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Abstract
It is common to formulate the history-matching problem using Bayes’ theorem. From Bayes’, the conditional probability
density function (pdf) of the uncertain model parameters is proportional to the prior pdf of the model parameters, multiplied
by the likelihood of the measurements. The static model parameters are random variables characterizing the reservoir model
while the observations include, e.g., historical rates of oil, gas, and water produced from the wells. The reservoir prediction
model is assumed perfect, and there are no errors besides those in the static parameters. However, this formulation is
flawed. The historical rate data only approximately represent the real production of the reservoir and contain errors. History-
matching methods usually take these errors into account in the conditioning but neglect them when forcing the simulation
model by the observed rates during the historical integration. Thus, the model prediction depends on some of the same
data used in the conditioning. The paper presents a formulation of Bayes’ theorem that considers the data dependency of
the simulation model. In the new formulation, one must update both the poorly known model parameters and the rate-
data errors. The result is an improved posterior ensemble of prediction models that better cover the observations with
more substantial and realistic uncertainty. The implementation accounts correctly for correlated measurement errors and
demonstrates the critical role of these correlations in reducing the update’s magnitude. The paper also shows the consistency
of the subspace inversion scheme by Evensen (Ocean Dyn. 54, 539–560 2004) in the case with correlated measurement
errors and demonstrates its accuracy when using a “larger” ensemble of perturbations to represent the measurement error
covariance matrix.

Keywords Iterative ensemble smoother · Subspace EnRML · Correlated measurement errors · Reservoir history matching

1 Introduction

Reservoir simulators are typically forced by measured oil,
gas, and water rates during the historical simulation to
generate the predicted production [1]. This forcing can be
applied directly using individual measured rates (e.g., the oil
rate) or maybe more commonly by the produced reservoir
volume as computed from the fluid rate data (i.e., the total
volume of fluids produced by a well). Thus, one attempts to
prescribe the observed production and injection from each
well to the model, and if it is physically possible, the model
will produce the prescribed rates. Sometimes the model
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is unable to satisfy the imposed production constraints. In
such cases, the purpose of the conditioning is to update
the reservoir description so that the model can produce the
observed rates.

The approach described above is standard in most
history-matching studies based on ensemble methods, see
e.g., [4, 6, 21, 25]. Additionally, the inclusion of seismic
information complements the information contained in the
historical rates [5, 19]. Lately, the conditioning on seismic-
information has become more efficient with adaptive local-
ization schemes, such as the one proposed by Luo and
Bhakta [20]. Petroleum companies now use ensemble con-
ditioning methods operationally to manage their reservoir-
model workflows [13, 23]. This paper aims to enhance the
understanding of the formulation and solution of ensemble
history-matching methods.

We will now formulate the history matching problem
while allowing the historical rates to contain errors. Start
by storing all the observed production and injection rates
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of oil, gas, and water, for the whole history of the model,
in the control vector, u ∈ �mu , and define the x ∈ �n,
to include all the uncertain parameters that characterize the
reservoir. We can then write a model for the simulated
rates of produced oil, water, and gas, i.e., the predicted
measurements, y ∈ �m, as

y = g
(
x,u

)
. (1)

Thus, the model depends on the uncertain parameters in
x ∈ �n and the uncertain rates in the vector of controls,
u. Here mu is the dimension of the control variable, u, m

is the dimension of the possible subset of rate data that
we condition on, and n is the dimension of the vector of
uncertain model parameters.

Now, characterize the random variables x and u by a
prior joint probability density function (pdf), f (x,u). The
model in Eq. 1 is then a stochastic equation starting from an
uncertain set of parameters, x, and forced by the uncertain
controls, u. A joint pdf for the model prediction and the
poorly known inputs is

f (y, x,u) = f
(
x,u

)
f

(
y − g

(
x,u

))

= f
(
x,u

)
δ
(
y − g

(
x,u

))
,

(2)

with δ being the Dirac-delta function. One traditionally
neglects the stochastic noise in the measured rates, which
results in an underestimated prediction uncertainty for y.
The impact of this noise can be significant, particularly
in the case with time-correlated errors in the forcing u,
which yields significantly more substantial error-variance
growth. In the current study, we neglect other model errors,
such as those that may arise from numerical discretization.
However, it is possible to include these additional errors
using the algorithm from Evensen [10].

Define the relation between the measured rate data used in
the conditioning, d ∈ �m, and the actual production, y, by

d = y + e, (3)

where e ∈ �m denote the errors in the measured rates, d.
We differentiate between the data conditioned on, d, and
the controls used to force the model, u, (although d may
typically include a subset of u).

Now, write the following joint pdf:

f
(
y, x,u,d

) = f
(
y, x,u |d)

f
(
d
)

= f
(
d | x, y,u)

f
(
y, x,u

)
.

(4)

From this equation, one obtains Bayes’ theorem

f
(
y, x,u |d) = f

(
d | y,x,u

)
f
(
y,x,u

)

f
(
d
) . (5)

When deriving the ensemble methods, it is not required to
include the normalizing denominator, and one can instead
write (5) as

f
(
y, x,u |d) ∝ f

(
d | y, x,u)

f
(
y, x,u

)
. (6)

The prior-term defined in Eq. 2 is straightforward to
evaluate. The measurements, d, only depends on y, and the
likelihood becomes f

(
d | x, y,u) = f

(
d | y), as usual. Still,

it is necessary to separate the control variables used to force
the model and the data on which we condition the posterior.

Then, using (2), it is possible to write (6) as

f
(
x, y,u |d) ∝ f

(
d | y)δ(y − g

(
x,u

))
f

(
x,u

)
. (7)

The marginal is obtained by integration over y and becomes

f
(
x,u |d) ∝ f

(
d | g(x,u))

f
(
x,u

)
, (8)

and, together with Eq. 1 for the model prediction, constitutes
the reformulated history-matching problem.

The formulation in Eq. 8 relates to the one discussed
by Evensen [10], who formulated the history-matching
problem when including model errors. Here the “model
errors” correspond to the errors in the rate data. As in
Evensen [10], we end up having to estimate both the
parameters in x and the rate data in u.

Note that when using ensemble methods, the parameter-
space dimension is not of crucial importance. The ensemble
methods compute the sensitivities between measurements
and parameters, and parameters are updated only if the
sensitivity is unequal to zero. Unimportant parameters will
retain their prior variance. Thus, the addition of uncertain
controls to the estimation does not increase the complexity
of the problem.

2 Solutionmethod with normal priors

Define the new random variable

zT = (
xT,uT) ∈ �n+mu, (9)

and rewrite model as

y = g
(
x,u

) = g(z). (10)

It is then possible to write the problem stated by Eq. 8 as

f
(
z |d) ∝ f (z)f

(
d | g(z)). (11)

Now, assume normal priors

f (z) = N
(
zf,Czz

)
, (12)

f
(
d | g(z)) = f (e) = N

(
0,Cdd

)
, (13)

where

Czz =
(
Cxx Cux

Cxu Cuu

)
, (14)

and Eq. 11 becomes

f (z |d) ∝ exp
{

− 1
2

(
z − zf

)TC−1
zz

(
z − zf

)}

× exp
{

− 1
2

(
g(z) − d

)TC−1
dd

(
g(z) − d

)}
.

