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A B S T R A C T   

Model errors are ubiquitous in practical history matching problems. A common approach in the literature to 
accounting for model errors is to treat them as random variables following certain presumed distributions. While 
such a treatment renders algorithmic convenience, its underpinning assumptions are often invalid. In this work, 
we adopt an alternative approach, and treat model-error characterization as a functional approximation problem, 
which can be solved using a generic machine learning method. We then integrate the proposed model-error 
characterization approach into an ensemble-based history matching framework, and show that, with very 
minor modifications, existing ensemble-based history matching algorithms can be readily deployed to solve the 
history matching problem in the presence of model errors. 

To demonstrate the efficacy of the integrated history matching framework, we apply it to account for potential 
model errors of a rock physics model in 4D seismic history matching applied to the full Norne benchmark case. 
The numerical results indicate that the proposed model-error characterization approach helps improve the 
qualities of estimated reservoir models, and leads to more accurate forecasts of production data. This suggests 
that accounting for model errors from a perspective of machine learning serves as a viable way to deal with 
model imperfection in practical history matching problems.   

1. Introduction 

Quantitative analyses of real-world phenomena often involve using 
certain numerical models. Due to the limitations of knowledge, capacity 
and/or available resources, certain simplifying assumptions or strategies 
are inevitably adopted in order to make such numerical models effective 
in practice. This situation is largely reflected by the aphorism “all 
models are wrong, but some are useful” (Box et al., 2011). 

For geophysical data assimilation problems, such as reservoir char
acterization through computer-assisted history matching, a typical 
workflow consists of a forward simulator, a collection of measured data 
(called observations hereafter), and a data assimilation algorithm that 
aims to update model variables (state and/or parameters) to match the 
observations to a good extent. As a numerical model, the forward 
simulator will, more or less, suffer from certain model errors. Conse
quently, model errors will be propagated through the forward simulator 
and the inversion (data assimilation) algorithm, and will have an un
desired impact on the estimated model variables. 

As such, model errors are ubiquitous in geophysical data assimilation 

problems, whereas at the time being, how to properly handle model 
errors appears to remain as an open topic in data assimilation commu
nity. The practical challenges in dealing with model errors stem from 
factors like the complexities in quantitatively analyzing and character
izing the sources of model errors, the dependence of model errors on 
(uncertain) model variables, and consequently the tangled effects of 
both model errors and model variables on assimilation algorithms (Luo, 
2019). 

Therefore, to account for model errors in data assimilation problems, 
it is necessary to adopt certain strategies that take into account these 
noticed challenges. In this regard, perhaps the most commonly adopted 
strategy so far is to assume that model errors are independent of model 
variables, and treat model errors as random variables that follow certain 
presumed (typically Gaussian) distributions. By doing so, the impacts of 
model variables and model errors on the simulated data are disen
tangled, and the effect of model errors is taken into account by incor
porating statistics (e.g., mean and covariance matrix) of model errors 
into the assimilation algorithm (Dee, 1995; Williamson et al., 2015; 
Evensen, 2019; Alfonzo and Oliver, 2020; Rammay et al., 2019; Lu and 
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Chen, 2020; He et al., 2020; Neto et al., 2020). While enjoying theo
retical simplicity and algorithmic convenience, the underlying as
sumptions (e.g., model errors being independent of model variables, 
Gaussian model errors) with respect to this type of model-error treat
ment may be invalid in practice (Dee, 1995). 

There are also investigations dedicated to studying the effects of 
model errors on history matching, but without assuming the indepen
dence between model errors and model variables, see, for example, 
(Stephen, 2007; Köpke et al., 2018; Luo, 2019). In practice, though, 
taking into account the dependence of model errors on model variables 
may nullify the conventional Gaussianity assumption adopted for the 
purpose of characterizing model errors.1 In effect, this might then make 
the resulting history matching workflow more complicated, unless 
additional sources of information are assumed. For instance, Stephen 
(2007) investigated scale and process dependent model errors in a 
synthetic seismic history matching problem. To quantify the effect of 
model errors, the author assumed that the geo-model is accurate at some 
fine scale, whereas model errors are mainly resulted from the differences 
between the fine and coarse grid geo-models. In a similar setting, with 
model errors also stemming from the differences between some fine and 
coarse grid geo-models, Köpke et al. (2018) developed a local basis 
approach to characterizing model errors, but with an additional 
assumption that data residuals (defined as the difference between 
observed and simulated data) due to model errors and model variables 
are orthogonal. 

