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Summary  

MetaMon (2018-2021) was a project at the NORCE Molecular Ecology Research Group aimed at maturing 
eDNA for sediment offshore environmental monitoring. Findings include (i) guidelines for sampling and 
processing, (ii) a 97 station metabarcoding study showing metabarcoding de novo biotic indices performed 
comparable to the morpho-taxonomic NSI index and co-occurrence networks for impacted and non-impacted 
sites. Two ddPCR assays were developed and tested as a proof of concept. Finally, (iii) a gap analysis was done 
for online databases, (iv) several species were individually sequenced, and (v) COI metabarcoding of bulk 
animal tissue evaluated. With these deliverables together with an ambitious program for communication and 
outreach MetaMon has significantly advanced progress towards use of metabarcoding data in offshore 
environmental monitoring, yet findings need to be consolidated with further data and time series validation. 
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Disclaimer 

NORCE is not liable in any form or manner for the actual use of the documents, software or other 

results made available for or resulting from a project and does not warrant or assume any liability 

or responsibility for the completeness or usefulness of any information unless specifically agreed 

otherwise in the tender and resulting contract document. 
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Executive summary 

The Norwegian offshore oil and gas industry conducts extensive seafloor monitoring surveys in 12 

survey regions (I-XII) on the Norwegian Shelf as part of compliance with Norwegian environmental 

regulations. In addition to chemical parameters related to hydrocarbon and metal impact, 

monitoring surveys include the 1 mm sieved fraction of softbottom seafloor organism communities. 

Such morphological taxonomy, while a good impact parameter, is also time consuming and reliant 

on available specialized taxonomic expertise. Environmental DNA (eDNA) based methods, including 

metabarcoding, have the potential to enable faster and more affordable analyses and provide a 

more complete and accurate picture of seafloor communities and functional relationships. In order 

to increase the maturity level of metabarcoding and other eDNA-based methods for environmental 

monitoring, three knowledge gaps were identified: 

• Standardized guidelines for sampling, lab and bioinformatic processing. 

• Temporal and geographical eDNA metabarcoding baseline data. 

• Direct comparisons between morphological and metabarcoding data in detecting 

environmental impact. 

MetaMon (2018-2021) is a project coordinated by the Molecular Ecology Research Group (MERG) 

part of NORCE Environment, funded as a knowledge-building project by the Norwegian Research 

Council (NRC PETROMAKS2, grant no. 280919) and industry operators Equinor and Total. Scientific 

collaborators include AZTI (Spain), the University of Bergen and Auburn University (USA). MetaMon 

builds on previous projects at MERG, partially funded by Equinor (Statoil), including the Research 

Council of Norway RCN Environmental Monitoring Programme (EMP) project, the Norwegian Deep-

Water program and a MetaMon pre-project. 

The main aim of MetaMon is advancement towards implementation of eDNA-based techniques, 

with a special emphasis on metabarcoding, in future routine monitoring of seafloor organisms for 

environmental impact assessment of petroleum extraction activities, through the following 

secondary objectives: 

• Determine how metabarcoding qualitatively compares to morphological taxonomic analysis 

for biodiversity assessment in marine sediments and its potential for assessing changes in 

abundance of indicator species. 

• Explore benthic taxa, including taxa only identified from molecular data, with verified 

potential as biological indicators of environmental disturbance related to oil drilling 

activities. 

• Develop specific, preliminary guidelines for metabarcoding methodology, encompassing all 

stages from study design, sample collection, processing, DNA sequencing, sequence data 

analysis, data archiving and deposition, statistical assessment and reporting. 

• Calculate estimates of taxonomic gaps in the Barents Sea for marine benthic species 

identification using two different metabarcoding approaches (18S SSU rRNA and COI). 

• Obtain and submit to online databases COI and 18S barcodes from collected specimens 

representing the most common taxa in the O&G monitoring programs. 

• Actively communicate results and insights with stakeholders such as industry, management 

and consultancy companies. 
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To achieve these secondary objectives, the MetaMon research tasks were divided into three work 

packages: 

• WP1: Comparative analysis of morphologic and metabarcoding-based monitoring 

• WP2: Standardization of sediment sampling methodology 

• WP3: Assessment of the archive and taxonomic gaps 

Field work and collected samples 

An important aspect of MetaMon is the direct comparison of metabarcoding data with existing 

environmental monitoring parameters. This required samples from existing monitoring stations, 

obtained as part of the in-kind contribution to the project by Equinor, which facilitated sampling. 

Thus, sediment samples were taken during the routine 2018 region II and 2019 region III and IX 

spring monitoring campaigns, collected and analyzed for existing monitoring parameters by Stim 

Miljøtjenester AS, DNV-GL and Akvaplan-niva, respectively. For the MetaMon metabarcoding 

sampling, 399 sediment samples were collected, frozen at -20 °C on board, and subsequently sent 

to the MERG lab in Bergen for further processing. For the 2019 campaigns, an additional 33 sieved 

macrofauna samples were also collected and preserved in ethanol for WP3 comparative 

morphological and animal tissue eDNA analysis. 

Standardization of sediment sampling methodology (WP2) 

WP2 results serves as the basis for WP1 and WP3 results and are thus presented first here: Accurate 

use of metabarcoding relies on several possible choices in sampling design and processing. In a 

monitoring setting, this requires that best-practices and solutions for each part of the process are 

identified and implemented in a consistent manner, in order to produce standardized and consistent 

data. Lab related processing and protocol optimization constituted most of the work from the fall 

of 2018 to 2019 and included choosing and optimizing PCR and library preparation reagents and 

protocols, molecular metabarcoding markers (18S V1-V2 and COI), mock communities, and 

sediment DNA extraction protocols. Research tasks in WP2 were divided into two sets of 

experiments to (1) optimize sediment homogenization during DNA extraction and (2) investigate 

the extent of variation of samples taken at different parts of the same sediment sample and grab, 

as well as between different grabs from the same station. 

Here, we found (1) that an intermediate homogenization program using a Precellys homogenizer 

significantly increased the total amount of DNA that could be extracted from each sediment 

sample and improved the accuracy (homogeneity) of the benthic community data obtained. This 

experiment also validated the chosen pre-PCR pooling approach for DNA extracts and helped gauge 

an optimal number of replicates per grab and station. Furthermore, (2) sampled variability 

increased gradually with increased spatial distance. It was feasible to capture a large majority of 

single celled organism diversity with a modest sampling effort, but findings also highlighted higher 

variability between samples for the COI macrofauna data. 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

5 

Comparative analysis of morphologic and metabarcoding-based monitoring 
(WP1) 

In order to demonstrate the efficacy of metabarcoding for routine monitoring, it is necessary to 

compare resulting data to currently used physicochemical parameters that correspond to negative 

environmental impacts, such as hydrocarbon and metal concentrations. It is also important to 

compare generated metabarcoding results to those based on morphological taxonomy data. To this 

end, sediment samples from 97 monitoring stations (regions II, III and IX) were subjected to COI and 

18S metabarcoding. Stations were chosen to also include known previously detected impact. Most 

of the lab processing for this dataset was done in the fall and winter of 2019, and data analysis 

during 2020. The resulting data was supplemented with standard monitoring parameters for each 

of these stations, downloaded from the DNV GL MOD database.  

The main aims of this study were to examine the correlation between metabarcoding and current 

monitoring practices to identify and classify sensitive and tolerant organisms in the metabarcoding 

dataset. This included the use of already known bioindicator species included in the Norwegian 

Sensitivity Index (NSI) biotic index, currently used for morphological species data. As a part of this 

work, we also produced new biotic indices for the two markers (18S and COI) from the molecular 

data directly, to improve on existing ones such as NSI that have been developed using data from 

morphological taxonomy. Finally, in order to examine the correlations between species (or higher 

taxa) we used an association network approach. The main findings were that the newly developed 

molecular COI indices could predict environmental impact almost as accurately as the existing 

biotic index NSI (based on morphological taxonomy as currently used), and that COI 

metabarcoding agreed well with morphological data when both were applied to the existing NSI 

index. Predictions based on a newly developed 18S based index, including mainly non-metazoan 

indicators such as protists, also correlated significantly with impact index and morphotaxonomy / 

NSI-based values. An alternative approach, using supervised machine learning to predict 

environmental impact, did not yield significant results. The co-occurrence approach showed that 

the connections between individual taxa were different in impacted vs non-impacted sites, and that 

impacted sites resulted in a more fragmented association structure. However, it became clear that 

the dataset targeted was not optimal for association network analysis. Instead, a higher level of 

spatial or temporal replication from sites subjected to more similar impact levels, would be 

required. WP1 also included the quantification of two OTUs with especially clear correlation to 

environmental impacts, assessed as possible indicator species using ddPCR: Capitella sp. and a 

haplosporidian species. The Capitella results were very promising, while we found that the generally 

low abundance of the haplosporidian makes this species less consistent as a bioindicator. The results 

clearly showed the viability of the approach used, but the findings need to be validated, and we 

recommend increasing the amount of available data for more robust identification of new indicator 

species, especially with regards to sites with known contamination. 

Assessment of the archive and taxonomic gaps (WP3) 

An advantage of targeting animals (macrofauna) rather than microorganisms is that a much larger 

fraction of sequences can be identified to genus or even species level since macrofauna is much 

better represented in online databases such as GenBank or the Barcode of Life Database (BOLD) 

than microorganism groups. This approach relies on using such databases to identify the sequences 

present in the metabarcoding data as accurately as possible. 
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In this work package, we started out by assessing the percentage of macrofauna reported from a 

specific monitoring region, here monitoring region IV, that was present in online sequence 

databases GenBank, BOLD and SILVA, to identify remaining database gaps. Based on sieved ethanol 

samples, we performed morphological taxonomy of individual animals, and sequenced species 

lacking in the databases. Finally, to get a better understanding of the markers used in MetaMon, we 

investigated the metabarcoding data from homogenized bulk tissue samples with a known species 

composition based on morphological identification. 

Visibility and outreach 

In addition to scientific publications, MetaMon findings have been communicated at a variety of 

venues during the project, including International Workshop on Environmental Genomics (IWEG) 

annual meetings 2018-2021, the 2019 International Barcode of Life (iBOL) conference, the World 

Conference of Marine Biodiversity (2020), the 1st DNAqua-Net International Conference (2021), and 

at several smaller symposia and meetings with stakeholders and policymakers. 

Conclusions and future recommendations 

The MetaMon work packages have significantly advanced progress towards implementation of 

eDNA as a tool for offshore environmental monitoring, but results need to be further validated using 

more data in order to reach a sufficient maturity level for regulatory acceptance: 

• Eukaryote microorganism (18S) distribution showed great promise for consistent results 

due to the more even distribution of these smaller organisms, and we suggest testing 

additional microorganism 18S and prokaryote 16S markers. An additional advantage of 16S 

is that prokaryotes may react more quickly to impact. 

• De novo biotic indices are very promising but need more data. Supervised machine learning 

predictions (AI) were not significant in the MetaMon dataset, but again, are limited by the 

current amount of data. 

• Quantitative ddPCR is a promising approach, especially the Capitella assay. More data are 

needed to establish secure correlations to further bioindicator taxa. 

• Time series are needed to validate metabarcoding data consistency over multiple sampling 

events and time. 

• While uneven distribution is a concern for macrofauna, we recommend building upon 

MetaMon COI findings to investigate the extent of this increased dataset noise, and sieved 

bulk samples as a possible alternative metabarcoding method for this organism group. 

• More direct involvement by policymakers would enable input on optimal direction for 

future routine monitoring. 

MetaBridge 

To build on the main findings from MetaMon, a proposal to a follow-up project was created in 

collaboration with Equinor, Total and Lundin as industry partners. The proposal was submitted to 

the Research Council of Norway in August 2020. This project, MetaBridge (2021-2024), was 

approved for funding in December 2020. 
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MetaBridge will expand the amount of data available to improve the foundation for developing 

biotic indices, individual species quantitative assays and a supervised machine learning algorithm. 

As in MetaMon, samples are collected as part of regular monitoring surveys, enabling comparison 

to parameters currently in use. In order to validate data consistency over time, MetaBridge collected 

material at the MetaMon 2018 stations in early 2021 and will revisit MetaMon 2019 stations in 

2022. As additional deliverables, MetaBridge will also expand the number of molecular markers for 

both MetaMon and new MetaBridge samples, work to further refine macrofaunal methodology, 

investigate the feasibility of bottom water eDNA samples, work towards storage and curation 

solutions for physical samples and metabarcoding data, and drive a closer dialogue with 

stakeholders and policymakers as the eDNA field matures.  
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1. Introduction 

1.1. Background 

The current state of marine biological research builds on the accumulation of information from 

studies of oceanographic data and open water and seafloor marine organism biodiversity from the 

pioneering studies of the late 19th century to modern projects and initiatives. The information 

gained through this research, including both oceanographic data and the biota itself, provides the 

building blocks for the current understanding of marine biodiversity, community patterns and 

ecological processes. Yet, due to the remote nature, large scale and huge costs involved with studies 

of the marine environment, marine habitats and biotopes remain among the least known on Earth, 

especially so for the deep sea (Ramirez-Llodra et al. 2010). 

The ability to infer the composition, ecological connections and anthropogenic impact on marine 

organisms is dependent on direct and proxy measures, including but not limited to parameters such 

as sediment composition, chemical parameters, depth and salinity, in addition to information 

regarding the organisms themselves, such as collection of specimens or video analysis. Depending 

on the sampling equipment used, different parts of the biological communities can be collected, for 

instance in the case of soft bottom seafloor sediments, a bottom trawl or sledge will sample 

different organisms than grab or core samplers. Thus, any given sampling method provides a 

particular view of the examined biotope. 

