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A B S T R A C T   

Apart from its contribution to climate change, offshore oil and gas extraction is also a potential threat to the 
diversity and function of marine ecosystems. Routine monitoring of the environmental status of affected areas is 
therefore critical for effective management. While current morphology-based monitoring is relatively time 
consuming, costly and prone to identification bias, environmental DNA metabarcoding offers an attractive 
alternative for assessing the impacts of oil drilling, extraction or spills. However, to be ready for routine 
monitoring, its performance needs to be demonstrated through agreement with assessments based on physico
chemical measurements and current bioindicators. To this end, we applied metabarcoding to sequence the 
metazoan (COI) and total eukaryotic (18S) benthic components. We targeted a range of sites, with a gradient of 
low to high level of impact, located near active production installations and reference sites, in the North and 
Barents Seas. Alpha diversity and community structure of both datasets correlated strongly with a physico
chemical pressure index (PI) based on total hydrocarbons (THC), PAH16, Ba and Cu. Calculations of the 
macroinvertebrate-based Norwegian Sensitivity Index (NSI) based on COI metabarcoding data agreed well with 
corresponding morpho-taxonomy values and with the PI. Further, we identified a set of bioindicator taxa from 
both metabarcoding datasets, to develop novel biotic indices and demonstrate their predictive performance using 
cross-validation. Finally, we compared co-occurrence networks from impacted vs. non-impacted sites, to improve 
the understanding of the ecological consequences of impacts. Our study demonstrates that metabarcoding can act 
as a meaningful and relatively accurate complement to the current morpho-taxonomic approach.   

1. Introduction 

In order to ensure a balance between environmental impact and 
socioeconomic benefits, Norwegian legislation regulates the extent of 
offshore oil exploitation, and requires that extraction activities are 
routinely monitored according to a system that divides the Norwegian 
continental shelf into monitoring regions that are surveyed on a rotating 
basis (Norwegian Environment Agency, 2020). In addition to physico
chemical parameters, this monitoring regime includes sampling of 
benthic sediment macrofaunal communities for a subset of sampling 
stations based on perceived risk of anthropogenic impact. This “morpho- 
taxonomic” monitoring component has been successful (e.g. Gray et al., 
1990), but represents a significant investment of time and resources, not 

only from sampling and processing of collected sediment samples 
(sieving and sorting), but also due to the manual taxonomic identifica
tion of a large number of sediment grab samples (Baird and Hajibabaei 
2012; Aylagas et al., 2018; Pawlowski et al. 2018). This, in turn, limits 
the spatial and temporal resolution possible, as sampling stations are 
typically surveyed only every three years (Bakke et al., 2011; Norwegian 
Environment Agency 2020). In addition, it causes a significant time lag, 
typically more than one year, between surveys and final monitoring 
reports, which may slow down environmental management due to 
failure to identify warning signs at an early stage. 

Morphological species identifications can also be subject to human 
error and bias by individual taxonomists, and are limited by a shortage 
of taxonomic expertise and by cryptic species complexes (Hynes, 1994; 
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Maurer, 2000; Schander and Willassen 2005; Bourlat et al., 2013; 
Chariton et al., 2014; Cowart et al., 2015; Danovaro et al., 2016). 
Increased human pressure on marine ecosystems, including accelerating 
biodiversity loss, climate change and an expansion of extraction oper
ations to vulnerable and previously unexploited ecosystems, often with 
lesser-known benthic fauna, poses a major challenge for marine moni
toring (Glover et al., 2018). Thus, there is a clear and imminent need to 
adapt, evaluate and implement genomics-based monitoring methods 
such as metabarcoding, with a clearly demonstrated ability to increase 
the cost-effectiveness and capability of monitoring for future ocean 
stewardship (Baird and Hajibabaei 2012; Cordier et al., 2018; Cordier 
et al., 2020). 

Complementing or replacing current monitoring protocols with 
metabarcoding could provide faster and cheaper results without being 
limited by available taxonomic expertise, thus allowing for more 
extensive and timely monitoring. Several studies have shown the feasi
bility of inferring existing macrofaunal biotic indices (BIs), such as 
AMBI, directly from macrofaunal taxonomic profiles predicted from 
metabarcoding data (Lejzerowicz et al., 2015; Aylagas et al., 2016; 
Cordier and Pawlowski, 2018), although insufficient coverage of refer
ence sequence databases and their taxonomic labels are an important 
limitation for this approach (Hestetun et al., 2020; Cordier et al., 2020). 

A significant strength of metabarcoding is that it also allows target
ing of organisms that are unavailable in morpho-taxonomic data, 
including micro- and meiobenthos (Bourlat et al. 2013; Cowart et al. 
2015; Cordier et al., 2018). This advantage has already been demon
strated specifically for monitoring impacts of offshore oil extraction, 
including the identification of several potential meiobenthic, protist and 
prokaryotic bioindicator taxa (Lanzén et al. 2016; Laroche et al. 2018a; 
Mauffrey et al., 2020). Yet, since little is known about the ecology of 
such species, their predictive power as bioindicators need to be better 
demonstrated, preferably in concert with developing one or several 
novel BIs. While de novo approaches can benefit from using taxonomy- 
independent OTUs as bioindicators, this brings new challenges, such 
as defining and mapping Operational Taxonomic Units (OTUs) across 
studies (Mächler et al., 2020; Cordier et al., 2020). 

Here, we applied eDNA metabarcoding to a set of benthic monitoring 
stations sampled by triplicate sediment grabs (3x100 samples) spanning 
a gradient of environmental disturbance that includes both operational 
discharges and several instances of accidental leakage of drilling waste 
from injector wells. Routine monitoring sites from ten different plat
forms and regional control stations were included from the neighbour
ing monitoring regions II and III in the North Sea and region IX in the 
Barents Sea. Sampling and experimental design followed a recom
mended protocol based on a previous comparative study investigating 
the effects of replication and methods for DNA extraction and sample 
homogenisation (Hestetun et al., 2021). Two different taxonomic 
markers were used, namely mitochondrial cytochrome oxidase subunit I 
gene (COI) targeting metazoa, and the hypervariable regions V1-V2 of 
the small subunit rRNA gene, targeting total eukaryotes (18S). 

In order to evaluate the accuracy of metabarcoding as a technique for 
monitoring the impacts of oil extraction, we compared alpha diversity 
measures and overall community structure between the metabarcoding 
datasets and the reported morpho-taxonomic data, as well as the cor
relation of both datasets to physicochemical parameters, including an 
environmental pressure index integrating four major physicochemical 
indicators of impact. Further, we estimated impact using the Norwegian 
Sensitivity Index (NSI; Rygg and Norling, 2013) based on COI meta
barcoding data, again comparing its congruence with morpho- 
taxonomic results and impact. Finally, we identified bioindicator taxa 
from both 18S and COI metabarcoding results, used them to develop de 
novo BIs that included a broader range of taxa compared to the NSI, and 
evaluated the predictive power of these de novo BIs using cross- 
validation. 