In a recent study, Luo (2019) investigated an alternative approach to 
accounting for model errors in a class of data assimilation problems. The 
basic idea there is to treat model-error correction (MEC) as a data-driven 
functional optimization problem, which is then solved from a perspec
tive of machine learning. Recent years have witnessed the wide appli
cations of various machine learning technologies, e.g., supervised (Lee 
et al., 2019; Luo, 2019; Ma and Leung, 2020) or unsupervised (Shams 
et al., 2020; Mosser et al., 2017; Canchumuni et al., 2019) learning 
methods, to many problems in geosciences, see, for example, Tahmasebi 

et al. (2020) for a recent review. To our knowledge, though, using ma
chine learning methods to tackle the issue of model errors appears to be 
a topic that is rarely touched. 

By considering model-error as some unknown functional that relates 
model variables to data residuals, one can explicitly take into account 
the dependence of model errors on model variables and describe the 
effects of model errors and model variables on the assimilation algo
rithm, while without the need to presume a statistical distribution for 
model errors. In addition, this MEC approach can be integrated into 
ensemble-based history matching frameworks in such a way that only 
very minor modifications of the ensemble-based history matching al
gorithm are required. On the other hand, though, certain caution also 
has to be exercised regarding the capacity of this MEC approach. Indeed, 
as a data-driven approach, it may not be able to correctly identify the 
sources or origins of model errors, which is an issue that, in the authors’ 
opinion, goes beyond the capacities of contemporary MEC approaches in 
most of the practical problems. 

The goal of the current work is to demonstrate the applicability of the 
MEC approach in Luo (2019) to account for potential model errors from 
a rock physics model (RPM) used to history-match 4D seismic data in a 
full Norne field case study (Lorentzen et al., 2020). As the theoretical 
development of the data-driven MEC approach was carried out in the 
previous work Luo (2019), here we focus more on the practical aspects 
and document the details of the real field case study, while leaving out 
certain investigations, e.g., a comparison of the conventional MEC 
approach and the data-driven one used here, which were conducted in 
the previous work Luo (2019). In terms of novelty/contribution of the 
current work, to our knowledge, it is the first time that a data-driven 
MEC approach is applied to a real field case study and clearly demon
strates the potential of improving the history-matching performance. 

For ease of comprehension, in the sequel we start from briefly 
introducing the 4D seismic history matching framework adopted in the 
current work, and explain how model errors are handled in ensemble- 
based history matching from a perspective of machine learning. After
wards, we demonstrate the performance of the strengthened 4D seismic 
history matching framework (with the MEC approach being incorpo
rated) through a case study in the full Norne field. We conclude the 
whole work with some technical discussions and thoughts for potential 

Fig. 1. A schematic outline of the 4D seismic history matching (SHM) framework used in the current study. For ease of reference, we adopt a color scheme for 
different procedures (represented by edges with arrows) and associated quantities (represented by rectangular boxes). More information regarding the 4D SHM 
framework is provided in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

1 As in practice, model variables are often assumed to follow certain Gaussian 
distributions, while model errors may be nonlinearly related to model variables. 
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future work. 

2. The 4D seismic history matching framework 

With substantially larger spatial coverages, 4D seismic data provide 
valuable additional information that is complementary to that from the 
conventional core sample, well log and production data. For this reason, 
in the past two decades, there is increasing interest in incorporating 4D 
seismic data for quantitative reservoir characterization through 
computer-assisted history matching, for example, see Abadpour et al. 
(2013); Dadashpour et al. (2008); Emerick (2016); Gosselin et al. 
(2003); Ketineni et al. (2018); Lorentzen et al. (2019); Luo et al. (2017, 
2018a); Obidegwu et al. (2017); Soares et al., 2020; Taha et al. (2019); 
Trani et al. (2012); Zhang and Leeuwenburgh (2017); Skjervheim et al. 
(2007). 

Fig. 1 presents a schematic outline of the 4D SHM framework used in 
the current study, which consists of a few procedures adopted for spe
cific purposes. For ease of reference, we adopt a color scheme to 
represent different procedures and quantities that are fed into or 
generated by the procedures. In the sequel, we provide short de
scriptions of these procedures and the associated quantities. 

