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Abstract: The use of unmanned aerial vehicle (UAV)-mounted radar for obtaining snowpack pa-
rameters has seen considerable advances over recent years. However, a robust method of snow
density estimation still needs further development. The objective of this work is to develop a method
to reliably and remotely estimate snow water equivalent (SWE) using UAV-mounted radar and to
perform initial field experiments. In this paper, we present an improved scheme for measuring SWE
using ultra-wide-band (UWB) (0.7 to 4.5 GHz) pseudo-noise radar on a moving UAV, which is based
on airborne snow depth and density measurements from the same platform. The scheme involves
autofocusing procedures with the frequency–wavenumber (F–K) migration algorithm combined with
the Dix equation for layered media in addition to altitude correction of the flying platform. Initial
results from field experiments show high repeatability (R > 0.92) for depth measurements up to 5.5 m,
and good agreement with Monte Carlo simulations for the statistical spread of snow density estimates
with standard deviation of 0.108 g/cm3. This paper also outlines needed system improvements to
increase the accuracy of a snow density estimator based on an F–K migration technique.

Keywords: UAV; UWB radar; snow water equivalent; snow density

1. Introduction

There is a vast variety of applications for drone-mounted radar including archaeolog-
ical investigations; detection of buried mines [1,2]; soil moisture mapping [3], snow, ice,
and glacier measurements [4,5]; and mapping of civil infrastructure [6,7]. With regards to
snow, one application is snow water equivalent (SWE) measurements, which is of great
interest for the hydropower industry and other disciplines in need of meteorological data.

Today, ground-based SWE surveys (manual or with ground penetrating radar (GPR))
are usually conducted by means of snowmobile, where avalanche safety and accessibility
might reduce the survey area [8–10].

The ground below the snowpack in mountainous and marshland areas often contains
sparse scattering objects, potentially producing diffraction hyperbolas in a radar B-scan.
These objects are usually rocks with a relative permittivity (∼4–7) that is different from
snow. Migration methods applied on radar imagery at the correct propagation velocity of
the intermediate medium cause the hyperbolas to collapse at their focal point. Previous
studies using commercial GPR, mounted on a snowmobile, show that SWE can be estimated
using frequency–wavenumber (F–K) migration and manual velocity picking [8]. A similar
method also demonstrates autofocusing using the varimax norm to automatically pick
the velocity [11], and similar results can be produced from offset antenna arrays [12].
Furthermore, Kirchhoff’s time migration with a two-layered variable-depth velocity model
was used to focus radar image GPR data from a helicopter platform [5]. Recent work shows
the use of a commercially available, lightweight, and small form-factor 24-GHz radar for
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drone-mounted measurements of lake ice and SWE measurements of dry snow from a
stationary platform with a known snow depth [13].

Other work show SWE estimation using manually measured snow depth, snow age,
and snow class defined by the location [14]. Manual depth measurements at calibration
locations can also be used to estimate SWE with radars [15]. Alternatively, by combining
two way travel time (TWT) with meteorological models obtained from empirical studies,
SWE can be estimated from quasi-analytical expressions [16]. This latter model generalizes
the snowpack layer model for which the density depends on depth. The assumption
might be acceptable for applications that only need coarse density estimations. However,
the scheme needs modifications for each new climatic zone (maritime or continental
climate) to be valid [16]. Additionally, common mid-point (CMP) gathers can also be used
to extract the dielectric permittivity of snow [17]. Several studies take the concept a step
forward and outline methods for automatic detection and segmentation of diffraction
hyperbolas. This research includes novel image threshold methods and clustering [18],
parabolic fitting [19], apex detection by fitting an analytical hyperbola function to the profile
edges detected with a Canny filter [20], template matching algorithms [21], and a neural
network approach [22]. SWE can also be estimated on a large scale using neural networks
to perform a nonlinear mapping between datasets of manual measurements to predict
SWE [23], and by combining snow model simulation, manual measurements, and auxiliary
products derived from remote sensing in a k-nearest neighbors (k-NN) algorithm [24].