2. Materials and methods 

2.1. Study sites and samples 

For the purpose of routine environmental monitoring of oil and gas 
extraction activities, the Norwegian continental shelf is divided into a 
system of 11 regions (I–XI) from the southern tip of Norway to the 
Barents Sea. Benthic monitoring surveys are conducted in 2–3 regions 
each year on a rotating basis, so that each region is surveyed every three 
years (Fig. 1A). This monitoring is organised by the industry itself, 
carried out by a handful of prequalified environmental consultancy 
companies, and overseen by and reported to the Norwegian Environ
ment Agency. Routine monitoring of benthic environmental status is 
based on van Veen grab samples, and includes physicochemical pa
rameters and sediment characteristics, as well as morphological identi
fication and analysis of macrofaunal benthic communities (>1 mm). 
Monitoring stations are semi-fixed, resampled for each survey based on 
the results from the previous survey, and are typically placed as cross- 
pattern gradients around installations with a smaller number of refer
ence (“regional”) stations for each subregion (Bakke et al., 2011; Nor
wegian Environment Agency 2020). 

The samples from this study were collected during the regular 
monitoring surveys in 2018–2019, covering a subset of installations and 
sampling stations from regions II (2018) and III (2019) in the northern 
part of the North Sea between Scotland, Shetland and Norway, as well as 
region IX (2019) in the Barents Sea. The depths of the stations in regions 
II and III included in this study range from around 90–180 m, while 
region IX stations were located between 305 and 362 m below the sur
face. Sediment conditions are mostly dominated by sand, with slightly 
larger pelite fractions in the deeper areas (Hatlen et al., 2019; DNV 
2020; Mannvik et al., 2020). In total, 291 samples, representing 97 
stations distributed over ten installations and ten reference stations (3–4 
per region), were selected for metabarcoding sampling. This included 
four installations from region II: Balder (“BAL”, 12 stations), Gina Krog 
(“GK”, 13 stations), Ivar Aasen (“IA”, 14 stations) and Ringhorne (“RIN”, 
7 stations); five from region III: Brage (“BRA”, 5 stations), Oseberg C 
(“OSC”, 5 stations), Oseberg F (“OSF”, 4 stations), Oseberg South 
(“OSS”, 9 stations) and Veslefrikk (“VFR”, 10 stations); and one instal
lation from region IX, namely Snøhvit (“SG”, 8 stations). The selection 
included several installations where regular monitoring had previously 
reported moderate to severe environmental impact from high hydro
carbon contamination (in particular RIN, OSS and VFR), resulting in 
degraded macrofaunal communities. The geographical distribution of 
platforms and reference stations roughly followed a North-East to South- 
West axis, which was therefore used to model the influence of the 
geographical distance in multivariate statistics modelling (Fig. 1). 

Physiochemical, sediment and macrofaunal data collected and ana
lysed as part of the regular monitoring survey were obtained from the 
environmental consultant companies STIM Miljøtjenester AS (2018, 
region II) (Hatlen et al. 2019), DNV-GL (2019, region III) (DNV, 2020) 
and Akvaplan-niva (2019, region IX) (Mannvik et al. 2020), or through 
the MOD Database, a repository of Norwegian offshore monitoring data 
(DNV GL, 2021). The morpho-taxonomy datasets were collected using 
standard methodology (ISO, 2014) with five grab replicates for each 
sampled station, sieved with a 1 mm sieve, separated from remaining 
sediment and identified to lowest possible taxon level by the consultant 
companies. Physicochemical parameter measurements were in turn 
subcontracted by the environmental consultant companies to Eurofins 
(Environment and Analyses departments) and Sintef Norlab AS. 

For comparison with metabarcoding results, the reported morpho- 
taxonomic data from the first three spatial replicate grabs from each 
station were pooled before being compared to pooled metabarcoding 
data (see below). This station-level pooling was done as the corre
sponding three metabarcoding replicates were not consistently collected 
from the exact same grab replicates as those of morphology-based in
ventories. When available for replicate grabs, arithmetic means of 
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measured physicochemical values were also calculated for each station. 
All physicochemical and morphotaxonomy data for individual and 
pooled samples, are available in Supplementary Tables S1-S3. 

2.2. Calculation of a physicochemical pressure index (PI) 

As a proxy for environmental impact from oil extraction activities, a 
physicochemical pressure index (PI) was developed as previously 
described in Aylagas et al. (2017), in order to correspond directly to the 
ecological group (EG) scale, ranging from EG I including species that are 
very sensitive to disturbance, to EG V, including first order opportunistic 
species highly tolerant to disturbance (Borja et al., 2000). Total hydro
carbons (THC), total measured polyaromatic hydrocarbons (PAH16), 
barium (Ba) and copper (Cu) were included in the calculation of the PI. 
These variables were selected based on low background values 
compared to disturbed sites, correlation to the environmental status as 
estimated by morpho-taxonomic monitoring (NSI), and for being un
equivocal markers of extraction activity (Gray et al 1990; Olsgard and 
Gray 1995; Bakke et al., 2013). Since no specific threshold classification 
exist for Norwegian offshore areas, coastal sediment classifications (AA- 
EQS), based on the Norwegian implementation of the Water Directive 
were used instead, where available (2 ppm for PAH16 and 84 mg / kg for 
Cu) (Direktoratsguppen vanndirektivet, 2018). For THC and Ba, lacking 
such threshold values, limits for BI were instead established using linear 
correlation to NSI, as fitted values at NSI = 20 (delimiting EGs II and III) 
resulting in a limit of 72 ppm for THC and 464 ppm for Ba. The former 
agrees relatively well with clear effects being reported previously in sites 
with a concentration above 50 ppm (Norwegian Environment Agency, 
2020) Another modification from Aylagas et al. (2017) was to extend the 
PI to allow values between 5 and 6 (>32x AA-EQS), to decrease the issue 
of values reaching the theoretical maximum of 5.0 at heavily disturbed 
stations. 

For ordination analyses, specifically principal component analysis 
(PCA) of parameters, and their correlation to non-metric dimensional 
scaling (NMDS) based on community dissimilarity, the same parameters 
were also used to develop two more specific pressure indices. The first, 

“HC PI”, based on total hydrocarbons and PAH16, and the second, 
“Metal PI”, based on Ba and Cu. 

2.3. Sample processing and DNA extraction 

For metabarcoding sampling, surface sediment (0–2 cm) was 
collected using three grab replicates per sampling station by pooling 
three random sediment samples from each van Veen grab (in total ca. 30 
g per grab) (Hestetun et al., 2021). Samples were immediately frozen on 
board (-20 ◦C) and kept frozen during transport to the lab as validated by 
the use of a temperature logger. Sediment samples were thawed at 4 ◦C 
and pre-mixed by hand with a spatula before three 0.5 g extract replicate 
samples per sediment sample were removed for DNA extraction. We 
employed a hybrid protocol involving Qiagen PowerBead tubes and C1 
solution for initial steps, homogenisation with a Precellys 24 homoge
nizer (6000 rpm for 40 s) (Bertin Instruments) and centrifugation (10 K 
rpm for 1 min), followed by the QIAsymphony SP robot (DSP DNA kit, 
Tissue LC protocol) for remaining steps. To control for contamination, 
extraction negative controls were included for each extraction event. 
Extracts were quantified using a Qubit 3.0 instrument (Thermo Fischer 
Scientific). 