In the latter half of the 20th century, increased scientific interest in ecological processes and patterns 

provided the necessary insights for studies of anthropogenic impact on the marine environment 

(e.g. Daan et al. 1994; Gray & Pearson 1982; Pearson & Rosenberg 1978; Rygg 1985) that form the 

basis for current monitoring programs connected to regulations such as the Norwegian 

implementation of the EU Water framework Directive (Direktoratsguppen vanndirektivet 2018), and 

national monitoring programs such as the offshore oil and gas monitoring regime currently used on 

the Norwegian shelf (Norwegian Environment Agency 2020). This includes development of biotic 

indices that combines the sensitivity values of individual organisms at a community level, such as 

the AZTI Marine Biotic Index (AMBI) and Norwegian equivalents such as the Norwegian Sensitivity 

Index and Indicator Species Index (Borja et al. 2000; Rygg 2006; Rygg & Norling 2013). 

1.2. Environmental DNA 

The development of DNA sequencing systems and other molecular biological methods to directly 

examine DNA and RNA opens up a completely new set of potential parameters that can be used to 

examine both single species as well as entire marine communities (Schander & Willassen 2005). Due 

to the development of high throughput DNA sequencing systems and bioinformatic pipelines, it has 

become feasible to sequence and analyze a large amount of DNA directly from environmental 

samples such as soil, sediment or water, termed environmental DNA (eDNA). Environmental DNA 

thus represents a completely new alternative or complement to existing, morphology-based 

methods of investigating and characterizing organism communities or the presence (or absence) of 

specific organisms of interest (Bourlat et al. 2013; Taberlet et al. 2012). 

Most fundamentally, eDNA can be divided into methods to either quantitatively detect traces of 

single species, or to characterize organism communities (Kelly 2016): In the first case, methods such 
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as quantitative, digital or droplet digital PCR (qPCR, dPCR and ddPCR) can be used to measure the 

number of DNA copies of a particular species or group of species from an environmental sample 

(Medlin & Orozco 2017). Such assays are very sensitive, and can be used to detect organisms of 

particular interest such as invasive or threatened species, or species that are indicators of impacted 

environmental conditions (e.g. Krolicka et al. 2020; Kutti et al. 2020; Uthicke et al. 2018). In the 

second case, methods such as metabarcoding, targeted enrichment or shotgun sequencing allow 

broad-scale ecological assessment of the biodiversity patterns of the sample organism community 

(Taberlet et al. 2012). 

The potential of eDNA as a tool for new ecological insights as well as monitoring of anthropogenic 

environmental impact was quickly recognized by the scientific community (Aylagas et al. 2018; 

Aylagas et al. 2017; Baird & Hajibabaei 2012; Bik et al. 2012a; Chariton et al. 2014; Cordier et al. 

2019; Leray & Knowlton 2016; Pawlowski et al. 2018):  

1. eDNA allows the study of previously inaccessible parts of organism communities such as 

juvenile, minute and single-celled eukaryotes as well as prokaryotes such as bacteria and 

archaea.  

2. The time and effort of sampling and sample processing can be significantly reduced 

compared to morphological methods. 

3. Identification of organisms in the dataset can be done by matching sequence data to a 

database containing DNA sequences of previously identified organisms rather than 

examination of each organism by a taxonomic expert, a time-consuming bottleneck in 

current research and monitoring. 

The ambitions of policymakers as asserted by the UN sustainability goal 14: Life below water1 in the 

face of an increased anthropogenic footprint as well as climate change highlights the need for an 

increase in monitoring capacity and cost-effectiveness. As such, the potential advantages of eDNA 

in ecosystem mapping and monitoring may act as an important contribution to future good ocean 

stewardship. 

While the prospective advantages of eDNA are clear, there are also several obstacles to widespread 

implementation, which are especially relevant for environmental monitoring applications, and for 

community-level methods such as metabarcoding: 

1. The widespread collection and analysis of DNA from the environment represents a 

completely new ecological data type. Though the number of studies that include eDNA data 

have increased at a rapid pace, study eDNA data still often lacks necessary context. 

Interpreting molecular datasets can thus be a challenging exercise. 

2. This challenge is compounded by the incomplete nature of the databases used to identify 

eDNA sequences (Hestetun et al. 2020; Lejzerowicz et al. 2015; Sinniger et al. 2016). The 

closest match to a given sequence might be only distantly related. Though databases such 

as the Barcode of Life System (BOLD) aim to provide species-level identification, organism 

coverage is low and biased towards certain groups and geographical areas. The legwork of 

collecting, identifying and sequencing individual organisms still needs to be done to provide 

the database DNA copy used to identify eDNA sequences. 

 

1 “Conserve and sustainably use the oceans, sea and marine resources for sustainable development.” 
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3. The sampling design, lab processing and bioinformatic processing chosen to create an eDNA 

dataset are critical for the quality of the data obtained (Alberdi et al. 2018; Zinger et al. 

2019). In the case of metabarcoding, where DNA sequences part of a specific gene (or 

“markers”) are chosen across the organisms in the sample, the variation among targeted 

organisms in the marker binding site means that a particular marker always introduces a 

bias on the resultant data (Deagle et al. 2014; Tang et al. 2012). This means that multiple 

markers need to be used in concert for a more complete picture of the organism 

community. Finally, PCR as well as high throughput sequencing (HTS) are imperfect 

techniques in that they may bias results and introduce different types of erroneous 

sequence variants (Schirmer et al. 2015). Standardizing protocols is therefore necessary for 

meaningful comparison between samples, but such protocols depend on knowing which 

protocols produce best results, which is still an area of ongoing research. 

4. Finally, depending on the type of samples that are collected, the sampling design must be 

sufficient to support the aims of the data. For environmental monitoring, this typically 

means that the data must be sufficient to counter uneven distribution of the targeted 

organisms in order to be representative of the organism community at the collection site, 

so that any environmental impact can be assessed (Hestetun et al. 2021a; Le et al. 2021). 

The use of eDNA-based methods in scientific studies has seen a large increase due to decreased cost 

and increased availability of high throughput sequencing platforms and bioinformatic pipelines and 

is currently a field in rapid development (Makiola et al. 2020). For marine benthic communities, 

studies have variously examined the ecological composition of both shallow and intertidal 

communities (Brannock & Halanych 2015; Faria et al. 2018), as well as the deep sea (Guardiola et 

al. 2015; Sinniger et al. 2016). Most of marine benthic eDNA studies can be roughly divided into 

whether they extract DNA directly from sediment, or whether they concentrate the biomass of 

targeted organisms by sieving, floating or other methods, before extraction, so-called community 

or bulk samples (Andújar et al. 2018). 

Community (bulk) samples are typically used when the targeted organisms are multicellular 

metazoans (animals). The metazoan barcode marker cytochrome oxidase subunit I (COI) is 

commonly used in studies targeting metazoans, as is a small selection of ribosomal small subunit 

(18S) markers such as the 18S V1-V2 region. Using COI for macrofauna (>1 mm), Aylagas et al. 

(2016a) showed that sieved bulk samples recovered around half of morphological species in a 

dataset from the Basque coast. Lobo et al. (2017) were able to identify up to around 80% of species 

identified from morphology in the same samples in a similar study. However, the total amount of 

unique species in the COI dataset was over twice as many compared to using morphological 

identification, showing how morphological methods miss much of the community diversity. As the 

number of species present in identification databases such as BOLD increases, performance of 

macrofaunal identification through COI is expected to increase further. 

Smaller metazoans belonging to the meiofauna (<0.5-1 mm), which represent a particular challenge 

for traditional taxonomy, have also been the subject of numerous metabarcoding studies. Faria et 

al. (2018) found that metabarcoding could assess meiofaunal ecological patterns in a Brazilian bay. 

A study by Atherton & Jondelius (2020) showed the effectiveness of using a combined 18S and COI 

approach to assess biodiversity from a Swedish intertidal site, though both studies emphasized the 

need for further groundwork to include more meiofaunal taxa in identification databases to increase 

the resolution of meiofaunal datasets. 
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Sediment extraction allows collection of single-celled organisms and extracellular DNA, and has the 

advantage of a simpler and quicker processing. Bik et al. (2012b) were able to show broad-scale 

biogeographic patterns containing both cosmopolitan and regionally distinct taxa in microorganism 

composition in a dataset spanning both deep sea and shallow sediments. Ecologically meaningful 

patterns of microorganism community distribution are typically reported in similar studies 

(Guardiola et al. 2016; Lanzén et al. 2016). For single-celled benthic organisms, species level 

assignment is typically unfeasible, mainly due to the limitations of current reference databases. 

Rather, the ecological patterns of higher taxon groups represent primary results for analysis. 

Both the bulk community and sediment eDNA approaches have been used to assess the suitability 

of eDNA in impact monitoring of softbottom communities: Metazoan-based studies of community 

samples have showed that macrofaunal COI data from this kind of samples can be used to calculate 

existing biotic indices such as variations of AMBI and the Norwegian indices ISI and NSI with similar 

performance to that of morphological datasets (Aylagas et al. 2016a; Cordier & Pawlowski 2018; 

Lejzerowicz et al. 2015). Similar results have also been shown for COI data directly from sediment 

samples (Hestetun et al. 2021a; Mauffrey et al. 2020). 

However, to leverage the full potential of metabarcoding data, organisms not part of the current 

morphological monitoring must also be included in impact assessment. By correlating taxa in 

metabarcoding datasets to impact parameters, it is possible to create new (de novo) biological 

indices (Bis) that are not limited to morphospecies or even the taxonomic classification of 

metabarcoding data. Due to the need for extensive datasets to establish such correlations, this work 

is mostly at a proof of concept stage, but has been applied to aquaculture (Keeley et al. 2018), 

coastal environments (Aylagas et al. 2017) and offshore monitoring (Mauffrey et al. 2020). As an 

alternative approach, supervised machine learning (SML) can be leveraged to predict parameter 

values based on a training dataset (Cordier et al. 2017; Cordier et al. 2018). While both methods 

hold great promise, they need to be constructed from large datasets and are currently at a 

preliminary stage. 

1.3. Oil and gas impact monitoring on the Norwegian Shelf 

Offshore oil and gas activities on the Norwegian shelf are subject to an environmental monitoring 

regime based on several environmental regions I-XII from southern Norway to the Barents Sea. As 

part of this monitoring, large-scale seafloor environmental surveys are routinely conducted around 

offshore installations. These surveys are organized by the industry itself, conducted by a handful of 

accredited environmental consultancy companies, and overseen by the offshore section at the 

Norwegian Environment Agency (NEA) according to published guidelines (Norwegian Environment 

Agency 2020). Each year, a subset of regions is surveyed, so that each region is visited every three 

years. Reports from these surveys (in Norwegian) are made public on the NEA webpages2, and 

environmental data is also stored and made accessible through a combined repository called the 

MOD database (DNV GL 2021). 

The parameters included in these bottom surveys, collected using a van Veen grab, include grain 

size distribution, hydrocarbon measurements (TOC, PAH, NPD), a selection of metals and bottom 

fauna, sometimes extra parameters, such as radioactivity or video transects, may also be included. 

 

2 https://www.miljodirektoratet.no/om-oss/roller/miljoovervaking/overvakingsprogrammer/petroleumsovervaking/ 
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Regional baseline stations, located away from the installations, are used to calculate local limits of 

contamination, and parameters, such as biota or PAHs, are only investigated where there is previous 

evidence of impact. Sampling stations are typically organized in a cross-like transect pattern from 

the monitored installation, and while individual stations are typically fixed, the number of stations 

and amount of parameters measured at particular stations are subject to change based on a number 

of factors including impact results from the previous survey (Norwegian Environment Agency 2020). 

1.4. The MetaMon project 

The Molecular ecology research group (MERG) at NORCE Environment (previously Uni Research) has 

a long-standing collaboration with Equinor (previously Statoil) through several previous eDNA 

studies with data from the Norwegian offshore monitoring program. This includes the RCN funded 

EMP (Environmental Monitoring Programme) project, Phylogenetic microarrays and high-

throughput sequencing: A new tool for biodiversity assessment in Northern Norway, a project 

connected to the Norwegian Deepwater Programme (NDP) and a MetaMon pre-project. In all these 

projects, the ability to get softbottom sediment samples from regular monitoring survey stations 

made it possible to efficiently gain access to samples that could be processed for molecular analysis. 

Previous projects were dependent on earlier high throughput sequencing (HTS) platforms such as 

454 pyrosequencing, which, due to relative costs and technical limitations, reduced the total scope 

of number of samples as well as the number of sequences from each sample (sequencing depth). 

As the eDNA field has matured, new HTS sequencing technologies such as the Illumina platforms 

and insights gained from initial studies now allow studies with a substantial expansion of dataset 

scope beyond prototype proof of concept studies. 

Thus, the MetaMon project, conceived as a collaboration between MERG and industry partners 

Equinor and Total, serves as a logical continuation of the groundwork necessary to advance towards 

the use of eDNA, and metabarcoding, in offshore environmental monitoring on the Norwegian shelf. 

The ability to piggyback on existing environmental monitoring, including both ship time and direct 

comparison with data from currently monitoring reporting, represents a cost-efficient design 

extending the scope of the project: Chemical, sediment and biological datasets based on 

morphological taxonomy (i.e., species lists) are available for direct comparison with metabarcoding 

data from chosen sites; a unique advantage compared to many other eDNA studies. 

The main objective of MetaMon as stated in the project description, is to unlock the potential of 

metabarcoding as routine technology for the monitoring of benthic community biodiversity in 

relation to environmental impact assessment of petroleum extraction activities. 

