplest possible geometry in 2D, on which we compare the discretization to a series solution
(Bessel functions). In the second case, we have a more complex geometry embedded in 4D, which
can be seen as a prototype of the geometries relevant for applications. In both the first and second
cases, we perform convergence studies both for the discretization and multigrid solver. Finally, in
the third case, we apply the methodology to a real dataset, based on the human brain.

The error is measured in the norms proposed in the analysis, in particular we measure the
L2 norm of pressure and the k−1/2-weighted norm of flux. As is common for finite volume and
mixed finite-element methods, we use cell-centered quadrature when evaluating the L2 norm in
the domain, which allows us to exhibit the usual super-convergence behavior for these methods on
smooth problems.

Due to the prevalence of image data for the applications of interest, all the numerical exper-
iments are conducted on uniform Cartesian grids and the TPFA scheme is used. To solve the
resulting linear system, we use algebraic multigrid (AMG) preconditioned flexible GMRes (FGM-
Res) method, as detailed in the Supplementary Materials ??. Here, an unsmoothed aggregation
AMG method is used as the preconditioner. More precisely, one step of V-cycle AMG method is
applied with one step of Gauss-Seidel method for both pre- and post-smoothing. The FGMRes
method is terminated when the `2-norm of the initial residual is reduced by a factor of 10−6. The
solver performance for all three cases below is also reported in the Supporting Information. The
implementations are in Matlab, and code is available from the authors on request. All runs are
conducted on a Linux workstation using 40 Intel Xeon CPU processors (E5-2698 v4) at 2.20GHz
clock speed, with 256 Gb RAM.

5.1. Case 1: Comparison to Convergent Series Solution. Our first case is constructed
such that a series solution (in terms of well-known Bessel functions) is available. The full derivation
of the series solution is available in the Appendix, an illustration of the geometry, and the series
solution is provided in Figure 3. Throughout this subsection, we consider the series solution as
the exact solution of the equations, since arbitrary precision can be obtained using well-established
implementations of table values [1].

The main features of the solution is a simple two-node tree, where node 0 is a Dirichlet boundary
node, and node 1 is a terminal node. Correspondingly, there is a single edge in the network, which
contains the network flux. The solution is constructed with a transfer function kT that has compact
support on a disc of radius r1 from the origin. We consider two variants of the case, case 1A has
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Fig. 3. Left: Illustration of domain for Case 1, with transfer function kT (red) and source term rD (blue).
The source term, which is actually a sink in this setup, has been scaled by 102 for visualization purposes. Right:
Illustration of pressure (black) and radial flux (grey) in the domain as function of distance from the origin. Note
that for the pressure, we have plotted pD(r)− pD(0.5) in order to facilitate visual comparison. In both figures, cases
1A is represented by solid lines and 1B by dashed-dotted lines.

a smoothly degenerating transfer function such that (in terms of radial coordinates) kT (r)→ 0 as
r → r1, while case 1B has a constant kT within the disc (and zero outside), thus kT ∼ H(r1 − r),
where H denotes the Heaviside function. To drive the system, a quadratic source term is provided
in the region r2 < r ≤ r3.

We conduct numerical experiments with unit values, such that the domain Ω is the unit square
centered at the origin, the domain and network permeabilities are unit valued, and the scaling of
source term rD = 1. The transfer function kT has a unit maximum value at the origin, for both
case A and B, thus in the notation of the appendix kT0 = 1. As stated, we consider two versions of
the case. For the case 1A, we consider a degenerating transfer function kT , with r0 = 0.1, r1 = 0.2,
r2 = 0.3, r3 = 0.4. For case 1B, we let the transfer function abruptly go to zero by keeping all radii
as in case 1A, except for r0 = 0.2.

An important aspect of the implementation is the accuracy with which the right-hand-side
and the inner products involving kS are evaluated. In the results reported here, we have used a
fourth-order accurate numerical quadrature.

