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Abstract. We employ an approach based on the ensem-
ble Kalman filter coupled with stochastic moment equa-
tions (MEs-EnKF) of groundwater flow to explore the de-
pendence of conductivity estimates on the type of available
information about hydraulic heads in a three-dimensional
randomly heterogeneous field where convergent flow driven
by a pumping well takes place. To this end, we consider
three types of observation devices corresponding to (i) multi-
node monitoring wells equipped with packers (Type A) and
(ii) partially (Type B) and (iii) fully (Type C) screened wells.
We ground our analysis on a variety of synthetic test cases
associated with various configurations of these observation
wells. Moment equations are approximated at second order
(in terms of the standard deviation of the natural logarithm,
Y , of conductivity) and are solved by an efficient transient
numerical scheme proposed in this study. The use of an infla-
tion factor imposed to the observation error covariance ma-
trix is also analyzed to assess the extent at which this can
strengthen the ability of the MEs-EnKF to yield appropri-
ate conductivity estimates in the presence of a simplified
modeling strategy where flux exchanges between monitor-
ing wells and aquifer are neglected. Our results show that
(i) the configuration associated with Type A monitoring wells
leads to conductivity estimates with the (overall) best qual-
ity, (ii) conductivity estimates anchored on information from
Type B and C wells are of similar quality, (iii) inflation of the
measurement-error covariance matrix can improve conduc-
tivity estimates when a simplified flow model is adopted, and

(iv) when compared with the standard Monte Carlo-based
EnKF method, the MEs-EnKF can efficiently and accurately
estimate conductivity and head fields.

1 Introduction

Parameter estimation for groundwater system modeling is a
key and important challenge due to our incomplete knowl-
edge of the spatial distributions of hydrogeological attributes,
such as hydraulic conductivity. The ensemble Kalman filter
(EnKF; Evensen, 1994) is a powerful approach to parame-
ter estimation in subsurface flow (Hendricks Franssen and
Kinzelbach, 2008; Zheng et al., 2019) and solute transport
(Liu et al., 2008; Li et al., 2012; Chen et al., 2018; Xu and
Gomez-Hernandez, 2018) scenarios. Estimated system pa-
rameters can include conductivity (Botto et al., 2018), per-
meability (Zovi et al., 2017), porosity (Li et al., 2012), spe-
cific storage (Hendricks Franssen et al., 2011), dispersivity
(Liu et al., 2008), riverbed conductivity (Kurtz et al., 2014),
or unsaturated flow characteristic quantities (Zha et al., 2019;
Li et al., 2020).

The EnKF can assimilate data sequentially through a real-
time updating process. Alternatively, all collected measure-
ments can be assimilated simultaneously, for example, within
a typical model calibration framework. With reference to
the latter aspect, the EnKF becomes an ensemble smoother
(ES, Van Leeuwen and Evensen, 1996), as it is associated
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with a smoothing probability density function (PDF) rather
than a filtering PDF (Jazwinski, 1967). With reference to the
ES, observations in the past and current stages are assimi-
lated only once, thus yielding increased efficiency with re-
spect to the EnKF (Skjervheim et al., 2011). Iterative forms
of the EnKF and ES, usually denoted by IEnKF (Gu and
Oliver, 2007; Sakov et al., 2012) and IES (Chen and Oliver,
2013; Emerick and Reynolds, 2013; Luo et al., 2015; Chang
et al., 2017; Li et al., 2018), have been developed to im-
prove assimilation performance in scenarios characterized by
strongly nonlinear behaviors. A variety of studies investigate
challenges linked to such (ensemble) data assimilation algo-
rithms, including, e.g., the possibility of coping with non-
Gaussian model parameter distributions (Zhou et al., 2011;
Li et al., 2018), physical unphysical results stemming from
the estimation workflow (Wen and Chen, 2006; Song et al.,
2014), or spurious correlations (Panzeri et al., 2013; Bauser
et al., 2018; Luo et al., 2019; Soares et al., 2019). All of
these works contribute to improve the robustness of these al-
gorithms for parameter estimation in complex environmental
systems.

Recent studies include the work of Xia et al. (2018), who
tackle conductivity estimation in a two-dimensional variable-
density flow setting using a localized IEnKF to balance cen-
tral processing unit (CPU) time and estimation accuracy.
Bauser et al. (2018) develop an adaptive covariance inflation
method for the EnKF to reduce the negative effect of spuri-
ous correlations and illustrate an application of the method
in a soil hydrology field context. Mo et al. (2019) use a deep-
learning-based model as a surrogate of a solute transport
model to reduce the CPU time associated with ensemble-
based data assimilation through an iterative local update en-
semble smoother in a contaminant identification problem
considering a synthetic two-dimensional heterogeneous con-
ductivity field. Li et al. (2020) compare benefits and draw-
backs of embedding machine-learning-based (artificial neu-
ral network, ANN) and physics-based models into an IES
for a set of synthetic unsaturated flow scenarios and find that
(a) the performance of an IES relying on the Richards’ equa-
tion is significantly impacted by soil heterogeneity, initial,
and boundary conditions, and (b) an IES based on either
ANN or Richards’ equation can be notably affected by the
quality of the measurements.

In this broad framework, it is noted that the accuracy
of parameter estimation for a given environmental system
is jointly determined by the ability of the mathematical
model to describe the system of interest (Sakov and Bocquet,
2018; Alfonzo and Oliver, 2020; Luo, 2019; Evensen, 2019),
the ability of the assimilation algorithm used (Emerick and
Reynolds, 2013; Bocquet and Sakov, 2014), as well as by
the quantity and quality of available observations (Zha et al.,
2019; Xia et al., 2018, and references therein).

With reference to a groundwater system, data that are com-
monly collected in a borehole and then employed for param-
eter estimation include head (water level or pressure), solute

concentration, and/or in some cases fluxes. A well screen
opened at multiple depths can provide information associ-
ated with preferential pathways of flow and/or solute trans-
port. Hydraulic heads observed in such a setting can be con-
sidered to constitute an integrated type of information and
to be representative of an average system state (Elci et al.,
2001, 2003; Konikow et al., 2009; Zhang et al., 2019). Elci et
al. (2001, 2003) conclude that the use of long-screen wells to
collect measurements should be approached with caution, as
these can yield misleading and ambiguous information con-
cerning, e.g., hydraulic head, solute concentration, location
of contaminant source, and plume geometry. These types of
monitoring wells can be found in a variety of field settings
where head and/or solute concentration data are collected
(see, e.g., Elci et al. (2001, 2003), Post et al. (2007), Konikow
et al. (2009), Zhang et al. (2019), and references therein). As
an alternative, somehow localized information could be pro-
vided through the use of packers. Installing the latter can be
costly and in some cases impractical.

Here, we aim to explore the effect that assimilating hy-
draulic head information collected over time within wells
equipped with screens of differing lengths can have on our
ability to characterize the spatial distribution of conductivity
of a three-dimensional fully saturated heterogeneous aquifer.
We consider multi-node wells (Konikow et al., 2009) to rep-
resent observation boreholes that can be (a) equipped with
packers to mimic pointlike measurements, (b) fully screened,
or (c) partially penetrating. To this end, we focus on a conver-
gent flow scenario driven by a partially penetrating pumping
well operating in a three-dimensional heterogeneous conduc-
tivity field. Hydraulic head information is collected at a net-
work of multi-node wells to represent data associated with
screened intervals of differing lengths along the vertical. We
consider synthetic scenarios to provide transparent compar-
ative analyses of the extent at which the quality of the esti-
mated conductivity fields is influenced by the type of multi-
node wells considered.

Data assimilation is performed by relying on an EnKF
coupled with stochastic moment equations (MEs) of transient
groundwater flow (e.g., Tartakovsky and Neuman, 1998a, b;
Zhang, 2002; Ye et al., 2004). The latter are approximated at
second order (in terms of the standard deviation of the natu-
ral logarithm of hydraulic conductivity) and are solved by an
efficient numerical scheme proposed in this study.