(15)

Comput Geosci (2021) 25:945–970946



Thus, Eq. 15 has the same form as in the traditional history-
matching problem. The difference is that we solve for both
the model parameters and the rate errors in z rather than only
the model parameters, x.

2.1 Cost funtion and ensemble formulation

Maximizing f (z |d) is equivalent to minimizing the cost
function

J (z) = (
z − zf

)TC−1
zz

(
z − zf

)

+(
g(z) − d

)TC−1
dd

(
g(z) − d

)
.

(16)

We can approximately sample the posterior density by
minimizing an ensemble of cost functions [17, 22],

J (zj ) = (
zj − zf

j

)TC−1
zz

(
zj − zf

j

)

+(
g(zj ) − dj

)TC−1
dd

(
g(zj ) − dj

)
.

(17)

Thus, we have an ensemble of models forced by
uncertain controls,

yj = g(zj ), (18)

representing the prior information, and we have perturbed
measurements,

dj = d + ej , (19)

representing the information from the likelihood.

2.2 Gradient and Hessian

The gradient of the cost function in Eq. 17 becomes

∇J (zj ) = C−1
zz

(
zj − zf

j

) + ∇g(zj )C
−1
dd

(
g(zj ) − dj

)
,

(20)

and the approximate Hessian is

∇∇J (zj ) ≈ C−1
zz + ∇g(zj )C

−1
dd

(∇g(zj )
)T. (21)

The above equations are similar to the ones obtained when
deriving the Iterative Ensemble Smoother with model errors
included [10, compare (20) and (21) with Eqs. 71 and 72 in].

2.3 Introduce ensemble averagedmodel sensitivity

Next, define a joint or averaged model sensitivity by the
linear regression

G = Cyz(Czz)
−1, (22)

which represents the best least-squares-fit to the ensemble
of model sensitivities

Gj = (∇g(zj )
)T ∈ �m×n. (23)

One can then approximate the gradient and the Hessian from
Eqs. 20 and 21 with

∇J (zj ) ≈ C−1
zz

(
zj − zf

j

) + GTC−1
dd

(
g(zj ) − dj

)
(24)

Algorithm 1 Subspace EnRML algorithm. For the case with
estimation and use of correlated rate errors one need to
include the lines three and sixteen, and also the Ei in the
model in lines 9 and 12, all marked in red.

1: Input: X0 ∈ �n×N (prior model ensemble)
2: Input: D ∈ �m×N (perturbed measurements)
3: Input: E0 ∈ �mu×N (initial perturbations)
4: W0 = 0 W ∈ �N×N

5: � =
(
I − 1

N
11T

)/√
N − 1 � ∈ �N×N

6: E = D� E ∈ �m×N

7: i=0
8: repeat
9: Yi = g(Xi ,Ei )� Y ∈ �m×N

10: Ω i = I + Wi� Ω ∈ �N×N

11: Si = YiΩ
−1
i S ∈ �m×N

12: Hi = SiWi + D − g(Xi ,Ei ) H ∈ �m×N

13: Wi+1 = Wi − γ
(
Wi − ST

i

(
SiST

i + EET
)−1Hi

)

14: Ti = (
I + Wi+1

/√
N − 1

)
T ∈ �N×N

15: Xi+1 = XTi

16: Ei+1 = E0Ti

17: i=i+1
18: until convergence

and

∇∇J (zj ) ≈ C−1
zz + GTC−1

dd G. (25)

By replacing the model sensitivities, Gj , with the average
least-squares fit, G, we introduce an approximation in the
gradient in Eq. 20. We, therefore, also change the location of
the minimum of the cost function. With the model adjoint’s
availability, it would be possible to compute the correct
model sensitivity and thereby eliminate this approximation.
The approximation introduced by using the averaged model
sensitivity comes on top of the approximate use of the
ensemble of cost functions in Eq. 17 to sample the posterior.

2.4 Subspace EnRML solution

For computing the Ensemble Smoother (ES) or Iterative
Ensemble Smoother (IES) solutions, see [3, 9, 10, 12, 24],
where the two last papers present new subspace-EnRML
algorithm used in this work (see Algorithm 1). The method
computes for each ensemble member zj , the following
iteration for iterate number i,

zi+1
j = zi

j − γ
(
∇∇J (zi

j )
)−1 ∇J (zi

j ), (26)

which uses the definitions of the gradient and Hessian
from Eqs. 24 and 25. With the step length, γ = 1.0, and
only one iteration, the solution obtained is the ES solution.
Otherwise, one needs to specify a value of γ ∈ (0, 1],
typically γ = 0.5 is a reasonable choice, and iterate until
convergence.
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The subspace Algorithm 1 takes as input the ensemble
of model parameters, X = (x0, . . . , xN) ∈ �n×N , and the
ensemble of perturbed measurements, D ∈ �m×N . If we
include rate errors in the estimation, we must also input
the ensemble of rate perturbations E0 ∈ �mu×N (red line
number 3).

From the input ensemble one can compute the ensemble
of model predictions, g(X) ∈ �m×N . Furthermore, the
algorithm uses the scaled matrices of model predictions
anomalies, Y = g(X)�, and scaled measurement
perturbations, E = D�. The projection �, as defined in line
number 5 of Algorithm 1, subtracts the ensemble mean and
then scales the resulting ensemble anomalies by

√
N − 1.

In line number 11 of Algorithm 1, Si is most easily
computed by writing ΩTST

i = YT and then computing the
LU factorization of ΩT

i followed by m back substitutions to
a cost of O(mN2) floating point operations. In line number
12, one needs to compute the matrix multiplication SiWi to
a cost of mN2 operations.

It is possible to approximately compute the inversion in
line number 13 to a cost of O(mN2) operations by using the
ensemble subspace algorithm discussed in [7, 8, 12] (and
see also the discussion in the following section).

Finally, in line number 15, we obtain the updated model
ensemble in nN2 floating-point operations. In the case of
uncertain rate errors, we must also update Ei in the red line
number 16 to a cost of muN

2, and use Ei to force the model.
Thus, the most expensive computation in Algorithm 1

is likely the evaluation of the model-ensemble prediction
Yi = g(Xi ) in each iteration. The cost of integrating the
model is proportional to the number of time steps, nt . With
each time step requiring ncn computations, the total cost of
the ensemble integration is Nntncn. For nonlinear models,
the number of timesteps is likely much larger than N , and
the number of computations per time step can be several
times n. All other computations in this algorithm are linear
in the number of measurements, m, and the number of state
variables, n. For the detailed derivation of the subspace
EnRML algorithm, see [12, 24].