2.1. Forward seismic simulations 

Forward seismic simulations aim to generate simulated acoustic 
impedance (AI) data AIsim (in orange) based on input reservoir models m 
(in green). In Fig. 1, this procedure involves three components, namely, 
the reservoir simulator (in green), the rock physics model (in blue), and 
the residual model (in red) introduced to account for potential model 
errors from the RPM. The reservoir simulator takes a reservoir model as 
the input, and outputs profiles of fluid saturation S and pressure P (both 
in blue). The simulated saturation and pressure profiles, together with 
some of the reservoir model variables, such as porosity (and sometimes 
net-to-gross ratio, as in Lorentzen et al., 2020, 2019), are then taken as 
the inputs to both the RPM and the residual model. The RPM is often 
field-dependent and varies from case to case, whereas in the current 
work the residual model is built from a perspective of machine learning 
as in Luo (2019). More information regarding the RPM and the residual 
model will be provided in the case-study part later. 

In Fig. 1, AI is taken as the attribute in SHM. The same framework 
can also be extended to other types of attributes, such as amplitude- 
versus-angle data, as was done in the previous work (Luo et al., 
2018a, 2017; Soares et al., 2020). 

2.2. Sparse data representation and noise level estimation 

The sparse data representation procedure aims to reduce the size of 
observations in SHM, while retaining as much information as possible. 
The main idea behind sparse representation is to apply a transform to the 
data, and represent the original data in another domain, in terms of 
certain “dominant” coefficients whose number is substantially smaller 
than the original data size. It is these “dominant” coefficients that will be 
used as the observations for model updates later on, through a certain 
history matching algorithm. Therefore, data-size reduction through 
sparse representation helps mitigate the issue of high-demanding re
quirements on computational resources (e.g., computer memory) in big 
data assimilation problems. 

In Fig. 1, the sparse representation procedure is applied to both the 
simulated seismic data AIsim (in orange) and the observed ones AIo (in 
coffee color). Since in this work we revisit the real field case study in 
Lorentzen et al. (2020), for consistency we adopt the discrete wavelet 
transforms (DWT) for sparse data representation. Consequently, we 
apply a wavelet-based denoising algorithm to estimate noise levels in 
the observed data AIo. Readers are referred to Lorentzen et al. (2020) for 
more information in this regard. 

2.3. Model updates 

The SHM framework in Fig. 1 entails an iterative process. Given 
sparse representations of both the simulated and observed data, we first 
calculate the corresponding data mismatch values and then use them to 
decide whether the iterative process should be stopped or not (in grey), 
according to certain preset stopping criteria (in purple) (the definition of 
data mismatch and the concrete stopping criteria will be provided later 
in the case-study part). If the history matching process terminates, then 
one obtains a final ensemble of estimated reservoir models mfinal (in 
brown). Otherwise, a certain history matching algorithm (in black) will 
be used to further update the reservoir models, which will then be used 
as the inputs to the reservoir simulator to start a new iteration. 

In the current work, the iterative ensemble smoother (IES) from Luo 
et al. (2015), called the regularized Levenberg-Marquardt algorithm for 
a minimum average cost (RLM-MAC) problem, is adopted, although 
other algorithms, e.g., the ensemble smoother with multiple data 
assimilation (ES-MDA) (Emerick and Reynolds, 2012), an approximate 
form of the ensemble-based randomized maximum likelihood (EnRML) 
algorithm (Chen and Oliver, 2013), or an ensemble subspace imple
mentation of the EnRML (Raanes et al., 2019), may also be employed. In 
applications of ensemble-based methods to real-world problems, espe
cially those with relatively big datasets but relatively small ensemble 
sizes, ensemble collapse is a commonly encountered problem. To miti
gate this issue, localization is typically adopted. The conventional 
localization schemes are often based on distances between the physical 
locations of both observations and reservoir model variables (Chen and 
Oliver, 2010; Raniolo et al., 2013; Emerick and Reynolds, 2011). In our 
SHM framework, however, the effective observations (e.g., wavelet co
efficients) resulting from sparse data representation do not have asso
ciated physical locations, and this makes it challenging to apply 
distance-based localization. As a result, we adopt a correlation-based 
adaptive localization scheme instead, which helps overcome the afore
mentioned problem, while achieving a few additional benefits (Luo 
et al., 2018b, 2019). More details of the implementation of 
correlation-based adaptive localization will also be provided in the 
case-study part later. 