While we refer to Zhang (2002) and Winter et al. (2003)
for reviews of MEs in heterogeneous conductivity fields, we
recall that MEs of groundwater flow have been previously
incorporated into geostatistical inverse modeling approaches
(e.g., Hernandez et al., 2003) or stochastic pumping test in-
terpretation (Neuman et al., 2004, 2007) and have been con-
sidered in field settings (Riva et al., 2009; Bianchi Janetti
et al., 2010; Panzeri et al., 2015). More recent develop-
ments have allowed embedding stochastic MEs of steady-
state groundwater flow in model reduction strategies (Xia et
al., 2020). MEs of transient groundwater flow have also been
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framed in the context of data assimilation or parameter es-
timation approaches based on the EnKF approach (Li and
Tchelepi, 2006; Panzeri et al., 2013, 2014).

Panzeri et al. (2013, 2014, 2015) present an approach
for data assimilation (hereafter termed the MEs-EnKF) that
relies on embedding MEs of groundwater flow within an
EnKF framework. They (a) demonstrate that the method does
not suffer from spurious correlation, thus avoiding resort-
ing to any localization or inflation techniques; (b) document
the computational feasibility and accuracy of the approach
in two-dimensional synthetic log-conductivity domains; and
then (c) explore a first field application to estimate log-
transmissivity through assimilation of drawdown data col-
lected during a series of cross-hole pumping tests.

An aspect that still somehow limits the advantages of the
MEs-EnKF is related to the formulation of MEs in terms of
a Green’s function approach (see also Ye et al., 2004). One is
then required to solve the equation satisfied by a (zero-order
mean) Green’s function for each node of the numerical grid
employed to discretize the computational domain. While one
can take advantage of symmetries related to the evaluation of
the Green’s function, Panzeri et al. (2014) show in their il-
lustrative examples that the CPU time required by the MEs-
EnKF is equivalent to performing a classical EnKF relying
on a collection of 35 000 Monte Carlo (MC) realizations.
The negative impact of this computational scheme could be
aggravated in three-dimensional scenarios. Here, we circum-
vent this issue by solving MEs for three-dimensional tran-
sient groundwater flow by relying on the (second-order ac-
curate) approximations of MEs presented by Zhang (2002).

The remainder of the work is structured as follows. Sec-
tion 2 details the main elements associated with the mathe-
matical background of MEs and multi-node wells. Section 3
introduces the coupling between MEs and the EnKF ap-
proach. Section 4 illustrates the synthetic settings we analyze
together with the criteria according to which the performance
of the MEs-EnKF and the standard Monte Carlo-based EnKF
(MC-EnKF) is assessed. Section 5 is devoted to the presen-
tation and analysis of the key results. The main conclusions
of this work are presented in Sect. 6.

2 Theoretical background

2.1 Stochastic moment equations for groundwater flow

We consider transient groundwater flow in a three-
dimensional domain � described by

Ss(x)
∂h(x, t)

∂t
+∇x · q(x, t)= f (x, t) with

q(x, t)=−K(x)∇h(x, t), (1)

subject to initial and boundary conditions

h(x, t0)=H0(x) x ∈� (2)

h(x, t)=H(x, t) x ∈ 0D (3)
[−q(x, t)] ·n(x)=Q(x, t) x ∈ 0N , (4)

where x denotes the vector of Euclidian coordinates, t is
time, K is hydraulic conductivity, Ss is specific storage, h is
hydraulic head, q is Darcy flux, f is a forcing term,H0(x) is
initial hydraulic head, H(x, t) is head along the Dirichlet
boundary, and Q is a prescribed flux along the Neuman
boundary. In the following, we consider Ss(x), H(x, t), and
Q(x, t) as deterministic, while H0(x), f (x, t) and K(x) are
taken to be random quantities.

The natural logarithm of hydraulic conductivity, Y (x)=
lnK(x), is assumed to be a second-order stationary pro-
cess correlated in space with mean 〈Y (x)〉 and vari-
ance σ 2

Y . Tartakovsky and Neuman (1998a, b) derive integro-
differential MEs to compute space–time dynamics of (en-
semble) means and covariances of hydraulic heads and
fluxes. They then resort to a perturbation approach to derive
recursive approximations of these otherwise exact integro-
differential MEs. Ye et al. (2004) solve second-order (in the
standard deviation of Y , σY ) approximations of these MEs
by finite elements for superimposed mean-uniform and con-
vergent flows for two-dimensional settings. Since numerical
solutions of moment equations are heavy in terms of com-
putational resources (Zhang, 2002; Ye et al., 2004), in the
following subsections we illustrate a workflow that enables
us to evaluate all quantities of interest (up to second order
in σY ) with reduced computational efforts.

2.1.1 Mean head and flux

We start by expressing a given random quantity, I, as the
sum of its (ensemble) mean, 〈I〉, and a zero-mean random
fluctuation, I ′. Here, and in the following, mean head and
flux are approximated up to second order in σY as

〈h(x, t)〉 ≈ 〈h(0)(x, t)〉+ 〈h(2)(x, t)〉;

〈q(x, t)〉 ≈ 〈q(0)(x, t)〉+ 〈q(2)(x, t)〉, (5)

and the following equations hold
Ss(x)

∂〈h(0)(x,t)〉
∂t

+∇x · 〈q
(0)(x, t)〉 = 〈f (0)(x, t)〉 x ∈�

〈q(0)(x, t)〉 = −KG(x)∇〈h
(0)(x, t)〉 x ∈�

〈h(0)(x, t)〉 = 〈H
(0)
0 (x)〉 x ∈�

〈h(0)(x, t)〉 =H(x, t) x ∈ 0D
−〈q(0)(x, t)〉 ·n(x)=Q(x, t) x ∈ 0N

, (6)



Ss(x)
∂〈h(2)(x,t)〉

∂t
+∇x · 〈q

(2)(x, t)〉 = 〈f (2)(x, t)〉 x ∈�

〈q(2)(x, t)〉 = −KG(x)(
∇x〈h

(2)(x, t)〉+
σ 2
Y

2 ∇x〈h
(0)(x, t)〉

)
+ r(x, t) x ∈�

〈h(2)(x, t)〉 = 〈H
(2)
0 (x)〉 x ∈�

〈h(2)(x, t)〉 = 0 x ∈ 0D
−〈q(2)(x, t)〉 ·n(x)= 0 x ∈ 0N

. (7)

Here, superscript (i) indicates terms that are strictly of or-
der i (in terms of powers of σY ), KG(x)= e

〈Y (x)〉 is the geo-
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metric mean of K(x), and r(x, t) is the second-order resid-
ual flux evaluated as r(x, t)= lim

y→x
[−∇xu(y,x, t)] (e.g., Xia

et al. (2019) and references therein), where u(y,x, t)=

〈K ′(y)h′(x, t)〉(2) is the second-order approximation of the
cross-covariance between hydraulic head and conductivity,
computed as detailed in Sect. 2.1.2.

2.1.2 Cross-covariance between hydraulic head and
conductivity

Multiplying Eqs. (1)–(4) by K(y) and taking expectation
yield the following equation governing the evolution of
u(y,x, t)

Ss(x)
∂u(y,x,t)

∂t
=

=∇x ·
[
KG(x)∇xu(y,x, t)−KG(y)CY (x,y)

〈q(0)(x, t)〉
]
+CfK (y,x, t)

x ∈�
u(y,x, t0)= U0(y,x) x ∈�
u(y,x, t)= 0 x ∈ 0D[
KG(x)∇xu(y,x, t)−KG(y)CY (x,y)〈q

(0)(x, t)〉
]

·n(x)= 0 x ∈ 0N

. (8)

Here, CY (x,y)= 〈Y ′(x)Y ′(y)〉 is the covariance of the log-
conductivity field, CfK(y,x, t)= 〈K

′(y)f ′(x, t)〉(2) is the
second-order cross-covariance between conductivity K(y)

and forcing term f (x, t), and U0(y,x)= 〈K
′(y)H ′0(x)〉

(2) is
the second-order approximation of the cross-covariance be-
tween K and initial hydraulic head. Note that U0(y,x) van-
ishes when H0 is deterministic.