Thus, in the case where we include rate errors with
uncertainty, we include the lines in red in Algorithm 1.
The only required modification is that we need an unscaled
version of the matrix of measurement perturbations stored
in E0. Then the algorithm will use E0 to compute updated
estimates of the rate errors, Ei , in each iteration, and use
these updated rates to force the model.

2.5 Ensemble subspace inversion

In Algorithm 1, we have represented the measurement error-
covariance matrix by an ensemble of measurement pertur-
bations, E. The inversion is in this case computed using
ensemble subspace scheme as was proposed by Evensen

[7] and further discussed in Evensen [8] and recently in
Evensen [12]. This scheme projects the measurement error
perturbations onto the ensemble subspace and computes the
pseudo inverse of the following factorization

(
SST + EET)

(27)

≈ SST + (SS+)EET(SS+)T (28)

= U�
(
IN + �+UTEETU(�+)T)

�TUT (29)

= U�
(
IN + Z�ZT)

�TUT (30)

= U�Z
(
IN + �

)
ZT�TUT, (31)

where we have defined the singular-value decomposition

S = U�VT, (32)

and the IN ∈ �N×N is just the identity matrix. The
eigenvalue decomposition in Eq. 30 is of the matrix product
in Eq. 29. Note that this eigenvalue decomposition is most
efficiently computed by a singular value decomposition of
the product �+UTE. The left singular vectors will then
equal the eigenvectors in Z and the squares of the singular
values will equal the eigenvalues in �. Thus, the inversion
becomes
(
SST + EET)−1 ≈ (

U(�+)TZ
) (
IN + �

)−1 (
U(�+)TZ

)T.

(33)

The subspace inversion algorithm’s properties will be
discussed in more detail in Section 3.

3 EnKF update example

Before testing the proposed algorithm on a reservoir model,
it is instructive to examine a single update step using a toy
model. The purpose of this example is to illustrate the prop-
erties of the update scheme, in particular, when one uses
the measurement perturbations to represent the measure-
ment error covariance matrix. This example verifies the
robustness of the projection of the measurement error
covariance matrix onto the ensemble of predicted measure-
ments. The update is identical to the EnRML algorithm’s
solution in the linear case, and as such, the learnings are
representative for the iterative smoother update as well.

3.1 Example description

The test example uses a one-dimensional periodic domain
with 1024 grid points and �x = 1. In this domain, we
simulate a smooth pseudo-random function with mean μ =
4, variance σ 2 = 1, and decorrelation length rd = 40,
representing the unknown truth,

xtrue ← N
(
μ = 4, σ 2 = 1, rd = 40

)
. (34)

The constant μ = 4, is just added for plotting purposes.
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The first guess solution is generated by simulating
another realization x ← N (0, 1, 40) and adding it to the
truth, i.e.,

xfg = x + xtrue − 4√
2

+ 4. (35)

The factor
√

2 ensures that the variance of xfg is equal to
one.

The initial ensemble is created by adding random realiza-
tions xi ← N (0, 1, 40) to the first guess xfg,

xf
i = xfg + xi . (36)

The measurements are distributed uniformly over the
domain and sampled from a perturbed true solution accord-
ing to

di = M(xtrue + ei ), (37)

where either uncorrelated, ei ← N (0, 0.25, 0), or Gaussian,
ei ← N (0, 0.25, rd), errors are used. Here, M is the linear
measurement operator that extracts the measurements from
the functions xtrue + ei .

The following experiments use the same reference-
truth, measurements, initial ensemble, and random seed.
When it is essential to eliminate sampling errors, we
use extended ensemble sizes. Thus, although there are
seed dependencies in the obtained solutions, the different
methods should produce the same answer. We can, in most
of the experiments, attribute differences in the solutions
to the methods used. Thus, our approach is different from
running multiple data assimilation experiments with varying
seeds while attempting to estimate the correct answer.

3.2 Solutionmethods

In the following, we study two prominent cases, one with a
diagonal measurement error-covariance matrix and another
with correlated errors, ei , simulated from Eq. 37 and with
rd = 40. For the two cases of uncorrelated and correlated
measurement errors, the EnKF computes the analysis using
both an exactly specified measurement error-covariance
matrix Cdd and while representing the measurement error
covariance by the perturbations in E.

The case with a full-rank measurement error-covariance
matrix solves

Xa = Xf + AST(
SST + Cdd

)−1(D − MX
)
, (38)

where the ensemble perturbation matrix is A = X�. The
matrix C = SST + Cdd is formed and then inverted by
computing an eigenvalue decomposition C = Z�ZT. The
inverse is just C = Z�+ZT where the use of a pseudo
inverse is needed in case the matrix C is poorly conditioned.

When using an ensemble representation for the measure-
ment error-covariance matrix Cdd = EET, one can solve for
the update from

Xa = Xf + AST(
SST + EET)−1(D − MX

)
. (39)

In the examples below, the line labels used in the figures
indicate the inversion scheme used to compute (SST +
Cdd)−1. The line label Cdd denotes using the standard
EnKF analysis equation with a full rank measurement error-
covariance matrix Cdd , as explained above. The curves with
line label EE correspond to the EnKF update when the
samples in E replace the “exact” analytic measurement error
covariance matrix Cdd , and we use the ensemble subspace
scheme.

Using E to represent the measurement error-covariance
matrix introduces additional sampling errors. However,
we will see below how it is possible to reduce these
sampling errors to a negligible level with a simple algorithm
modification. I.e., one uses a larger number of realizations
in E to represent Cdd better. The code used is the test case
from https://github.com/geirev/EnKF Analysis.git.

3.3 Example 1 (large ensemble size)

The first example uses 50 measurements and a large
ensemble size of 2000 to reduce sampling errors. Figure 1
shows the results for the two cases with either diagonal or
correlated measurement errors.

The upper-left plot shows the EnKF estimates for the case
with uncorrelated measurement errors. The two schemes,
represented by the lines labeled Cdd and EE, give similar
results in this case. The upper-right plot shows the prior and
posterior error variances for the two updates, and again they
are nearly identical. The lower-left plot presents the EnKF
estimates for the case with correlated measurement errors.
In this case, we also see that the results using the exact and
approximate schemes (Cdd and EE) are nearly identical.

An apparent difference between the two cases is that,
with uncorrelated errors, the measurements are scattered
randomly about the correct solution. In contrast, with
correlated measurement errors, successive measurements
will have similar error values, and they follow a smooth
curve.

The nonzero measurement correlations’ role is to reduce
the strength of the update, and the result is an update with a
more substantial variance. By taking the measurement error
correlations into account, we inform EnKF that neighboring
measurements make the same error, and we reduce their
accumulated impact.