This paper presents a technological approach to SWE measurements by using ultra-
wide-band (UWB) radar mounted on an autonomous flying unmanned aerial vehicle
(UAV). The method involves estimating snow depth and density by using well-established
F–K migration theory and the Dix equation for layered media in addition to altitude
correction of the flying platform. The goal is to estimate propagation velocity in the snow
using air-launched UWB signals with significant separation (∼5–10 m) between the radar
platform and medium of interest (snowpack) compared to GPR at ground level. This is
accomplished by analyzing diffraction hyperbolas in B-scan radar images, described in the
following sections.

2. Materials and Methods
2.1. Theory

This section covers the main method used for SWE estimation and the theory behind
the different steps. We assume that the radar image is already preprocessed with both
matched filtering and frequency-domain noise filtering. These basic preprocessing steps
for the UWB radar data are described in more detail in [25,26].

2.1.1. Altitude Correction

As the UAV performs an airborne survey of an area, the aircraft’s altitude will in-
evitably vary somewhat, at least on a medium to large spatial scale. The altitude variations
depend on what sensors the UAV computer has available to feed into the autopilot. In our
setup, we have a laser rangefinder [27] that measures relative altitude on a centimeter scale
and provides real-time feedback to the autopilot. Nevertheless, minor deviations in the
altitude regulation will distort the radar image. Hence, the radar data algorithms need
some correction to “level out” these variations.

The method used in this work is to circularly shift the radar data in the fast-time
direction according to the relative variations in altitude. The rectification is performed by
combining the laser range data and the first surface pulse reflection in the radar return.
The combination of altitude information in these two signals reduces spurious deviations
significantly and minimizes the influence of signal drop-out in the laser rangefinder.

Prior to migration, the sectioned data segment is expanded in fast-time according to
the distance measured from the UAV to the snow surface. This method is explained in
more detail in [26].



Remote Sens. 2021, 13, 2610 3 of 17

2.1.2. Methods to Estimate Propagation Velocity from Diffraction Hyperbolas

There are several different methods to estimate the propagation velocity of a radar
signal return from an object [28]. Nonetheless, this paper will focus on estimating the
propagation velocity by analyzing diffraction hyperbolas in B-scan radar images. In a
B-scan GPR image, diffraction hyperbolas are manifested as “south-opening” branches [18].
If diffraction hyperbolas are present in the radar image, there are generally two different
procedures to extract the bulk propagation velocity information:

• Curve fitting, which attempts to draw a hyperbolic function in the image by optimizing
fit with underlying data [18];

• Autofocusing techniques, which use a migration algorithm and generate performance
metrics to find the optimum value of the velocity [29].

As previously stated, hyperbolas contain information about the mean propagation
velocity in the medium. Hence, if we know the parameters that mathematically describe the
hyperbola, we can estimate the propagation velocity [30] by the simple relation between the
hyperbola asymptotic constants a and b. Thus, the velocity vrms can be calculated from [31]:

vrms = 2
b
a

, (1)

where a and b need to be in their correct units, namely, seconds and meters, respectively.
Autofocusing is performed by testing different propagation velocities in a migration

process where we assess how well the image is focused in order to determine the mean
propagation velocity (see example in Section 2.3).

2.1.3. Autofocusing Metrics

Autofocusing techniques are widely used in, for example, synthetic aperture radar
(SAR) applications for phase error correction [32–34], and for GPR, usually to estimate the
dielectric constant [29,35–37]. Autofocusing generally works by testing different propa-
gation velocities vt with a migration algorithm outputting a migrated image s(x, y)vt and
choosing the best fitting velocity based on some performance metric.

Since the apex of the hyperbolas should have a maximum at the correct propagation
velocity, we can look at the average image intensity AI to evaluate the focusing [29]. For a
migrated radar image s(x, y)vt at test velocity vt, this parameter can be stated as

AI(vt) =
∑m

i=1 ∑n
j=1 |s(xi, yi)vt |k[

∑m
i=1 ∑n

j=1 |s(xi, yi)vt |
]k , (2)

where k ∈ [2, 4]. The size of the image is represented by m and n as the slow-time and
fast-time samples, respectively.