2.4. Metabarcoding library preparation and sequencing 

PCR amplification and library preparation was performed in two 
steps using two molecular markers, 313 bp of the partial cytochrome 
oxidase subunit I (COI) using modified “Leray” primers (Geller et al., 
2013; Wangensteen et al., 2018) and 350–390 bp of the V1-V2 region of 
18S rRNA gene, using the primers SSU_F04mod (5’-GCTTGWCTCAAA
GATTAAGCC-3’) (Cordier pers. comm.) and SSU_R22mod (Sinniger 
et al., 2016) followed by a second PCR step using adapter-linked index- 
primers with 12 inserted random bases to improve sequencing perfor
mance. The modified “Leray” primer pair was chosen based on its ability 
to target a wider range of marine eukaryotes (Wangensteen et al., 2018). 
PCR amplification was performed using KAPA3G Plant kit (Kapa Bio
systems) with 2 µl extract template. The three extract replicates from 

Fig. 1. Geographical overview of the studied area. Norwegian offshore monitoring is divided into eleven regions as shown in (A), with installations and regional 
controls studied here in regions II and III in the North Sea (B) as well as region IX in Barents Sea (C). Regions including studied samples are shaded and only targeted 
installations or regional reference stations (beginning with “R2”, “R3” or “R9”) are shown. 
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each sediment sample were pooled prior to PCR, and negative controls 
were used to check PCR cross-contamination. Protocol conditions for 
18S included an initial 3 min step at 95 ◦C, 30 cycles of 30 s each at 95, 
57 and 72 ◦C, and a final 10 m step at 72 ◦C. The COI protocol was 
identical, except annealing temperature was set to 45 ◦C. To account for 
ambiguous bases in the COI primers, primer concentration was tripled 
for this marker. Library preparation was done using the Illumina TruSeq 
i5/i7 barcode set with equimolar concentrations of PCR products. Grab 
replicates were individually indexed. Sequencing was performed at the 
Norwegian Sequencing Centre (University of Oslo, Norway) using an 
Illumina MiSeq instrument with 2x300 bp v3 chemistry. Raw sequences 
are available from the INSDC Sequence Read Archive with BioProject 
number PRJNA727023. 

2.5. Metabarcoding sequence data analysis, statistics, and inference of 
biodiversity estimates and biotic indices 

We carried out sequence data quality filtering using vsearch (Rognes 
et al., 2016) and cutadapt (Martin, 2011), followed by clustering into 
SWARM sequence variants (hereafter “operational taxonomic units”, 
OTUs, Mahé et al., 2015) and post-clustering correction using LULU 
(Frøslev et al., 2017) as previously described by Hestetun et al. (2021). 
All scripts used for sequence data processing (vsearch_prep_18S_V1V2. 
sh, vsearch_prep_CO1XT.sh, SWARM_and_LULU_SSU.sh and SWAR
M_and_LULU_CO1.sh) are available in the GitHub repository https:// 
github.com/lanzen/Metamon2/ (https://doi.org/10.5281/zenodo. 
4826641; directory ‘script’). 

Briefly, read pair merging, primer removal and initial quality 
filtering was performed using vsearch v2.11.1 and cutadapt v1.18. A 
maximum of 20 and 40 mismatches were accepted when overlapping 
18S and COI paired reads, respectively. Primers were then trimmed from 
overlapped sequence reads allowing a maximum of two mismatches, 
with sequences lacking the complete forward and reverse primers dis
carded. All COI amplicons shorter than 274 bp or longer than 333 bp 
after trimming were discarded, as well as 18S amplicons shorter than 
330 bp or longer than 450 bp. Clustering was done using SWARM v2.2.1 
(Mahé et al., 2015), using default settings, followed by removal of sin
gletons, reference-based and finally de novo filtering of probable 
chimeric OTUs, using vsearch, with the same reference databases as 
later used for taxonomic classification (BOLD and SilvaMod v128, 
respectively; details below). Dereplication prior to clustering, as well as 
conversion of SWARM output to an OTU contingency table, was carried 
out using the scripts fasta_merging.py and matrix_creation.py from SLIM 
(Dufresne et al., 2019). Finally, we carried out post-clustering correction 
using LULU (Frøslev et al., 2017) with a 97% similarity cutoff, and 
taxonomic assignments using CREST (Lanzén et al., 2012). For COI, the 
BOLD database was used Ratnasingham and Herbert (2017); accessed 
February 2018 and adapted to CREST as part of release 3.2.1 at htt 
ps://github.com/lanzen/CREST), while for 18S, we used SilvaMod 
v128 as reference (https://github.com/lanzen/CREST) based on SILVA 
SSURef NR v128 (https://www.arb-silva.de/documentation/release 
-128). 

Likely contaminants were identified and removed based on both 
abundance profiles in the PCR and extraction blanks, in a plate-wise 
manner, using decontam (Davis et al. 2018), removing 156 18S OTUs 
and none from COI. We also filtered both metabarcoding datasets in 
order to remove all OTUs unclassified at phylum rank or as non- 
metazoan for COI, and kingdom rank for 18S. Further, filtration was 
carried out based on taxonomic assignments in order to remove OTUs of 
likely pelagic origin, as described in Hestetun et al. (2021); see Sup
plementary Table S4). Cross-contamination was reduced by setting OTU 
abundances to zero where it occurred in a sample at very low abun
dances compared to its average abundance across samples (<1%), 
similar to the UNCROSS algorithm (Edgar 2016). Four individual COI 
samples (representing individual grab replicates) were also removed 
from further analysis due to insufficient read depth (<1,000 reads) and 

one from 18S (<10,000 reads), leaving 96 stations represented by at 
least one grab replicate in the final COI datasets (i.e. pooled grabs) on 
which all statistical analyses were carried out. All 97 stations were 
represented by 18S data. 

Alpha diversity estimates (rarefied, i.e. expected richness at mini
mum read depth, and Shannon diversity) were calculated using the R 
package vegan v3.2.1 (Oksanen et al., 2019). Bray-Curtis pairwise dis
similarities were calculated based on relative OTU abundances, filtered 
to compensate for differences in sequence depth and random sampling 
effects. To this end, we removed all OTUs with a maximum abundance 
across samples below 0.05% for COI or 0.01% for 18S. Non-metric 
dimensional scaling (NMDS) as implemented in vegan (function met
aMDS) was used to transform and visualise the dissimilarity matrix to a 
non-linear approximation in 2D space, and Mantel tests (Mantel, 1967; 
function mantel) was used to compare dissimilarity matrices between 
datasets. The function envfit was used to compare physicochemical and 
biological parameters to the resulting NMDS space. For correlation an
alyses, we used the lm function in R and agreement was tested by 
calculating Cohen’s Kappa using the kappa2 function of the irr R 
package v0.84 with squared weight (Gamer et al., 2019; Cohen, 1968). 
All R scripts used for filtering and statistical analyses are available in the 
GitHub repository (https://doi.org/10.5281/zenodo.4826641; direc
tory R). 