Table 1 shows that for this case with a large ensemble, the
approximation we introduce by using EET in the subspace
inversion scheme, instead of inverting the full Cdd , is
negligible. Thus, the learning from these two cases is that

Comput Geosci (2021) 25:945–970 949

https://github.com/geirev/EnKF_Analysis.git


grid index

S
o

lu
ti

o
n

200 400 600 800 1000
1

2

3

4

5

6
Truth
Data
Cdd
EE

grid index

V
ar

ia
n

ce

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Prior
Cdd
EE

grid index

S
o

lu
ti

o
n

200 400 600 800 1000
1

2

3

4

5

6
Truth
Data
Cdd
EE
ICA
ICB

grid index

V
ar

ia
n

ce

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Prior
Cdd
EE
ICA
ICB

Fig. 1 Simple update example: The upper plots present the results for
a case with uncorrelated measurement errors, while the lower plots
give the results when using measurements with correlated errors and
decorrelation length rd = 40. The left plots show the results for the

posterior ensemble means, while the right plots provide the associated
error estimates. The line labels Cdd, EE, ICA, and ICB, denote dif-
ferent numerical implementations of the inversion scheme used, as is
explained in the text. The ensemble size is 2000

correlated measurement errors reduce the measurements’
impact on the update. Furthermore, the two schemes used
to compute the inversion are mutually consistent and give
approximately the same result with only minor sampling
errors. At least, this result is accurate when the scales of the
measurement perturbations are the same as in the predicted
ensemble anomalies.

The lower plots in Fig. 1 include two inconsistent updates
conditioned on the same measurements with correlated
errors. In the first inconsistent update (named ICA), Cdd =
I, thus neglecting the measurement-error correlations in
Cdd , and uncorrelated measurement error perturbations are
sampled and used to form D. This update is inconsistent,
but it is the procedure that most practical EnKF applications
use. I.e., one neglects the measurement-error correlations,
both because they are challenging to prescribe but also
because it allows for efficient computation of the update
using (41) discussed below. We notice that the ICA estimate
slightly overfits the measurements. The reason is that by
neglecting the measurement error correlations in Cdd , EnKF

gives “full weight” to all the measurements. Additionally,
the ensemble variance becomes way too low and similar
to the case with uncorrelated measurement errors. Thus,
neglecting measurement error correlations leads to a too
close fit to the observations and a too low variance estimate.

In the second inconsistent update (named ICB), we
still set Cdd = I, but we retain the original correlated
perturbations when forming D. The surprising result is that
we obtain a too large variance in this case. One can explain
this larger variance: A set of measurements of a smooth
“true” field, with correlated errors, will have similar values.
By creating the measurement perturbation with correlated
errors, one generates perturbed measurements of similar
value for each realization. Then, using a diagonal Cdd , each
realization is pulled too strongly towards the common value
of the perturbed measurements. Thus, the updated ensemble
members will more closely resemble the variance of the
measurement perturbations.

In Table 1, we see that cases ICA and ICB lead to signif-
icant errors, both for the estimated mean and the variance.
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Table 1 Overview of the EnKF experiments

Experiment N m ne rd RMSE (mean) RMSE (variance) Figure

Exp. 1 2000 50 1 0 0.007688 0.000635 Fig. 1, upper plots

Exp. 1 2000 50 1 40 0.004753 0.000189 Fig. 1, lower plots

Exp. 1 ICA 2000 50 1 40 0.029251 0.025474 Fig. 1, lower plots

Exp. 1 ICB 2000 50 1 40 0.029247 0.004105 Fig. 1, lower plots

Exp. 2 100 50 1 0 0.012850 0.002236 Fig. 2, upper plots

Exp. 2 100 50 1 40 0.016102 0.003404 Fig. 2, lower plots

Exp. 3 100 50 10 0 0.006946 0.001003 Fig. 3, upper plots

Exp. 3 100 50 10 40 0.010386 0.001135 Fig. 3, lower plots

Exp. 4 100 50 10 20 0.014163 0.001516 Fig. 4, upper plots

Exp. 4 100 50 10 80 0.004194 0.001642 Fig. 4, lower plots

Exp. 5 100 200 10 40 0.010219 0.001117 Fig. 5

Here N is the ensemble size, m is the number of measurements, ne dimension inflation of the E-matrix, and rd is the decorrelation length used for
the measurement perturbations. The RMSE is the root mean square difference between the solutions (ensemble means and variances) computed
using an exact inversion of Cdd and an approximation EET

These two inconsistent updates stress the importance of
specifying the correct measurement error statistics in the
ensemble update scheme.

3.4 Example 2 (ensemble size of 100)

We now repeat the previous experiment from Example 1
using a more common ensemble size of 100. The purpose
is to illustrate the impact of sampling errors when using the
measurement error perturbations in E to represent Cdd . In
Fig. 2, we observe that with 100 realizations, the additional
sampling errors introduced by scheme EE lead to a slight
deviation between the two estimates. More problematic is the
underestimation of the ensemble variance. In a sequential
data-assimilation context, this underestimation would have
to be compensated for, e.g., by using inflation, to avoid
possible filter divergence. In the next example, we will learn
how to reduce these sampling errors to a negligible level.

3.5 Example 3 (augmenting realizations to E)

The benefit of using (39) over (38) is the reduced computa-
tional cost, but also the fact that it is easier to sample pertur-
bations with accurate statistics than constructing a full-rank
measurement error covariance matrix. An approach for
reducing the sampling errors in scheme EE is to augment
columns of new realizations of measurement perturbations
to E. This modification only slightly increases the compu-
tational cost of the algorithm when computing �+UTE in
Eq. 29 and is a simple modification of the code. In Fig. 3,
we see the results using 100 realizations and correlated
measurement errors, and when using 1000 samples in E.
From Table 1, we see that the augmentation of additional
columns to E in Exp. 3 significantly reduces the errors in the

estimated means and variances for the two cases with corre-
lated and uncorrelated measurement errors, when compared
with the results from Exp. 2. It is clear that the two schemes
Cdd and EE, solving (38) and (39) respectively, give almost
identical results. In this case, the measurement error per-
turbations’ projection onto the ensemble subspace does not
significantly impact the results. Thus, the sampling errors
introduced by using E to represent Cdd can be made neg-
ligible by increasing the sample size in E to only a minor
additional cost.

3.6 Example 4 (different scales in E)

Example 4 repeats the experiment from Example 3 using
measurements with two different error decorrelation lengths
rd = 20 and rd = 80. These length scales are in contrast
to the length scale of rd = 40 used in the previous
experiments. From the results shown in Fig. 4, we confirm
that the subspace inversion algorithm works well also when
the measurement error correlations have a different length
scale than the model ensemble (i.e., rd = 40).

The result from the case with smooth measurement-error
correlations, rd = 80, is slightly more accurate than the
rd = 20 result. If the measurement perturbations in E are
smoother than the measured ensemble anomalies in S, then
E should be well represented when projected on the space
spanned by S.

However, in the case with rd = 20, the measurement
perturbations include small scales that are not represented
by the predicted measurements’ ensemble. Thus, when
conditioning on measurements with small-scale noise in
the measurements that cannot be well represented by the
ensemble anomalies in S, the subspace projection introduces
an approximation. The truncation of small scales in the
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Fig. 2 Simple update example: Same as Fig. 1 but using an ensemble size of 100 realizations and excluding the cases ICA and ICB

measurement errors leads to a slight underestimation of the
measurement error variance, as is observed by the slightly
too large update and too low variance for the case EE in
the bottom plots of Fig. 4. The residuals in Table 1 support
this conclusion, where it is clear that the residual of the
estimated mean increases for the case rd = 20 and decreases
for the case rd = 80 compared to the rd = 40 case.