The convergence results of cases 1A and 1B are presented in Table 1 and 2. We show the
convergence history separated into components similar to the analysis, i.e. Domain, Scaled terminal
flux, and Network.

First note that for this example, since the network contains a single throat and the domain has
Neumann boundary conditions, global conservation of mass implies that qNh will be exact up to the
quadrature error in the evaluation of rD, and similarly for pNh . Thus the fourth-order convergence
of these variables is expected.

As for the remaining variables, we observe in both Case 1A and Case 1B optimal second-order
convergence of pDh and first-order convergence of qDh . In this example, the scaled terminal flux
qSh is essentially just the weighted difference between pDh and pNh , and thus it inherits the (slower)
convergence rate of the two, i.e. second-order. By comparing the two cases, we see that there is no
influence of the degeneracy of kS .
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Variable 1/h Error D Rate D Error S Rate S Error N Rate N
16 1.81e-07 4.91e-09
32 4.12e-08 2.13 1.59e-10 4.95

p 64 1.03e-08 1.99 1.23e-11 3.70
128 2.63e-09 1.98 3.69e-13 5.06
256 6.55e-10 2.00 4.88e-15 6.24
512 1.64e-10 2.00 2.59e-16 4.24

Average 2.02 4.84
16 1.68e-05 2.38e-07 4.91e-09
32 8.29e-06 1.02 4.98e-08 2.26 1.59e-10 4.95

q 64 4.11e-06 1.01 1.25e-08 1.99 1.23e-11 3.70
128 2.06e-06 0.99 3.05e-09 2.04 3.69e-13 5.06
256 1.03e-06 0.99 7.64e-10 2.00 4.88e-15 6.24
512 5.19e-07 0.99 1.91e-10 2.00 2.59e-16 4.24

Average 1.00 2.06 4.84

Table 1
Convergence of case 1A. Upper part of the table gives convergence information for the pressure variables pD

and pN , while the lower part of the table gives the convergence information for the flux variables qD, qS and qN .

Variable 1/h Error D Rate D Error S Rate S Error N Rate N
16 2.02e-07 4.91e-09
32 3.37e-08 2.59 1.59e-10 4.95

p 64 8.06e-09 2.06 1.23e-11 3.70
128 2.03e-09 1.99 3.55e-13 5.11
256 5.94e-10 1.77 2.69e-15 7.05
512 1.37e-10 2.11 4.88e-16 2.46

Average 2.11 4.65
16 1.65e-05 1.35e-06 4.91e-09
32 8.54e-06 0.95 2.00e-07 2.76 1.59e-10 4.95

q 64 4.21e-06 1.02 3.02e-08 2.73 1.23e-11 3.70
128 2.11e-06 1.00 7.70e-09 1.97 3.55e-13 5.11
256 1.05e-06 1.00 6.54e-10 3.56 2.69e-15 7.05
512 5.26e-07 1.00 1.84e-10 1.83 4.88e-16 2.46

Average 1.00 2.57 4.65

Table 2
Convergence of case 1B. For complete legend, see figure 1

5.2. Case 2: A Prototypical 4 Dimensional Case. Our second example is chosen to illus-
trate a typical case encountered in the modeling of tissue. The physical domain is 3-dimensional,
however, due to the biomedical properties involved, the physical domain represents two or more
continua (biomedically speaking, this corresponds to arterial and venal compartments, etc.). The
continua are ordered, and communication between the compartments is only allowed between neigh-
bors in the ordering. As such, the continua represent a discretization of an elliptic equation in a
fourth dimension. The mathematical structure of the resulting system is thus one of a 4D elliptic
equation, coupled to networks, and is naturally covered by the methods proposed analyzed in this
paper.