2.6. Identification of bioindicators, development and cross-validation of 
biotic indices 

To identify potential bioindicator taxa, we first used TITAN2 v2.1 
(Baker and King, 2010) to identify candidate taxa with PI as the 
explanatory variable. This method allows for detection of changes in 
taxon distributions along a continuous environmental gradient, such as 
the PI in this case. Only taxa occurring in five or more stations were 
retained. All such taxa with predicted “reliability” and “purity” above 
0.95 were selected and modelled individually using quantile regression 
splines (QRS) as described previously by Lanzén et al. (2020) for eco 
group (EG) assignment. Quantile regression models were constructed 
using the quantreg package (rq function) for the 90th percentile 
(Koenker and d’Orey, 1994), corresponding to the value below which 
90% of the taxon abundances are expected along the impact gradient. 
Second to fifth order polynomial splines were fitted to the resulting 
model (bs function) and EG selected as the group whose weight was 
closest to the peak of the fitted spline that showed the lowest resulting 
Akaike information criterion (AIC). If disagreeing with TITAN (EGs I–II 
vs. TITAN group II or EGs IV–V vs. TITAN group I), the indicator taxa was 
discarded. We then used all potential indicator taxa identified thus to 
construct a biotic index, as described in Lanzén et al. (2020). 

For cross-validation, installations or regional control groups were 
rotated and samples from each excluded in one round of TITAN and QRS 
indicator taxa identification and biotic index construction. PI values 
were then predicted using the excluded platform or control as a vali
dation dataset. A final biotic index was also derived by using the full 
dataset. The taxonomic affiliations of all resulting indicator taxa in this 
final index were illustrated separately for EGs (merging I and II, IV and 
V) using KronaTools v2.7.1 (Ondov et al., 2011). 

2.7. Inference and analysis of co-occurrence networks 

Network analysis was performed on 18S and COI data using a subset 
of installations from regions II and III. First, based on their PI value, 
samples from these regions were split into one group of impacted (PI >
2) and another group of non-impacted sites (PI < 2). Samples belonging 
to installations that did not have impacted sites were removed from the 
non-impacted dataset in order not to bias the comparison. All network 
inferences were performed using CoNet (v1.1.1 beta; Faust et al., 2012) 
in Cytoscape (v3.8.2) with an identical procedure for all networks. 
Abundances were imported as read counts, and normalisation to relative 
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abundances was performed within CoNet. Taxa with a minimum 
occurrence below 33% were removed (read sums of excluded taxa 
retained) prior to further steps. Five measures of association were 
selected: Pearson and Spearman correlations, mutual information, Bray- 
Curtis and Kullback-Leibler distances. Network inference was then 
performed according to the permut and boot procedure with 100 per
mutations and 100 bootstraps. For initial edge selection, automatic 
threshold selection was employed (number of top and bottom edges set 
to 1000 for 18S and 450 for COI data). The p-values from each measure 
were merged using Brown’s method, and an adjusted (Benjamini- 
Hochberg) p-value cut-off of 0.05 was set for the final edge selection. 
Networks were visualised and analysed in Cytoscape with the built-in 
Analyze Network tool. Node tables and edge tables were exported and 
further analysed using R functions. A list of potential indicator species 
was then constructed by selecting the top 10 taxa based on their node 
degree, betweenness centrality and closeness centrality, followed by 
merging these lists and removing duplicated taxa. Finally, NetShift was 
used to analyse changes among species associations between the 
impacted (case) and non-impacted (control) networks (Kuntal et al., 
2019; https://web.rniapps.net/netshift/). 

3. Results 

3.1. Alpha diversity and physicochemical parameters 

Metabarcoding resulted in 24 and 33 million reads for COI and 18S 
respectively, after quality filtering, removal of singletons and probable 
chimeras. Of the raw read pairs obtained, 67% and 88% of the COI and 
18S datasets remained after overlapping and initial quality filtering. An 
additional 0.7% of COI reads were removed as singletons and 0.5% as 

predicted chimeras. For 18S, 1.0% and 1.9% of reads were removed 
correspondingly. After additional filtering to remove probable contam
inants and cross contaminating reads, non-target sequences (likely 
pelagic taxa, non-metazoa for COI and unclassified for 18S) and grab 
replicates with insufficient reads, 4.6 and 18.7 million reads were 
retained for COI and 18S, respectively (Supplementary Table S5). The 
majority of COI reads were removed for being non-metazoan, while 
most 18S reads that were removed were classified as likely to have a 
pelagic origin. Read coverage per pooled sample varied considerably, 
ranging from 7 to 133 thousand for COI and from 36 to 341 thousand for 
18S. Thus, only rarefied richness values, i.e. the expected richness 
encountered at minimum coverage, were used when comparing alpha- 
diversity estimates. Further, filtering of rare OTUs was applied so as 
not to bias multivariate statistics based on community dissimilarity. 

A total of 8,186 COI and 25,319 18S OTUs were retained, of which 
1,857 and 4,505 were retained for community dissimilarity analysis, 
after removing insufficiently abundant OTUs. Rarefied richness (RS) of 
samples ranged from 39 to 705 (median = 395) for COI and 268–1968 
(median = 1359) for 18S, and was strongly correlated between the two 
datasets (Fig. 2D). Morpho-taxonomy data for macrofauna contained a 
total of 715 different taxa (including genera or higher taxa not classified 
to species rank) for the corresponding samples (1–157 per sample). 
Morpho-taxonomic Shannon diversity (H’morpho) was more strongly 
correlated to metabarcoding-based rarefied richness (RSCOI or RS18S) 
than to metabarcoding-based H’ (data not shown). Interestingly, the 18S 
dataset, which included all eukaryotes, corresponded better to morpho- 
taxonomic diversity than the COI dataset did, although the later was 
restricted to metazoa, just like morpho-taxonomic data (Fig. 2A–B). 

A physicochemical pressure index (PI) was calculated based on the 
measured values of total hydrocarbon (THC) concentration, PAH16, Ba 

Fig. 2. Comparisons of alpha diversity between datasets and to the physicochemical Pressure Index (PI). Shannon diversity (H’) from reported morphology- 
based monitoring was compared to rarefied richness based on (A) COI metazoan, and (B) 18S total eukaryotic metabarcoding, then to PI (C). We then compared COI- 
based rarefied richness to 18S-based (D) and to PI (E). Finally, we compared 18S-based rarefied richness to PI (F). Grey lines indicate fitted linear regressions and 
their adjusted coefficients of determination (R2), and p-values are reported. 
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and Cu (see Calculation of a physicochemical pressure index). The 
resulting PI values ranged from 0.05 to 4.6 with only two stations 
(Veslefrikk 32 and 33) corresponding to PI > 4.0 or “very bad” status, 
mainly due to extreme THC and PAH16 concentrations (up to 3.7 wt% 
and 40 ppm, respectively). The impact gradient was skewed towards low 
impact, with 86 out of the 100 samples being undisturbed or slightly 
disturbed according to the PI, with values below 2.0. Only six samples 
had 2.0 ≤ PI < 3.0 (corresponding to moderate disturbance, from 
Ringhorne and Oseberg F) and another six ranged between 3.0 ≤ PI <
4.0 (heavy disturbance, all from Veslefrikk and Oseberg S; Supplemen
tary Table S2). Nonetheless, the PI correlated moderately well with 
H’morpho (R2 = 0.43) and RS18S (R2 = 0.30), while correlation with RSCOI 
was weaker (R2 = 0.11; see Fig. 2C, E, F). 