2.1.3 Head covariance

The equation governing the evolution of the (second-
order) head covariance between space–time locations (y, τ )
and (x, t), Ch(y,x,τ, t)= 〈h

′(y,τ )h′(x, t)〉(2), is given by
(Zhang, 2002)

Ss(x)
∂Ch(y,x,τ,t)

∂t
=

=∇x ·
[
KG(x)∇xCh(y,x,τ, t)+ u(x,y,τ )

∇x〈h
(0)(x, t)〉

]
+Cfh(y,x,τ, t)

x ∈�

Ch (y,x,τ, t0)= 〈h
′(y,τ )h′ (x, t0) 〉

(2) x ∈�
Ch(y,x,τ, t)= 0 x ∈ 0D[
KG(x)∇xCh(y,x,τ, t)+ u(x,y,τ )∇x〈h

(0)(x, t)〉
]

·n(x)= 0 x ∈ 0N

, (9)

where u(x,y,τ )= 〈K ′(x)h′(y,τ )〉(2) is given by Eq. (8)
and Cfh(y,x,τ, t)= 〈h

′(y,τ )f (x, t)〉(2) is the second-order
cross-covariance between forcing term f (x, t) and hydraulic
head h(y,τ ). To minimize redundancy, hereinafter we omit
stating that all cross-/auto-covariances of quantities of in-
terest appearing in our formulations are to be considered
as second-order approximations. It is worth noting that spa-
tially heterogenous conductivities of aquifer systems are of-
ten modeled through a single, in some cases multimodal, dis-
tribution (Winter et al., 2003). This approach corresponds to
a homogenization of conductivity values that might be as-
sociated with diverse geomaterials within a unique system.
Otherwise, the domain can be conceptualized as composed

Figure 1. Type of monitoring wells: pointwise (Type A), partially
(Type B) and fully penetrating (Type C) observation boreholes.

by zones, each associated with a given geomaterial and hy-
drogeological attributes. This leads to modeling the system
under investigation as composed by a collection of disjoint
blocks, whose location might be uncertain and within which
a quantity such as conductivity can be spatially heteroge-
neous (see, e.g., Winter and Tartakovsky (2000, 2002), Win-
ter et al. (2002, 2003), Guadagnini et al. (2004), Short et
al. (2010), Perulero Serrano et al. (2014), Bianchi Janetti et
al. (2019), and references therein). In this framework one can
represent conductivity within each block upon relying on a
distribution associated with low to mild variance, which is
compatible with the order of approximation associated with
the groundwater flow moment equations we consider (Win-
ter and Tartakovsky (2002), Winter et al. (2002, 2003), and
references therein). The scenario we investigate can then be
seen as corresponding to the type of internal variability asso-
ciated with a given geologic unit.

2.2 Monitoring wells

We consider three kinds of observation wells, leading to three
diverse types of hydraulic head information (see Fig. 1).
Type A wells are characterized by packers located at three
depths, where pointwise hydraulic head observations are col-
lected. Otherwise, Type B and/or C wells represent partially
and fully penetrating wells, respectively, and provide hy-
draulic head values that are averaged along the corresponding
screened intervals. Note that, even though there is no pump-
ing from B- and C-wells, there are flux exchanges between
these wells and the surrounding aquifer system, as opposed
to the setting associated with packers (A-wells). Such flow is
related to the difference between the water level within the
well and hydraulic head values along the borehole.

Following Konikow et al. (2009), neglecting linear (due to
skin effects) and nonlinear (due to turbulent flow) well loss
terms, the water level at well I , hw

I , (Type B and/or C) at a
given time t (omitted in the following equations for brevity)
can be evaluated through

Hydrol. Earth Syst. Sci., 25, 1689–1709, 2021 https://doi.org/10.5194/hess-25-1689-2021
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hw
I =

n∑
i=1
biKihi

n∑
i=1
biKi

, (10)

where n is the number of nodes in the multi-node observa-
tion well I , i.e., the number of cells according to which the
well screen is discretized; hi , bi , and Ki are the hydraulic
head, thickness, and conductivity of the cell of the numerical
grid whose centroid corresponds to the ith node in the multi-
node well, respectively. Note that Eq. (10) has been derived
assuming that the flux exchange, i.e., the flow into (or out of)
the monitoring well at the ith node, Qi , depends linearly on
the product biKi (see also Sect. 2.2.2). Numerical evaluation
of hi at a given time t requires evaluating Qi , as shown in
Sect. 2.2.2.

2.2.1 Moments for hydraulic head at observation wells

Mean head at well I is approximated (at second order in σY )
as 〈hw

I 〉 ≈ 〈h
w(0)
I 〉+ 〈h

w(2)
I 〉 where, starting from Eq. (10),

one can obtain the zero-, 〈hw(0)
I 〉, and second-, 〈hw(2)

I 〉, or-
der components as

〈h
w(0)
I 〉 =

n∑
i=1
TG,i〈h

(0)
i 〉

n∑
i=1
TG,i

(11)

〈h
w(2)
I 〉

n∑
i=1

TG,i =

n∑
i=1

TG,i

{
uii

KG,i
−
〈K ′ih

′w
I 〉

(2)

KG,i

+〈h
(2)
i 〉+

σ 2
Y,i

2

(
〈h
(0)
i 〉− 〈h

w(0)
I 〉

)}
. (12)

Here, TG,i = biKG,i , 〈h
(0)
i 〉, 〈h

(2)
i 〉,KG,i , and σ 2

Y,i correspond
to the zero- (evaluated by Eq. 6) and the second- (evalu-
ated by Eq. 7) order mean head, geometric mean of con-
ductivity, and variance of log-conductivity at the ith cell of
a multi-node monitoring well, respectively; uii = 〈K ′ih

′

i〉
(2)

is the cross-covariance between conductivity and head at the
ith cell; 〈K ′ih

′w
I 〉

(2) is the cross-covariance between well head
and conductivity at the ith cell (evaluated as detailed below;
see Eq. 15).

The covariance between water levels at wells I (i.e., hw
I )

and J (i.e., hw
J ), Chw = 〈h

′w
I h

′w
J 〉

(2), can be evaluated as (see
also Appendix A, Eqs. A1–A3)

Chw

n∑
i=1

TG,i

m∑
j=i

TG,j =

m∑
j=1

n∑
i=1

TG,iTG,j



(
〈h
(0)
i 〉− 〈h

w(0)
I 〉

)(
〈h
(2)
j 〉− 〈h

w(2)
J 〉+

ujj
KG,j
+

uij
KG,i

)
+

(
〈h
(0)
j 〉− 〈h

w(0)
J 〉

)(
〈h
(2)
i 〉− 〈h

w(2)
I 〉+

uji
KG,j
+

uii
KG,i

)
+

(
σ 2
Y,i

2 +
σ 2
Y,j

2 +CY,ij

)(
〈h
(0)
i 〉− 〈h

w(0)
I 〉

)(
〈h
(0)
j 〉− 〈h

w(0)
J 〉

)
+Ch,ij


, (13)

where TG,i = biKG,i , TG,j = bjKG,j , I , and J are indices
ranging from 1 to Nw (i.e., the total number of monitor-
ing wells of Type B and C); n and m correspond to the to-
tal number of cells according to which the screens of bore-
holes I and J are discretized, respectively; CY,ij is the log-
conductivity covariance between the ith and j th cells of
boreholes I and J , respectively; uji (or uij ) is the cross-
covariance between the conductivity of the j th cell of well J
(or the ith cell of well I ) and head of the ith cell of well I
(or the j th cell of well J ); and Ch,ij is the head covariance
between the ith cell of well I and the j th cell of well J .
Terms uji (or uij ) and Ch,ij can be readily obtained by solv-
ing Eqs. (8) and (9).

The cross-covariance between hw
I at a given time t and

aquifer head h at time τ (at a given location; omitted for
brevity), i.e., Chw

I hτ = 〈h
′w
I (t)h

′(τ )〉(2) is given by

Chw
I hτ

n∑
i=1

TG,i =

n∑
i=1

TG,i

[
Ch,i,τ +

ui,τ

KG,i

(
〈h
(0)
i 〉− 〈h

w(0)
I 〉

)]
. (14)

Here, ui,τ = 〈K ′ih
′(τ )〉(2) represents the cross-covariance be-

tween conductivity at the ith cell of well I and aquifer
head (at a given location) at time τ . Likewise, Ch,i,τ =

〈h′i(t)h
′(τ )〉(2) represents head covariance between head at

time t at the ith cell of the monitoring well I and head at
time τ at a given location in the aquifer.