However, this metric is known to have poor performance for increasing signal to noise
ratio (SNR) [38]. Thus, higher-order techniques that involve the variance of the migrated
image [38] can be expressed by

AH(vt) =
∑m

i=1 ∑n
j=1[|s(xi, yi)vt | − µ̂]k

(mn− 1)σ̂k , (3)

where k ≥ 1, and µ̂ and σ̂ are the mean and variance of the migrated data, respectively.
As in [38], a k value of 10 was found to be optimal. AH will have a maximum at the

best fitting propagation velocity representing the mean propagation velocity vrms along the
antenna-to-target trajectory.

2.1.4. Dix’s Equation

We emphasize that the best fit velocity vrms represents the average velocity from the
antennas to the hyperbola. Hence, to remove the influence of the air section to calculate the
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average propagation velocity vs in the snow itself, Dix’s equation for layered media can be
used [39]:

vs =

√
v2

rmsttot − v2
airtair

ttot − tair
, (4)

where ttot is the total TWT in the medium, tair is the TWT of the air layer, and vair is the
approximate propagation velocity in the atmosphere (i.e., approximately 0.2997 m/ns).

2.1.5. Estimation of Snow Parameters

Snow depth is usually measured by evaluating the TWT from the snow surface to the
ground and calculating the distance traveled based on an estimate of the propagation velocity.

For lossless, homogeneous, isotropic materials, the relative propagation velocity in
the snow vs is related to the relative dielectric constant εr by [30]:

εr =

(
c
vs

)2
, (5)

where c is the propagation velocity in free space. The depth ds is then simply written as

ds = vs
tsnow

2
, (6)

where tsnow is the TWT from the snow surface to the ground. Equation (5) states that the
relative dielectric constant is nonlinearly related to the propagation velocity. From this
relation, there are several different models for estimating the density of snow.

The relation between snow permittivity and density has been modeled both theoreti-
cally [40] and empirically [41]. Considering dry snow, a linear relationship is an acceptable
approximation for snow densities below 0.5 g cm−3, where the relation between the real
part of the relative dielectric constant ε′r and relative snow density ρs can be modeled as [41]

ρs =
ε′r − 1

2
, (7)

where ρs is relative density compared with the density of water (1 g/cm3). SWE is the depth
of water resulting from the mass of melted snow and typically expressed in millimeters
of equivalent water [42]. The SWE is the product of the snow depth and the vertically
integrated snow density, and can be expressed as

SWE = dsρs [mm] . (8)

Furthermore, SWE is often used to estimate the total precipitation in a given location
and the resulting water volume available for the melt season.

2.2. Radar System

The ultra-wideband snow sounder (UWiBaSS) is a custom-developed radar system for
drone-mounted snow measurements. Papers [25,26,43] detail recent advances of the radar
system. New developments include retrofitting the radio frequency (RF) operation band
as well as digital modules with 3D printed casings coated in conductive paint to reduce
weight while still offering electromagnetic interference (EMI) protection. Additionally,
500-MHz high-pass filters are added to the receiving (RX) channels to reduce low-frequency
antenna cross-talk. Table 1 summarizes main features of the UWB-system while Figure 1
shows the UAV “Cryocopter FOX” during flight.
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Table 1. UWiBaSS key characteristics.

Attribute Value

Signal generation UWB Pseudo noise
System bandwidth 3.8 GHz (0.7 to 4.5 GHz)
Range resolution ≈5 cm

m-sequence clock frequency 12.8 GHz
Measurement rate 52 Hz (max 1 kHz)

MLBS order 9 (511 range bins)
Nominal output power 17.3 dBm

Unambiguous range in air 5.98 m
Average power consumption 8.1 to 9 W

Total Weight ≈3 kg

Figure 1. UWiBaSS mounted under the UAV Cryocopter FOX during flight.