3.2. Analysis of community composition and inferred biotic indices 

NMDS analysis based on pairwise Bray-Curtis dissimilarities between 
samples was carried out based on morpho-taxonomic counts (Fig. 3A) as 
well as relative abundances of abundance-filtered COI and 18S OTUs 
(Fig. 3B–C). PCA was used instead for key physicochemical parameters 
(depth, geographical distance, grain size, pelite, gravel, sand, 
hydrocarbon-specific PI and Meta-specific PI), of which 65% of the 
variation could be explained by the resulting first two principal com
ponents (Fig. 3D). In all of these ordination results, samples from region 
IX formed a separate cluster, whereas regions II and III could only be 
separated based on morpho-taxonomy or 18S data (Fig. 3). 

The consistency of pairwise dissimilarity matrices between datasets 
according to Mantel tests (Mantel, 1967) deviated slightly from corre
lations of alpha diversity measures across the same datasets (see Fig. 3). 
Specifically, 18S-based results were more similar to morpho-taxonomic 
results than they were to COI metabarcoding-based ones. Further, 18S- 
based clustering was the most similar to that of environmental 

parameters, according to the same test (R = 0.75 for 18S vs. R = 0.69 for 
morpho-taxonomy; see Fig. 3). 

PI and NSI correlated significantly with NMDS space in all three 
datasets. The PI had the strongest correlation to COI, followed by 18S 
and weakest correlation to morpho-taxonomic data (Supplementary 
Table S6). Depth, geography (SW–NE), Ba, sand and pelite also corre
lated significantly in all datasets (Fig. 3A-C) with no consistent pattern 
in correlation strength across datasets, except that PAH16 and individ
ual PAHs did not correlate significantly with the clustering pattern based 
on 18S (Supplementary Table S6). 

The most abundant phylum according to both morpho-taxonomy 
and COI was Annelida, whereas nematodes were more abundant ac
cording to 18S results (see Supplementary Figure S1). Out of all final 
reads, 52% could be classified to genus rank for COI, compared to only 
5% for 18S. To compensate for this discrepancy without losing taxo
nomic information at lower ranks, taxa representing the lowest assign
ments regardless of ranks were used in further analysis. Eight out of the 
25 most abundant of these best assignment taxa were shared between 
morpho-taxonomic and COI metabarcoding classifications (Supple
mentary Figure S2). 

NSI values derived from COI metabarcoding data agreed signifi
cantly with values calculated using morpho-taxonomic data (n = 97, κ =
0.63, R2 = 0.52, p < 0.001; Fig. 4A). NSI values derived from morpho- 
taxonomic data as well as COI data also showed strong agreement and 
correlation to the PI (Fig. 4B–C). NSI could not be predicted confidently 
using 18S data due to the low number of classifications that could be 
made to species or even genus rank (in average only 5% of total 
abundance). 

3.3. Bioindicators and metabarcoding-based de novo biotic indices 

Predicted de novo biotic indices using cross-validation, based on COI 

Fig. 3. Mantel test scores and ordination plots. 
Non-metric dimensional scaling (NMDS) based on 
pairwise Bray-Curtis dissimilarities from (A) mor
phospecies counts, (B) COI relative OTU abundance, 
(C) 18S relative OTU abundance, and (D) biplot of 
Principal Components Analysis of standardised key 
physicochemical properties. Filled arrows between 
plots represent Mantel scores (R-values) across com
munity dissimilarity matrices, while arrows inside 
NMDS plots represent correlation (or in D, eigenvec
tors) of physicochemical or biological parameters to 
the transformed ordination space. Roman numerals 
represent geographical regions.   
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data, performed similar to NSI values derived from the full meta
barcoding dataset in terms of correlation with the PI, but with a slightly 
better agreement (κ = 0.66 for biotic indices vs. κ = 0.57 for NSI; Fig. 4C 
and 5A). In 67 out of 96 pooled samples, the correct environmental 
status based on PI could be predicted and an exact PI at 0.2 units below 
the measured value was predicted in average (Fig. 5A). In comparison to 
COI, biotic indices derived from 18S metabarcoding data performed 
worse, but did result in highly significant correlation (R2 = 0.20, p <
0.001; Fig. 5B). 

Using the whole metabarcoding datasets for de novo biotic index 
prediction, a total of 49 potential indicator taxa could be identified 
based on COI, and 118 based on 18S (Fig. 6; Supplementary Table S7). 
For both datasets, the majority of indicators appeared to be sensitive to 
contamination or disturbance (EGs I and II). For COI, the taxonomic 
composition at higher ranks were similar across EGs with Polychaeta 
and Cnidaria appearing in all groups from sensitive to tolerant or 
opportunistic taxa (Fig. 6A–C). However, at finer resolution, there was 
no overlap, and no family was found to harbour both genera or species 
sensitive to disturbance with others insensitive. 

In general, arthropod taxa were more common among indicators of 
disturbance than taxa from other phyla (groups II–V; Fig. 6B–C). Syn
chaetidae and Nematoda only occurred in groups IV and V. Several in
dicators identified in the COI-based index were taxa that are already 
established as bioindicators, with 26 occurring in AMBI version 6.0 
(Borja et al., 2000) of which 14 agreed regarding sensitivity, i.e. group 
membership (sensu group I–II vs. III vs. IV–V; see Supplementary 
Table S8). Few metazoan OTUs from 18S data could be classified to 

genus or species rank (Fig. 6D–F), but at family level many bioindicators 
identified using 18S overlapped with COI (Supplementary Table S8). 
Examples were Capitellidae and Opheliidae, with species rank indicators 
predicted and assigned to the same ecological group (EG) based on COI 
data. Further, a large number of protists were represented based on 18S 
data, including Stramenopiles (mainly in groups I–III and notably Lab
yrinthulomycetes), Cercozoa (notably Imbricatea, across groups but 
with different genera represented) and Alveolata (notably ciliates across 
groups but again with different genera represented). Several fungal taxa 
were also found among the potential indicators of groups I–III whereas 
lobose amoeba were found among groups IV–V, along with Excavata 
(Andalucia and Oxymonadida), NAMAKO groups I and II and 
Palpitomonas. 

3.4. Inference and analysis of co-occurrence networks 

In total, samples from four platforms (OSS, RIN, OSF and VFR) were 
included in the network analysis of taxa, of which 40–42% were 
impacted (PI > 2, see Table 1). For both 18S and COI, the majority of 
taxa were shared between impacted and non-impacted sites (80% and 
54%, for 18S and COI, respectively). A majority of the potential indi
cator taxa identified appeared in the 18S networks, while only about one 
third of identified COI indicators appeared (see Fig. 7). All network 
nodes, potential keystones and edge properties are summarised in 
Supplementary Tables S9-S14. 

There were some notable differences between impacted and non- 
impacted networks. For 18S-based results, the major difference was 

Fig. 4. Comparisons of Norwegian Sensitivity Index (NSI) between (A) COI metabarcoding vs. morphology-based counts, (B) between morpho-based NSI vs. 
Pressure Index (PI), and (C) between COI-based NSI vs. PI. Coloured boxes represent corresponding environmental status groups (from blue / very good to red / bad). 