3. Accounting for model errors in history matching problems: a 
perspective of machine learning 

Suppose that in a generic history matching problem, we have a 
collection do of observations, which is produced through the following 
observation system 

do = f(mtr) + ε. (1) 

In Eq. (1), from right to left, ε stands for some additive observation 
noise which is assumed to follow a certain Gaussian distribution with 
zero mean and covariance matrix Cd; mtr for the true reservoir model 
(truth); and f for the perfect forward simulator without any model error. 

Due to the presence of model errors, one ends up with using an 
imperfect simulator, denoted by g here, for forward simulations. In this 
case, given an input reservoir model m, the simulated observations dsim 

are generated by using g to map m onto the observation space, i.e., 

dsim = g(m). (2) 

We note that m in Eq. (2) may have a different dimensionality from 
that of mtr in Eq. (1), if one considers the fact that in practice, the un
certain parameters in a reservoir model may not be able to completely 
explain the observations do. In other words, the model variables in m 
may just constitute an incomplete list of possible factors that have 
resulted in the observed data. 

During history matching, we adopt an IES to iteratively update an 
ensemble of reservoir models until certain stopping criteria are met (the 
concrete stopping criteria in the field case study will be specified later in 
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§4.3). Suppose that, at the ith iteration step, we have an ensemble of Ne 

reservoir models, denoted by M i ≡ {mi
j}

Ne

j=1 
hereafter, as the background 

(i.e., the prior), where j is the index of ensemble members. Here our 
objective is to update M i to a new ensemble M i+1 ≡ {mi+1

j }
Ne

j=1
, which 

serves as the background ensemble for the next iteration step if none of 
the stopping criteria is met, or as the final ensemble of the history 
matching process otherwise. 

3.1. Model updates without accounting for model errors 

Without taking into account the presence of potential model errors, a 
new ensemble M i+1 is obtained by solving the following minimum- 
average-cost (MAC) problem (Luo et al., 2015):  

where Ci
m is the sample covariance matrix induced by the ensemble M i, 

in the form of Ci
m = Si

m(S
i
m)

T , whereas the square root matrix Si
m will be 

defined later (cf. Eq. (7)); and γi is a parameter that is adaptive to the 
iteration process, following certain preset rules (Luo et al., 2015). 

The main idea in Eq. (3) is to minimize the average of an ensemble of 
cost functions. Each cost function consists of two parts, namely, the data 
mismatch term (the first term counting from the left side) which mea
sures the distance between simulated and observed data, and the regu
larization term (the second one) which is introduced to mitigate the ill- 
posedness in the history matching problem, and also to prevent the IES 
from overfitting the observations. 

Through a linearization-based approximation strategy, Eq. (3) is 
solved as follows: 

mi+1
j =mi

j +Ki
(

do − g
(

mi
j

))
, j= 1, 2,⋯,Ne; (4)  

Ki ≡ Si
m

(
Si
d

)T
(

Si
d

(
Si
d

)T
+ γiCd

)− 1
; (5)  

mi ≡
1
Ne

∑Ne

j=1
Nemi

j ; (6)  

Si
m ≡

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ne − 1

√
[
mi

1 − mi,mi
2 − mi,⋯,mi

Ne
− mi

]
; (7)  

Si
d ≡

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ne − 1

√
[
g
(
mi

1

)
− g(mi), g

(
mi

2

)
− g(mi),⋯, g

(
mi

Ne

)
− g(mi)

]
. (8) 

On the other hand, a practical implementation of the IES deviates the 
theoretical form presented in Eqs. (4) and (5), in order to improve the 
numerical stability and history matching performance of the algorithm. 
The deviations stem from the following two changes: (1) a truncated 
singular value decomposition (TSVD) conducted to approximate the 
square root matrix Si

d in Eq. (8); and (2) localization applied to a certain 
Kalman-gain-like matrix. 

In this work, the TSVD is conducted following the previous work Luo 
et al. (2019). On the other hand, we adopt correlation-based adaptive 
localization, since in practice it tends to be more flexible than 
distance-based localization, as elaborated in Luo et al. (2019). For more 
information of how correlation-based adaptive localization is conduct
ed, readers are referred to Luo et al. (2018b, 2019); Lorentzen et al. 

(2019). 

3.2. Model updates taking into account model errors 

To take into account model errors in history matching problems, a 
natural choice is to provide a certain mechanism that, to some extent, 
compensates for model imperfection. If there are certain prior knowl
edge, experience and/or expertise that help identify potential sources of 
errors, then they should be exercised for model improvements. Our 
starting point here is that all such attempts for model improvements 
have been tried. Under this assumption, we consider a data-driven 
approach for possible further model improvements. 