3.7 Example 5 (large number of measurements)

The final example, shown in Fig. 5, increases the number of
measurements from 50 to 200, i.e., twice the ensemble size.
In this case, we apply a truncation at 99% of the variance
when computing the inversion, which retained 29 singular
values when computing the singular value decomposition
of S. Again the results obtained are very similar using
the two algorithms. It is also interesting to see how the
measurements’ impact reduces at the grid indices 400–500
in this plot. Note also that there is no indication of the
so-called “ensemble collapse,” and the analysis ensemble
retains a significant variance. The posterior variance using
200 measurements is similar to the one obtained using

only 50 observations. This result indicates that including
additional measurements does not introduce much new
information in this example.

3.8 A note on the EnKF analysis equation

Most operational ensemble-based schemes apply an
assumption of uncorrelated measurement errors and uses a
diagonal Cdd = I, see, e.g., the reviews on data assimi-
lation in the geosciences [2], weather prediction [15], and
petroleum applications [1]. This assumption is emploied
for simplicity for two reasons. First, the measurement error
covariances are often not well known, and additionally, the
update scheme (38) simplifies considerably. With Cdd = I,
Eq. 38 becomes

Xa = Xf + AST(
SST + I

)−1(D − MX
)
, (40)

which makes it possible to use an efficient algorithm from
Hunt et al. [16] where, by using a Woodbury identity, the
EnKF update becomes

Xa = Xf + A
(
STS + I

)−1ST(
D − MX

)
. (41)

Comput Geosci (2021) 25:945–970952



grid index

S
o

lu
ti

o
n

200 400 600 800 1000
1

2

3

4

5

6

Truth
Data
Cdd
EE

grid index

V
ar

ia
n

ce

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Prior
Cdd
EE

grid index

S
o

lu
ti

o
n

200 400 600 800 1000
1

2

3

4

5

6

Truth
Data
Cdd
EE

grid index

V
ar

ia
n

ce

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Prior
Cdd
EE

Fig. 3 Simple update example: Same as Fig. 2 but using an ensemble size of 1000 realizations to represent E

Thus, this modification reduces the size of the matrix to be
inverted from m × m in Eq. 40 to N × N in Eq. 41. See
also the discussion related to this particular implementation
in Evensen et al. [12, Section 3.2].

Alternatively, it is possible to obtain an update equation

like (40) if one has access to a factorization Cdd = C
1
2
ddC

1
2
dd

with C
1
2
dd being a symmetrical square root of a full rank Cdd .

E.g., write the eigenvalue decomposition

Cdd = Z�ZT = Z�
1
2 ZT Z�

1
2 ZT = C

1
2
ddC

1
2
dd (42)

and define the symmetrical square root

C
1
2
dd = Z�

1
2 ZT, (43)

and its’ inverse

C
− 1

2
dd = Z�− 1

2 ZT. (44)

Now, by scaling the predicted measurement anomalies and
the innovations according to:

Ŝ = C
− 1

2
dd S, (45)

D̂ = C
− 1

2
dd

(
D − MX

)
, (46)

and with some algebra, Eq. 38 becomes

Xa = Xf + AŜT(
ŜŜT + I

)−1D̂, (47)

and using the Woodbury identity,

Xa = Xf + A
(
ŜTŜ + I

)−1ŜTD̂. (48)

There are, however, significant numerical costs associated

with the establishment of C
1
2
dd and the associated rescalings

in Eqs. 45 and 46 which are both O(m2N) operations.

Additionally, C
1
2
dd needs to be of full rank or a formulation

based on pseudo inverses must be employed. Thus, the
discussion in this section justifies the use of the ensemble
subspace projection scheme in Eq. 33 for computing
consistent updates at the cost of O(mN2), while taking
measurement error-correlations into account.

4 Reservoir experiments

We will now discuss the application of the subspace EnRML
method in Algorithm 1 for history matching a reservoir
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Fig. 4 Simple update example: Same as the lower plots in Fig. 3 but for two cases with different measurement correlations, upper plots rd = 20
and lower plots rd = 80

model. The objective is to assess the impact of including
uncertainties in the historical rates used to force the model
similations.

The reservoir model is a simplification of a real reservoir
model and provides a reasonably realistic reservoir case
for testing new methods. The model has 27 755 active grid
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Fig. 5 Simple update example: Same as Fig. 3 but for a case with 200 measurements, which is twice the ensemble size, and with measurement-error
correlations rd = 40
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cells on a 40-times-64 grid with 14 layers. The uncertain
parameters include the three-dimensional porosity field and
six fault multipliers F2–F7. There are five producing wells,
OP1–OP5 and three injectors I1–I3. The model is the same
as was used in Evensen et al. [12], and we will not describe
the model at length here but rather focus on the impact of
introducing correlated measurement errors for a reservoir
case. The model was previously used also by Leeuwenburgh
et al. [18],Hanea et al. [14], and Wang and Oliver [26], and
we refer to these papers for a detailed presentation.

4.1 Overview of experiments

In the cases below, we condition on the monthly production
rates. Thus, we have up to 36 triplets of the oil production
rate (OPR), the gas production rate (GPR), and the water
production rate (WPR) for each well (depending on the date
the well is started). The error standard deviations for the
rate measurements are five percent of the measured value of
the OPR and 10 percent for the GPR and WPR. We didn’t
condition the model on the injection rates, and we didn’t
have access to pressure data. The measurements are real
historical production rates from the reservoir.

We will present results from the experiments listed in
Table 2. The tree first “PRED” experiments are ensemble
predictions without conditioning the model on observations.
We randomly picked one model realization from the ensem-
ble and used this model’s porosity and fault multipliers
for all the ensemble members. The difference between the
three ensemble-prediction experiments is the stochastic con-
trols used to force the ensemble integration (white, red, or

Table 2 Overview of the three ensemble prediction runs and the four
history matching experiments

Case Cdd Noise Model Update E

PREDW White

PREDR Red

PREDB Bias

IES0 I White no

IESnd EET Red no

IESR EET Red yes

IESB EET Bias yes

The three PRED experiments are pure ensemble predictions with the
same reservoir model used for all realizations. The IES experiments
are model conditioning experiments. The noise model of the control
variables (historical rates) is either uncorrelated (white), correlated
(red), or a bias, in time. The first column gives the case name,
while the second column denotes which form of Cdd we use in the
inversion in the IES experiments. The last column says if we update
the measurement perturbations for use in the schedule file or not

“bias”). In the experiment PREDW, the model forcing is the
historical rate data contaminated by white noise, i.e., the
measurement errors are uncorrelated in time. In PREDR,
we set the time-decorrelation length of the measurement
errors to 15 months, resulting in measurement errors that
are smooth (red) in time. Finally, in PREDB, the measure-
ment error perturbations are constant in time. Thus, the
measurement errors are infinitely correlated, and for each
realization, the errors act as a bias. These experiments’
purpose is to assess the random forcing’s impact on the
prediction uncertainty while eliminating any contributions
from model-parameter uncertainties.