To explore this concept, and validate the performance of our methods, we consider the following
concrete problem, as illustrated schematically in Figure 4. Let the model domain be the unit 4-
cube. We consider Neumann boundary conditions on all faces of the domain. Furthermore, we
consider two trees, which are named as ”arterial tree” and ”venous tree”, respectively, to conform
with applications and the next subsection. Each consists of four nodes connected in the shape
of a ”Y”, wherein each tree, one node is a Dirichlet boundary node (pND = 1 and pND = 0 in
arterial and venous Dirichlet nodes, respectively), while two nodes are terminal nodes. The arterial
terminal nodes i are associated with transfer functions kTi (x) = kT (|x − yi|3)H(1/2 − x4), where
|x − xi|23 =

∑
j=1...3(xj − yi,j)2 is the distance in the first three coordinates from the 3-points yi,
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Fig. 4. Illustration of domain for Case 2. The arterial network and arterial 3D domain is shaded by red colors,
while the venous network and network 3D domain are shaded by blue colors. The two 3D domains together for a
2-point discretization of a 4D domain, where the flow in the fourth dimension is indicated by arrows between the
two 3D domains.

x4 is the coordinate in the fourth dimension, and kT are the transfer functions from Section 5.1
with r0 = 0.1 and r1 = 0.2. Conversely, the venous terminal nodes are associated with transfer
functions kTi (x) = kT (|x−yi|3)H(x4−1/2). For the arteries, the transfer functions are centered on
3-points yi defined by [0.43, 0.25, 0.5] and [0.37, 0.75, 0.5], while for the veins, the transfer functions
are centered on [0.63, 0.25, 0.5] and [0.57, 0.75, 0.5].

We discretize the domain with an anisotropic Cartesian grid in the sense that the first three
dimensions are discretized by a regular isotropic Cartesian grid. The fourth dimension is discretized
by only two grid cells. This resulting system is equivalent to the common two-compartment model,
where the cells in the fourth dimension with x4 < 0.5 correspond to the arterial compartment, and
the remaining cells the venous compartment. In accordance with the practice in applications, we
will emphasize grid refinement over model refinement, and only consider refinement of the first three
dimensions. Moreover, we will in accordance with the applications decompose the domain flux into
two parts qD → [qD, qP ], where the flux in the fourth dimension qP is referred to as ”perfusion”.
Model parameters are otherwise set to unity, kD = kP = kN = 1 where kP is the permeability
constant of the flux in the fourth direction.

The convergence results for this case are presented in Table 3. All errors are reported relative
to a numerical solution calculated with a resolution of h = 256−1, and convergence rates are
therefore reported for grids up to a resolution of h = 128−1. As expected, we observe quasi-
optimal convergence rates in all variables. In contrast to case 1, we no longer have the artificial
exact solutions in the network, where we observe second order convergence, as inherited from the
interaction between the terminal nodes and the second-order accurate pressure in the domain.

Variable 1/h ErrorD RateD ErrorT RateT ErrorN RateN ErrorP RateP
p 16 3.42e-05 3.86e-06

32 8.60e-06 1.99 6.20e-07 2.64
64 2.21e-06 1.96 1.84e-07 1.75
128 6.36e-07 1.80 4.20e-08 2.13

Average 1.92 2.17
q 16 1.12e-03 2.45e-02 2.01e-06 2.49e-05

32 4.09e-04 1.45 1.11e-02 1.14 3.24e-07 2.64 6.25e-06 1.99
64 1.55e-04 1.40 5.02e-03 1.15 9.60e-08 1.75 1.60e-06 1.97
128 4.99e-05 1.64 2.03e-03 1.31 2.20e-08 2.12 4.42e-07 1.85