Partial aims towards this objective include 1) determining how metabarcoding qualitatively 

compares to taxonomic analysis for biodiversity assessment in marine sediments and its potential 

for  assessing changes in abundance of indicator species; 2) exploring characterized benthic taxa 

and uncharacterized molecular identifiers, with verified potential as biological indicators of 

environmental disturbance related to oil drilling activities; 3) developing specific, preliminary 

guidelines for metabarcoding methodology, encompassing all stages from study design, sample 

collection, processing, DNA sequencing, sequence data analysis, data archiving and deposition, 

statistical assessment and reporting; 4) calculating estimates of taxonomic gaps for marine benthic 

species identification using two different metabarcoding approaches (SSU rRNA and COI); and 5) 

submitting COI and 18S barcodes for the most common taxa in the O&G monitoring programs. To 

this end, the content of MetaMon is divided into four work packages: 
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WP1: Comparative analysis of morphologic and metabarcoding-based monitoring 

This work package comprises a comparison of morphology-based and metabarcoding data from a 

set of monitoring stations from the Norwegian Shelf. The discriminatory power of metabarcoding is 

compared to that of the current morphological data, and to further assess development of 

metabarcoding best practices for monitoring. Tools such as co-occurrence networks, SML and 

identification of indicator species will be explored. A subset of identified indicator species will be 

chosen for quantitative detection using ddPCR. 

WP2: Standardization of sediment sampling methodology 

This work package comprises further experiments to assess cost-effective metabarcoding sampling 

and DNA extraction with a particular focus on the best way, either through increasing the number 

of replicates, or volume of sediment, and of mitigating incomplete sampling of the sediment 

organism community due to uneven distribution of organisms. This data is needed to provide 

evidence-based input with regards to best practices sampling for a future metabarcoding 

methodological standard. 

WP3: Assessment of the archive and taxonomic gaps 

This work package aims to document and partially mitigate gaps in species identification databases 

for marine benthic macrofauna on the Norwegian Shelf. 

WP4: Organization and project management 

In addition to the scientific content of the project, a fourth work package includes administrative as 

well as outreach activities. 

1.5. Report structure 

The aims of the methodological studies as part of WP2 were to investigate the impact of 

methodological choices on the resulting metabarcoding data. These methodological experiments 

provided the findings that informed the protocol for the main WP1 metabarcoding study, and as 

such constituted a basis and natural starting point for the MetaMon project. With regards to WP1, 

this work package included both a metabarcoding study as well as a ddPCR quantitative approach. 

While the ddPCR work builds on WP1 metabarcoding findings, the methodological approach is quite 

different. Finally, while WP3 comprised both an estimation of gaps in identification databases and 

a targeted barcoding project to increase the coverage of species found on the Norwegian Shelf, 

these two approaches are both concerned with macrofauna specifically, rather than the full range 

of eukaryote organisms in the metabarcoding dataset. To clearly present the scientific findings of 

MetaMon, the report thus has the following general structure: 

• Methodological findings and guidelines (WP2) 

• Sediment metabarcoding study (WP1) 

• Quantitative ddPCR to determine indicator species abundance (WP1) 

• Metabarcoding for macrofaunal identification and gaps in database taxonomy coverage 

(WP3) 

• Summary of findings, conclusions and recommendations for future research 
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2. WP2 – Methodological findings and guidelines 

Acquiring a metabarcoding dataset is a process that is dependent on a number of processing steps, 

including sampling design and DNA extraction protocol (what to sample, how much volume, how 

many replicate samples, which extraction protocol or kit to use, sample treatment during extraction 

etc.), which molecular marker, and primers, to use (18S, 28S, COI or others), PCR cycling conditions 

and reagents, sequencing platform, and how the raw sequence data are filtered and clustered in a 

particular bioinformatic pipeline (Fig. 1). No matter the exact processing method used, a particular 

set of biases are introduced to the data, meaning that it can be challenging to compare 

metabarcoding data from different studies, especially at a fine scale (Zinger et al 2019). 

 

Figure 1. Schematic illustration of the steps required in sediment eDNA metabarcoding projects. 

For currently used sediment morphological methods, a particular set of standards have been 

developed to keep processing as consistent as possible, ranging from sampling standards such as 

ISO 16665 (ISO 2014), to initiatives such as ring tests where identification accuracy is controlled by 

letting taxonomists at different institutions identify the same sample set of organisms. 

Due to the recent state of eDNA-based methods, there is little consistency in the methods employed 

by various studies. In part, this is because best practices are still not established and must be 

developed through cumulative studies of different steps of the process. Given the number of 

possible strategies, finding an optimal methodology requires a significant effort with regards to 

methodological development. 

While any method will produce a particular set of biases, a standardized methodology means this 

bias will also be consistent and results thus still comparable. At the same time, a chosen method 

needs to maximize cost-effectiveness in terms of ecologically relevant information to be used for 

monitoring of anthropogenic impact. In order to be used in a routine monitoring setting, 

metabarcoding thus needs to have a set of standardized guidelines so that results are comparable 
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from one study to the next. Part of the MetaMon project is thus concerned with combining existing 

knowledge with new experiments designed to provide such guidelines. The MetaMon pipeline, 

developed as part of this project, is shown as a graphic in Figure 2. 

2.1. Previous findings 

2.1.1. Sampling and DNA extraction 

The methodological approach must be tailored to the specific habitat and type of samples being 

studied, in this case, marine sediments. Existing studies have examined technical steps in sediment 

metabarcoding processing:  

Several studies have compared the use of extracellular DNA only (Pansu et al. 2021), direct sediment 

extraction and sieved community (bulk) samples (Brannock & Halanych 2015; Macher et al. 2018) 

and the effect of sediment volume subject to DNA extraction (Nascimento et al. 2018). 

Methodological work has also been a focal point for the MERG projects that preceded MetaMon: 

Thus, for instance, Hadziavdic et al. (2014) analyzed the small subunit 18S gene in depth for optimal 

primers for this gene. Lekang et al. (2015) compared the efficacy of different DNA extraction 

protocols on North Sea sediments, and found that the DNeasy PowerSoil Kit (Qiagen) provided high-

quality data for a comparatively low amount of effort. Lanzén et al. (2017) investigated the effect of 

increased replicate samples and number of reads per sample on the overall richness and diversity; 

important measures to evaluate to which degree the underlying organism community is sufficiently 

represented in the data. 
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Figure 2. Schematic representation of the MetaMon sampling and processing pipeline. 
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2.1.2. Marker choice and targeted organisms 

The majority of sediment eDNA studies have coalesced around a handful of genes that have been 

found to give consistent results, depending on which part of the organism community that is 

targeted: For macrofauna (animals >1 mm), the Barcode of life (BOL) standard metazoan gene 

marker, cytochrome oxidase subunit I (COI), is common, using the so-called “Leray primers” (Leray 

et al. 2013) or variations thereof (Wangensteen et al. 2018); again a part of the standard barcode 

sequence derived using the “Folmer primers” (Folmer et al. 1994). This marker is for the most part 

sufficiently variable to identify individual animal species and has the highest database coverage 

(number of organisms in reference databases) (Andújar et al. 2018). Still, it also has several 

drawbacks: Since it is a protein-coding gene, it has more sequence variation in the primer binding 

sites than found in ribosomal genes, which means that it does not bind equally well to all metazoan 

groups and thus is biased against many marine taxa (Leray & Knowlton 2017; Zhan & MacIsaac 

2015). As a mitochondrial gene (given the origin of the mitochondrion as an ancient 

proteobacterium), it is also very susceptible to non-target amplification of bacterial sequences 

(Collins et al. 2019). Still, while not perfect, COI remains the best option for targeting metazoans 

due to its ability to resolve sequences to species level. 

For other groups, such as meiofauna (animals <1 mm) and single-celled eukaryotes, ribosomal 

markers are typically used, with a particular emphasis on the ribosomal small subunit (18S) (other 

markers include 28S and ITS). Owing to their structure and function, ribosomal sequences contain 

both highly variable and highly conserved (slowly evolving) sequences, a feature not found in 

protein-coding genes such as COI. It is thus easier to design universal primers targeting a broader 

range of organisms by placing primers in conserved areas, while still being able to discriminate 

between sequences based on variable areas. Different regions of 18S are used, most commonly the 

V1-V2 (Faria et al. 2018; Martínez et al. 2020), V4 (Lanzén et al. 2016; Laroche et al. 2020), V7 

(Guardiola et al. 2015; Wangensteen et al. 2018) or V9 (Brannock & Halanych 2015) regions, which 

each provide a different bias in the parts of the eukaryote community they target best. Specific 

groups, such as Foraminifera, can also be targeted (Cordier et al. 2017; Keeley et al. 2018). Finally, 

for prokaryotes, the prokaryote 18S analogue 16S is targeted (Aylagas et al. 2017; Lanzén et al. 

2020). 

2.1.3. PCR, sequencing and bioinformatic filtering 

Copying mistakes during PCR amplification and read artifacts during sequencing add noise to a 

metabarcoding dataset. Such errors can range from single base pair errors and sequences that are 

a mix of two other sequences (chimeras) to mistakes in barcode tags that wrongly attributes 

sequences to the wrong sample. A range of bioinformatic tools are used to filter and cluster together 

closely related sequences including, at different steps in the analysis, DADA2, VSEARCH, SWARM 

and LULU. While the effect of choices made during this processing is not as severe as that of 

sampling and DNA extraction (Brannock & Halanych 2015), bioinformatic considerations still need 

to be taken into account for data analysis and comparison, since results that have been treated and 

filtered differently are not necessarily directly comparable. 
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2.2. MetaMon lab processing 

2.2.1. Primer choice 

Two primer pairs were chosen based on a survey of the literature: COI and 18S V1-V2. While slightly 

biased towards meiofauna, the 18S V1-V2 primers are extensively used in metabarcoding studies 

and can pick up a broad range of both metazoans and other single-celled eukaryote organisms. 

Specifically, it provides less coverage of many pelagic microalgae, which were considered non-target 

for the aims of the project. The primers SSU_F04mod (5’-GCTTGWCTCAAAGATTAAGCC-3’) (Cordier 

pers. comm.), originally from Blaxter et al. (1998), and SSU_R22 (5’-CCTGCTGCCTTCCTTRGA-3') 

(Sinniger et al. 2016) were chosen for this marker.  

While COI is a more challenging marker than 18S in metabarcoding studies, this marker allowed 

coverage of macrofaunal taxa, allowing easier comparison with morphological methods as well as 

enabling increased species level identification of recovered sequences. A slightly modified version 

of the forward Leray primer, mlCOIintF-XT (5’-GGWACWRGWTGRACWITITAYCCYCC-3’) 

(Wangensteen et al., 2018) and modified Folmer reverse primer jgHCO2198 (5’-

TAIACYTCIGGRTGICCRAARAAYCA-3’) (Geller et al. 2013). For both 18S and COI, the modifications to 

the forward primer aimed to increase the number of organisms that would be picked up by the 

chosen markers. 

A small test was done in order to assess the feasibility of using an alternate set of primers for 

amplification of COI. These primers, BF2 (5’-GCHCCHGAYATRGCHTTYCC-3’) and BR1 (5’-

ARYATDGTRATDGCHCCDGC-3’), were chosen based on results from Elbrecht & Leese (2017). A PCR 

run including this primer pair was made for testing purposes, but with poor results, and no further 

optimization was attempted. 

2.2.2. DNA Polymerase 

Sediment DNA extracts may contain significant impurities that can inhibit the PCR reaction. Different 

DNA polymerases and buffer solutions perform better than others when exposed to such 

conditions, and thus three different polymerases were tested in order to find optimal conditions for 

PCR amplification: the Qiagen Hotstart, KAPA3G Plant PCR kit and DyNAzyme II DNA polymerases. 

Some reports indicate an elevated number of difficult-to-detect artifacts using high-fidelity 

polymerases. As such, none of these DNA polymerases were included in the comparison. DNA 

Polymerases were evaluated based on comparison of gel electrophoresis band strength following 

amplification of the same set of samples from all DNA polymerases. Electrophoresis gel band 

strength was significantly higher for the KAPA3G DNA polymerase than other DNA polymerases in 

this experiment. These findings fit well with the description of this DNA polymerase as developed 

to be resistant to a range of inhibitors, and this DNA polymerase was thus selected for all further 

PCR amplification in the project. 

2.2.3. Optimizing PCR conditions 

Based on a survey of literature using the chosen COI and 18S primers as well as PCR phase times 

recommended by the KAPA 3G documentation (Kapa Biosystems 2016), initial programs were 

selected for both markers and subjected to tests in order to improve performance. Temperature 

gradients were used in order to find optimal annealing temperature for both markers. We found an 

optimal annealing temperature of 57°C for the 18S SSU F04mod and R22 primers. While programs 
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using so-called touchdown profiles are common in the literature for Leray COI primers, we found no 

increased performance using either touchdown or “touchup” programs, mirroring the results of 

Aylagas et al. (2016a), and thus used a single annealing temperature of 45°C for the Leray-XT and 

Geller reverse primers. 

As the COI primers include several ambiguous bases due to the variable nature of the binding sites, 

we hypothesized that we would need to increase the COI primer concentration compared to that of 

18S. As we did not want to increase primer concentrations more than necessary to avoid problems 

in subsequent library preparation and sequencing, we did not want to increase primer 

concentrations beyond 4x of the 18S concentration. Tests using 1x, 2x and 4x primer concentration 

confirmed that increased primer concentration gave higher product concentration, and thus a 4x 

COI primer concentration compared to 18S was used in all subsequent amplification. Bovine serum 

albumin (BSA) has been shown to increase reaction effectiveness (e.g., Farell & Alexandre 2012) and 

was added to all PCR reactions. 