Case IES0 is the default or standard case using a
diagonal measurement error covariance matrix Cdd = I.
Thus, there are no measurement error correlations and
no stochastic noise added to the historical rate data used
to force the reservoir model. Accordingly, there is no
updating of the measurement perturbations. This case
represents the traditional approach for solving the history-
matching problem using ensemble methods. We computed
the solution using Algorithm 1, with the red lines excluded.

The second case, IESnd, includes the effect of a
nondiagonal Cdd represented by the product of correlated
measurement perturbations EET. Like in IES0, there is no
stochastic forcing of the model. This case allows us to
examine the impact of accounting for the measurement error
correlations in the analysis update.

The third case, IESR, is the full new Algorithm 1,
including the red lines, using correlated measurement
perturbations in E to perturb the measurements conditioned
on, as well as taking measurement error correlations into
account in the inversion. The algorithm also updates the
ensemble of perturbations in Ei and uses these to force the
model realizations. The initial forcing ensemble is the red
one used in PREDR.

The last case, IESB, is similar to IESR, except that it uses
the “bias” initial forcing ensemble used in PREDB.

The ensemble size is 100 for all experiments. Like
in Section 3, the experiments also use the same initial
ensemble and random seed to make it easier to compare
cases.

4.2 Discussion of results

Figure 6 presents the resulting oil production for the OP2
well when forcing the model ensemble with a white, red,
and a “biased” noise model. The uncertainty in the pro-
duced rates will depend on the spread in the historical rates
used to force the model realizations. Thus, the prediction
uncertainty is more apparent in the first half of the simu-
lation than in the second half since the forcing-uncertainty
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Fig. 6 Prediction experiments: The plots show oil production rate
OPR (left), and accumulated oil production OPT (right) from pro-
ducer OP2. The upper plots are for white noise (uncorrelated in time)
forcing, the center plots show results for red noise (correlated in

time), and the bottom plots corresponds to biased noise (constant in
time). The error bars on the rate data indicate the plus-minus two
standard deviations of the rate errors assumed in the assimilation
experiments

scales with the data value. For PREDW with white-noise
forcing, we notice the instant response in the model ensem-
ble’s predicted rates. Also, we see that the uncertainty in
the accumulated production remains low throughout the
integration. This “random-walk” process, where the rate
uncertainties nearly cancel out over time, yields a near-
linear variance increase in time (there is a nonlinearity
contribution introduced by the model dynamics). In PREDR

and PREDB, we notice an increasing spread in the pre-
dicted ensembles’ accumulated production. This uncertainty
increase is most significant in PREDB. We can explain
it by the constant-in-time errors added to the historical
rates, which will continuously drive the different realiza-
tions towards different productions. In fact, for the PREDB
case, the uncertainty in the total accumulated production for
OP2 is almost of the same magnitude as the uncertainty of
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Fig. 7 Prior and posterior ensembles of fault multipliers for the IES0, IESnd, IESR, and IESB cases, for four of the faults in the model. In the
right column a log-axis is used to better visualize the ensemble spread of the multipliers
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Fig. 8 Case IES0: Results from producer OP2. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

the prior ensemble in the IES0 case (which has no stochas-
tic forcing and only reflects the reservoir uncertainty). The
inclusion of stochastic historical production rates is essen-
tial since it increases the predicted rates’ variance, thereby
enhancing the impact of observations on the update.

Figure 7 presents the prior and posterior ensembles of
scalar fault multipliers for four of the six faults in the
model, for the cases IES0, IESnd, IESR, and IESB. The
typical behavior is that IES0 results in the most substantial

update, as we would expect from the discussion of the
analysis scheme in Section 3. The introduction of correlated
measurement errors in IESnd leads to a slight increase in
the spread of the fault multipliers associated with a slightly
weaker update. The additional stochastic forcing used in
IESR and IESB leads to further weakening of the parameter
updates. The reason is that the additional stochastic forcing
reduces the correlations between the model parameters and
the predicted production. Contrary, the stochastic forcing
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Fig. 9 Case IESnd: Results from producer OP2. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

leads to an increased variance in the model-predicted rates,
leading to an increased impact from the measurements.
Thus, the total effect of including correlated rate errors is
quite complicated to assess. The estimated porosity fields
(not shown here) have similar behavior between the four
examples, as seen for the fault multipliers.

For the experiments IES0, IESnd, IESR, and IESB, the
Figs. 8, 9, 10 and 11 present the production rates and the
accumulated production for oil, gas, and water for OP2,

and correspondingly the Figs. 12, 13, 14 and 15 give the
results from well OP4. Additionally, Fig. 16 shows the prior
and posterior estimates of the uncertain forcing rates for
IESR. The producers, OP1, OP2, and OP3, had somewhat
similar behavior while the match obtained for OP5 was
nearly perfect in all the cases but with more substantial
uncertainty in IESR and IESB. Thus, the figures include
results from the wells OP2 and OP4, which appropriately
illustrate the results.
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Fig. 10 Case IESR: Results from producer OP2. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

For OP2, the posterior ensemble has very low uncertainty
in IES0. The ensemble spread increases slightly in IESnd,
but it is still too small compared to the measurement
uncertainty. The small ensemble spread is particularly
the case early in the simulation. However, in IESR, the
ensemble spread is significantly increased, and the posterior
ensemble represents better the historical oil production.

For OP4, the prior ensemble covers the measurements
well, but the posterior from IES0 overestimates the oil

production, and the posterior ensemble does not cover the
historical rates. Thus, the posterior uncertainty is too low.
The solution from IESnd slightly increases the ensemble
spread. On the other hand, in IESR, the posterior ensemble
has a more considerable variance, and the ensemble mean
shifts towards lower production, in better agreement with
the measurements.

For the case, IESR, the posterior ensemble of uncertain
historical rates in Fig. 16, has a lower variance than the prior
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Fig. 11 Case IESB: Results from producer OP2. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

one for all wells and variables. Also, we observe a shift in
the historical rates, e.g., towards lower gas production for
both wells OP2 and OP4, and lower water production for
OP2. The magnitude of the update applied to the rates is
modest. The update of the model parameters balances the
rates’ update, based on their relative impact on the solution
and their prior variances.

A general observation is that case IES0 results in a signif-
icant improvement when compared to the prior ensemble.

Thus, the traditional history-matching approach, using the
subspace EnRML, can generate a posterior ensemble solu-
tion with predictive skills. However, we notice that the
posterior IES0 ensemble has too low uncertainty for most
of the wells, with an ensemble spread that is much less than
the variance in the historical measurements we condition on.
This underestimation of the posterior variance results from
using a diagonal measurement error-covariance matrix and
ignoring the measurement errors’ stochastic contribution in
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Fig. 12 Case IES0: Results from producer OP4. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

the forward simulations. In several instances, the posterior
ensemble is also unable to cover the observed history.