The cross-covariance between hw
I at time t and conductiv-

ity at a given location in the aquifer, Chw
I K
= 〈h

′w
I (t)K

′
〉
(2),

can be expressed as

Chw
I K

n∑
i=1

TG,i =

n∑
i=1

TG,i

[
ui +KGCY,i

(
〈h
(0)
i 〉− 〈h

w(0)
I 〉

)]
, (15)

where CY,i = 〈Y
′

iY
′′
〉 is the covariance between log-

conductivity at the ith cell along the monitoring borehole I
and log-conductivity at a given location in the domain, and
ui = 〈K

′h′i(t)〉
(2) is cross-covariance between conductivity

at a given point in the domain and aquifer head at time t at
the ith cell along the monitoring borehole I .

It is worthwhile to note that covariances and cross-
covariances evaluated in Eqs. (13)–(15) depend explicitly on
the difference between the mean water level at the monitor-
ing well and the mean hydraulic head along the well screen.

2.2.2 Moments for flux between a monitoring well and
the aquifer

Assuming that the evolution of head at the observation bore-
hole I can be conceptualized as a sequence of temporal
events (each associated with the attainment of instantaneous
equilibrium conditions), following Konikow et al. (2009), the
link between hw

I , hi , and Qi can then be obtained by relying
on the Thiem (1906) formulation as
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hw
I = hi +

Qi

abiKi
, with a =

2π
ln(r0/rw)

, (16)

where r0 and rw are the effective (i.e., the radius of a well
that would be associated with the same head as that calcu-
lated at the node of the cell that contains the well) and the
actual well radius, respectively. The mean flux exchange is
approximated as 〈Qi〉 ≈ 〈Q

(0)
i 〉+ 〈Q

(2)
i 〉 and from Eq. (16)

one can write

〈Q
(0)
i 〉 = aTG,i

(
〈h

w(0)
I 〉− 〈h

(0)
i 〉

)
; (17)

〈Q
(2)
i 〉 = aTG,i

{
〈h

w(2)
I 〉− 〈h

(2)
i 〉+

σ 2
Y,i

2

(
〈h

w(0)
I 〉

−〈h
(0)
i 〉

)
+
〈h
′w
I K

′

i〉
(2)

KG,i
−
〈h′iK

′

i〉
(2)

KG,i

}
. (18)

The cross-covariance between Qi at time t and aquifer head
at time τ , CQihτ = 〈Q

′

i(t)h
′(τ )〉(2), can be expressed as

CQihτ = aTG,i

{
Chw

I hτ −Chihτ +
ui,τ

KG,i

(
〈h

w(0)
I 〉− 〈h

(0)
i 〉

)}
, (19)

where Chw
I hτ = 〈h

′w
I (t)h

′(τ )〉(2), Chihτ = 〈h
′

i(t)h
′(τ )〉(2). Fi-

nally, one can obtain the following expression for the cross-
covariance between Qi and K , CQiK = 〈Q

′

i′
K ′〉(2),

CQiK = aTG,i

{
Chw

I K
− ui +KGCY,i

(
〈h

w(0)
I 〉− 〈h

(0)
i 〉

)}
. (20)

2.3 Numerical solution strategy

We solve Eqs. (6)–(9) numerically by approximating the spa-
tial derivatives through a finite element approach and the
temporal derivatives through an implicit method. As in Xia
et al. (2019), moments 〈h(0)〉, u, and 〈h(2)〉 are sequentially
obtained by solving Eqs. (6)–(8), respectively. Details asso-
ciated with the evaluation of Ch, which requires 〈h(0)〉 and
u as inputs, are illustrated in the following.

For the purpose of our data assimilation workflow,
we start by noting that we are interested in computing
Ch associated with two identical time coordinates, i.e.,
Ch(y,x,τ = t, t)= 〈h

′(y,τ = t)h′(x, t)〉(2). We then recall
that Zhang (2002) computesCh(y,x,τ = t, t) for each time t
(while Ch(y,x,τ = t, t −1t) is also unknown, 1t being a
constant temporal step size) by solving for Ch(y,x,τ = t, t

′)

from t ′ = 0 to t ′ = t . While this procedure can be computa-
tionally heavy for long times, Zhang (2002) points out that
when flow changes only mildly, Ch(x,y,τ = t, t −1t)≈

Ch(x,y,τ = t −1t, t −1t), an approximation whose gen-
eral validity is still not completely explored.

Here, we circumvent this issue and obtain high com-
putational efficiency by directly evaluating Ch(y,x,τ =

t, t) from Ch(y,x,τ = t −1t, t −1t) via (i) computing
Ch(y,x,τ = t, t −1t) through the solution of the equation

obtained by considering Eq. (9) where the space and time
derivatives operate on τ and y (instead of t and x) from
time t −1t to t using Ch(y,x,τ = t −1t, t −1t) as initial
condition and then (ii) assessing Ch(y,x,τ = t, t) by solving
Eq. (9) using Ch(y,x,τ = t, t −1t) as the initial condition.

It is further noted that Eqs. (6)–(9) are characterized by the
same format, their discretization leading to a system of equa-
tions where the coefficients of the unknown quantities are
identical, the corresponding right-hand-side terms (i.e., the
forcing terms) being a function of the (ensemble) moment to
be solved. In this context, one can resort to a direct solver for
each time step. Thus, factorization of the matrix containing
the coefficients of the system of equations is performed only
once, resulting in a high computational efficiency because
only the right-hand-side term needs to be updated, depend-
ing on the moment of interest.

With reference to the forcing terms 〈f (0)〉, 〈f (2)〉, CfK ,
and Cfh in Eqs. (6)–(9), we note that these vanish for
Type A wells and when one disregards flux exchanges be-
tween Type B (or C) wells and the aquifer. In these in-
stances, mean head values and the associated covariance are
simply obtained upon evaluating Eqs. (6)—(9)numerically.
Thus, when considering a time interval [t −1t, t], the main
computational cost stems from the evaluation of u(y,x, t),
Ch(y,x,τ = t, t −1t), and Ch(y,x,τ = t, t), each of these
requiring N times the computational cost (hereafter denoted
as CMEs

c ) associated with the solution of the system of
N equations resulting after discretization. Therefore, the to-
tal computational effort required for solving Eqs. (6)—(9) at
each time step is 3 NCMEs

c . Note that the computational ef-
fort is reduced to 2 NCMEs

c for the first time interval, when
the initial head is deterministic, or for a steady-state flow sce-
nario (see Xia et al., 2019).

Otherwise, considering flux exchange processes when rep-
resenting Type B (or C) wells entails evaluation of the source
terms in Eqs. (6)–(9) as 〈f (0)〉 = 〈Q(0)

i 〉, 〈f
(2)
〉 = 〈Q

(2)
i 〉,

CfK = CQiK , and Cfh = CQihτ . The evaluation of the (en-
semble) moments of interest across time interval [t −1t, t]
is then performed through the workflow depicted in Fig. 2.
In this case, we note that convergence of the iterative pro-
cedure is attained when the absolute difference between
mean well heads at iteration iter+ 1, 〈hw

I 〉iter+1, and iter,
〈hw
I 〉iter, is lower than a preset value ε. The main compu-

tational effort required for these evaluations corresponds to
3 (iter+ 1)NCMEs

c for each time step.

3 Ensemble Kalman filter coupled with moment
equations

We start by introducing the mean system state vector 〈ϕ〉 as

〈ϕ〉 =
[
〈h〉 〈hw

〉 〈Y 〉
]T
, (21)

where 〈h〉, 〈Y 〉 correspond, respectively, to N -dimensional
vectors of mean head and mean log-conductivity, and 〈hw

〉 is
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Figure 2. Workflow for the numerical solution of MEs within time interval [t–1t , t] when flux between monitoring wells and the aquifer is
considered.

a Nw-dimensional mean well head vector, subscript “T” rep-
resenting transpose.