2.3. Processing Flow

The basic preprocessing steps for the sampled radar data involve match filtering to
correlate the received signal with the transmitted signal, high-pass filtering to remove
low-frequency cross-talk between receiving (RX) and transmitting (TX) antennas, reference
subtraction, and altitude correction involving rectification of the snow surface return.
A detailed description can be found in [26].

The laser altimeter measures the distance to the snow surface. By locating the first
interface reflection, the radar is capable of similar distance measurements. We have found
that the best practice is to use a combination of both sensors in case of laser signal drop
out, which possibly occurs when the laser altimeter beam strikes large snow crystals at
an angle.

A distance-vector representing traveled distance over the snow surface is calculated
using the position data collected from the UAV autopilot. Using the Haversine formula,
we calculate the distance between each coordinate point to generate the distance vector.
Due to the non-equidistant sampling of this vector, the radar data goes through a nonlinear
interpolation in the slow-time direction. This procedure interpolates the radar data into a
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domain with equidistant position samples in space, allowing us to fix the sampling interval
dx instead of calculating a mean value for each segment.

Hyperbolas in the radar image are segmented manually using a simple “draw rect-
angle” function, creating a slow-time section of the image to focus within. Furthermore,
fast-time data outside the rectangular window is set to zero. Although not implemented
here, this step can be automated [18].

The method averages altimeter data within each short section (5 to 20 m). Further,
we add zeros to the top of the radar image corresponding to the actual scanning platform
altitude above the snow surface, effectively recreating the “real” radar scenario.

Figure 2 shows an example image of the processed radar data before the autofocus-
ing procedure.

Figure 2. Example radar image of hyperbola segmenting and altitude correction.

Autofocusing

The autofocusing procedure involves performing F–K migration for a set of test
velocities, where autofocusing metrics are calculated for each test velocity. In order to
reduce the numerical calculation time, the search for the optimal velocity can be done
in several different ways, such as first performing a low-resolution scan over a broad
spread of velocities before performing a high-resolution scan over a much more narrow
interval. For the present tests, we used a brute force linear vector in two steps. First a
coarse search was performed with step value of 0.01 m/ns to scan through an interval from
0.1 to 0.4 m/ns. Thereafter, a fine search was used with step value of 0.0005 m/ns to scan
through an interval from 0.25 to 0.3 m/ns.

F–K migration was performed with the CREWES MatLab toolbox written by G. F.
Margrave for the CREWES project (University of Calgary) [44,45]. The F–K domain in-
terpolation routine was modified with a convolution, omitting a for-loop in order to
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reduce the computational time. This modification improved the speed of the function by
approximately 200%.

After migration over all test velocities, we selected the autofocusing metric’s (see
Equation (3)) maximal value, corresponding to a “best fit” propagation velocity. This
velocity represents the average velocity from the radar antennas to the ground; therefore,
we need to remove the influence of the air section with Dix’s equation. This estimation
is performed for each manually selected section. The section length is typically in the
range of 5 to 20 m containing one or more hyperbolas. Figure 3 shows an example of the
autofocusing result for a segment gathered as in Figure 2. Figure 4 shows the combined
autofocusing result of the coarse and fine search.

(a) Input image (b) Migrated with
vt = 0.1 m/ns.

(c) Migrated with
vt = 0.268 m/ns.

(d) Migrated with
vt = 0.34 m/ns.

Figure 3. Example of the autofocusing procedure for an image segment with input data (a), undermigrated data (b),
migration result from autofocusing at optimum value (c), and an overmigrated image (d).

Figure 4. Example autofocusing metric from Equation (3).