2.2.4. Library preparation and sequencing 

Initial PCR was performed using adapter-linked primers including 12 random bases to aid amplicon 

sequencing. Illumina dual index TruSeq i5/i7 barcodes were used for library preparation with 

equimolar PCR product concentration for each sample, and extraction and PCR negative controls 

were used to detect contamination during processing. Sequencing was performed on an Illumina 

MiSeq instrument using v3 with 300 bp chemistry at the Norwegian Sequencing Centre (University 

of Oslo, Norway). 

2.2.5. Bioinformatic pipeline 

Merging of the overlapping sequencing reads (forward and reverse direction) was carried out using 

the program VSEARCH (Rognes et al. 2016), allowing for up to 40 mismatches. Further quality 

filtering of sequencing reads was carried out using VSEARCH and cutadapt (Martin 2011) and 

included length-based filtering (330 – 450 bp for 18S and 274 – 333 bp for COI), removal and 

verification of a correct primer sequence. This was followed by clustering into unique operational 

taxonomic units (OTUs) using SWARM (Mahé et al. 2015). Thereafter, singleton OTUs (those 

represented by only one read in total), and potential chimeric OTUs resulting from PCR artefacts 

(see section 2.1.3), were removed using VSEARCH. Remaining OTUs were subjected to post-

clustering correction using the program LULU (Frøslev et al. 2017), in order to join intra-specific 

sequence variants or remaining artefacts. 

Taxonomic assignments were made using CREST (Lanzén et al., 2012). For COI, the BOLD database 

was used (Ratnasingham & Hebert 2007; accessed February 2018) and adapted to CREST 

(https://github.com/lanzen/CREST), while for 18S, we used SilvaMod v128 as reference. Likely 

contaminant OTUs were identified and removed based on both suspicious sample OTU abundance 

patterns and PCR and extraction blanks, for each plate, using decontam (Davis et al. 2018). Further, 

filtration was carried out based on taxonomic assignments in order to remove OTUs of likely pelagic 

origin. Cross-contamination was reduced by setting OTU abundances to zero where it occurred in a 

sample at very low abundances compared to its average abundance across samples (<1%), like the 

UNCROSS algorithm (Edgar 2016). 

Alpha diversity estimates (rarefied, i.e. expected richness at minimum read depth, and Shannon 

diversity) were calculated using the R package vegan (Oksanen et al. 2019). Bray-Curtis pairwise 
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dissimilarities were calculated based on relative OTU abundances, filtered to compensate for 

differences in sequence depth and random sampling effects. 

All scripts used for sequence data processing and analyses have been made publicly available 

through the GitHub repositories https://github.com/lanzen/Metamon1 and 

https://github.com/lanzen/Metamon2 (doi: 10.5281/zenodo.4826641). 

2.2.6. Mock communities 

To assess primer bias for the 18S and COI marker genes, two mock communities (extract templates 

with a known composition) were made by picking and sequencing 21 clones for each marker from 

metabarcoding samples. For 18S the Hadziavdic et al. (2014) primers F-40 (5’-

AAGATTAAGCCATGCATG-3’) and R-1797 (5’-TGATCCTTCTGCAGGTTCACCTAC-3') were used; for COI 

the Wangensteen et al. (2018) mlCOIintF-XT (5’-GGWACWRGWTGRACWITITAYCCYCC-3’) and Geller 

et al. (2013) jgHCO2198 (5’-TAIACYTCIGGRTGICCRAARAAYCA-3’). 

Cloning was performed using the StrataClone PCR Cloning kit, using the kit standard protocol; the 

same protocol as used in the MetaMon pre-project. In brief: Ligation reactions (one per PCR sample) 

were prepared using ampicillin and 5-bromo-4-chloro-3-indolyl-β- D-galactopyranoside (X-gal) and 

then incubated. Transformant plates were incubated agar side up at 37°C overnight. Sterile 

toothpicks or pipette tips were touched against individual colonies, resuspended into PCR reactions 

and run with the standard kit M13F/M13R primers. Sanger sequencing was used to obtain 

sequences of individual clones after PCR, using BLAST to identify clonal sequences. 

Given recent articles outside the scope of MetaMon covering primer biases for the markers in 

question (e.g., Elbrecht & Leese 2015; Elbrecht & Leese 2017; Wangensteen et al. 2018), and the 

higher relevance of other aspects of MetaMon to the final deliverables of the project, the mock 

communities were not investigated further.  

2.2.7. MetaMon sampling design findings 

A major aim of MetaMon was increased cost-effectiveness of sampling and processing of ecological 

samples. As such, a direct sediment rather than bulk community approach was chosen for most 

samples in the project. To enable collection of many such sediment samples, they were achieved as 

part of the standard environmental monitoring survey, using a van Veen grab, as this allowed 

collecting sediment for metabarcoding at the same time as chemical and morphological biology 

samples were taken as part of the normal survey. 

While larger volume sediment samples (10 g) on a one-to-one basis have been shown to outperform 

smaller volumes and can be processed using specialized DNA extraction kits such as PowerMax (5 g 

of sediment), extraction using these kits is manual, and the per-sample processing time significantly 

higher than that of smaller sediment volumes (0.5 g). Following and building upon the results of 

Lanzén et al. (2017), MetaMon thus employed a sampling and extraction approach that combined 

multiple small volume replicates that could be processed using a semi-automated pipeline, in order 

to maximize sampling cost-effectiveness. To increase the amount of the total organisms found in 

each grab, sediment was collected from three different parts of each grab and pooled together in 

the field. Sediment samples were frozen on board and kept at -20°C until processing in the lab. 

https://github.com/lanzen/Metamon1
https://github.com/lanzen/Metamon2
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For the technical experiments specifically, extra sediment was collected from five grab parallels 

belonging to monitoring region II station GK-DA-01 (Gina Krog installation). This sampling design 

was chosen to allow a large number of extraction replicates to be made from the grab replicates 

from this station, allowing direct comparison of technical parameters associated with 

metabarcoding processing. 

Two main research questions were the subject of experiments connected to MetaMon WP2: 

1. The impact of the degree of sample homogenization during DNA extraction, that is what 

effect the intensity of the shaking during extraction had on the composition of the 

resultant DNA extract. 

2. Comparing the differences in organism composition from samples from different parts 

of the same and different grabs, to investigate the level of sampling needed to obtain 

adequate representation of the organisms at the station. 

Both cases represented areas where little to no previous research was available yet would provide 

valuable information for developing specific sampling and processing recommendations for 

standardized guidelines. 

2.2.8. Extract homogenization 

DNA extraction is the first laboratory step in the processing of metabarcoding samples and involves 

extracting DNA from the source sample into a buffer solution for PCR amplification. The DNA 

composition of this extract has a large effect on metabarcoding results. A previous MERG study 

(Lekang et al. 2015) compared the performance of several different kits and protocols of extracting 

DNA from sediment samples. Overall, the Qiagen DNeasy PowerSoil kit was found to provide an 

optimal trade-off between workload and performance. PowerSoil belongs to a type of extraction 

kits in which sediment is mixed with specialized beads and rapidly shaken (homogenized) in order 

to release DNA from sediment particles as part of the DNA extraction process. Intuitively, the 

amount and intensity of such homogenization might influence how much of the sediment DNA is 

retrieved in the resultant DNA extract. 

The MERG lab had already developed a hybrid protocol incorporating a QIAsymphony extraction 

robot with PowerSoil reagents in order to speed up DNA extraction. For MetaMon, a series of 

experiments were designed to investigate the effects on the number of unique sequences (richness) 

and number of each unique sequence (abundance) in the metabarcoding data from samples 

subjected to different homogenization intensity during the DNA extraction process, and compare 

any such homogenization effect with an increased volume of sediment. An additional goal was to 

compare the richness increase with additional extraction replicates for the different 

homogenization treatments, the similarity between replicates, and a separate experiment 

comparing the effects on the metabarcoding data of pooling extracts before or after PCR 

amplification. 

The intent of these experiments was to optimize the methodology in order to maximize the cost-

effectiveness of the metabarcoding pipeline. The results from these experiments have been 

published in Environmental DNA (Hestetun et al. 2021b). 
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2.2.9. Homogenization results 

In all, 34 sediment subsamples were taken from a single large sediment sample from van Veen grab 

4, station GK-DA-01, during the 2018 monitoring cruise to monitoring region II and subjected to 

different homogenization treatment using either 1) a high intensity homogenizer treatment 

(Precellys 1), 2) a medium homogenizer treatment (Precellys 2), 3) Vortexing only (lower intensity) 

or 4) Vortexing only, but with 10x (5 g) increase in sediment volume (using the PowerMax kit) during 

DNA extraction. Extracts were then subjected to PCR amplification and sequencing using the 18S 

and COI markers. 

To evaluate the effect of homogenization treatment on the resulting metabarcoding data, we 

compared the alpha diversity (number of unique sequences and their within-sample distribution) 

and beta diversity (similarity between samples) for the different homogenization treatments. Alpha 

diversity was measured using rarefied richness, which is the number of unique sequences where all 

samples have been standardized to the same number of sequence reads (e.g., all samples 

downscaled to for instance 70,000 unique sequences), and Shannon diversity, which is an index 

number considering both the number of unique sequences, but also their relative abundance (Fig. 

3). 

 

Figure 3. The effect of homogenization treatment on alpha diversity measured as richness and 

Shannon value. 
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Alpha diversity results showed significant differences between samples: The intermediate Precellys 

treatment had the highest rarefied richness values, while Shannon values were a bit more mixed. 

COI had much higher variability between extracts, highlighting the more uneven distribution of 

metazoans specifically compared to the 18S dataset, which also included single-celled eukaryotes. 

In addition, we included pooling of all extracts prior to PCR and sequenced together (diamonds) and 

the rarefied richness/Shannon diversity of all samples together (in silico pooling, plus signs) for 

comparison. Here, we noted that pre-PCR pooling led to higher diversity than single extracts, but 

not to the extent of the rarified sum of all single extracts (i.e., diamonds higher than single extracts, 

lower than plus signs). 

Similarity between extracts, a measure of beta diversity, shows the consistency of individual 

extracts, and how well they can represent the community from which the sample is drawn, here 

shown using Hellinger-transformed Bray-Curtis dissimilarities (Fig. 4). PCR replicates of the same 

extract were used as a baseline. In total, both the intermediate Precellys treatment and the 5 g 

PowerMax treatment came out ahead (lower scores are better) for 18S data (both the whole dataset 

and metazoans only) while the 5 g treatment did not show increased performance from increased 

sediment volume for the COI marker.  

 

Figure 4. Similarity between extract replicates for each treatment shown as box and NMDS plots for 

the complete 18S, 18S metazoan and COI metazoan datasets. 
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For 18S, we also calculated the median rarefied richness increase for each additional extract for the 

four homogenization treatments, using repeated randomized sub-sampling. This showed a modest 

decline in additional richness per simulated extract for all treatments, but more so in the case of the 

total eukaryote dataset compared to the metazoan part of the 18S dataset only (Fig. 5). 

 

Figure 5. Additional median rarefied richness with increased number of replicates for the 18S total 

and metazoan only dataset. 

The main conclusions of the work done for this article were that A) choice of homogenization 

protocol does have a significant impact on the amount of the sediment DNA that is obtained during 

DNA extraction, and that an intermediate homogenizer treatment gives optimal results, B) an 

increased number of small volume extract replicates is better than fewer large volume replicates in 

terms of cost-effectiveness and also dilutes the impact of large organisms in the source sediment, 

C) pre-PCR pooled extracts significantly outperforms individual extracts, and represent a feasible 

strategy both for cost-effective processing, and minimizing PCR-based artifacts, and D) COI 

metazoan data are significantly less consistent than 18S due to uneven organism size and sediment 

distribution. Together with random PCR effects due to less conserved primer sites, this introduces 

a large amount of noise in COI datasets compared to total eukaryote 18S data. 

2.2.10. Spatial distribution experiment 

Metabarcoding and other eDNA methods use sediment source volumes that are magnitudes smaller 

than the whole grabs that are sieved in morphological sampling. A second set of sampling design 

experiments were made in order to get a better understanding of the relative degree of difference 

between samples taken at different spatial scales, in order to understand how different sampling 

designs with regards to sediment from the same or different grab parallels, influence how 

representative the resultant data is for the sampling station as a whole. 

Here, for three separate van Veen grab samples from the GK-DA-01 station, sediment samples were 

taken individually, not pooled, from five separate places from the each van Veen grab. For each of 

these 15 sediment samples, five DNA extract replicates were made: in all 75 DNA extracts (Fig. 6). 
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These extracts were sequenced individually or pooled prior to PCR for a total of 30 18S and 30 COI 

metabarcoding data samples.  

 

Figure 6. Sampling design for the study of metabarcoding data spatial variation. 

The aim of this study was to compare the amount of the total diversity of the station (as represented 

by the sum of all metabarcoding data collected in the study) that could be obtained for individual 

extracts, sediment samples and grab samples, as with the previous study, all extract combinations 

were sequenced using the 18S V1-V2 and COI markers. 

Table 1. The absolute and percentages of the total three-grab dataset for each marker obtained for 

individual extracts, sediment samples and grabs. 