Each data assimilation cycle, corresponding to time inter-
val [t −1t, t] comprises a forecast (or forward propagation)
step and an update (or analysis) step. The forecast step is
implemented by solving the moment equations described in
Sect. 2. We write the predicted mean and covariance of the
system state as

〈ϕ〉f =
[
〈h〉f 〈hw

〉
f
〈Y 〉

]T
;

Pf
=

 Cf
h

[
Chwhf

]T [
Cf
Yh
]T

Cf
hwh Cf

hw

[
Cf
Yhw

]T
Cf
Yh Cf

Yhw Cf
Y

 . (22)

Here, the superscript “f” represents predicted quantities ob-
tained in the forecast step, 〈h〉f is the predicted mean head
(Eq. 5), 〈hw

〉
f is the predicted mean water level at monitoring

borehole (Eqs. 11 and 12), 〈Y 〉 is the updated natural loga-
rithm of conductivity obtained at the previous data assimila-
tion cycle, Cf

h is the predicted N ×N -dimensional head co-
variance matrix, (Eq. 9), Cf

hwh is the Nw×N -dimensional
predicted cross-covariance between well and aquifer head
(Eq. 14), Cf

hw is the predicted Nw×Nw-dimensional covari-
ance of well head (Eq. 13), Cf

Yh is the predicted N ×N -
dimensional cross-covariance between Y and aquifer head h
(Eq. 8), Cf

Yhw is the predicted N ×Nw-dimensional cross-
covariance between Y and well head hw (Eq. 15), and Cf

Y is

N ×N -dimensional Y covariance and is equal to its updated
counterpart associated with the previous updating step.

The equations used to evaluate the state updated vec-
tor 〈ϕ〉up and the updated covariance matrix Pup are

〈ϕ〉up
= 〈ϕ〉f+Cϕd(Cdd+αCD)

−1 (
〈ϕso〉− dobs

)
(23)

and

Pup
=

(
I−Cϕd (Cdd+αCD)

−1H
)

Pf, (24)

where Cϕd (= PfHT) is the (2N+Nw)×d-dimensional cross-
covariance between the system state and the simulated obser-
vations, matrix H of dimension d×(2N+Nw) is the observa-
tion operator that describes the relationship between the sys-
tem state and the observations, Cdd (=HPfHT) is the d × d-
dimensional covariance matrix of the simulated observations,
CD is the d × d-dimensional covariance of observation er-
rors, I is the identity matrix, α is a constant inflation factor,
α = 1 corresponding to the uninflated ensemble Kalman fil-
ter, 〈ϕso〉 is the mean vector of the simulated observations,
and dobs is the d-dimensional observation vector.
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After the update step, 〈ϕ〉up and Pup are expressed as

〈ϕ〉up
=
[
〈h〉up

〈hw
〉
up
〈Y〉up]T

;

Pup
=

 Cup
h

[
Cup

hwh
]T [

Cup
Yh
]T

Cup
hwh Cup

hw

[
Cup
Yhw

]T
Cup
Yh Cup

Yhw Cup
Y

 , (25)

where all symbols have the same meaning (yet updated) as
in Eq. (22).

When moving to a subsequent time interval during the as-
similation process, we follow Panzeri et al. (2013) and (i) use
the updated mean head vector 〈h〉up as the initial condition
of the governing equation for the zero-order mean head, i.e.,
Eq. (6); (ii) making use of 〈Y〉up, evaluate the updated geo-
metric mean N -vector Kup

G ; (iii) obtain the initial condition
of Eq. (8) through the product Kup

G Cup
Yh; (iv) use Cup

h as the
initial condition of Eq. (9); and (v) use Kup

G and Cup
Y as inputs

to Eqs. (6)–(9) and Eqs. (11)–(20).
It should be noted that if one neglects flux exchanges be-

tween the aquifer and Type B and/or C monitoring wells (or
a Type A well is considered), moments including water level
at well (i.e., 〈hw

〉, Chwh, Chw , CYhw ) should be omitted in
Eqs. (21)–(25).

4 Illustrative examples

We consider a three-dimensional domain (Fig. 3a) of size
600×600×60 (hereafter, all quantities are considered in con-
sistent units, following notation associated with prior studies,
including, e.g., Panzeri et al. (2013) and references therein),
the system being discretized onto a numerical mesh compris-
ing 25× 25× 13 nodes, for a total of 34 560 tetrahedrons. A
partially penetrating pumping well pumps at a constant rate
of 1000 for 0≤ t ≤ 30, after which water withdrawal stops
and a recovering process takes place for 30< t ≤ 60. We
subdivide the overall simulation time according to 20 uni-
form intervals, which can potentially be used for assimilation
of head observations. The well pumping rate is uniformly
distributed across the central nodes of layers no. 1 and 2 in
the numerical mesh (numbering is from top to bottom of the
domain). The left and right sides of the system are set as
Dirichlet boundaries, where a deterministic head H = 100
is fixed, the remaining boundaries being considered imper-
vious. Initial head and storativity are deterministic and set
equal to 100 and 10−3, respectively. The natural logarithm of
conductivity, Y , is modeled as a spatially correlated second-
order stationary random field with covariance given by

CY = σ
2
Y exp

(
−

[
δ1

λ1
+
δ2

λ2
+
δ3

λ3

])
. (26)

Here, δi and λi denote, respectively, the lag and correlation
scale between two points along direction xi (with i = 1, 2, 3).

Twenty virtual monitoring wells are regularly distributed
across the domain (Fig. 3b). Type A boreholes are mim-
icked by considering three packers positioned at three dis-
tinct depths, corresponding to layers no. 4, 7, and 10. Type B
wells are equipped with three screens (i.e., n= 3) whose
barycenter is set at the same depths of the packers in Type
A wells (see Fig. 1) and bi = 5 with i = 1, 2, 3. Type C wells
are completely penetrating across the 13 layers of the do-
main (i.e., n= 13) with b1 = b13 = 2.5 and bi = 5 for i =
2, . . . , 12.

Reference hydraulic head values that are collected at
Type B and C wells and employed in the data assimilation
procedure are evaluated upon solving the flow problem on
the reference hydraulic conductivity fields described in the
following. Flux exchanges between the aquifer and moni-
toring wells are evaluated according to the procedure de-
scribed in Sect. 2.2 and 2.3 setting the convergence criterion
ε = 10−6.

The effective radius of the monitoring wells is evaluated as
(Chen and Zhang, 2009) r0 = 20.25e−0.75π1x ≈ 0.1131x =
2.81 (1x = 25 being the horizontal size of a given element in
the computational mesh). For the purpose of our illustrative
example, we set rw = 0.1 (i.e., a = 1.88).

We organize our exemplary settings according to the fol-
lowing four groups (for a total of 26 test cases, TCs) collected
in Table 1.

1. Group 1. This group includes seven TCs (TC1–TC7)
that allow exploring the way conductivity estimates can
be influenced by relying on the assimilation of head
data collected at diverse types of virtual observation
boreholes, while considering a simplified modeling ap-
proach where flux exchanges between the aquifer and
Type B (or C) monitoring wells are neglected during
the data assimilation procedure, head observations (con-
sidered in the data assimilation procedure) correspond-
ing to depth-averaged values along the corresponding
screens. We note that relying on this approach is tan-
tamount to considering an imperfect flow model and
would possibly oversimplify the mathematical repre-
sentation of the system behavior when compared with
the one employed for constructing the reference head
field. Nevertheless, it has the advantage of requiring a
straightforward numerical implementation.

A zero-mean reference Y field is generated at the nodes
of the computational mesh upon relying on the widely
tested and used SGSIM code (e.g., Deutsch and Jour-
nel, 1998) by setting a unit variance, λ1 = λ2 = 100 and
λ3 = 20. While the correlation scale values are consid-
ered as perfectly known, we aim to estimate the mean
and variance of Y . The initial guesses employed for the
variance and mean of Y during data assimilation are 1.0
and 0.2, respectively. Test cases 1–3 are designed in a
way that all 20 observation boreholes are of Type A, B,
or C, respectively. Test cases 4–7 enable one to explore
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Figure 3. Reference log-conductivity (Y ) field (a) and location of monitoring wells within the flow domain (b).

Table 1. Summary of the test cases analyzed.