2.4. Monte Carlo Simulation of FK-Migration Method

Monte Carlo simulation is a numerical experimentation technique to obtain the statis-
tics of the output variables of a computational model [46]. The proposed method discussed
above involves several steps using error-prone parameters. The parameters include altitude
and position data from the UAV dataflash-log applied to calculate the distance and the
altitude vectors. These vectors position the data in 2D-space and are essential inputs to the
migration algorithm.
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In this section, we evaluate the uncertainty of the method by creating synthetic
data sets of a single hyperbola in a homogeneous medium. The synthetic data is F–
K migrated and combined with Equation (3), resulting in an estimate for vrms. Further,
using Equations (4) (giving vs), (5), and (7), we calculate the bulk dielectric constant εr and
density ρs of the snowpack.

The altitude and distance vectors are given random errors set to adequate values for
our imaging system to make the simulations relevant for real data results. Specifically,
the synthetic data parameters are given values similar to the field experiment data in
Section 3.1, with a fixed snow-depth of 2 m and an initial altitude (above the snow surface)
of 7 m over a horizontal distance of 15 m. The mean propagation velocity is set to 0.29 m/ns,
resulting in a snow velocity of 0.258 m/ns after Dix equation analysis.

2.4.1. Laser Altimeter Error Sources

The SF-11 rangefinder data-sheet [27] reports an accuracy of ±10 cm. Additionally,
the laser is not always pointing in nadir due to the attitude of the UAV, which is corrected
through the attitude data (roll, pitch, yaw). However, given that the UAV often flies over
uneven terrain, additional errors are expected.

The rangefinder error is assumed to be normally distributed in the Monte Carlo
analysis, with a standard deviation of 15 cm deemed reasonable. The altitude error
contributes twice to the erroneous estimations since it is part of two parameters in the
method: firstly, prior to the focusing when the length of the fast-time vector is adjusted
according to the altitude above the surface; secondly, in the time parameter when Dix’s
equation is applied.

2.4.2. Distance Error Sources

The distance vector is calculated using the Haversine formula [47] on the filtered
position data produced by the UAV autopilot. The position estimate is the output of
the autopilot extended Kalman filter (EKF). The EKF estimates vehicle position, velocity,
and angular orientation based on rate gyroscopes, accelerometer, compass (magnetometer),
global positioning system (GPS), airspeed, and barometric pressure measurements. Con-
cerning the method proposed in this paper, the error can be defined as the deviation from
linear movement (constant horizontal velocity), as the absolute position is not relevant
for the focusing procedure. In real data, the deviation from a perfectly linear equidistant
distance vector (i.e., constant horizontal velocity) was approximately 0.037 m, when look-
ing at real data sets from autonomous flights. Therefore, we choose a standard deviation
slightly larger than this (0.045 m) as a conservative assumption for the error analysis.

The distance error is applied to the data by interpolating the synthetic data set along
the distance axis according to the linear movement deviation, producing non-equidistant
sampling. As expected, the interpolation procedure causes some skewness in the hyperbola
that influences the statistical results (see the following subsection).

2.4.3. Monte Carlo Simulation Results

An essential prerequisite of the autofocusing method under study is that it is unbiased
to produce a close-to-correct estimate of the sought parameter (snow density or SWE)
mean value.

The Anderson–Darling, Jarque–Bera, and Chi-square tests [48–50] all indicate that the
results from the Monte Carlo simulations are normally distributed both in the bivariate case
and with the errors combined, as in Figure 5. As seen in Figure 5, the velocity estimates are
unbiased, with a standard deviation of 0.0031 m/ns.

Introducing Dix’s equation in Figure 5b causes further uncertainties in the estimate
since we use the erroneous altitude once more. However, the method is still unbiased, with
an increased standard deviation of 0.0147 m/ns. Since the estimation of εr in Figure 5c
involves squaring of the velocity estimates, the distribution (if assumed normal) is trans-
formed to a Chi-square distribution of order 1. However, if the standard deviation is
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significantly smaller than the mean, the Chi-square distribution can be approximated as
normally distributed. Finally, the approximate linear relationship in Equation (7) is used to
obtain the distribution in Figure 5d.