Average 1.49 1.20 2.17 1.94

Table 3
Convergence results for Case 2. All variables are reported as in table 1, with the (perfusion) flux in the fourth

dimension additionally reported as qP .
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5.3. Case 3: Full-brain simulation study. As a final test case, we consider the application
to a real data set, associated with blood flow in the human brain. As a modeling concept, we use the
same general structure as illustrated in Figure 4. The data-set and parameterization is described in
detail in [13], and is illustrated in Figure 1 of the introduction. Here we summarize the main features:
the data contains two trees, corresponding to a segmentation of the arterial and venous systems,
containing 355 and 1222 nodes, respectively. For the finest simulations, we consider full resolution
MRI acquisitions, which after co-registration to the finest resolution image is a Cartesian grid with
346×448×319 grid cells, representing a brick-shaped field of view of 177×224×160mm3. The actual
domain Ω is a 4D extrusion of the 3D subset of the field of view from a T1-weighted MR acquisition
which contains segmentation of the brain acquired with the human brain segmentation software
FreeSurfer [9]. Thus the mathematical formulation is a 4D model in the sense of the previous
sub-section, and after discretizing the fourth dimension by two cells, the full model contains 17.5
million grid cells. The domain Ω is furthermore divided into two subdomains by the FreeSurfer
segmentation (anatomically: white matter ΩWM and gray matter ΩGM ), with permeability in the
three physical dimensions set to an isotropic value of kD = 10−11m2. The permeability kD acting
in the 4th dimension (anatomically: the perfusion coefficient), is anisotropic relative to the physical
dimensions, and is in the white matter set to kP = 10−6m · s · kg−1, x ∈ ΩWM , and in grey matter
is set to kP = 1.6 ·10−6m ·s ·kg−1, x ∈ ΩGM . The transfer permeability is set according to equation
(??), with r1 = 30mm, r0 = r1/2, and kT0 = 10−4.

The arterial and venous vessel trees are extracted down to voxel resolution from time-of-flight
(TOF) and quantitative susceptibility mapping (QSM), respectively. Within both these MR ac-
quisitions, a crude segmentation of the vessels is obtained by local adaptive thresholding, leading
to a large number of disconnected structures. These binary satellites are connected with the main
structure by repeatedly solving a boundary value problem around the main structure S for each
satellite. Hence, the solution of the Eikonal equation |∇T | = f(x)−1, T (x ∈ S) = 0 for the arrival
time T (x) provides a geodesic distance map from x to the main structure. The Eikonal equation
was solved using the fast marching method [20]. The function f(x) is user-supplied and is known
as the speed of the arrival time field. Within TOF we use the image itself as speed function and
for QSM the inverted image due to low contrast within vessels. The speed is set to zero outside the
brain, possibly leading to curved geodesic trajectories, which is the reason why the signed distance
function is not used. The arrival time itself is not of interest here, but rather the backtracing in the
arrival time field from the satellite to the main structure providing a most probable path connecting
these two structures with each other. The current approach favors probable paths to be aligned
with dark- or bright-contrast structures that partly disappear within the images due to noise in
the data. While backtracing, visited points are added to the main structure with a suitable vessel
radius. Finally, the process of solving the Eikonal equation is repeated for each satellite, ultimately
providing a connected structure, i.e. the arterial or venous vessel tree. For a more comprehensive
description of how satellites are connected to the main structure, we refer the readers to [13].

The now connected binary trees are converted into abstract graphs using built-in Matlab rou-
tines for skeletonization, leaf (terminals and roots), and node detection. Vessel length is the geodesic
distance along the edge between two connecting nodes, and the average vessel diameter is fitted
by a Euclidean distance function around the centerline. The edge flow permeability kN is assigned
individually for each edge based on Hagen-Poiseulle’s law, using local estimates of vessel diameter
and vessel length measured in the binary vessel trees. Both arterial and venous trees are modeled
with Dirichlet root nodes as the main arterial inlets and main venous outlets. The only properties
of the vessel trees that are needed for the simulation experiments are the edge flow permeability
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Fig. 5. Simulation results for Case 3, showing the pressure solution for the trees and domain, as well as the
transfer flux qD and the component of the domain flux associated with the fourth dimension, denoted qP in the text.
Full-size versions of the subfigures are available in section SM3 of the Supporting Information.