Fig. 5. Cross-validated predictions of Pressure Index (PI) using de novo biotic indices based on taxa from (A) COI and (B) 18S metabarcoding. Bar graphs 
represent the distribution of ecological status group predictions relative to corresponding reference values of the modelled impact variable, while box plots represent 
the distribution of exact predictions relative to measured values. 
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the number of mutual exclusion type associations, shown by the higher 
average negative degree and the higher percentage of negative edges in 
the impacted network (Table 1). Essentially, taxa with a higher node 
degree tended to have negative edges connected to them in the impacted 
network, while higher degree taxa had mostly positive edges in the non- 
impacted network (Fig. 8A–B). In addition, the non-impacted 18S 
network was larger, in terms of diameter and radius, with longer average 
shortest path length, and had somewhat higher density and centraliza
tion compared to the impacted network (Table 1). In many ways, the 

opposite trends were observed in the COI networks. The impacted COI- 
based network had higher average degree, higher density and signifi
cantly higher neighbourhood connectivity (p = 1.7E-11), compared to 
the non-impacted network. Further, the proportion of negative edges 
was higher in the non-impacted COI network (Fig. 8C–D). The impacted 
and non-impacted COI networks were identical in terms of diameter and 
radius. However, the relatively few shared edges compared to the high 
percentage of shared nodes suggests a significant reorganization of co- 
occurrence patterns between impacted vs. non-impacted sites. This 
was confirmed by low Jaccard edges scores (0.198 and 0.340 for 18S and 
COI respectively) between the most common sub-networks determined 
by NetShift. Changes in the composition of detected modules (commu
nities) are shown as community shuffle plots (Supplementary Figure S3). 

Considering the attributes of the bioindicator nodes in the 18S 
network, those with the highest degree typically belonged to EG IV–V in 
the impacted network, while the most connected belonged to EG I–II in 
the non-impacted networks. Further, the bioindicator nodes were 
significantly different from other nodes in the impacted network, having 
higher degrees due to a greater number of positive associations. There 
was little overlap between the potential keystone nodes in the impacted 
and non-impacted networks, although four 18S taxa and six COI taxa 
were present in both networks (see Supplementary Table S12). Among 
these, Amastigomonas mutabilis, Marimonadida, PW19, Ascidiacea and 
Capitella capitata, were also identified as bioindicators. 

4. Discussion 

Our results show that sediment eDNA metabarcoding can be used to 
directly and accurately infer impacts from offshore oil extraction, by 

Fig. 6. KRONA charts presenting the taxonomic distribution of identified indicator taxa per ecological group (EG) for taxa identified from COI (A-C) and 18S 
(D-F) metabarcoding. EG I - II (A, D) represent low impact, EG III (B, E) intermediate and EG IV - V (C, F) high impact. 

Table 1 
Association network metadata and properties.  

Dataset: 18S COI 

Network property Impacted 
(PI > 2) 

Non–impacted Impacted Non–impacted 

Samples 38 (42%) 52 (58%) 33 (40%) 49 (60%) 
Shared edges 96 (16% vs 30%) 111 (29% vs 47%) 
Average degree 7.0 5.9 18 9.9 
Average negative 

degree 
2.7 0.66 2.3 2.8 

Negative edges 
(%) 

27 12 14 28 

Diameter 9 16 5 5 
Radius 5 8 3 3 
Average shortest 

path length 
3.5 6.0 1.7 2.1 

Clustering 
coefficient 

0.32 0.36 0.63 0.45 

Density 0.043 0.054 0.41 0.21 
Centralisation 0.15 0.18 0.33 0.31  
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utilising biotic indices such as the Norwegian Sensitivity Index (NSI), 
given sufficient spatial replication, even though the accuracy obtained 
did not reach the same accuracy as values inferred using morphotaxo
nomic data. Here, we used three DNA extraction replicates and three 
grabs per station, as suggested by an earlier study using a subset of the 
samples analysed here for methodological benchmarking and optimi
sation (Hestetun et al., 2021). We also verify that inferred NSI values 
based on COI metabarcoding correlated and strongly agreed with 
morpho-taxonomic data and with a custom pressure index (PI) devel
oped to take into account the main impacts caused by oil drilling and 
extraction in the studied habitats. 

Inference of existing indices requires a barcode with sufficient 
taxonomic resolution for the targeted group, in this case macro
invertebrate metazoa, for which genera or species information is 
necessary for most indicators in the NSI (Rygg and Norling, 2013). Here, 
this could only be achieved using COI metabarcoding, as opposed to 18S. 
This is in line with previous studies (e.g. Gibson et al. 2014), high
lighting that 18S, although a suitable marker for protists, is typically not 
informative at the species level for metazoans (Tang et al., 2012). For 
COI, sequence records in BOLD were available for 78% of the genera 
previously identified morphologically in monitoring region IV, just 
north of regions II and III studied here (Hestetun et al., 2020). While the 

database coverage for at least one part of 18S for identified morphotaxa 
in region IV was not very far behind, at 56%, only 5% of the 18S reads 
could be classified to genus rank, compared to 52% of COI reads. This 
discrepancy can be explained by Metazoa only corresponding to roughly 
half of the 18S sequence reads and being dominated by nematodes, 
which are not included in routine monitoring surveys and for which 
repositories of barcode reference sequences are only rudimentary 
(Schratzberger and Ingels, 2018). The relative sequence read abundance 
of nematodes may also have been overestimated compared to their true 
proportion of eDNA abundance or biomass, since the 18S primers used 
here were originally developed specifically for this phylum and thus 
likely to be negatively biased against other phyla due to mismatches 
(Blaxter et al., 1998). Finally, database coverage is likely lower for the 
less studied Barents Sea, from which we also included samples in this 
study. 

In spite of the difficulty in taxonomic classification of the 18S data, 
we were able to successfully develop novel biotic indices based on this 
dataset as well as the COI metabarcoding data. We chose to use the 
lowest, best resolution taxonomic groupings for this purpose, i.e. 
including unclassified higher groups when assignment in cases where 
assignment to lower ranks was not possible. This facilitates re-use of 
developed indices in future datasets as long as the same reference 

Fig. 7. Venn diagram describing the distribution of nodes included in impacted and non-impacted co-occurrence networks, and identified as potential indica
tor taxa. 

Fig. 8. Reconstructed ecological networks from 
18S data and COI data. Networks generated with 
CoNet based on 5 different measures of association 
between taxa (Pearson and Spearman correlation, 
mutual information, Bray-Curtis and Kullback–Leibler 
distance) and using the “permut and boot” procedure. 
Impacted 18S network (A), non-impacted 18S 
network (B), impacted COI network (C), and non- 
impacted COI (D). Node colours correspond to 
ecological groups (EG) for identified indicators (grey 
= not identified indicator, green = EG I–II, orange =
II, red = IV–V). Node size is proportional to degree 
(number of edges) and edge colours correspond to co- 
occurrence type (green = positive, red = negative, 
indicating mutual exclusion).   
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database is used (Lanzén et al., 2020). It also avoids the problem of 
choosing a specific taxonomic rank for analysis, which inevitably results 
in a compromise (Salis et al. 2017). However, the development of de 
novo indices is in itself a taxonomy independent strategy, and while not 
done here, can instead be applied directly to unlabelled OTUs based on 
sequence similarity as in e.g. Keeley et al. (2018), Lanzén et al. (2020) or 
Mauffrey et al. (2020). While this alternative strategy can bypass limi
tations imposed by taxonomic references, it has the drawback of 
requiring any new sequence data not included in the original analysis to 
be mapped to previously obtained OTU sequences. 