18S absolute counts 

  Single extracts Intra-grab, 5 pooled extracts Whole grab 

  Min Max Median Min Max Median Value 

Grab 1 641 666 659 622 812 752 959 

Grab 2 642 656 646 711 782 775 933 

Grab 3 666 706 679 695 779 711 933 

18S percentage of total (n=1030) 

  Single extracts Intra-grab, 5 pooled extracts Whole grab 

  Min Max Median Min Max Median Value 

Grab 1 62% 65% 64% 60% 79% 73% 93% 

Grab 2 62% 64% 63% 69% 76% 75% 91% 

Grab 3 65% 69% 66% 67% 76% 69% 91% 

COI absolute counts 

 Single extracts Intra-grab, 5 pooled extracts Whole grab 

 Min Max Median Min Max Median Value 

Grab 1 35 48 39 37 63 60 83 

Grab 2 45 55 49 47 67 48 84 

Grab 3 52 59 56 38 59 51 87 

COI percentage of total (n=108) 

 Single extracts Intra-grab, 5 pooled extracts Whole grab 

 Min Max Median Min Max Median Value 

Grab 1 32% 44% 36% 34% 58% 56% 77% 

Grab 2 42% 51% 45% 44% 62% 44% 78% 

Grab 3 48% 55% 52% 35% 55% 47% 81% 
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Figure 7. Relative read abundances between sediment and grab replicates for the 18S (A) and COI 

(B) datasets in the spatial variability study gives an intuitive picture of the differences in read counts 

for main taxa in these datasets. Not the higher variability of the COI data compared to 18S. 

The read abundances of the different data are shown in Fig. 7. The degree to which different 

samples were able to represent the total three-grab dataset is shown in Table 1. To examine 

differences between the sample metabarcoding data, beta diversity Bray-Curtis dissimilarities were 

calculated, shown as box plots and NMDS plots (Fig. 8). For COI, we also calculated commonly used 

current biotic indicators, based on the parts of the COI data that could be identified to species level. 
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Figure 8. Bray-Curtis dissimilarity between samples for 18S (A-B) and COI (C-D) represented by box 

and NMDS plots. 

The main conclusions from this work, published in PeerJ (Hestetun et al. 2021a), showed that even 

a small amount of source material from a manageable number of replicates was well able to 

represent total eukaryotic diversity at grab or even multi-grab level, showing the presence of an 

eukaryotic core community. There was a decrease in data similarity with distance (extract < 

sediment samples < grab level), and as seen in the homogenization study, individual extracts and 

even sediment samples were vulnerable to high read abundances from single metazoan OTUs. This 

means that both extract and spatial replicates should be used to increase coverage of the organism 

community at the site. 

COI results were less consistent than 18S, again highlighting the increased heterogeneity of 

metazoan distribution compared to single-celled eukaryotes. Yet, COI results become more 

representative when represented as index values from e.g., the ISI or NSI index, showing that these 

index values are more resilient than direct alpha diversity values such as richness or Shannon values. 

A likely explanation here is that the species present in the indices are found among the more 

abundant OTUs in the dataset, and thus exhibit less variability than rarer OTUs in the data. 
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3. WP1 – Comparative study of metabarcoding and 
morphological data 

Anthropogenic impact from offshore industrial and oil and gas extraction activities has the potential 

to negatively influence nearby seafloor organism communities. Such impact can change the 

composition of these communities, and the extent of such impact can thus be detected through 

investigating these communities directly. In the context of offshore monitoring on the Norwegian 

Shelf, this is currently done through sieving the 1 mm fraction of whole van Veen grab samples, 

retaining all collected animals, and identifying them to the lowest taxonomic group possible in order 

to provide species lists that are used to calculate ecological parameters, including alpha diversity 

parameters such as the Shannon index, and biotic indices that take into account the sensitivity to 

impact of the recovered organisms: Impacted localities typically have a lower number of species 

(e.g. lower diversity), and the species that are present have low sensitivity (e.g. are tolerant to 

impact). 

Metabarcoding involves the amplification of part of a specific gene (marker) from a wide selection 

of organisms found in the source sample. Differences in gene sequence are used to identify taxa or 

taxon groups, depending on method used described as operational taxonomic units (OTUs) or 

amplicon sequence variants (ASVs), and the resulting list of OTUs or ASVs, a so-called OTU or ASV 

table, is in many ways analogous to a species list derived from morphological identification. As such, 

metabarcoding can represent a potential alternative or complement to the currently used 

morphological methods to investigate community composition at a given locality. 

As reviewed more in depth in the general introduction and methods chapters here, however, the 

metabarcoding approach is not always straightforward. The most important question may be if the 

information regarding community composition provided by the metabarcoding data be used to 

determine whether the source community has been impacted? If so, how does this ability compare 

to the currently used morphological methods? Finally, are there any molecular markers, such as 

18S, COI or even bacterial 16S, that can detect such impact better than others? 

There are two main conceptual approaches to using metabarcoding data to infer anthropogenic 

impact: 

1. By using a marker (COI) that can target the same organisms that are examined in current 

methods, i.e., macrofauna, it is possible to detect the presence of sensitive or tolerant 

organisms that are used in current biotic indices such as AMBI or NSI/ISI. This approach is 

highly dependent on the ability to identify genetic sequences in the data to a low level, 

preferably species level, and thus relies on the relatively high taxonomic coverage of COI in 

online databases. The advantages of the COI macrofauna approach is that it is more closely 

related to the current monitoring system. As such, the data can to a certain extent use the 

extensive knowledge of the ecology of, and historical data from, the sampling area 

macrofauna, to help infer impact status. Thus, it provides more of a continuation of existing 

methodology. Disadvantages include the increased sampling needed to adequately 

represent larger organisms compared to e.g., single-celled eukaryotes due to uneven 

sediment distribution. 
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2. By using markers that target a wider variety of organisms, it is instead possible to also 

include those groups in impact assessment. Ribosomal markers (e.g., 18S, 28S, 16S) are 

generally easier to work with, as a combination of conserved primer sites and a more even 

distribution in the sediment of single-celled organisms. Using this approach, however, the 

resolution of taxonomic information obtained is much lower: most sequences in the data 

can only be roughly identified as belonging to one of several high-level groups, and there is 

yet little metabarcoding available for comparison of impacted vs non-impacted conditions. 

As such, biotic indices that depend on sensitivity need to be remade from scratch (de novo). 

Alternatively, taxonomy can be scrapped altogether using e.g., a supervised machine 

learning (SML) approach that has the potential to perform well even with diverse and 

complex input data (compared to the creation of novel biotic indices). However, SML is 

reliant on large training datasets in order to make accurate predictions for new sites. 

3.1. MetaMon metabarcoding study 

In order to examine the ability of metabarcoding data to detect anthropogenic impact from offshore 

oil and gas extraction, it needs to be compared against the existing parameters that are used in the 

environmental monitoring program. In practice, this means establishing correlations between 

metabarcoding data and parameters such as the morphological taxonomy datasets and abiotic 

parameters such as hydrocarbon or metal concentrations. 

 

Figure 9. An overview of the offshore installations included in the MetaMon WP1 metabarcoding 

study. 

As part of MetaMon work package 1 (WP1), sediment from several stations from monitoring regions 

II, III and IX were sampled for metabarcoding amplification and sequencing (Fig. 9). The 

metabarcoding sampling included 97 stations with three grab replicates from each, in all 291 

sediment samples. Metabarcoding sample processing followed the protocol established by WP2, 

with three parallel DNA extractions made from each sediment sample using the MERG semi-
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automated pipeline, thus encompassing 873 separate DNA extracts. The small subunit 18S V1-V2 

and COI markers, were sequenced as described in the previous chapter. 

The stations chosen for metabarcoding sampling were all stations that also were subjected to 

regular monitoring during the 2018 and 2019 campaigns. As such, sampling was designed to allow 

comparison of metabarcoding data with morphological taxonomy and abiotic parameters, 

downloaded from the DNV GL MOD database (DNV GL 2021). The metabarcoding bioinformatic 

pipeline was similar to that of the methodological studies and is described further in the previous 

chapter. 

The metabarcoding comparative study aims included: 

1. Creating an aggregated physicochemical pressure index (PI) combining the THC, PAH16, Ba 

and Cu parameters from the relevant stations. 

2. Examining the correlation between this PI and morphological and COI-based NSI biotic index 

values. 

3. Using correlation between PI values and individual OTU abundance to identify the sensitivity 

to impact of OTUs in the 18S and COI data, to create a proof-of-concept de novo biotic index 

for each marker. 

4. Examining the accuracy of the developed de novo indices through cross validation. 

5. Examining co-occurrence networks of OTUs for impacted and non-impacted sites to 

investigate ecological relationships of individual OTUs in the dataset. 

The following section is a short summary of the main study findings from this study, published as 

Lanzén et al. (2021). 

3.1.1. Developing the pressure index 

A pressure index (PI) is a way of combining several abiotic impact measures together into one 

parameter (Aylagas et al. 2017). Calculated PI values then serve as a ground truth against which to 

compare metabarcoding and morphotaxonomy data. The PI developed here includes total 

hydrocarbons (THC), polyaromatic hydrocarbons (PAH16), barium (Ba, as a proxy for drilling activity) 

and copper (Cu). Possible PI values range from 0 to 6 (where 0 represents no impact) and where a 

value of 2 corresponds to the highest allowed values classification as good environmental status. 

Thus, the values of the PI were set to correspond to the ecological status groups of the NSI as well, 

with 0—1 representing very good status, 1—2 good, 2—3 moderate impact, 4—5 poor status and 5 

and above very poor status.  

3.1.2. Correlation between alpha diversity and PI values 

Alpha diversity of the metabarcoding and morphological data was examined both in terms of 

rarefied richness (number of unique OTUs per standardized sequence read number) and as Shannon 

diversity (Fig. 10). Key results include:  

• COI and 18S rarefied richness correlated strongly between samples (i.e., low COI richness 

correlated with low 18S richness and vice versa). 
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• Shannon values of the morphological dataset correlated stronger with 18S rarefied richness, 

compared to with COI. The correlation between morphology and metabarcoding-based 

Shannon values was consistently weaker than to metabarcoding-based rarefied richness. 

• PI values had moderate correlation with morphological Shannon values and 18S richness, 

and low correlation with COI richness. 

 

Figure 10. Plots showing the correlation between alpha diversity values of the different datasets 

(morphology, 18S and COI), including Shannon values (H’) and richness (number of unique 

sequences/species). 

3.1.3. Correlation between beta diversity and abiotic PCA datasets 

Dissimilarity of community composition across stations in the dataset was examined using non-

metric multidimensional scaling (NMDS) based on Bray-Curtis pairwise dissimilarities and Mantel 

tests. The latter were used to examine the amount of correlation between datasets, based on the 

resulting pairwise Bray-Curtis dissimilarities. Physicochemical parameters were standardized and 

compared using Euclidian distances, with the resulting distance matrix compared to biological 

community data using Mantel tests and subjected to Principal Coordinates Analysis (PCoA) Key 

findings (Fig. 11) include: 

• Region IX (Barents Sea) stations hosted biological communities that were consistently 

different, i.e., formed a separate cluster in NMDS space. than other regions.  

• The Mantel tests showed that 18S-based community data was the most consistent with 

community structure based on morphological data, implicating that 18S is the marker that 

best reveals the community response to the modelled parameters (depth, the hydrocarbon 

component of the PI, the Ba and Cu component, geographical distance, sand and gravel). 
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• The 18S dataset was also the most consistent with differences in abiotic parameters, more 

so than morphotaxonomy data, according to the Mantel tests. 

• The PI and NSI correlated significantly with all NMDS components. 

• Of the 25 most abundant taxa, eight were shared between COI and the morphological 

dataset. The lower resolution and database coverage of 18S did not allow a similar 

comparison. 

 

Figure 11. Correlation (Mantel tests, shown as arrows) between the beta diversity of the different 

datasets (NMDS plots) and to abiotic parameters (PCA plot). 

3.1.4. NSI and de novo indices 

The NSI index (Rygg & Norling 2013) was calculated for the morphological dataset and the parts of 

the COI dataset that could be identified to a sufficient level. The existing Norwegian NSI classification 

(Direktoratsguppen vanndirektivet 2018) was overlaid on scatterplots to investigate correlation in 

assigned classification between COI and morphological NSI values, PI and COI NSI values, and PI and 

morphological NSI values (Fig. 12).  
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• Around 52% of COI OTUs and 5% of 18S OTUs could be identified to genus level or lower. 

• NSI values based on COI and morphology were correlated, both COI and morphology NSI 

values had moderate correlation to PI, but COI NSI values had additional outliers. 

 

 

Figure 12. The correlation between (A) COI and morphology NSI values, (B) morphology NSI values 

and the pressure index (PI), and (C) COI NSI values and the PI. 

The de novo indices were made with TITAN2 v2.1. This approach examines the abundance of each 

taxon (here OTU) along a gradient of an environmental parameter (here the PI). Significant positive 

correlation between OTU abundance and impacted sites suggests tolerance to impact, while 

negative correlation suggests sensitive species/OTUs. OTUs given a significant score using TITAN2 

(p<0.01) were selected for additional analysis using quantile regression spines (QRS) and assigned 

an eco-group value (eco-group: classification of degree of sensitivity according to a value of 1-5, 

analogous to AMBI). This approach provides a list of bioindicator OTUs/taxa with defined eco-group 

values that forms the basis of the de novo index. Finally, by running iterations where different sets 

of the stations and installations were excluded, this de novo index could be cross validated to 

investigate the resilience of the index.  

A separate de novo index was made for the 18S and COI data, containing 49 taxa for the new COI 

index and 118 taxa for the 18S index. The de novo index values were then correlated to PI values 

(Fig. 12): 

• The COI de novo index performed slightly better than COI-based NSI values in its ability to 

predict PI values. 

• The 18S de novo index, however, performed somewhat worse than COI and morphology, 

despite the better consistency of 18S data with both morphotaxonomy and physicochemical 

parameters, as revealed by Mantel tests. 