kN within a connectivity matrix and the terminal positions within the field of view.
The full brain data contains many important qualitative properties, including connectivity of

the trees after preprocessing of the initially disjoint trees, and connectivity of the brain geometry.
These properties ensuring well-posedness, as well as the connected representation of grey and white
matter, are not trivially preserved when coarsening the data. Thus instead of reporting relative
results on a grid sequence for this case (which due to the above would have limited real value), we
summarize the calculated solution on the image resolution in Figure 5 (the subfigures of this figure
are shown in full size in section SM3 of the supporting information). While the quantitative aspects
of the calculated results depend on parameters that are at present not fully justified by clinical
measurements, our calculations verify that the proposed methods allow for efficient simulations at
imaging resolution, preserving the qualitative properties of the solution corresponding to biomedical
expectations.

6. Conclusions. We have proposed a mixed-dimensional mathematical model, closely related
to models used for modeling fluid flow in human vasculature. We show the well-posedness of this
model on the continuous level and develop suitable numerical discretizations, of both mixed finite-
element and finite volume types. These are shown to be stable and convergent.

Our theoretical results are complemented by numerical examples, which demonstrate super-
convergence of the method in terms of the pressure variable on smooth solutions, and also verifies
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the stability and applicability of the method to large scale real-world data sets.
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SUPPLEMENTARY MATERIALS: MODELING, WELL-POSEDNESS AND
DISCRETIZATION FOR A CLASS OF MODELS FOR MIXED-DIMENSIONAL

PROBLEMS WITH HIGH DIMENSIONAL GAP ∗

ERLEND HODNELAND† , XIAOZHE HU‡ , AND JAN MARTIN NORDBOTTEN §

SM1. Linear Solvers. In this section, we discuss how to solve the linear systems obtained
by the TPFA scheme from the main part of the paper. The TPFA scheme solves the unknown ph
first, after which the unknowns qh can be recovered. Therefore, we discuss multigrid methods for
the TPFA scheme. In this section, we will solely be dealing with the discrete system, and thus omit
the subscripts on qh and ph.

The TPFA scheme (??), following the discussion in Section ??, can be obtained by block
Gaussion elimination of the mass lumping mixed-formulation, i.e., its compact matrix form is

(SM1.1) GT (Dq)−1Gp = r.

As we can see, this is a discretization of a Poisson type problem for the unknown p in the mixed-
dimensional setting. Since multigrid (MG) methods are designed for solving diffusion type problems
efficiently [SM8, SM10], in our work, we use an algebraic variant of the MG methods to solve the
resulting linear system. More precisely, we use the aggregation-based AMG method, which is
a suitable choice for solving both Poisson-type problems, see [SM2, SM6], and graph Laplacian
problems, see [SM3, SM7, SM4].

To validate the efficiency of multi-grid for this problem, we include the solver performance on
the three test cases from the manuscript in the tables below.

The performance of the iterative solver for Case 1A is summarized in Table SM1. The results
for Case 1B are essentially identical and are omitted (the deviation is less than 5% in all quan-
tities) . This test case, due to the simplicity of the network, is from a linear algebra perspective
almost identical to the 2D homogeneous Poisson problem. Therefore, the aggregation-based AMG
preconditioner performs as expected. Here, the grid complexity (GridComp.) is defined as the ratio
between the total size of the matrices on different levels and the size of the matrix on the finest level.
The operator complexity (Oper.Comp.) is defined as the ratio between the total number of nonze-
ros of the matrices on different levels and the number of nonzeros of the matrix on the finest level.
As we can see, both Grid Complexity and Operator Complexity are bounded by 2, which means
that the aggregation-based AMG method roughly preserves the sparsity on the coarse levels and
the overall computational cost of one V-cycle AMG method is optimal (i.e. linearly proportional
to the cost of one step of Gauss-Seidel method). Since we use a simple unsmoothed aggregation
AMG method here, the number of iterations grows with respect to the size of the linear system as
expected. Overall, the computational cost of the multilevel solver is sub-optimal. We want to point
out that it is possible to obtain optimal computational complexity when a more sophisticated AMG