We now compare the Monte-Carlo-derived results with the theoretically approximated
first two moments derived in Appendix A. Using µ = 0.234 m/nsecs and σ = 0.0147 m/nsecs
in Equations (A9) and (A10), we obtain µε = 1.639 (1.6% deviation) and σε = 0.205 (5%
deviation). Furthermore, using Equations (A12) and (A13), we obtain µρ = 0.319 g/cm3

(2.6% deviation) and σρ = 0.103 g/cm3 (4.6% deviation); all results compared to values in
Figure 5c.

The Monte Carlo simulations emphasize the need for accurate positioning for the
presented method as the relative spread of the density parameter is relatively large com-
pared to the mean value (σρ/µρ = 0.33). Nonetheless, using the average of several estimates
to reduce the estimator spread could be a useful approach as the snow density spatial
variability is expected to be much smaller than local variations in snow depth [51].

(a) Migrated vrms estimates from
Equation (3)

(b) Mean snow velocity vs from
Equation (4)

(c) Dielectric constant εr estimates
from Equation (5)

(d) Density ρs estimates from
Equation (7)

Figure 5. Combined altitude and distance errors’ influence on estimators derived by Monte Carlo simulations.

3. Results
3.1. Field Experiments

Due to Covid-19, two major field campaigns were canceled in the winter of 2020.
However, a 1-day campaign 10 km from UiT The Arctic University of Norway was carried
out. The main goal of the campaign was to test the latest iteration of the radar system and
preliminarily investigate methods to measure snow density.
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A transect of approximately 250 m was flown autonomously for four passes to test
the reproducibility of the method. A section of the transect showed several overlapping
hyperbolas at the ground level (shown in Figure 2). These hyperbolas were assumed to be
caused by reflections from rocks, as is well known from traditional GPR [30], but this is
not necessarily the case given that the UWiBaSS would be able to detect hyperbolas from
targets buried beneath several meters of snow during flight. As shown in Figures 6 and 7,
the snow depth in this transect varied from 1 m to almost 6 m.

Figure 6. Depth measurements along transect for four passes.

Figure 7. B-scan radar image of one pass back and forth across the transect. Red line indicates the snow–ground interface
and green line indicates the snow–ground interface detected in the second signal period, with range ambiguity (i.e., deeper
than ≈460 cm for εr = 1.68).

After the spring snowmelt, radar data images containing hyperbolas were confirmed
to be from a rocky area, as shown in Figure 8.

Four passes over this rocky area of the transect were segmented into 40 smaller
segments of varying size (5 to 20 m) used to estimate the density.

For this data set, the returning signal from the snowpack was taken at the second
period of the transmitted signal owing to the radar system having a 5.9-m unambigu-
ous range, and the data collection was taken from approximately 7-m relative altitude,
excluding snow depth. For more information on performing measurements outside the
unambiguous range from UAV radar, see [26].

The in situ density for each noticeable layer was collected in a snow pit close to the
transect. We found the weighted density average (weighted mean based on the thickness
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of each layer) to be 0.327 g cm−3. Figure 9 shows the snow pit density profile along with
hardness and grain type. Grain size was 1 to 2 mm.

Figure 8. Transect containing rocky parts after melt season. Dotted lines indicate the transect. The cropped-out section
show the rocky area where diffraction hyperbolas were found.

Figure 9. Vertical profile of in situ snow density (black), hardness (red dashed line), and grain
type (annotations).

Figure 10 shows the distribution of density estimations from the autofocusing pro-
cedure. Figure 6 shows measured snow depth along the 250-m transect for four passes.
Identification of the snow–ground interface is described in [26], where we obtained the
TWT used in Equation (6). Snow depth is then calculated using the TWT and the estimated
propagation velocity of the snow.
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Figure 10. Distribution of density estimates from 40 measurements. Mean in situ snow-profile
density shown as dashed line.

4. Discussion

The accuracy of the method seems to depend heavily on the accuracy of the recorded
UAV position, since the spatial sampling rate and correct position and altitude above snow
are important for the F–K migration algorithm. Hence, real-time kinematic (RTK) GPS
should be used for better distance calculations and data interpolation [52]. Taking the
average of the altitude for each section will, in most cases, not introduce significant errors,
as the typical variation in altitude across the sections is on the order of a few cm. However,
for robustness, modifying the code to create a variable altitude above the snow should be
implemented in future work [5].