3.1.5. Co-occurrence networks 

Co-occurrence network analysis is a way of analyzing the correlations of specific taxa within the 

dataset and can thus be used to investigate ecological connections between the members of the 

communities within. Here, a subset of the full dataset, consisting of four installations with high 

impact (40-42% impacted stations, OSS, RIN, OSF, VFR), was used and split into a non-impacted and 

impacted dataset for comparison. 
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The majority of the 18S taxa identified as potential bioindicator using the above approach (TITAN2 

followed by QRS), appeared in the 18S network as nodes, but only a third of COI taxa included in the 

de novo COI index appeared in the COI network as nodes. In the 18S network of the impacted 

stations, the taxa with highest connectivity tended to be taxa with low sensitivity scores (high 

tolerance), while the opposite was true in the non-impacted network. There was little overlap in 

potential keystone species between the impacted and non-impacted 18S networks. In terms of 

network topology, the number of positive correlations were higher than negative correlations for 

the 18S non-impacted network, but the opposite trend was apparent in COI. There was higher 

overlap in taxa composition between the impacted and non-impacted networks in the 18S data 

(80%) than in COI (54%) (Fig. 13). 

 

 

Figure 13. (A) Impacted 18S network, (B) non-impacted 18S network, (C) impacted COI network, (D) 

non-impacted COI network. The node colors show the eco group of OTUs in the de novo indices (I-II, 

green indicators of non-impact; III-V, red indicators of impact; grey, not part of the indices) based on 

the TITAN/QRS analysis above. 

The networks showed clear differences between impacted and non-impacted sites, but results 

proved ambiguous, rendering data interpretation difficult. 
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3.1.6. Study conclusions 

The main conclusions of the study are that metabarcoding data can indeed be used to detect 

environmental impact. Even for a relatively modest total dataset as seen here (97 stations) the 

patterns in the community composition as examined using 18S and COI data, could both be used to 

create new indices that perform at approximately the same level as the currently used NSI biotic 

index in terms of correlation to direct impact parameters (i.e., THC, PAH, Ba, Cu), as represented by 

the pressure index (PI) developed here. 

In the case of the NSI, COI had a performance approaching the morphological dataset: COI and 

morphological NSI values correlated strongly with each other, and with the PI. On the other hand, 

the lower taxonomic resolution and lower sequence database coverage of the 18S marker meant 

that much fewer OTUs from the metazoan part of the 18S data could be identified to a genus or 

species level, and thus this marker did not support the calculation of NSI. 

While this study provided a promising example of how de novo indices based on metabarcoding 

data are feasible for future environmental monitoring, the results here do not represent an 

improvement in impact assessment accuracy compared to existing methodology. An attempt was 

also made to use supervised machine learning (SML) on the metabarcoding data, but this did not 

produce significant results. 

The quality of any new biotic index is dependent on the dataset that is used to create it. Thus, 

increasing the number of stations that are included in the dataset will help refine the inclusion and 

eco-group assignment of indicator species in any de novo index. This is especially relevant as the 

number of non-impacted sites is high, and many of the impacted stations are severely 

contaminated, skewing the dataset. An increased number of mid-level impacted stations is thus 

important to increase index quality. Other measures, such as a more sophisticated approach to 

remove pelagic sequences from the metabarcoding data, can also be expected to increase index 

accuracy. 
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4. WP1 – Quantitative indicator assays 

While methods such as metabarcoding use markers with “universal” primers that are designed to 

include large groups of organisms, taxon-specific PCR primers make it possible to narrow down the 

range of organisms that are amplified to specific groups or species. Thus, it can be used to selectively 

identify specific taxa present in a given sample. In the context of eDNA, this approach is used 

together with methods that quantify the number of sequences that are present in the sample, 

including platforms such as quantitative PCR (qPCR), digital PCR (dPCR) or digital droplet PCR 

(ddPCR). While metabarcoding, due to amplification bias with regards to the variation of sequences 

that are present, does not produce quantitative data, such single organism assays can produce 

quantitative and sensitive results that enables both detection and quantification of organisms of 

interest from even extremely small amounts of trace DNA. Such organisms can for instance be 

sensitive or vulnerable species, such as cold-water corals (Kutti et al. 2020), invasive species (Crane 

et al. 2021), or tolerant indicator species for environmental impact. 

4.1. Indicator taxon choice and assay design 

As part of the MetaMon Work Package 1 metabarcoding study, a number of potential indicator taxa 

(118 18S OTUs and 47 COI OTUs) were identified based on their positive or negative correlation to 

a gradient of environmental impact. Based on these results, two indicator species (one for each of 

the markers 18S and COI) were chosen, based on high correlation to impact, for a ddPCR proof-of-

concept study to demonstrate quantification of individual organisms using this method. From the 

18S dataset, an OTU belonging to Haplosporida (SWARM 347) with strong negative correlation to 

impact (i.e., sensitive); from the COI dataset, the annelid Capitella capitata (SWARM 126) with a 

strong positive correlation to impact (i.e., tolerant). The name “Capitella capitata” used here refers 

to a group of sibling species that are not well defined morphologically (i.e., a species complex), but 

resolving this taxonomical issue is not within the scope of this project. 

Like other PCR-based methods, a ddPCR assay consists of a primer pair to amplify the correct 

sequence. As such, the first step involves identifying new primers from the sequence of the chosen 

metabarcoding OTUs that selectively amplify only these OTUs and no other OTUs in the source 

sample. To increase the assay specificity a species-specific probe that sit within the amplified 

fragment can be used. 

The sequences for the Haplosporida and Capitella capitata OTUs were used to conduct BLAST 

searches that identified similar sequences from the GenBank database. The 100 most similar 

sequences were downloaded and aligned using Geneious 6.14 (Fig 14).  
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Figure 14. Alignment and manual examination of identified potential primer sites. 

The web services primer-BLAST and Primer3 were used to find potential primer sites for the 

Haplosporida and C. capitata sequences, and potential primers were checked against the alignment 

to make sure they selectively only amplified these OTUs. For C. capitata, the decision was made to 

also design primers so that they would amplify sequences in the alignment that corresponded to a 

cluster of closely related C. capitata specimens collected from the Norwegian coast in a previous 

study. Two different primer pairs were identified for the haplosporidian and three for C. capitata, 

in addition to one specific probe for each. As the initial choice, we decided to test assays using 

primer pairs that by themselves had the required degree of specificity together with EvaGreen dye, 

with a list of alternatives if this approach failed (Table 2). 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

40 

Table 2. A list of assays developed for ddPCR quantification of Haplosporida (left) and Capitella 

capitata (right) and test strategies. 

Haplosporida assays   Capitella capitata assays   

A: Specific SWARM 347 primers A: Specific SWARM 126 primers 

  Name Sequence (5'->3')   Name Sequence (5'->3') 

Forward S347-1-18S-F CGATTTGTACTATGAAACTGCA Forward S126-COI-F GCGGGGATTTCGTCTATTAT 

Reverse S347-1-18S-R CTTCCTTACAGTCGAGATTTTG Reverse S126-COI-R CAGCAGCTAAAACAGGTAGA 

Product length 129 Product length 157 

Probe S347-1-18S-hyb TGATGGCTAACCTGTTACACGG
AT 

B: General Capitella primers with 126-specific SWARM probe 

B: SWARM 347 plus two closets GenBank matches   Name Sequence (5'->3') 

  Name Sequence (5'->3') Forward Cap-1-COI-F ACTTCTTCTATAATTATGGAGCGT 

Forward S347-2-18S-F ATGGCTAACCTGTTACACG Reverse Cap-1-COI-R TAATACCAGCAGCTAAAACAGG 

Reverse S347-2-18S-R GAATCACCAACAAGAATGATG Product length 81 

Product length 81 Probe S126-1-COI- 
hyb 

CCTACTTGTTTGGTCATTATCTATTACTG
CT 

Test strategy: C: General Capitella primer 

1. Test primer pair A   Name Sequence (5'->3') 

2. Test primer pair B Forward Cap-2-COI-F CCTGTTTTAGCTGCTGGTATTA 

3. Test primer pair A with probe Reverse Cap-2-COI-R TAAGTGTTGATAAAGAACAGGATC 

  
  

Product length 105 

  
  

Test strategy:   

  
  

1. Test primer pair B 

  
  

2. Test primer pair C 

  
  

3. Test primer pair B pair with probe 

      4. Test primer pair A 

 

4.2. Samples 

To test the designed 18S haplosporidian and COI C. capitata assays, we chose a selection of 

installations with known contamination for certain stations: Veslefrikk (VFR, 10 stations, 30 grabs), 

Oseberg Sør (OSS, 9 stations, 26 grabs) and Ringhorne (RIN, 7 stations, 17 grabs) in addition to their 

associated regional baseline stations (REG3-13, 14, 15 and 19). Extracts were pooled at grab level, 

for a total of 84 North Sea samples. 

As Capitella capitata is widely known to be a common indicator species for aquaculture 

eutrophication, we decided to also include some unrelated aquaculture samples for the C. capitata 

assays only: two stations from one Norwegian and five stations from two Scottish aquaculture 

localities; three replicates from each station. 

Haplosporida sp. assay 

Haplosporida is an order that includes many parasites of metazoans, but the exact affinity of the 

selected OTU, 18S SWARM 347, is unknown. The OTU is highly correlated to unimpacted sites but 

present in only low quantities in the metabarcoding dataset. Initial testing found that 2 µl template 

did not produce results for either primer pair (S347-1 and S347-2), so 6 µl template was used for 

the following assays, focusing on the first primer pair assay, S347-1. The assay produced a weak, but 
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clear signal for most stations, except impacted OSS and RIN stations (Fig. 15). While the results 

validated the approach, the low general abundance of this OTU makes the signal weaker than ideal. 

Thus, this approach should be repeated with a larger dataset, to identify more abundant indicator 

organisms.  

 

Figure 15. An example of eight samples showing moderate weak and no signal (blue dots) for the 

haplosporidian S347-1 assay. 

Capitella capitata assay 

We started by testing the two identified assays that both targeted the Capitella OTU SWARM 126 

as well as other closely related Capitella sequences in the metabarcoding data and on GenBank 

(assays Cap1 (assay B) and Cap2 (assay C)). Temperature gradient tests were done to find optimal 

annealing temperature, using an initial concentration of 2 µl template. For Cap1, 55.6°C was found 

to be an optimal annealing temperature, for Cap2, 59.3°C. The 2 µl template concentration worked 

well and was retained for subsequent ddPCR amplification runs. 

The 84 North Sea samples were run with three ddPCR run replicates each for a total of 252 ddPCR 

reactions. Both assays worked well and identified stations where Capitella species had been 

identified in the metabarcoding dataset (Fig. 16). 
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Figure 16. An example of eight samples showing strong signal (blue dots) for the Cap1 assay for 

impacted stations. 

The assays were able to detect the presence of Capitella capitata sequence variants at the same 

stations where Capitella sequences were found in the metabarcoding data, with a few discrepancies 

(Fig. 17). These discrepancies in the results can be attributed to the non-quantitative nature of the 

metabarcoding process, especially for station OSS11B1: In this severely contaminated station, many 

sequence reads were recovered for Capitella in the metabarcoding data. However, a likely 

explanation for this result is that there were few other organisms available in the sample, meaning 

that the standard metabarcoding PCR amplification overestimate abundance of the little remaining 

DNA in the sample: a powerful demonstration of the limits of using metabarcoding abundance as a 

direct measure. 

 

Figure 17. A comparison of signal strength for Capitella OTUs in the metabarcoding data and number 

of copies detected through ddPCR for the Cap-1 primer pair. The number of sequence reads in the 

metabarcoding data is given as color coded bar charts, while the number of copies detected in the 

 

     

     

     

 

    

    

    

    

 
 
 
  

 
 
 
  

 
 
 
  

 
 

 
 
 
  

 
 

 
 
 
  

 
 

 
 
 
  

 
 

 
 
 
  

 
 

 
 
 
  

 
 

 
 
 
  

 
 

 
  

 

 
  

 

 
  

  

 
  

  

 
 
 
  

 
 
 
  

 
 
 
  

  
 
  

 
 
 
  

 
 
 
  

 
 
 
  

 
 
 
 
  

 
 
 
 
  

 
 
 
 
  

       

 
  
  

  
  

  
  

  
  

  
 

            

     

          

         

         

          

         

        

         

          

         



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

43 

ddPCR assays is given as a solid line. In addition to SWARM126, the primer pair also detects other 

Capitella in the dataset, given with SWARM number on the right. 

Capitella assay ddPCR results are in prep for submission to a scientific journal and will include a 

comparison to morphological data from the same offshore stations as for the metabarcoding and 

ddPCR results above, as well as inclusion of a smaller number of aquaculture samples to broaden 

the scope and applicability of the assay.  

4.3. Main quantitative assay conclusions 

Choosing which organisms were suitable as impact indicators required correlation of abundance for 

individual OTUs in the metabarcoding datasets with abiotic environmental parameters. For 

MetaMon, this was done as part of the approach to define the 18S and COI de novo indices, using 

TITAN2 and quantile regression splines. Using this method, a handful of potential bioindicator 

species were identified. However, this correlation was often noisy, and with relatively few 

datapoints (i.e., stations present) per OTU. While such noise is less important for eco group 

assignments in creating a de novo index, since noise in individual scores gets averaged over a larger 

number of OTUs, it provided a challenge when trying to identify optimal OTUs for individual 

indicator assays. For this reason, we recommend that the process is repeated for a larger dataset to 

more firmly establish OTU and impact correlation and include an abundance threshold as well. This 

last recommendation is since the haplosporidian, while correlating well with stations with no 

impact, was present also here in only minute quantities, making detection (i.e., rule out false 

negative results) more difficult than for an assay based on a more abundant organism. 
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5. WP3 – Metabarcoding for macrofaunal identification 

5.1. Taxonomic database gap analysis 

In order to discover the taxonomical identity of sequence OTUs from metabarcoding data, such 

OTUs can be compared to reference sequences coupled with species names found in one of a 

handful of online databases, including GenBank, the Barcode of Life Database (BOLD) or SILVA. 