∗
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1/h NLevel GridComp. Oper.Comp. NIter CPUsetup CPUSolve DOF
16 2 1.33 1.42 19 2.14e-03 1.54e-02 256
32 4 1.59 1.79 30 7.50e-03 2.32e-02 1024
64 5 1.66 1.90 44 2.47e-02 1.04e-01 4096
128 7 1.71 1.97 66 9.27e-02 3.60e-01 16384
256 8 1.73 2.00 95 2.96e-01 1.66e+00 65536
512 9 1.74 2.02 140 1.32e+00 9.26e+00 262144

Table SM1
Solver performance on Case 1A. (NLevel: number of levels; GridComp.: grid complexity; Oper. Comp.:

operator complexity; NIter: number of iterations; CPUsetup: CPU time for setup AMG; CPU solve: CPU time for
solving using AMG; DOE: degrees of freedoms.)

1/h NLevel GridComplexity OperatorComplexity NIter CPUAMGsetup CPUSolve
16 06 1.49e+00 1.76e+00 24 4.53e-02 6.35e-02
32 08 1.58e+00 1.93e+00 33 3.93e-01 5.39e-01
64 10 1.63e+00 2.02e+00 43 3.96e+00 5.02e+00
128 12 1.65e+00 2.07e+00 61 4.04e+01 8.55e+01
256 14 1.66e+00 2.09e+00 83 3.72e+02 1.05e+03

Table SM2
Solver performance on Case 2. See SM1 for complete caption information.

cycle, such as the K-cycle is used [SM9, SM5]. This is a subject of our ongoing and future research
since developing special tailored multilevel solvers for mixed-dimensional problems is a challenging
and important task itself and beyond the scope of this work.

The solver results for case 2 are presented in Table SM2, including the performance on the
reference solution, which has more than 33 million degrees of freedom. Again, we observe that
both grid complexity and operator complexity are bounded while the number of iterations grows
sublinearly with respect to the size of the linear systems. This means the overall computational
complexity is sub-optimal, which is expected since we are using a simple unsmoothed aggregation
AMG preconditioner.

The computational performance on Case 3, which consists of real data, is summarized in Table
SM3. All results are reported relative to the discretization level of the data, which we label h0.
The results confirm that even for this large data-set, with data-driven and physuiologically realistic
parameters, the solver performs efficiently. The number of iteration grows sublinearly and the CPU
time also indicates that the current solver is sub-optimal. However, we do not see the degradation of
the AMG solver comparing with the previous two cases with simpler geometry, which demonstrates
that our discretization is stable and solver-friendly. Moreover, the efficiency of the discretization
and solver combinations proposed above allow for analysis of full-resolution medical data.

SM2. Derivation of reference solution for section 5.1. The solution is valid for any do-
main Ω containing the origin and with zero Neumann boundary conditions, and for a tree consisting
of two nodes: Node 0 is a Dirichlet node and node 1 is a terminal node. Please refer to Figure ??
for a visual illustration.

Setup. Consider polar coordinates (r, θ) around the origin, included in Ω. In addition to
Neumann boundary conditions on Ω, the boundary pressure pN0 in the Dirichlet node is taken as a
given, and we consider for simplicity zero source terms in the terminal node, rN1 = 0.

Then we construct up to four concentric domains, bounded by 0 < r0 ≤ r1 ≤ r2 < r3 ≤
diam (Ω). The inner domain will be a disc, the remaining domains will be doughnuts. We consider
homogeneous kD(x) = kD, while the remaing parameters in Ω are strictly functions of r. In
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h0/h NLevel GComp OComp NIter CPUsetup CPUSolve DOF
0.064 05 1.27 1.13 68 4.14e-02 2.64e-01 2206
0.13 06 1.12 1.02 108 2.20e-01 2.74 17179
0.25 08 1.15 1.04 113 2.37 22.8 137378
0.51 10 1.27 1.09 122 23.4 200 1103295
1 12 1.53 1.36 138 317 2.74e+03 8792747