On the other hand, case IESR provides a slightly weaker
update for the model parameters but compensates by updat-
ing the ensemble of perturbed historical rates. The result
is a posterior prediction ensemble with significantly higher
uncertainty, which in most instances, covers the histori-
cal data. The collective impact of updated rates and model
parameters gives a better agreement with the observed

production. The result is a posterior ensemble consistent
with the historical rates and more substantial and realistic
uncertainty than in case IES0.

The final experiment, IESB, assumes “biased” rate errors
for each realization. The numerical implementation of the
analysis scheme, using the formulation from Section 2.5,
handles this case with a rank-one E matrix. IESB has
qualitatively similar behavior to IESR, but the more consid-
erable spread of the prior IESB ensemble leads to higher
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Fig. 13 Case IESnd: Results from producer OP4. The upper plots
show oil production rate OPR (left), and accumulated oil production
OPT (right). Similarly, the middle plots are for gas production GPR

and GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

variance in the posterior IESB ensemble. We find that this
ultimate increase of time correlations leads to a further
weakening of the solution update. On the other hand, it
seems that the overall match to the historical rate data may
be better in IESB than IESR. Thus, maybe the assumption
of infinite decorrelation time in the historical rate errors is
accurate, e.g., like, if one extracts all a well’s rate data using
the same allocation table.

The uncertainty in the model parameters leads to biases
in the individual realizations, and the posterior ensemble
variance will grow with time, as we see from experiment
IES0. However, the uncertainty in the controls in experiment
IESR leads to more considerable uncertainty in the ensem-
ble prediction early in the production period. However, after
some time, the accumulated effect of the time-correlated
rate-control errors starts canceling out. Thus, in the total
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Fig. 14 Case IESR: Results from producer OP4. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

production, we don’t see a massive increase in the produc-
tion uncertainty. This situation changes in experiment IESB
where the rate-control errors act as a constant bias in time.
An effect of the increased production uncertainty early in
the simulation is that the first measurements will have a
more substantial impact on the update.

In our experiments, we do not impose constraints on the
total production of oil, gas, and water, as these quantities
are uncertain. Thus, we allow the ensemble realizations

to produce different reservoir fluid quantities within their
uncertainty range to span their uncertainty.

5 Summary and conclusions

The paper revisits the Bayesian formulation of the history-
matching problem. It shows that we need to include
stochastic errors in the rates used to force the ensemble

Comput Geosci (2021) 25:945–970964



Months

O
P

4 
O

P
R

 (
m

^3
/d

ay
)

0 5 10 15 20 25 30 350

2000

4000

6000

8000

Months

O
P

4 
O

P
T

 (
m

^3
)

0 5 10 15 20 25 30 350

500000

1E+06

1.5E+06

2E+06

2.5E+06

3E+06

3.5E+06

IESB_0
IESB_10
history

Months

O
P

4 
G

P
R

 (
m

^3
/d

ay
)

0 5 10 15 20 25 30 350

500000

1E+06

1.5E+06

Months

O
P

4 
G

P
T

 (
m

^3
)

0 5 10 15 20 25 30 350

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

IESB_0
IESB_10
history

Months

O
P

4 
W

P
R

 (
m

^3
/d

ay
)

0 5 10 15 20 25 30 350

1000

2000

3000

4000

5000

Months

O
P

4 
W

P
T

 (
m

^3
)

0 5 10 15 20 25 30 350

500000

1E+06

1.5E+06

2E+06

IESB_0
IESB_10
history

Fig. 15 Case IESB: Results from producer OP4. The upper plots show
oil production rate OPR (left), and accumulated oil production OPT
(right). Similarly, the middle plots are for gas production GPR and

GPT, and the bottom plots show water production WPR and WPT.
The error bars on the rate data indicate the plus-minus two standard
deviations of the rate errors assumed in the assimilation experiments

simulations for a statistically consistent formulation. We
must further augment these rates to the model state vector
where they, together with the uncertain model parameters,
are being updated.

The current manuscript complements the discussion in
Evensen and Eikrem [11] on the impact of correlated rate
errors and redundancy in rate measurements. They claimed
that the negligence of correlated measurement errors would
lead to an underestimate of the posterior variance. In

extreme cases, with vast data sets, this underestimation
may appear as a so-called “ensemble collapse” where
all realizations become nearly identical, and the variance
approaches zero. In Evensen and Eikrem [11] this problem
was eluded by conditioning only on the total accumulated
production for each fluid in each well. The current paper
has used an alternative and statistically sound approach
retaining all the data. However, it prescribes the correct
measurement error statistics and implements a consistent
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Fig. 16 IESR perturbed historic prior and posterior rates. The error bars on the rate data indicate the plus-minus two standard deviations of the
rate errors assumed in the assimilation experiments

error treatment in the history-matching algorithm. The result
is a posterior ensemble of models representing the real
uncertainty and better agreeing with the historical rates.

The paper presents the new formulation’s properties
on a simple reservoir case that illustrates the benefits of
using a complete measurement error-statistics treatment.
The algorithm used to solve the conditioning problem
is the subspace EnRML method described by Evensen
et al. [12], combined with the procedure for correcting
stochastic model errors in iterative smoothers presented by
Evensen [10].

A section in the paper is dedicated to further examining
and illustrating the consistency of the ensemble-subspace
inversion algorithm [7, 8, 12] for cases with correlated
measurement errors. This paper uses a larger ensemble of
measurement perturbations to represent the measurement
error-covariance matrix with reduced sampling errors. The
article also examines the impact of the measurement
errors’ different correlation length scales compared to the
ensemble members’ smoothness. The examples show that
in the case with shorter length scales in the measurement
perturbations than in the ensemble realizations, the shorter
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scales are truncated away when projecting the measurement
perturbations onto the predicted measurements’ ensemble.
Thus, this is the only case where the new scheme introduces
a significant approximation.

A practical implication of this work is that it resolves
the reappearing question concerning the sampling frequency
of rate data used in the conditioning. Using the current
method, the sampling frequency of production rates does
not matter as long as we specify realistic measurement-
error correlations. The possibility of taking measurement
error correlations into account will also be of vital
importance when conditioning on sizeable seismic data sets.
Seismic data often consists of gridded maps, and through
the gridding procedure, one introduces additional error
correlations. The proper formulation of measurement error
statistics will also resolve the issues noted by Lorentzen
et al. [19], related to the balanced impact of seismic data
versus production data.

Algorithm 1, with the subspace inversion, is a compu-
tationally efficient approach for consistently solving the
history matching problem. The algorithm’s computational
cost is linear in both the state dimension and the number
of measurements, and the primary computation remains the
integration of the model ensemble. Thus, Algorithm 1 is
suitable for the conditioning of big models on big data.