GenBank contains multiple gene markers, the main part of BOLD comprises COI sequences from 

metazoans, and SILVA either the prokaryote (16S) or eukaryote (18S) ribosomal small subunit gene. 

Such comparison is typically referred to as taxonomical assignment. However, databases are far 

from complete: Depending on the similarity to closest database matches, metabarcoding OTUs can 

either only be identified all the way to species level, or just a higher-level group (i.e., more inclusive 

Linnean rank) such as family or even phylum. This partial lack of data (that gets smaller as more 

sequences are added to the databases) can be referred to as the database gap. 

While species level identification is not feasible for microbial organisms, databases are more 

complete for multicellular animals due to the taxonomic and barcoding efforts over the last decades, 

especially for COI. Similarly, it can be expected that databases are more complete in areas where 

the marine fauna is better known, such as in the Northern Atlantic. Thus, an advantage of using 

metazoan data instead of microorganisms for monitoring is that more sequences can then be 

assigned to known animals living in the sediment, which allows a direct comparison to current 

morphological monitoring data. It also enables the use of existing indices, such as AMBI, ISI and NSI, 

on the parts of the metabarcoding data that can be identified to species or sometimes genus level. 

For this reason, we conducted a study to estimate the percentage number of animals that could be 

recovered to lower taxonomical level for the COI and 18S marker genes, using GenBank for COI and 

18S, BOLD for COI only, and SILVA 18S v1.28 for 18S data only. This was done through preparing a 

list of 1902 species (or in some cases higher level groups) reported from region IV through 

morphological identification, and separately for the 240 most common species reported from the 

same area. The databases were then queried for sequences belonging to these taxa, and results 

summarized in Table 3.  

Worldwide, species level database coverage is poor (Kvist 2013). The North Sea stands out in a 

positive way: Roughly half of species reported in monitoring from this area were represented in at 

least one online database with COI data, with some variation between the GenBank and BOLD 

databases. The 18S coverage was lower, with between 36-21% coverage, and this result does not 

consider how large part of the whole 18S gene was present in the database. Still, the results show 

that additional resources need to be used to fill in existing gaps in database coverage, even for this 

comparatively well-studied area. For an objective that includes use of metazoan taxonomic data in 

metabarcoding monitoring, the most cost-efficient way of increasing database coverage is through 

targeted barcoding of retrieved organisms from monitoring cruises. Results from this work were 

published in Hestetun et al. (2020). 
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Table 3. Summary statistics for all species and according to phylum, showing the percentages that 

were present in the databases queried, for the COI and 18S marker genes respectively (from Hestetun 

et al. 2020). 

  All groups Annelida Arthropoda Mollusca Echinodermata Others 

  No % No % No % No % No % No % 

Total dataset             

Number of taxa 1802  620  483  451  88  157  
COI             

GenBank COI hits 1018 56.5% 303 48.9% 283 58.6% 247 54.8% 70 79.5% 115 73.2% 

18S             

GenBank 18S hits 820 45.5% 299 48.2% 183 37.9% 178 39.5% 48 54.5% 112 71.3% 

SILVA 18S hits 526 29.2% 240 38.7% 69 14.3% 115 25.5% 27 30.7% 33 21.0% 

                          

Species level             

Number at species level 1474  536  381  399  74  84  
COI             

GenBank COI hits 743 50.4% 241 45.0% 190 49.9% 204 51.1% 57 77.0% 51 60.7% 

BOLD public COI hits 625 42.4% 180 33.6% 166 43.6% 200 50.1% 36 48.6% 43 51.2% 

BOLD record hits 1034 70.1% 378 70.5% 279 73.2% 256 64.2% 65 87.8% 56 66.7% 

COI GenBank only 165 11.2% 76 14.2% 34 8.9% 20 5.0% 22 29.7% 13 15.5% 

COI BOLD public only 47 3.2% 15 2.8% 10 2.6% 16 4.0% 1 1.4% 5 6.0% 

18S             

GenBank 18S hits 537 36.4% 233 43.5% 95 24.9% 132 33.1% 35 47.3% 42 50.0% 

SILVA 18S hits 400 27.1% 207 38.6% 48 12.6% 96 24.1% 21 28.4% 28 33.3% 

                          

Genus level             

Number of genera 947  292  252  254  54  95  
COI             

GenBank COI hits 656 69.3% 222 76.0% 145 57.5% 168 66.1% 38 70.4% 83 87.4% 
BOLD record hits 848 89.5% 265 90.8% 222 88.1% 220 86.6% 52 96.3% 89 93.7% 

18S             

GenBank 18S hits 736 77.7% 216 74.0% 195 77.4% 191 75.2% 51 94.4% 83 87.4% 

SILVA 18S hits 532 56.2% 206 70.5% 88 34.9% 138 54.3% 29 53.7% 71 74.7% 

                          

 

5.2. Targeted barcoding 

As part of work package 3, macrofaunal animals from a subset of stations from the region III deep 

area (“Troll” area) were sieved in a regular fashion using 1 mm sieves as part of the regular 

monitoring cruise in 2019. Rather than the standard formalin fixation, these were fixed in 96% 

ethanol for further molecular analysis. 

From these samples, macrofaunal species were retrieved from remaining sediment and identified 

to lowest possible taxonomic level by MERG in collaboration with the University of Bergen Natural 

History Museum. Species lacking barcodes or with only partial sequence coverage in the databases, 

confirmed using a similar method as in the previous section 5.1, were selected as candidates for a 

targeted barcode program, to improve the taxonomical performance of future metabarcoding 

studies from the Norwegian Shelf. 
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For the targeted barcoding, 96 specimens, representing 46 separate polychaete, mollusk and 

crustacean species, were sequenced separately using Sanger sequencing. The gene markers COI, 

18S and 28S were selected for sequencing using the primers sets in Table 4. Note that for COI, 

several primer sets were tested, including degenerated universal Folmer primers (jgLCO and jgHCO) 

and group-specific primers for the polychaetes and mollusks. 

Table 4. Primers used for the targeted barcoding study, comprising the markers 28S, 18S and COI. 

Name Marker   Sequence Source 

28S5F 28S Forward 5'-CAAGTACCGTGAGGGAAAGTTG-3' (Passamaneck et al. 2004) 

PO28R4 28S Reverse 5'-GTTCACCATCTTGGGGTCCCAAC-3' (Struck et al. 2006) 

HCO2198mollusk COI Reverse 5'-TATACTTCTGGATGACCAAAAAATCA-3' (Jaksch et al. 2016) 

jgLCO1490 COI Forward 5'-TITCIACIAAYCAYAARGAYATTGG-3' (Geller et al. 2013) 

jgHCO2198 COI Reverse 5'-TAIACYTCIGGRTGICCRAARAAYCA-3' (Geller et al. 2013) 

PolyLCO COI Forward 5'-GAYTATWTTCAACAAATCATAAAGATATTGG-3' (Carr et al. 2011) 

PolyHCO COI Reverse 5'-TAMACTTCWGGGTGACCAAARAATCA-3' (Carr et al. 2011) 

F-40 18S Forward 5'-AAGATTAAGCCATGCATG-3' (Hadziavdic et al. 2014) 

R-1196 18S Reverse 5'-TGTTGAGTCAAATTAAGC-3' (Hadziavdic et al. 2014) 

 

Table 5. Species where barcode sequences for the 28S, COI and 18S markers were successfully 

sequenced for at least one marker gene. Note that detailed analysis of sequence quality is not 

finished. 

Species 18S COI 28S Species 18S COI 28S 

Antalis occidentalis       Aponuphis bilineata       

Dacrydium ockelmanni     Artacama proboscoidea      

Dacrydium vitreum      Dasybranchus caducus      

Leptaxinus minutus       Lanice conchylega      

Pulsellum lofotense      Maldane koreni      

Limopsis cristata       Marphysa belli      

Similipecten similis      Octobranchus floriceps       

Cuspidaria lamellosa      Octobranchus sikorskii       

Calathura norvegica     Paradiopatra fjordica      

Haploops carinata      Placostegus tridentatus     
Haploops robusta      Pseudopolydora pulchra      

Ilyarachna longicornis      Myriochele heeri     
Ilyarachna longicornis      Macandrevia cranium     

Laetmatophilus armatus      Ilyarachna longicornis       

Leucon nasicoides      Ischnomesus bispinosus      

Lysianassa costae       Abra longicallus      

Philomedes globosus      Similipecten greenlandicus      

Vargula norvegica       Kelliella miliaris      

Nototropis vedlomensis      Unciola planipes      
Amage auricula       Leptocheirus hirsutimanus       
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Preliminary results include 18S sequences for 34 of the 46 original species, 28S sequences for 28 

species, and COI sequences for 19 species (Table 5). A final sequencing attempt currently for COI 

not yet analyzed may raise the number of COI sequences, and sequences will be uploaded to 

GenBank when these results are ready. 

The success rate for the three markers is around average for a barcoding project of this type. COI in 

particular is tricky for a wide range of organisms due to its nature as a protein-coding gene, which 

is why several primer pairs were attempted for this marker in an iterative approach. 

5.3. Community bulk sample analysis 

Several studies (e.g. Aylagas et al. 2016b; Creer et al. 2010)  have shown the promise of using 

metabarcoding extracts from bulk homogenate samples (i.e., collecting all animals in the sample, 

and blending them together into a paste) as an alternative metabarcoding approach to sediment 

samples for metazoans. This allows sampling a much larger volume from e.g., a grab or corer, either 

through sieving or elutriation, thus increasing the representativeness of the sample. 

Table 6. The number of specimens and species identified from morphological taxonomy from the 

TRB, DUV and HUL installations. These specimens were homogenized into a paste representing each 

installation for subsequent DNA extraction and metabarcoding sequencing. 

No. species (morphology)   No. specimens 

Total species 152  Total specimens 737 

TRB species 78  TRB specimens 271 

DUV species 61  DUV specimens 210 

HUL species 63  HUL specimens 256 
 

For the community bulk sample analysis, our aim was to compare the species composition of the 

sieved grab samples using morphology, COI and 18S metabarcoding data in terms of taxon 

composition and abundance, to see to which degree metabarcoding data reflected the underlying 

species composition as revealed through morphological identification.  

Sieved >1 mm macrofauna from the Troll B, (TRB) Duva (DUV) and Huldra (HUL) installations was 

identified using morphological taxonomy to lowest possible level as part of the targeted barcoding 

approach in section 5.2 above. These animals were pooled to make homogenates with a known 

morphological species composition (Table 6): The three bulk samples were homogenized for 2 x 30 s 

using a Qiagen TissueRuptor. Five extraction replicate wet weight subsamples were removed and 

dried, with dry weight ranging from 6-8 mg (Troll B), 10-12 mg (Duva), and 3-5 mg (Huldra). ATL 

buffer was added to samples, and they were lysed with proteinase K overnight. Subsequent DNA 

extraction was done using the Qiagen Blood and Tissue Kit with the QIAsymphony extraction robot. 

The extraction replicates from each homogenate sample were amplified and the 18S V1-V2 and COI 

marker genes sequenced using the same protocol as in WP1. The relative abundance of the major 

taxon groups is shown in Figure 18. In the morphological dataset, most specimens were polychaetes 

at all three areas, with almost all remaining abundance shared between mollusks and crustaceans. 

This phylum level abundance is mostly reflected in the metabarcoding data: Polychaetes retained 

the majority of reads in all cases except the Duva COI data. The relative abundance of lower taxa is 
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not representative of morphological abundance, however. COI data was typically dominated by 

individual taxa with low to moderate abundance in the morphological data, such as Paradiopatra 

for Troll B, an unidentified annelid at Huldra, and the isopod Natatolana borealis (consisting of only 

two morphological specimens) at Duva. But discounting these outliers, other abundances were 

more equally distributed. Relative abundances in the 18S data were less, but still significantly, 

dominated by certain taxa, most clearly visible for Huldra, where an unknown polychaeta 

represented 61% of all reads.  

Apart from the N. borealis outlier, crustacean abundance was severely underrepresented and had 

low resolution in both the COI and 18S data. Most sequences belonged to either unidentified 

arthropods or amphipods. Finally, mollusks were comparably well represented in the COI data, while 

mollusk 18S resolution was low, however. A majority of 18S mollusk reads were assigned to 

unidentified Veneroida, a superseded name for the current bivalve order Venerida. While some of 

these reads could be Kelliella miliaris, it is likely that these reads also include a range of related taxa 

such as Cardiida and thyasirids. 

While the major findings from this work are ready, the bioinformatic pipeline needs to be revised in 

light of recent research on optimal bioinformatic processing of metazoans (Antich et al. 2021; 

Brandt et al. 2021). Thus recommendations, together with final results from the targeted barcoding, 

are planned for publication using the pipeline currently in development for the follow-up project 

MetaBridge. 
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Figure 18. Preliminary Krona charts of the relative abundance of major taxa for Troll B, Huldra and 

Duva in the morphological, COI and 18S dataset respectively. Note that the analysis is scheduled to 

be redone with an updated bioinformatic pipeline. 
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6. Project findings and future directions 

MetaMon was designed to address knowledge gaps towards using eDNA for marine benthic 

monitoring, including methodology, metabarcoding performance relative to morphological 

taxonomy, and the identification and analyses of macrofauna barcode data from online databases. 

As such, the project aimed to identify best practices for the use of eDNA in marine benthic 

monitoring, using both project results in themselves, but also drawing on evidence from the 

increased amount of other recent eDNA studies. 