Table SM3
Solver report whole brain simulation. Note that we set h0 as the resolution of the finest grid, since this is the

resolution of the data. Also, the DOF column reflects that due to the nontrivial shape of the brain, the number of
active cells in the computation does not scale exactly with the cube of the grid resolution.

particular, we choose a transfer permeability which is non-zero only in the two inner-most regions

(SM2.1) kT (r) = kT0





1 for r ≤ r0,
a20

r21−r2
r2 for r ≤ r1,

0 for r > r1.

Continuity of the transfer function at r0 is obtained by setting

(SM2.2) a20 =
r20

r21 − r20
The source is chosen as non-zero only between r2 and r3,

(SM2.3) rD(r) = rD0 (r − r2)+(r3 − r)+,

where (a)+ ≡ max(0, a) indicates that only positive values are considered, .
The governing equations in the domain Ω can be stated in radial coordinates as (our parameters

are radially symmetric, as will our solution be, and we drop θ in the continuation):

(SM2.4)
1

r

d

dr

(
−rkD dp

D

dr

)
− qT = rD

where we recall that

(SM2.5) qT = −kT (pD − pN1 )

SM2.1. Solutions. First, we note that by volume balance, we have that

(SM2.6) qN ≡ qN0,1 = −2πrD0

∫ r3

r2

r(r − r2)(r3 − r) = −2πrD0

(
r43 − r42

12
− r2r3

r23 − r22
6

)
.

It then follows that the pressure pN1 at the terminal node is given by

(SM2.7) pN1 = pN0 − kNqN

The combination of equations (SM2.4) and (SM2.5) have analytical solutions within each region
of the domain. These are as follows (these are reported in numerous text books, we will use Chapter
9 of Abramovich and Stegun as a concrete reference for the use and manipulation of Bessel functions
[?]).
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Solution S1 : For r ≤ r0: By substitution of equation (SM2.5) into equation (SM2.4), we obtain

(SM2.8) r
d

dr

(
r
dpD

dr

)
− kT0
kD

r2(pD − pN1 ) = 0,

the solution of which is the modified Bessel function of the first kind I0, since we easily determine
that there is no singularity at the origin:

(SM2.9) pD(r)− pN1 = cII0(κ0r)

where

(SM2.10) κ0 =

√
kT0
kD

The constant cI will be determined later. The derivative of presssure is obtained according to
according to the differential rules for Bessel functions of integer order (see equation 9.6.27 in [SM1]):

(SM2.11) I ′0|κ0r0
= I1(κ0r0)

Thus the radial component of flux is given by

(SM2.12) qDr = −kDcIκ0I1(κ0r0)

Solution S2 : For r0 < r ≤ r1: By substitution of equation (SM2.5) into equation (SM2.4), we
obtain in this region

(SM2.13) r
d

dr

(
r
dpD

dr

)
+
kT0
kD

a20(r2 − r21)(pD − pN1 ) = 0,

the solution of which are the (unmodified) Bessel functions of the first and second kind J and Y ,
of fractional order:

(SM2.14) pD(r)− pN1 = cJJκ1r1(κ1r) + cY Yκ1r1(κ1r) =
∑

C=J,Y
cCCκ1r1(κ1r)

where C indexes the Bessel functions J and Y , and

(SM2.15) κ1 = a0

√
kT0
kD

The constants cJ and cY will be determined later. From the pressure, we determine the derivative
according to (see equation 9.1.30 in [?])