Groups TCs Type of monitoring well Modeling approach for Initial guessed log- Reference log- Inflation

Zone 1 Zone 2 Zone 3 borehole/aquifer flux conductivity fields conductivity fields factor

exchanges Mean Variance Mean Variance (α)

Group 1

TC1 A A A Full model 0.2 1.0 0.0 1.0 1.0
TC2 B B B Simplified model 0.2 1.0 0.0 1.0 1.0
TC3 C C C Simplified model 0.2 1.0 0.0 1.0 1.0
TC4 A B B Simplified model 0.2 1.0 0.0 1.0 1.0
TC5 A A B Simplified model 0.2 1.0 0.0 1.0 1.0
TC6 A C C Simplified model 0.2 1.0 0.0 1.0 1.0
TC7 A A C Simplified model 0.2 1.0 0.0 1.0 1.0

Group 2

TC2# B B B Full model 0.2 1.0 0.0 1.0 1.0
TC3# C C C Full model 0.2 1.0 0.0 1.0 1.0
TC4# A B B Full model 0.2 1.0 0.0 1.0 1.0
TC5# A A B Full model 0.2 1.0 0.0 1.0 1.0
TC6# A C C Full model 0.2 1.0 0.0 1.0 1.0
TC7# A A C Full model 0.2 1.0 0.0 1.0 1.0

Group 3

TC1∗1 A A A Full model 0.2 1.0 0.0 1.0 1.0
TC1∗2 A A A Full model 0.2 1.0 0.0 1.0 1.0
TC1∗3 A A A Full model 0.2 1.0 0.0 1.0 1.0
TC2#∗1 B B B Full model 0.2 0.09 0.0 0.01 1.0
TC2#∗2 B B B Full model 0.0 1.0 0.2 1.7 1.0
TC3#∗1 C C C Full model 0.2 0.09 0.0 0.01 1.0
TC3#∗2 C C C Full model 0.0 1.0 0.2 1.7 1.0

Group 4

TC2α1 B B B Simplified model 0.2 1.0 0.0 1.0 5.0
TC2α2 B B B Simplified model 0.2 1.0 0.0 1.0 10.0
TC2α3 B B B Simplified model 0.2 1.0 0.0 1.0 100.0
TC3α1 C C C Simplified model 0.2 1.0 0.0 1.0 5.0
TC3α2 C C C Simplified model 0.2 1.0 0.0 1.0 10.0
TC3α3 C C C Simplified model 0.2 1.0 0.0 1.0 100.0

the way conductivity estimates can depend on the use of
Type A boreholes (i.e., equipped with packers) within
different zones, while considering Type B or C wells in
the remaining regions. Test case 4 comprises Type A
wells within zone 1 in Fig. 3b (i.e., within distances
shorter than λ1 from the pumping well) and Type B

boreholes being installed in zones 2 and 3 (at distances
larger than λ1 from the pumping well). Test case 5 is
characterized by the presence of Type A wells in zones 1
and 2, and Type B wells in zone 3. Test cases 6 and 7 are
characterized by the presence of Type A wells in zone 1
and in zones 1–2 respectively, and Type C wells being
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located in the remaining zones. We note that the spatial
arrangement of the observation boreholes is designed to
allow these to be spaced by a distance approximately
corresponding to a correlation scale of Y , thus encom-
passing strong to low degrees of correlation with respect
to the pumping well location.

2. Group 2. This group includes six TCs (TC#2–TC#7)
that are variants of those of Group 1 and consider
the solution of the data assimilation procedure without
neglecting flux exchanges between virtual monitoring
boreholes of Type B and/or C and the aquifer, i.e., data
assimilation is performed by considering perfect knowl-
edge of the groundwater flow model, which includes all
of the processes underpinning the reference head fields.

3. Group 3. This group includes seven TCs designed to
explore (i) the impacts of the mean and variance of the
Y reference field on the data assimilation results asso-
ciated with Type B and C boreholes (TC2#∗1–TC2#∗2,
TC3#∗1–TC3#∗2) and (ii) settings where head data are
assimilated solely from one depth (instead of all three
locations) where a packer is installed along Type A
wells (TC1∗1–TC1∗3).

To elaborate, here we consider (i) a nearly uniform
(while random) zero-mean Y reference field with vari-
ance equal to 0.01 (TC2#∗1 and TC3#∗1), the initial
guesses employed for the variance and mean of Y dur-
ing data assimilation being 0.09 and 0.2, respectively;
(ii) a Y reference field with mean and variance equal
to 0.2 and 1.70, respectively (TC2#∗2 and TC3#∗2), the
initial guesses employed for the variance and mean of Y
during data assimilation being 1 and 0, respectively; and
(iii) three variants of TC1: TC1∗1 considers assimilat-
ing head information only from the upper packer (i.e.,
the one positioned at layer 4), and TC1∗2 and TC1∗3
are designed to assimilate head data only from the inter-
mediate (positioned at layer 7) and bottom (positioned
at layer 13) packer, respectively.

4. Group 4. This group includes six TCs where we ex-
plore the effect of inflating the measurement-error co-
variance matrix on the data assimilation when the lat-
ter is performed in a way similar to the correspond-
ing TC2 and TC3 of Group 1. As such, data assimila-
tion is based on an imperfect flow model (where flux
exchanges between the aquifer and monitoring bore-
holes are disregarded). To cope with this, inflation on
measurement-error covariance matrix is considered dur-
ing data assimilation, the inflation factor being set to
α = 5 (TC2α1 and TC3α1), 10 (TC2α2 and TC3α2), and
100 (TC2α3 and TC3α3; note that TC2 and TC3 corre-
spond to α = 1).

Initial input quantities required to solve moment equations
and spatial fields of KG and CY are obtained through the

generation of 10 000 realizations of Y . The latter form the
collection of realizations upon which the traditional Monte
Carlo (MC)-based ensemble Kalman filter (MC-EnKF) is
also applied. Results based on the MEs-EnKF are then com-
pared with those obtained through the MC-EnKF. Head ob-
servations in all TCs are considered to be noisy and are ob-
tained by adding a Gaussian white noise with a standard de-
viation of 0.01 to the reference heads collected at the virtual
boreholes and used in the data assimilation procedure. The
strength of the noise is selected on the basis of the calculated
reference head fields and considering the level of accuracy
that is related to measuring devices commonly employed in
practical settings (e.g., when considering water loggers, ac-
curacy of pressure head observations is commonly comprised
between ∼±0.005 and ∼±0.05 m).

We rely on the criteria illustrated in the following to ap-
praise the quality of the data assimilation performance. These
are (i) the average absolute difference between the esti-
mated (or updated) Y field and its reference counterpart, EY ;
(ii) the square root of the average estimation variance, SY ;
and (iii) the average absolute difference between the esti-
mated (or updated) aquifer head and its reference counter-
part, Eh, evaluated as

EY =
1
N

N∑
i=1

∣∣〈Yi〉up
−Y r

i

∣∣ (27)

SY =

√√√√ 1
N

N∑
i=1

(
σ 2
Y,i

)up
(28)

Eh =
1
N

N∑
i=1

∣∣〈hi〉up
−hr

i

∣∣ , (29)

where 〈Yi〉up, (σ 2
Y,i)

up, and Y r
i indicate the estimated mean,

variance, and reference Y values at the ith node of the com-
putational mesh, respectively; 〈hi〉up and hr

i represent the es-
timated mean and reference aquifer head value at the ith node
of the grid. We note that SY is a metric quantifying the un-
certainty associated with the estimated Y field conditional on
the data assimilated (see, e.g., Panzeri et al., 2014; Nowak,
2010).

5 Results and discussion

5.1 Comparison between the MC-EnKF and
MEs-EnKF

In this section we compare the results obtained with our
MEs-EnKF approach and a standard MC-EnKF for two se-
lected test cases, TC1 and TC2#. Table 2 summarizes the out-
comes computed via the MEs-EnKF and MC-EnKF (increas-
ing the number of MC simulations from 100 to 10 000) at the
end of the assimilation process in terms of EY , SY , and Eh.
These results suggest that the overall quality of conductivity
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Table 2. Comparison of results obtained by the MEs-EnKF and MC-EnKF (based on 100, 500, 1000, and 10 000 realizations) for TC1
and TC2#.

TCs Criterion MC-EnKF MEs-EnKF

100 500 1000 10 000

TC1

EY 0.84 0.59 0.55 0.53 0.53
SY 0.12 0.52 0.60 0.68 0.67
Eh 9.42× 10−3 5.60× 10−3 4.48× 10−3 3.75× 10−3 3.28× 10−3

CPU (s) 544 2549 6010 57 088 2686

TC2#

EY 0.80 0.69 0.66 0.65 0.65
SY 0.31 0.66 0.71 0.74 0.72
Eh 8.33× 10−3 5.91× 10−3 5.36× 10−3 5.30× 10−3 5.27× 10−3

CPU (s) 3077 16 469 35 676 346 483 16 667

estimates grounded on the MEs-EnKF is similar to what one
can obtain upon relying on a MC-EnKF based on 10 000 re-
alizations, which is also consistent with the results illustrated
by Panzeri et al. (2014) in two-dimensional settings. Ta-
ble 2 also includes the computational cost (CPU in seconds)
needed for each test case and approach using the processor
Inter Xeon(R) CPU E5-2650 v3 @ 2.30 GHz with 128 GB
RAM. The CPU time required by the MEs-EnKF is 20 times
lower than the one required by a standard Monte Carlo-based
EnKF relying on 10 000 realizations. When compared with
the findings of Panzeri et al. (2014) in their two-dimensional
settings, our results further support the computational appeal
and feasibility of relying on a MEs-EnKF approach also in
a three-dimensional setting. Note also that the CPU time re-
quired by TC2# is significantly larger (about six times) than
the one needed for TC1, due to the implementation of flux
exchanges between the aquifer system and the boreholes.