6.1. Methodology 

The choices made for sampling design and processing of samples influence the final data. Thus, it is 

important to attest the influence of methodological factors to develop a protocol. This is especially 

true for monitoring purposes, as major changes to the protocol could make it difficult to compare 

time series of data from monitoring stations. Prior to MetaMon, Lanzén et al. (2017) and Lekang et 

al. (2015) already laid some of the groundwork towards an optimized protocol. MetaMon aimed to 

close additional knowledge gaps in the methodology that had not been previously investigated. 

MetaMon aimed to investigate the optimal trade-off between cost-effectiveness and capturing as 

much of the present biodiversity as possible. Specifically, uneven distribution of organisms in the 

source sediment is a potential concern due to the comparatively low volumes of sediment analyzed 

in metabarcoding studies. While complete sampling of all organisms that are present at a sampling 

station is unfeasible (a reality for any biological sampling), sampling must be comprehensive enough 

to capture enough of the organisms present to give a consistent and representative view of the 

environmental conditions at the site. 

Sampling comprehensiveness can be increased both by making additional DNA extracts per 

sediment sample, or by increasing the amount of source sediment for the extraction. Lanzén et al. 

(2017) showed that increasing the number of DNA replicates per sediment sample increased the 

number of captured organisms in the data. Smaller volume sediment extracts can also be 

incorporated into a semi-automatic processing protocol. Thus, we hypothesized that the most cost-

effective approach was to increase the number of DNA replicates, rather than increasing sediment 

volume. As part of the experiments done to test this hypothesis, we also compared different 

intensity homogenization of samples during extraction, a previously unexplored aspect. 

Another important consideration is the choice of molecular marker. Here, we chose to use two 

markers targeting the small subunit ribosomal RNA (SSU rRNA) gene and the mitochondrial 

cytochrome c oxidase subunit 1 (COI). The choice of markers was made after an extensive literature 

survey, in order to identify commonly used markers that would provide an insight into both a broad 

range of eukaryote organisms, including single-celled groups (18S), and animals, particularly 

macrofauna, specifically (COI). Since we expected that the distribution of the larger, multicellular, 

organisms would be more uneven than single-celled organisms, these two markers would also 

provide a contrasting view towards the amount of sampling needed for sufficient organism 

coverage. 

The MetaMon sampling design was chosen in order to maximize the number of organisms in the 

source sediment from each station, even with a relatively modest amount of effort: In order to 
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increase the number of organisms present in the sediment samples, sediment samples from each 

grab were collected from different portions of the grab surface, pooled together and stirred before 

DNA extraction. Sediment was preserved by freezing at -20°C onboard the ship. Three grab 

replicates were made per station. 

MetaMon findings showed that a DNA extract replicate strategy using semi-automated extraction, 

combined with a moderate intensity homogenizer program and pooling extract DNA prior to PCR 

amplification, seemed to provide an optimal strategy to minimize time and cost of these processing 

steps (Hestetun et al. 2021b). Nine extract replicates (three from each grab pooled sediment 

sample) were made from each station, which were again pooled into three PCR amplification 

reactions for each molecular marker. Additional tests were made examining the variability of the 

organism composition at different scales including from different areas of the same grab sample 

and between different grab samples from the same station (Hestetun et al. 2021a). 

The MetaMon methodological results demonstrated the ability of the protocol to capture most 

organisms using a feasible number of DNA extract replicates using 18S and thus validated the 

protocol that was then used for the main MetaMon metabarcoding study. The results also showed 

that metazoans had a more uneven distribution of DNA in the sediment, which increased variability 

between samples for COI and the metazoan sequence fraction in the 18S data. While COI has been 

used in several metabarcoding studies using a similar approach as in MetaMon, e.g., extraction of 

DNA directly from the sediment, it is more commonly used on concentrated bulk tissue from sieved 

sediment fractions, a more time and work intensive approach. 

• The methodological experiments provided additional data used to decide and evaluate the 

protocol developed for MetaMon. 

• The currently developed protocol produces consistent results for single-celled organisms 

and provides a good trade-off between processing cost and time and the quality of the 

resultant data. 

• For larger organisms, a DNA replicate strategy still provides the same or better increase in 

consistency compared to increasing the amount of sediment, and limits the ability of single, 

large animals to totally dominate read abundance numbers in the resultant data. 

•  till, there is obviously more variability (“noise”) in metazoan organisms compared to single-

celled organisms due to uneven distribution, which is difficult to mitigate using only 

sediment extracted DNA. 

• The increased noise in the COI data does not preclude the use of this marker using a direct 

sediment extraction protocol such as the MetaMon protocol, as the COI data still seems to 

be able to predict environmental impact (see next section). 

• The consistency of COI results increases when using indices such as NSI or AMBI, since these 

indices use mostly common organisms in the data, which are also more consistently 

detected in the COI data (as opposed to rare species). 

• The possibility of developing an additional protocol for metazoans, that could be for 

instance considered as an alternative for a subset of monitoring stations, should be 

explored. 
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6.2. Comparative performance of metabarcoding and morphology 

Using the protocol that was established as part of the MetaMon methodological experiments, we 

processed and sequenced 18S and COI data using sediment samples from 97 stations from regions 

II, III and IX for the main MetaMon metabarcoding study. The stations were chosen to include 

installations where environmental impact had been detected in previous monitoring surveys. The 

aim of this study was to compare the ability of the metabarcoding data to detect environmental 

impact with the existing methodology based on morphological taxonomy. As the stations in the 

metabarcoding study are also part of the regular monitoring surveys, the study was designed to 

allow direct comparison of metabarcoding data with both the morphological data, and abiotic 

parameters of environmental impact including hydrocarbon and metal concentrations. 

The study design included A) creating an aggregated environmental pressure index (PI) comprising 

selected hydrocarbon and metal parameters, B) testing this PI through correlation to the currently 

used biotic NSI index, C) using the correlation between PI values and individual OTUs in the 

metabarcoding datasets to identify sensitive and tolerant OTUs, D) classifying the OTUs according 

to eco group to produce a new (de novo) biotic index for each of the two markers (18S and COI) and 

testing these indices, and E) examine correlations between individual OTUs using a co-occurrence 

network approach. 

The main findings from this study were that the newly developed 18S and COI indices could predict 

environmental impact at roughly the same level as the existing NSI morphological taxonomy index, 

with some outliers, however. An alternative supervised machine learning approach did not yield 

significant results. The co-occurrence approach showed that the connections between individual 

OTUs were different in impacted vs non-impacted sites but proved difficult to interpret clearly 

without further context. 

The de novo index approach is promising, but as the quality of any newly developed index is 

dependent on the source dataset, we recommend to further refine this approach using a larger 

dataset and additional markers, especially with regards to stations with medium severity impact as 

those were underrepresented in the MetaMon dataset. 

6.3. Quantitative indicator species assays 

The TITAN2/quantile regression splines strategy that examined correlation between individual OTUs 

and environmental impact was also used to identify potential species for quantitative indicator 

assays. However, we found that the MetaMon dataset was not large enough to provide unequivocal 

such correlation and decided to reduce the scope to two (from four) OTUs, to do a proof-of-concept 

study. One COI OTU, identified to be Capitella capitata, had clear correlation to high impact. One 

18S OTU, an unidentified haplosporidian, had a clear negative correlation to high impact. 

Quantitative ddPCR assay alternatives were developed and tested for both. The results of the 

Capitella assay show clear promise and are currently being prepared for publication, while we found 

that the general low abundance of the haplosporidian makes this OTU less consistent. As with the 

metabarcoding study, the results clearly showed the viability of the approach used, but we would 

recommend increasing the amount of available data for more robust OTU impact correlation to 

identify indicator species. 
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6.4. Assessment of the archive and taxonomic gaps 

Work package 3 (WP3) comprised three separate main tasks: A) an estimation of the percentage of 

reported region IV macrofaunal species present as COI or 18S sequences in GenBank and/or 

BOLD/SILVA, B) a targeted barcoding project involving specimens from region II and IX, and C) an 

evaluation of the use of COI for bulk samples with a known species composition from region III. We 

found that around 50% of species level taxa were represented with at least one COI barcode in one 

of the databases. For any part of 18S, corresponding number was 36.4%. 

WP3 also included the targeted barcoding of specimens preserved on ethanol from the 2019 region 

III and IX monitoring cruises. Species from these samples were individually identified in collaboration 

with the Bergen university museum, and the resultant species lists were checked against the BOLD, 

SILVA and GenBank databases. Then, 96 specimens, representing 46 species lacking sequences, 

were chosen for individual Sanger sequencing so that they could be added for future metabarcoding 

studies. Using this targeted barcoding approach, we recovered 18S sequences for 34 of the 46 

original species, 28S sequences for 28 species, and COI sequences for 19 species. 

Finally, to get a better understanding of the bias introduced by the COI and 18S V1-V2 markers used 

in MetaMon, we performed a community experiment, extracted from a homogenized bulk tissue 

sample with a known morphological species composition. Preliminary comparison of the species 

composition of the morphological, COI and 18S datasets imply PCR biases as expected, but also a 

higher degree of affinity between bulk community samples and morphology compared to 

morphological samples and direct sediment metabarcoding samples. This is not surprising given that 

the community samples are sieved and hence, does not contain most of the biota that pass through 

a one-millimeter screen. 

6.5. Visibility and outreach 

MetaMon findings were communicated at a variety of venues during the project, including the 

International Workshops on Environmental Genomics (IWEG) annual meetings 2019-2021, the 

International Barcode of Life Conference (iBOL 2019), the World Conference of Marine Biodiversity 

(2020), the 1st DNAqua-Net International Conference, and at several smaller symposia and 

meetings with stakeholders and policymakers. 

6.6. Conclusions and future recommendations 

Studies of eDNA have massively increased in recent years. MetaMon represents a significant step 

forward to mature metabarcoding specifically, and eDNA generally, in Norwegian Shelf offshore 

monitoring. For the methodological work in MetaMon, we developed standardized sediment 

sampling and processing guidelines based on previous MERG project findings, scientific literature 

and MetaMon experiments for empirical validation of extraction and spatial replication choices. 

These guidelines were made to maximize the amount of the organism community recovered at a 

sampling location through sediment sampling design and processing. In addition, the protocol 

enables the use of an automated extraction robot during extraction. While MetaMon library prep 

was done in house, we would expect these steps to be outsourced to a core facility for future routine 

monitoring, further decreasing time and cost of lab processing. 
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We found that this design was able to provide consistent results for 18S total eukaryote 

metabarcoding data, but that the COI marker data were less consistent, due to more uneven 

distribution of macrofauna relative to microorganisms. Still, the increased noise in the COI dataset 

did not preclude robust analysis of this marker, in addition to 18S, for environmental impact analysis 

of the WP1 dataset. 

• We would recommend that COI is retained in future metabarcoding monitoring, as it 

provides a connection to the existing macrofaunal data and can be related to known 

organisms at species level. We would, however, also recommend that additional testing be 

done for this marker on bulk samples, alternatively by pre-stirring the whole recovered 

sediment sample prior to extraction, to compare the resultant data consistency. For high 

consistency COI data, a more elaborate separate sieved bulk sample protocol could be 

considered as an alternative to sediment extraction and employed at a selected number of 

stations in future monitoring. 

• As the total eukaryote dataset provided more consistent results with lower sediment 

volume, microorganisms are well placed for a central role in metabarcoding-based 

monitoring. As each marker has its own taxonomic bias, we would suggest that additional 

18S markers, and prokaryote 16S, should be sequenced and their relative performance 

evaluated, in order to find an optimal selection of markers. 

• In order to further validate the representativeness of the metabarcoding data from each 

station, we recommend revisiting MetaMon sampling stations in the future. Time series and 

comparing the changes in metabarcoding data with similar variation in the morphological 

data, would be an important validation of metabarcoding as a monitoring tool. 

• Developing new biotic indices is a very promising approach to determine environmental 

impact from metabarcoding data and would need to be developed for each marker chosen 

in monitoring. While the MetaMon results were encouraging, more data is needed to more 

securely assign sensitivity values to taxa included in such indices. 

• Similarly, while we have demonstrated two assays as a proof of concept in MetaMon, more 

robust sensitivity correlation is needed to accurately identify final indicator species for 

quantitative eDNA-methods. 

• Supervised machine learning is a promising direction for monitoring, but the MetaMon data 

proved insufficient to significantly predict environmental impact using this approach. 

• Input from policymakers is important in order to guide future directions in a manner 

compatible with regulatory requirements. 

6.7. MetaBridge 

The research questions examined by MetaMon have led to promising findings, but in most cases 

require a more substantial body of evidence in terms of available data, covering a range of 

environmental conditions and revisiting previous sites, to reach a maturity level that would allow 

regulators to consider routine implementation of eDNA in marine sediment monitoring. As the main 

findings from MetaMon as described above became clear, a proposal to a follow-up project was 

created with Equinor, Total and Lundin as industry partners and sent to the Norwegian Research 

Council in August 2020. This proposal, MetaBridge, was approved for funding in December 2020. 
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MetaBridge (2021-2024) builds directly on MetaMon findings by expanding the amount of data 

available to improve the foundation for developing biotic indices, individual species quantitative 

assays and a supervised machine learning algorithm. As in MetaMon, samples are collected as part 

of regular monitoring surveys, enabling comparison to currently used parameters. The project 

revisited MetaMon 2018 stations in 2021, and will revisit MetaMon 2019 stations in 2022, in order 

to validate data consistency in time. As additional deliverables, MetaBridge will also expand the 

number of molecular markers for both MetaMon and new MetaBridge samples, work to further 

refine macrofaunal methodology, work towards storage and curation solutions for physical samples 

and metabarcoding data and drive a closer dialogue with stakeholders and policymakers as the 

eDNA field matures. 
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