Supervised machine learning offer another set of promising ap
proaches that have been used successfully to predict the level of impact 
from benthic eDNA metabarcoding data (e.g. Cordier et al. 2017; Arm
strong and Verhoeven 2020; Lanzén et al., 2020). We also attempted this 
on the present dataset, using the method described in Lanzén et al. 
(2020), which resulted in poor performance with non-significant 
agreement (data not shown). As for de novo index development, it re
quires a relatively large number of sampling stations spanning an 
appropriate impact gradient, and while machine learning is known to 
better handle noisy data and outliers (Cordier et al., 2018), it is possible 
that the 97 stations included here were not sufficient. An explanation for 
this poor performance could be that the impact gradient of the dataset 
was skewed towards low impact, while clearly impacted stations were 
found only at a few installations (OSS, VFR, RIN). This likely caused the 
cross-validation used here to under-predict classification accuracy as 
well. Nonetheless, as opposed to the attempted machine learning 
approach, impact estimated using our de novo indices correlated strongly 
with pressure (PI) for both COI and 18S metabarcoding data, with the 
COI data de novo index showing comparable accuracy to using COI to 
calculate NSI, and a performance close to NSI based on morpho- 
taxonomy data. 

Several of the installations and stations examined have been ana
lysed using metabarcoding previously, specifically VFR and OSC in re
gion III by Lanzén et al. (2016). However, 454 Pyrosequencing, and a 
primer targeting a different region of the 18S rRNA gene was used in 
these earlier studies, which makes it challenging to incorporate or 
compare the data with this study. Lanzén et al. (2016) demonstrated 
strong correlation between community composition and impact from oil 
extraction. Several possible indicator taxa were also identified, but their 
performance was not evaluated using cross-validation, or used to 
develop novel biotic indices, as in the current study. This was, however, 
attempted in a recent study by Mauffrey et al. (2020), who compared 
two other offshore installations in the North Sea, operated by Total E&P 
Denmark. 

Whereas in the present study, where morpho-taxonomy-based NSI 
showed the best correlation to pressure, Mauffrey et al. (2020) predicted 
taxonomy-independent biotic indices using metabarcoding that corre
lated better with physicochemical parameters than morpho-taxonomic 
indices did. However, there are many differences to our study that 
make them difficult to compare directly. First of all, we constructed a 
pressure index independently of the studied sample set that was only 
based on parameters known to correspond to pressures from petroleum 
extraction (Ba, Cu, THC and PAHs). Individual parameters in this index 
scaled with limits established in Norwegian legislation based on eco
toxicology studies (for Cu and PAH16) or a correlation to NSI-based 
status thresholds (for Ba and THC). Mauffrey et al. (2020) instead 
used PCA to find a subset and scaling of physicochemical parameters 
that explained as much as possible of the total variation in measured 
parameters. These do not necessarily correspond to, or scale with, 
environmental impact, whereas biotic indices are designed to do exactly 
this, giving a somewhat unfair advantage to metabarcoding data over 
morpho-taxonomy in their comparison. Further, a different biotic index 
was used, namely AMBI, instead of, here, NSI. This likely had a minor 
influence on results, however. The same 18S primers were also used by 
Mauffrey et al., allowing for a future meta-analysis to combine or 
compare these results with the results from our study directly, but this is 

beyond the scope of the current study. 
The strong correlation of the PI used here with NSI and community 

structure indicates that the PI was a suitable proxy for ecologically 
relevant impact. However, we noticed that the ratio of PAH to THC 
varied substantially between platforms (e.g. 2E-3 in VFR compared to 
6E-5 in OSS). Possible explanations include differences in age, origin and 
composition of the examined discharges (for instance the relative frac
tion of drilling waste vs. produced water), since our dataset includes 
both general impact from operational discharges, and more severe point 
impact from leaking injector wells. Further, the contribution to the PI of 
high levels of PAHs was modest compared to that of THC, which typi
cally contributed to balance the PI towards better agreement with NSI. 
The annual average environmental quality standard (AA-EQS) of PAH16 
used as threshold for “good” status in sediments according to current 
Norwegian legislation for coastal sediments (2000 ppb) may be under
estimated, or based on less ecotoxic individual PAHs. 

While several previous studies have found that distance to the plat
form was a main driver of community structure (Laroche et al., 2018a; 
Cordier et al., 2019; Mauffrey et al., 2020), this correlation was rela
tively weak in our study (Supplementary Table S6). The likely expla
nation for this is that the most impacted sites here were associated with 
injection well leakage, located some distance from the platform and 
causing high local impact. Indeed, the presence of sedimented hydro
carbons was clearly visible in the grab samples from the worst impacted 
stations in our study. As reported previously in e.g. Gray et al. (1990), 
Grant and Briggs (2002) and Bakke et al. (2013), disturbance of benthic 
communities is most readily visible in the area local to the impact (see 
Cordes et al. 2016 for a review). 

Among the indicator taxa predicted using COI metabarcoding here 
with assigned EGs in AMBI, the most well known example is probably 
the annelid worm Capitella capitata (EG V), which is tolerant to poor 
oxygenation and recognised as a universal and classic indicator of high 
sediment content of organic matter (Pearson and Rosenberg, 1977). 
Sediments with high hydrocarbon content tend to become oxygen 
depleted (Breuer et al., 2004), and Capitella has been reported in pre
vious studies at sites with high hydrocarbon content (Daan et al., 1992; 
Daan et al., 1994; Olsgard and Gray, 1995). The family Capitellidae was 
also identified from the 18S dataset (EG IV), while several groups of 
nematodes, nemerteans, cnidarians, polychaetes and Xenoacelomorpha 
were identified as sensitive to impact. At least one genus of nematodes, 
Desmodorida, has previously been reported as a sensitive indicator 
(Bianchelli et al., 2018). 

Similarly to a previous study using 18S metabarcoding, the majority 
of identified potential bioindicators here were protists (Lanzén et al. 
2016). Among them were nine different taxa belonging to the class 
Labyrinthulomycetes, all placed in EG I–II. This also agrees with Lanzén 
et al. (2016), where this class was identified as sensitive to high lead and 
barium concentrations. Labyrinthulomycetes have been found as de
composers or parasites on algae or marine invertebrates (Bongiorni, 
2012). Fungi of the order Microascales was also found as a potential 
indicator tolerant to THC by Lanzén et al (2016). Here it was classified to 
EG III, which is inconclusive, and likely indicates intermediate toler
ance, but sensitivity to very disturbed habitats. Apart from Laby
rinthulomycetes, protist classes with the highest number of identified 
indicator taxa sensitive to impact (EG I–II) were Ciliophora (ciliates) and 
Imbricatea. The latter are cercazoan protists with secreted surface sili
ceous scales. Interestingly, two clades of Imbricatea were also identified 
as opportunistic and tolerant to impact (EG IV–V). Four taxa in the 
Discosea class of amoeba were also found among EGs IV–V, as well as the 
clades NAMAKO-1 and 2, possibly anaerobic and identified in anoxic 
sediments from a meromictic lake (Takishita et al., 2007). 