(SM2.16) C′ν(z) = Cν−1(z)− νz−1Cν(z)

thus the radial component of flux is given by

(SM2.17) qDr = −kDκ1
∑

C=J,Y
cC
(
Cκ1r1−1(κ1r)−

r1
r
Cκ1r1(κ1r)

)
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Solution S3 : For r1 < r ≤ r2: By equation (SM2.4)

(SM2.18)
d

dr

(
r
dpD

dr

)
= 0,

the solution of which is the logarithm, and since kT (r) = 0 for r > r1, we know that the total flux
around any perimeter enclosing r1 is given by qN . This determines the constant for the logarithmic
term, and we obtain:

(SM2.19) pD(r)− pD(r1) = − qN

2πkD
ln

(
r

r1

)

The radial component of flux is given by

(SM2.20) qDr =
qN

2π

1

r

Solution S4 : For r2 < r ≤ r3: By equation (SM2.4)

(SM2.21)
1

r

d

dr

(
r
dpD

dr

)
= − r

D
0

kD
(r − r2)(r3 − r),

the solution of which is a fourth-order polynomial plus a logarithmic term.

(SM2.22) pD(r)− pD(r2) = c4 ln

(
r

r2

)
+
rD0
kD

(
r4 − r42

16
− (r3 + r2)

r3 − r32
9

+ r2r3
r2 − r22

4

)

The radial component of flux is given by

(SM2.23) qDr = −kD c4
r
− rD0

(
r3

4
− (r3 + r2)

r2

3
+ r2r3

r

2

)

However, since the outer boundary condition of Ω is zero Neumann, and we have continuity of flux
with respect to the solution S4 at r3, this implies that we can determine the constant multiplier of
the logarithmic term by setting qDr (r3) = 0, which yields:

(SM2.24) c4 =
rD0
kD

(
r43
12
− r2r

3
3

6

)

Solution S5 : For r3 < r: By equation (SM2.4)

(SM2.25)
d

dr

(
r
dpD

dr

)
= 0,

the solution of which is again the logarithm as in S3. However, in accordance with the zero Neumann
boundary condition, the flux is zero, and all that remains is a constant.

(SM2.26) pD(r)− pD(r3) = 0

and

(SM2.27) qDr = 0
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Constants. It remains to determine the constants cI , cJ and cY from solutions S1 and S2.
The solutions S1 and S2 must satisfy three criteria: 1) The pressure must be continuous at r0, 2)
the flux must be continuous at r0, and 3) The flux must be continuous at r1. This leads to three
linear constraints on the constants.

These criteria can be made precise using the solutions derived above as follows.
2) Pressure continuity Continuity of pressure at r0 requires that

(SM2.28) cII0(κ0r0) =
∑

C=J,Y
cCCκ1r1(κ1r0)

3) Flux continuity at r0 Continuity of flux at r0 requires that

(SM2.29) cIκ0I1(κ0r0) = κ1
∑

C=J,Y
cC

(
Cκ1r1−1(κ1r0)− κ1r1

κ1r0
Cκ1r1(κ1r0)

)

3) Flux continuity at r1 Continuity of flux at r0 requires that

(SM2.30)
qN

2π

1

r1
= −kDκ1

∑

C=J,Y
cC (Cκ1r1−1(κ1r1)− Cκ1r1(κ1r1))

The three equations (SM2.30), (SM2.28) and (SM2.29) provide the three linear constraints for
the unknown constants.

For the special case where r0 = r1, two of the constants, cJ and cY are superfluous, and the
remaining constant is obtained by combining equations (SM2.28) and (SM2.29) as:

(SM2.31) cIk
Dκ0I1(κ0r1) = −q

N

2π

1

r1

SM3. Full-size figures for section 5.2. This section contains enlarged versions of the sub-
figures in Figure 5 of the article, which contains the colorbars for the figures in this section.
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Fig. SM1. Simulation results for Case 3, showing the pressure solution for venous (upper) and arterial (lower)
trees, pN
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Fig. SM2. Simulation results for Case 3, showing the pressure solution for venous (upper) and arterial (lower)
parts of the domain, pD
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Fig. SM3. Simulation results for Case 3, showing the fluxes associated with the venous (upper) and arterial
(middle right) unresolved trees, qT , as well as perfusion qP (lower).
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