The new algorithm’s practical use will require reservoir
engineers to model the rate data’s error statistics properly.
The common practice has been to set the error variance of
the rate data to a fixed but sometimes arbitrary or subjective
value and neglecting the presence of any measurement error
correlations. In some situations, one has also inflated the
measurement error variance to reduce the measurements’
disproportionate impact when ignoring the measurement
error correlations. Alternatively, it is possible to subsample
the rate data in time to lessen their impact on the ensemble
update. The recommendation is to specify as realistic as
possible error variances for all the rate data, and there is no
need for subsampling the data. The time correlations should
reflect the procedure used to obtain the time series of rates.
Unless one has access to a statistically sound method for
estimating the time correlations of the measurement errors,
the recommendation is to assume a time correlation with
several months’ decorrelation time. If we use allocation
tables to obtain the production rates, then more than a
year’s decorrelation time is likely. Thus, for the reservoir
engineers, the new algorithm doesn’t pose a significant
complication of use. In fact, by specifying one number,
i.e., the time decorrelation of the errors in the production
rates, one avoids previous issues with subsampling of data
or inflation of measurement error variances to remedy
formulation inconsistencies.

Finally, while the HM problem fits the model to past
observations, the optimization problem maximizes future

production or net-present value. The ensemble methods
adapt well into a robust ensemble-based optimization
framework [14, 18] where one can optimize future
production and net-present value, and one can assess
new optimal well-placements while taking the geological
uncertainty into account.

Appendix: Implementation in ERT

The reservoir example adopts the Ensemble Reservoir
Tool (ERT) available from Github https://github.com/
equinor/ert.git for the management and conditioning of the
model ensemble. The forward integration of the reservoir
models is computed using the ECLIPSE reservoir simulator
provided by Schlumberger. To be able to test the new
formulation, some modifications were implemented in
ERT and in the simulation job that runs ECLIPSE. The
current version of ERT lacks functionality for simulating or
specifying correlated measurement errors, and as most other
assimilation implementations it works with a diagonal Cdd .
On the other hand, the actual implementation of the update
scheme uses the same methods as discussed in the previous
section, and has already full functionality for handling
a nondiagonal measurement error-covariance matrix, Cdd ,
or directly using the measurement perturbations, E, see
Evensen et al. [12]. The following sections briefly discuss
how ERT was modified to accommodate for correlated
measurement errors and stochastic forcing of the reservoir
simulations. For now, the implementation uses a case-
specific implementation with communication through files,
but the plan is to upgrade ERT to generally support
correlated measurement errors.

A.1 Convergence of the subspace EnRML

The step-length scheme used in Algorithm 2 (i.e., the value
of γ ), as implemented in ERT, is the following: One defines
the maximum step length t1 = 0.5, the minimum step
length, t2 = 0.2, and a step-length decline from one iteration
to the next t3 = 2.5, and we compute the value of γi , for
iteration i, from

γi = t2 + (t1 − t2)2
(
−(i−1)/(t3−1)

)
. (49)

Here, γi follows a geometrical series starting from the value
t1 in the first iteration and then reducing geometrically
with the number of iterations towards t2. The formula
in Eq. 49 allows us to define and test different step-
length schemes easily. In real applications, it is desirable
to start with a conservative step-length that works well ”in
most applications.” If it turns out that the selected scheme
becomes unstable, then the experiment should be restarted
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with a new and more conservative step-length. There is no
exact theory on how much we would need to reduce the step
size, but a good starting point can be to reduce t1 = 0.5 to
t1 = 0.4.

The termination of the iterations can be based on the
magnitude of the gradient, or one can use the relative change
of the cost functions from one iteration to the next. For
real reservoir applications, the time required per iteration
can vary from hours to days, and the affordable number
of iteration steps will always be limited. Thus, a practical
procedure is to manually stop the iterations when one sees
that the cost functions for the realizations are “almost”
identical from one iteration to the next.

The rapid convergence of the assimilation algorithm for
case IESR is illustrated in Fig. 17. Ten iterations were run,
but after about five to six iterations there is only a marginal
change in the parameters, and for practical applications
five or six iterations should suffice for models of similar
nonlinearity to the one used here.

A.2 Simulation of measurement perturbations

First, there is need of an application for simulating an
ensemble of measurement perturbations for the time series
of oil-production-rate (OPR), gas-production-rate (GPR),
and water-production-rate (WPR), for each of the produc-
tion wells. In the examples shown below, possible errors
in the injection rates are ignored. The measurement pertur-
bations can be white in time, red in time, or just a con-
stant bias. The simulated ensemble of rate perturbations is

then stored in a file. The current implementation computes
perturbations for all the rates given in the ECLIPSE sched-
ule file, no matter if they are used or not in the conditioning.
The code used for simulating the measurement perturba-
tions is available from the Github repository https://github.
com/geirev/EnKF sampling/tree/ERTOBS/ERTsamp.

A.3 Importing E in the EnRML algorithm

In the current implementation, line 5 of Algorithm 2 illus-
trates how the subspace EnRML subroutine in ERT reads
all the simulated rate perturbations from a file and store
them in E0. The new measurement perturbations replace the
original measurement perturbations supplied by ERT in D
(line 6) and are input to the inversion in the iteration of Wi

(line 14). The product IeE0 in lines 6 and 7, extracts the new
simulated perturbations corresponding to the measurements
contained in D, which can typically be a subset of all the
rates represented in E0. Thus, with this simple modification,
it is possible to compute the EnRML update while allowing
for correlated measurement errors.

A.4 Updatingmeasurement perturbations Ei

As soon as one has computed the transition matrix, Ti ,
for iteration i, in line 15 of Algorithm 2, it is possible to
augment the measurement perturbations to the model state
vector and update them according to
(
Xi

Ei

)
=

(
X0

E0

)
Ti . (50)

The beautiful property of the subspace EnRML algorithm
is its independence of the model state vector, which only
enters as input to the forward model. Thus, augmenting the
measurement errors to the state vector does not impact the
computational procedure used to obtain the transition matrix.
However, when the measurement errors are input to the for-
ward model, they will change the model predicted measure-
ments, and thus lead to a different transition matrix.

A.5 Updating historical rates in the schedule file

In iteration i, the forward model is forced by the updated
perturbations, g(Xi ,Ei ). Practically, one needs to update
the Eclipse schedule file with new historical OPR, GPR,
and WPR rates, by adding the updated perturbations to
the corresponding “WCONHIST” rates. ERT handles this
schedule modification by running a simple program, which
is available from https://github.com/geirev/Schedule parser.
git. This program reads the updated perturbations in Ei from
file and adds them to the historical rates defined in the
original schedule file. ERT runs this program immediately
before starting the Eclipse simulation for each realization.
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Fig. 17 Convergence of each
realization using the subspace
EnRML Algorithm 1 for the
IESR case. The thick black line
is the mean of the ensemble of
cost functions. The lower plot is
the same as the upper one, but
using a log scale for the cost
function value
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