Though not included in the present study, we note that prokaryotes 
also provide very relevant targets for future studies and attempts to 
develop de novo biotic indices. Their abundance, central role in 
ecosystem processes and functional diversity, including specialist taxa 
able to degrade hydrocarbons, make them appealing bioindicators. In a 
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study that targeted both prokaryotes and eukaryotes as indicators the 
former showed higher correlation with disturbance from oil extraction 
(Laroche et al., 2018a). 

Even though we attempted to remove all sequences likely to have a 
pelagic origin, we expect that we did not manage to find all, and that we 
may have mistakenly removed a few benthic OTUs collaterally. One way 
to improve the situation would be to include samples from the water 
column in future studies to identify pelagic taxa. The Biomarks survey 
found that about 10% of the OTUs were found both in the benthos and 
the water column in a mix of European coastal sites (Lopez-Escardo et al. 
2018), compared to 16% of the OTUs being removed manually from 18S 
as likely having a pelagic origin. Lopez-Escardo et al. also noted several 
polychaetes and molluscs among these OTUs, likely representing larval 
life stages of predominantly benthic organisms. Though a large part of 
the pelagic OTUs found in the benthos were likely from debris or dead 
organisms, it is also possible that a small amount of planktonic organ
isms entered the sample during transport to the water surface of the van 
Veen grabs. Hence, a possible way to reduce the number of reads from 
pelagic OTUs would be to use a more closed system such as a multicorer, 
as done by e.g. Mauffrey et al. (2020). This also has the added benefit of 
providing better spatial replication with less sampling effort. On the 
other hand, as the current Norwegian regulations, following the EN-ISO 
16665 standard, require 0.1 m2 of surface area for morpho-taxonomic 
analysis, the use of a multicorer would not provide sufficient material 
for parallel eDNA and morphological sampling (ISO, 2014). 

Co-occurrence network reconstruction based on metabarcoding data 
remains challenging, resulting in a large share of false positives, in spite 
of the extensive improvements achieved through continuously evolving 
approaches (Faust et al. 2012, Röttjers and Faust 2018, Berry and 
Widder, 2014; Barroso-Bergadà et al., 2020). Despite the methodolog
ical challenges and the fact that biological implications of network 
properties remain difficult to interpret, inference of association (co- 
occurrence) networks from eDNA data has recently gained significant 
momentum (Lima-Mendez et al. 2015; Röttjers and Faust 2018; Yuan 
et al., 2021). Nonetheless, association networks of protistan commu
nities constructed from eDNA data have revealed that impacts of 
anthropogenic disturbances are reflected in network properties, with 
substantial differences found in the network structure of PAH- 
contaminated versus pristine coastal sediments inferred from data on 
all three domains of life (Jeanbille et al., 2016, Forster et al., 2021). Our 
analysis only indicated subtle differences between the impacted and 
non-impacted 18S and COI networks in terms of their network topology, 
with few common patterns between the two datasets. However, the 18S- 
and COI-based networks reconstructed here did agree in that networks 
from impacted sites showed higher average degrees and shorter average 
path lengths compared to those from non-impacted sites. This indicates a 
more compact yet also more complex structure. 

The discrepancy between the two datasets was particularly apparent 
for the ratio of negative to positive interactions, expected to be higher in 
the impacted networks as seen for 18S-based networks. A higher pro
portion of positive interactions could indicate a more resilient commu
nity, which we assumed would be the case in non-impacted sites 
(Laroche et al., 2018b). However, the unexpected trend identified based 
on COI here has also been observed by DiBattista et al. (2020), who 
reported that seawater communities heavily impacted by oil and gas 
drilling exhibited fewer negative interactions based on presence- 
absence of eukaryotic families (DiBattista et al., 2020). Nonetheless, 
both datasets in this study pointed towards a significant rewiring of the 
co-occurrence networks based on impact. Most of the taxa that persisted 
across the impact states did not maintain similar association patterns 
within the community. 

5. Conclusions 

This study illustrates how de novo biotic indices sensitive to impacts 
from offshore oil drilling can be developed from a dataset based on a 

modest number of stations (n = 97). These indices have the potential to 
perform comparably to existing morpho-taxonomy-based biotic indices 
in terms of predicting impact from oil drilling and extraction. Thus, we 
are confident that, using a larger set of samples from a more extensive 
gradient of pollutants, indices could be developed with a performance 
that goes beyond that of current monitoring practices. By avoiding 
costly and time consuming morphologic identification, metabarcoding- 
based indices would better use available resources and thus allow for a 
higher spatial and temporal resolution with the same amount of re
sources as current monitoring programs. In doing so, future 
metabarcoding-based surveys would also generate publicly available 
data useful for e.g. improving our understanding of benthic biodiversity 
and ecological interactions, and their sensitivity to anthropogenic 
pressures. We also show that inference of co-occurrence networks can 
play an important role in this respect by revealing trends in the inter
action structure of communities not revealed directly by changes 
observed in composition and diversity of individual samples. However, 
it is also clear that morphology-based identification can complement 
results based on metabarcoding, and can help to identify taxonomic gaps 
for which reference sequences are missing. Thus, in future monitoring 
we recommend that metabarcoding is carried out in parallel to morpho- 
taxonomic identification for a period of time, to firmly establish how the 
two methods compare across time, environment and impact types. The 
latter can then be applied on a subset of samples as a complementary 
methodology. 
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Barroso-Bergadà, D., Pauvert, C., Vallance, J., Delière, L., Bohan, D.A., Buée, M., 
Vacher, C., 2020. Microbial networks inferred from environmental DNA data for 
biomonitoring ecosystem change: strengths and pitfalls. Mol. Ecol. Resour. 21 (3), 
762–780. https://doi.org/10.1111/men.v21.310.1111/1755-0998.13302. 

Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone 
species with co-occurrence networks. Front. Microbiol. 5, 219. https://doi.org/ 
10.3389/fmicb.2014.00219. 

Bianchelli, S., Buschi, E., Danovaro, R., Pusceddu, A., 2018. Nematode biodiversity and 
benthic trophic state are simple tools for the assessment of the environmental quality 
in coastal marine ecosystems. Ecol. Ind. 95, 270–287. https://doi.org/10.1016/j. 
ecolind.2018.07.032. 

Blaxter, M.L., De Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., 
Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T., Thomas, W.K., 
1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392 
(6671), 71–75. 

Bongiorni, L., 2012. Thraustochytrids, a Neglected Component of Organic Matter 
Decomposition and Food Webs in Marine SedimentsBiology of Marine Fungi. In: 
Raghukumar, C. (Ed.), Biology of Marine Fungi. Springer, Berlin Heidelberg, Berlin, 
Germany, pp. 1–13. 
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