As an additional term of comparison, Fig. 4 depicts the
spatial distributions of the estimated values of the mean
and variance of the log-conductivity field computed with the
MEs-EnKF and MC-EnKF relying on 100, 500, 1000, and
10 000 realizations at the end of the data assimilation window
at layers 4, 7, and 10 (where the packers are located) in TC1.
The reference Y field is also depicted (see the left column of
Fig. 4). Analogous outcomes are reported in Fig. 5 for TC2#.
Visual inspection of these results provides further support to
the ability of the MEs-EnKF to yield conductivity distribu-
tions consistent with the corresponding reference values in
these settings. As expected, the degree of spatial variability
of the estimated mean and variance values of Y tends to stabi-
lize as the number of realizations increases, being very simi-
lar to their MEs-based counterparts when 10 000 realizations
are employed.

5.2 Effect of neglecting flux exchanges between
boreholes and aquifer during data
assimilation (Group 1)

Figure 6 shows the temporal behavior of EY (Fig. 6a),
SY (Fig. 6b), and Eh (Fig. 6c) for TCs1–7 (i.e., Group 1 in
Table 1) obtained through the MEs-EnKF. The lowest val-
ues of EY are associated with TC1, where packers are set for
all observation wells. Very similar results are also obtained
for TC5 and TC7, where Type B or C wells are installed
only at the farthest locations (i.e., zone 3 in Fig. 3b) from the
pumping well, respectively; Type A boreholes are installed
within the regions (i.e., zones 1–2 in Fig. 3b) closest to the
well.

The highest values of EY correspond to TC3, where fully
screened monitoring wells (Type C wells) are located in the
entire domain. These are closely followed by the results as-
sociated with TC2, where observation wells screened across
multiple (Type B wells) levels are considered. Considering
the trend displayed by the results in Fig. 6a, one can then
conclude that relying on point values of head contributes to
increasing the overall quality of the data assimilation pro-
cedure, as expressed in terms of EY , when compared with
considering vertically averaged head information while rely-
ing on a simplified groundwater flow model, which neglects
flux exchanges between screened intervals of boreholes and
the surrounding aquifer.

A comparison between the values of EY related to TC1
and TCs 5, 7 further suggests that the use of packers at lo-
cations far away (in terms of the horizontal correlation scale
of Y ) from the pumping well does not add additional infor-
mation with respect to fully or partially screened wells, be-
cause vertical variability of head at such locations is modest.
The importance of capturing vertical head variations during
data assimilation is also manifest when comparing results re-
lated to TC4 and TC6. The values ofEY related to the former
are consistently lower than those associated with the latter, a
result that is consistent with the use of fully screened (TC6)
compared to partially screened (TC4) observation boreholes
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Figure 4. Reference Y field (left column) and estimates of the mean and variance of Y at the end of the assimilation process across layers 4,
7, and 10 for TC1. Results computed via the MC-EnKF (with 100, 500, 1000, and 10 000 realizations) and MEs-EnKF are included.

in most of the domain. The behavior of Eh is very similar to
the one displayed by EY , thus strengthening the above con-
clusions.

One can note that the scenarios characterized by a domi-
nance of Type C boreholes (i.e., TC3 and TC6) are charac-
terized by the lowest values of SY (Fig. 6b). This result is
related to the observation that depth-averaged well head in-
formation is here employed during data assimilation. Doing
so tends to introduce a corresponding homogenization of the

conductivity field resulting from the data assimilation proce-
dure, which is reflected by the lower values of SY . As such,
while the results associated with SY would suggest that the
estimation variance associated with Y is low, the overall ac-
curacy, as given in terms of EY , is also low when relying
mostly on vertically averaged data. Otherwise, temporal val-
ues of SY are virtually indistinguishable for the other config-
urations considered.
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Figure 5. Reference Y field (left column) and estimates of the mean and variance of Y at the end of the assimilation process at layers 4, 7,
and 10 for TC2#. Results computed via the MC-EnKF (with 100, 500, 1000, and 10 000 realizations) and MEs-EnKF are included.

The lowest Eh values are visually indistinguishable and
are related to TC1, TC5, and TC7, which is generally con-
sistent with the behavior of EY . The highest Eh values are
associated with TC3, where fully screened monitoring wells
(Type C wells) are located in the entire domain. These are
followed by TC2, where partially screened monitoring wells
(Type B wells) are distributed across the domain.

5.3 Effect of including flux exchanges between
boreholes and aquifer during data
assimilation (Groups 2 and 3)

Figure 7 depicts the temporal behavior of EY (Fig. 7a),
SY (Fig. 7b), and Eh (Fig. 7c) for TC1 and TC2#–TC7# (i.e.,
Group 2 in Table 1) obtained through the MEs-EnKF. The
lowest values ofEY are again associated with TC1. These are
very closely matched by those obtained for TC5# and TC7#,
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Figure 6. Temporal evolution of EY (a), SY (b), and Eh (c) for TC1–TC7.

Figure 7. Temporal evolution of EY (a), SY (b), and Eh (c) for TC1 and TC2#–TC7#. Temporal evolution of the relative difference between
EY (d), SY (e), and Eh (f) evaluated in TC2#–TC7# and their counterparts related to TC2–TC7.

where Type B or C wells are installed only at the farthest
locations (i.e., zone 3 in Fig. 3b) from the pumping well. It
is worth noting that the values of EY in TCs 5# and 7# are
virtually identical. The highest values of EY correspond to
TC3#, where only fully screened monitoring wells are dis-
tributed across the domain. These are very closely followed
by the results associated with TC2#, where observation wells
screened across multiple levels (Type B wells) are consid-
ered. Note that the temporal evolution ofEY in these two TCs
(TC2# and TC3#) is almost identical and tends to the same
value at the end of the assimilation window. The comparison
between the values of EY for TC4# and TC6# is also consis-
tent with this finding.

Different from the results of Group 1, the temporal behav-
ior of SY (Fig. 7b) is very similar to one displayed by EY .
These results are in line with (i) the observation that each
Type A borehole provides three head observations, while
only one well head observation is essentially linked to Type B
or C boreholes and (ii) the intuition that constraining the sys-
tem with an increased number of observations would yield
conductivity estimates characterized by an increased accu-
racy (in terms of lower EY and possibly SY values).

The lowest Eh values are related to TC1, TC5#, and TC7#
and are visually indistinguishable (see Fig. 7c), a finding
which is consistent with the behavior of EY (see Fig. 7a).
The highest Eh values are associated with TC3#, closely fol-
lowed by TC2#, TC6#, and then TC4#. Otherwise, the values
of Eh become virtually indistinguishable.

Figure 7d depicts relative (percentage) differences be-
tween EY evaluated for TCs2#–7# and TCs2–7, consider-
ing the values of TCs2–7 as references (negative values
correspond to lower values of EY in TCs2#–7# as com-
pared with TCs2–7). Analogous results are reported for
SY (Fig. 7e) and Eh (Fig. 7f). The largest accuracy im-
provement of Y estimates, as suggested by Fig. 7d, corre-
sponds to TC3# (where the inclusion of flux exchanges be-
tween boreholes and aquifer is particularly relevant, since
all monitoring wells fully penetrate the aquifer), followed
by TC2#, TC6#, and TC7#, with respect to their counterparts
in Group 1.

Uncertainty associated with conductivity estimates in-
creases in TCs2#–7# as compared with their counterparts in
Group 1 (see Fig. 7e, where relative differences of SY are
all positive), this result being related to the vertical variabil-
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Figure 8. Temporal evolution of EY (a, d), SY (b, e), and Eh (c, f) for TC2#∗1 and TC3#∗1 (a–c) and for TC2#∗2 and TC3#∗2 (d–f).