Ideally, several snow pits should have been dug along the transect. However, the time
constraints of the project limited the in situ collection to one full snow pit.

Comparing Figure 5d with Figure 10, we see that the statistical spread (standard
deviation) is of the same order, which leads us to believe that the error assessments made
to the scanning system prior to the Monte Carlo simulation were reasonable and that other
contributing error sources are of minor importance in the campaign.

The standard deviation (0.1 g/cm3 from Figure 10) of the estimations are comparable
to what is observed in previous papers [8], reporting a standard deviation of 0.07 g/cm3

from a snowmobile platform with a fixed antenna-to-snow air gap of approximately 50 cm.
The degree to which the snow depth measurements can be trusted is of vital impor-

tance when determining the SWE. A comparison of depth measurements for several passes
along the same transect gives a good indication of the repeatability of depth measurements.
This can be seen for four passes in Figure 6 and for two passes overlaid on the radar B-scan
in Figure 7. Correlating the four transects results in the correlation matrix R:

R =


1.00 0.97 0.98 0.93
0.97 1.00 0.96 0.92
0.98 0.96 1.00 0.93
0.93 0.92 0.93 1.00

 . (9)

Overall, the correlation is very high, with the lowest value of 0.92 between passes 2
and 4. The slight skewness between the depth measurements in Figure 6 appears to come
from drift in the UAV positioning. Hence, the repeatability of snow depth measurements
will likely also benefit from more accurate positioning such as RTK GPS. The snow depth
is measured beyond 5 m, which is deeper than the 3-m depth probes we had available.
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However, in situ snow depth validation of the same radar system has been presented
in [26].

Notice in Figure 2 that the reconstructed radar pulse delay becomes almost 90 ns,
resulting in a total distance from the antennas to the ground of approximately 10 to
14 m. With an unambiguous range of 5.9 m, this is accomplished by exploiting the lack of
significant reflections in the air-section except for the cross-talk [26] and, thus, using the
previously transmitted pulse for detection.

The area coverage of this UAV-mounted radar system is small compared to satellite
remote sensing products [24]. However, the high spatial resolution generated by the UAV-
mounted radar has the opportunity to detect local variability, resulting in more accurate
SWE measurements.

5. Conclusions

In this paper, we present a noninvasive method to estimate snow density from a UAV
that could be further used to estimate SWE. Density estimations from a limited field trial
show good agreement with in situ snow density, and snow depth measurements show high
repeatability. However, the sample size for both in situ and radar data is somewhat limited.

Future work will include field campaigns with RTK-ready UAV for improved position
and altitude information, as well as high-resolution in situ density measurements using
the SnowMicroPen (SMP) or similar devices. Additionally, automatic image segmentation
should be implemented to reduce the amount of manual labor to analyze the data sets.
Multithreaded programming should be implemented on the interpolation part of the F–K
migration routine to improve speed, as this section of the code occupies approximately
95% of the run time.

Author Contributions: Conceptualization, R.O.R.J. and S.K.J.; methodology, R.O.R.J. and S.K.J.;
software, R.O.R.J.; validation, R.O.R.J.; formal analysis, R.O.R.J.; investigation, R.O.R.J.; writing—
original draft preparation, R.O.R.J.; writing—review and editing, R.O.R.J. and S.K.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Centre for Integrated Remote Sensing and Forecasting for
Arctic Operations (CIRFA) partners (Grant No. 237906); and NORCE Norwegian Research Centre
(Grant No. 261786); Research Council of Norway.