Figure 9. Temporal evolution of EY (a), SY (b), and Eh (c) for TC1∗1, TC1∗2, TC1∗3, TC1, and TC2#.

ity of flux exchanges along Type B and C boreholes, which
is embedded in Group 2 TCs. The lowest (negative) relative
differences for Eh correspond to TC3#, a result that is con-
sistent with the depiction offered in Fig. 7d.

The temporal evolution of EY (Fig. 8a and d), SY (Fig. 8b
and e), and Eh (Fig. 8c and f) for TC2#∗1, TC3#∗1, TC2#∗2,
and TC3#∗2 is displayed in Fig. 8. These results show
that head observations collected at Type B or C screened
wells yield conductivity and head estimates of similar qual-
ity (in terms of EY and SY , or Eh, respectively) for the de-
grees of heterogeneity analyzed. Mean absolute differences
between EY values associated with TC2#∗1 and TC3#∗1
is 0.008, while being virtually null when considering TC2#∗2
and TC3#∗2. Results of corresponding quality are also ob-
tained when comparing SY and Eh values related to TC2#∗1
and TC3#∗1, or TC2#∗2 and TC3#∗2. We further note that
values of EY in Fig. 8d (or Eh in Fig. 8f) are always higher
than their counterparts depicted in Fig. 8a (or Fig. 8c), con-
sistent with the observation that the accuracy of conductivity
(and head) estimates tends to deteriorate with increasing de-
gree of spatial heterogeneity of conductivities.

Figure 9 juxtaposes the temporal variability of
EY (Fig. 9a), SY (Fig. 9b), and Eh (Fig. 9c) values for
TCs 1∗1, 1∗2, 1∗3 (see Group 3 in Table 1), 1 (Group 1),
and 2# (Group 2). Values of EY for TC2# are close to
those of TC1∗2 (where only data at the central layer of the
system are assimilated). Otherwise, values of EY at the end
of the assimilation window for TC1∗3 (where only data at
the bottom of the system are assimilated) are lowest when
considering the TCs TC1∗1, TC1∗2, TC1∗3, and TC2#.
Values of SY for all test cases but TC1 are visually indis-
tinguishable. Finally, the temporal behavior of Eh for each
test case is consistent with the one displayed by EY . These
results seem to suggest that the benefit (in terms of EY and
Eh) of collecting head observations from packers installed
along the borehole depends on the observation depth and on
the duration of the assimilation period.

5.4 Effect of inflation on measurement-error
covariance matrix (Group 4)

Figure 10 depicts the temporal evolution of EY (Fig. 10a),
SY (Fig. 10b), and Eh (Fig. 10c) for TC2α1, TC2α2, and
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Figure 10. Temporal evolution of EY (a), SY (b), and Eh (c) with α = 1 (TC2), 5 (TC2α1), 10 (TC2α2), and 100 (TC2α3).

Figure 11. Temporal evolution of EY (a), SY (b), and Eh (c) with α = 1 (TC3), 5 (TC3α1), 10 (TC3α2), and 100 (TC3α3).

TC2α3 (see Group 4 in Table 1), where partially screened
monitoring wells (Type B wells) are located across the entire
domain. The lowest values of EY are mainly associated with
α = 10 (i.e., TC2α2) while the highest values correspond to
α = 1 or 100 (i.e., TC2 or TC2α3, respectively). The magni-
tude of SY is seen to increase with α, in line with Eq. (24)
according to which resorting to an inflation factor tends to
decrease the strength of the dependence of conductivity es-
timates on head data. The highest Eh values are generally
linked to TC2 at observation times shorter than 10 (i.e., cor-
responding to the stop of pumping), all otherEh values being
otherwise visually indistinguishable.

Based on these results, we conclude that the accuracy of
conductivity and head estimates is generally improved when
inflating the measurement-error covariance matrix. As stated
above, these results are consistent with the observation that
inflating the measurement-error covariance matrix results in
a reduced weight of the mismatch between modeled and ob-
served values during data assimilation. We recall that using
inflation (i.e., setting α > 1) may be useful to compensate
for relying on an imperfect mathematical model, a scenario
which is consistent with TC2–7 in Group 1. For instance, the
iterative ensemble smoothers (Chen et al., 2013; Luo et al.,
2015) and the ensemble smoother with multiple data assim-
ilation (ES-MDA; Emerick and Reynolds, 2013) rely on the
action of an inflation factor on the measurement-error covari-
ance matrix to cope with highly nonlinear systems.

Figure 11 shows the temporal behavior of EY (Fig. 11a),
SY (Fig. 11b), and Eh (Fig. 11c) for TC3α1, TC3α2, and
TC3α3 (see Group 4 in Table 1), where fully screened moni-
toring wells (Type C wells) are located in the entire domain.

The lowest EY values are mainly associated with α = 100
(i.e., TC3α3). The value of EY at the end of the assimilation
period is largest for TC3. The magnitude of SY values also
tends to increase with α in these cases. The highest and low-
estEh values are generally linked to TC3 and TC3α3, respec-
tively, for the early assimilation times and become virtually
independent of α as time progresses. These results suggest
that the highest inflation factors required to increase the qual-
ity of the data assimilation process (as measured through EY
and Eh) are associated with the scenarios where head data
are collected in fully screened boreholes (see, e.g., TC3α3 as
compared to TC2α2).

6 Conclusions

We draw the following main conclusions based on this study:

– The use of packers to collect pointwise head data
(Type A wells) yields higher accuracy of conductivity
estimates than can be obtained by relying on partially or
fully penetrating wells. The lowest values of EY (aver-
age absolute difference between the estimated mean of
the logarithm of the conductivity field, Y , and its refer-
ence counterpart) are associated with the scenario where
Type A wells are set across the domain. It is addition-
ally worth noting that the benefit of installing Type A
wells as opposed to partially (Type B) or fully screened
(Type C) monitoring wells is mainly associated with re-
gions (e.g., zone 1 in this study) where strong variations
of head along the vertical can take place.
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– Using depth-averaged head data from Type B and C
wells leads to comparable results in our settings, in
terms of EY , SY (square root of the average estimation
variance of Y ), and Eh (average absolute difference be-
tween the estimated aquifer heads and their reference
counterparts).

– Neglecting flux exchanges between the aquifer and par-
tiallyor fully screened monitoring wells in the ground-
water flow model can significantly deteriorate the accu-
racy of conductivity estimates. Considering the appli-
cation of an inflation technique to measurement-error
covariance matrix can improve conductivity estimates
when an imperfect flow model is applied.

– The computational feasibility and accuracy of the mo-
ment equations-based ensemble Kalman filter (MEs-
EnKF) are explored. The MEs-EnKF is as accurate as
a typical Monte Carlo (MC)-based ensemble Kalman
filter, which relies on a large number (on the order
of 10 000) of MC realizations. Otherwise, the MEs-
EnKF is more efficient than its MC-EnKF counterpart,
the latter requiring about 20 times the central process-
ing unit (CPU) time of the former, on the basis of our
examples.
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Appendix A: Cross-covariance between water levels in
partially and or fully screened monitoring boreholes

The water level at well I , hw
I (with I = 1, . . . ,Nw), can be

written as hw
I = 〈h

w
I 〉+h

′w
I . Making use of Eq. (10) one can

obtain the following expression for the water level fluctua-
tion h

′w
I

h
′w
I

n∑
i=1

biKi =

n∑
i=1

biKi
(
hi −〈h

w
I 〉
)
. (A1)

n is the total number of cells according to which the screen
of borehole I is discretized. In a similar way, the water level
fluctuation at well J , h

′w
J , is given by

h
′w
J

m∑
i=j

bjKj =

m∑
j=1

bjKj
(
hj −〈h

w
J 〉
)
, (A2)

where m corresponds to the total number of cells according
to which the screen of borehole J is discretized. Multiplying
Eq. (A1) by Eq. (A2), taking expectation and disregarding
moments of order larger than two yields

〈h
′w
I h

′w
J 〉

n∑
i=1

bi〈Ki〉

m∑
i=j

bj 〈Kj 〉 =

m∑
j=1

n∑
i=1
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. (A3)

Evaluation of Eq. (A3) at second order yields Eq. (13).
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