Acknowledgments: The authors would like to thank M. Eckerstorfer and A. Kjellstrup for collecting
in situ data and operating the UAV during the field experiments. The authors acknowledge the
useful comments by four anonymous reviewers that helped improve the readability of this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Mapping of Squared Inverse Gaussian Variable

Consider a Gaussian variable X with standard deviation σ and mean value µ.
Then, defining

χ =
X− µ

σ
, (A1)

χ2 is centrally chi-square-distributed with one degree of freedom.
Knowing that E[χ2] = 1 and E[χ4] = 2 in a central chi-squared distribution, the first

and second moments of X can be stated:

E[X2] = σ2 + µ2 ≈ µ2 (A2)

var[X2] = σ4 + 4σ2µ2 ≈ 4µ2σ2 , (A3)

where the approximations are valid if σ � µ—that is, a narrow probability distribution
of X.
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Mapping a Gaussian variable X with the relation w = RX2, we obtain the probability
density function (pdf) [53]:

p(w) =
1

2
√

Rw

[
1

σ
√

2π
exp

(
− (
√

w/R− µ)2

2σ2

)
+

1
σ
√

2π
exp

(
− (−

√
w/R− µ)2

2σ2

)]
.

(A4)

Notice that, for situations where σ� µ, the last term in Equation (A4) can be neglected
unless w and µ are close to zero.

Then, Equation (A4) can be stated:

p(w) ≈ 1
2
√

Rw
1

σ
√

2π
exp

(
− (
√

w/R− µ)2

2σ2

)
. (A5)

Furthermore, Taylor series expanding the argument in the exponential function to
second order around the central value w0 = µ2R of the distribution, and similarly approxi-
mating the denominator

√
Rw ≈ µR, we obtain

p(w) ≈ 1
2µRσ

1√
2π

exp
(
− (w− µ2R)2

8R2µ2σ2

)
. (A6)

We recognize Equation (A6) as a Gaussian distribution with standard deviation
σ′ = 2µRσ and mean value µ′ = µ2R, in accordance with the results obtained in
Equations (A2) and (A3), if R = 1.

The permittivity ε of snow is related to propagation velocity v through ε = (c/v)2,
where c is the speed of light in air. In order to relate this mapping to Equation (A6), define
the reciprocal variable u = 1/w. Now, it can readily be shown that

p(u) =
1√

2πσ′u2
exp

(
− (1/u− µ′)2

2σ′2

)
. (A7)

Once again, Taylor expanding u2 to zeroth order and Taylor expanding the argument of
the exponential function to second order, both around u0 = 1/µ′, Equation (A7) reduces to

p(u) =
1√

2π(σ′/µ′2)
exp

(
− (u− 1/µ′)2

2(σ′/µ′2)2

)
. (A8)

From Equation (A8), we see that u is also normally distributed with a mean value
µu = 1/µ′ and standard deviation σu = σ′/µ′2.

Furthermore, the constant R can be identified as R = 1/c2 and X = v, leading to the
final result that ε is close to normally distributed with first and second moments:

µε =
c2

µ2 (A9)

σε =
2c2σ

µ3 , (A10)

provided that σ� µ.
According to [41], there exists a linear relation between the dielectric constant ε and

density ρ in dry snow:
ε = 1 + 2ρ. (A11)
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This leads to the first and second moments of ρ:

µρ =
1
2

µε −
1
2

(A12)

σρ =
1
2

σε . (A13)

Hence, we obtain a constant change in mean value and spread in the probability
distribution of 1/2 as expected from a linear transformation.

As an example, assume a statistical draw of v from a Gaussian distribution. Figure A1
shows the histogram from 100,000 statistical realizations mapped by using ε = (c/v)2 with
first and second moments of snow velocity of 0.244 m/nsecs and 0.0127 m/nsecs, respectively.

Figure A1. Histogram of dielectric constant ε from 100,000 realizations. Solid line: Gaussian approxima-
tion from Equation (A8). Mean value and standard deviation are µε = 1.51 and σε = 0.16, respectively.

Observe that the fit between the histogram and the theoretical approximate Gaussian dis-
tribution is not perfect, as the assumption that σε � µε (0.16� 1.51) is not entirely fulfilled.
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