One way of providing a compensation is to introduce a residual 
functional r to the imperfect simulator g in Eq. (2), such that we obtain a 
modified forward simulator 

dsim = g(m) + r(T (mg)), (9)  

where T represents a certain transform operator that maps a set of 
variables mg to some other quantities (e.g., saturation or pressure fields 
through reservoir simulations, in case that mg is identical to the reservoir 
model m). Reflecting the previously mentioned difference between mtr 

in Eq. (1) and m in Eq. (2), mg in Eq. (9) may also not be the same as m in 
general. In fact, one of the main challenges in practice is how to effi
ciently identify a proper set of variables mg that help explain the dif
ferences between observed and simulated data.2 The approach to be 
presented below is not proposed to address this issue. Instead, we focus 
on how to find a proper functional form r, for a given transform operator 
T and a chosen list of uncertain variables mg. For ease of discussion, in 
the sequel we simply let mg = m, while the derivation below can also be 
extended to the case mg ∕= m. Also, without loss of generality, we further 
simplify the situation and let T be an identity operator (otherwise we 
can consider the composition functional of T and r). As a result, we end 
up with the following simplified forward simulator 

dsim = g(m) + r(m). (10) 

To take into account model errors in history matching problems, we 
then replace the original forward simulator in Eq. (2) by that in Eq. (10). 
However, note that the functional form of r is not known in advance. As 
a result, during history matching we need to simultaneously optimize 
both the reservoir model variables m and the functional r. As discussed 
in Luo (2019), this optimization problem becomes intractable if without 
any constraint on the functional form of r (as this leads to an optimi
zation problem in an infinite-dimensional space). For this reason, we 
assume that the residual functional r belongs to a certain Reproducing 
Kernel Hilbert Space, such that r can be approximated by a set of cor
responding kernel functions, in the form of 

r̂(m; θ)=
∑Ncp

k=1
Ncpck Kk(mcp

k ,m; βk), (11) 

argmin
{mi+1

j }
Ne
j=1

1
Ne

∑Ne

j=1

{(
do − g

(
mi+1

j

))T
C− 1

d

(
do − g

(
mi+1

j

))
+ γi

(
mi+1

j − mi
j

)T(
Ci

m
)− 1

(
mi+1

j − mi
j

)}

,
(3)   

2 In principle, one can of course conduct intense search in a large enough 
space through the trial-and-error approach. This, however, will become 
computationally inefficient. 
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θ ≡
[
c1, c2,⋯, cNcp , βT

1 , β
T
2 ,⋯, βT

Ncp

]T
, (12)  

where Ncp is the total number of center points (cp), denoted by mcp
k , 

which are chosen (and then fixed) in advance; ck is the weight coefficient 
associated with the kth kernel function Kk (which is also pre-chosen and 
fixed); βk, as a (column) vector in general, represents a set of intrinsic 
parameters of Kk; and θ is the set of total parameters resulting from 
kernel-based functional approximation. Details of implementing Eq. 
(11) in the field case study will be provided later. 

We have a few remarks related to the issue of optimizing the residual 
functional r. First, for the purpose of approximating r itself, one is not 
restricted to adopt the kernel based method, as in Eq. (11). Instead, there 
are many options, e.g., generic parametrized learning models such as 
various shallow or deep neural networks, which one can exploit, as long 
as such models serve the purpose of functional approximation well. 
However, we note that, in this context, the problem of optimizing the 
residual functional is different from a supervised learning problem, as 
discussed in Luo (2019). For the latter problem, typically one has many 
instances of input-output pairs to learn the functional relations. While 
for the former problem considered here, it is more in line with the 
typical setting of a data assimilation problem, in which there is only one 
instance of realized observation at a given spatial and temporal location. 
In addition, unlike the supervised learning problem, we have no access 
to the true model (truth) that generates the observations. This means 
that, the observed residual with respect to m, in terms of do − g(m), 
would depend on both the model m and the truth mtr, rather than only 
on m. Since the truth mtr is unknown, a part of the information will miss 
for the purpose of estimating r. To mitigate this problem, a possible 
strategy is to also take the observation do as a part of the inputs, as do is 
implicitly related to mtr. In this case, however, we will also bring the 
noise term ε into the estimation of r. 

Second, by approximating r by a suitable parametrized learning 
model, one converts the problem of optimizing the residual functional 
into a problem of optimizing a set of parameters (e.g., ck and βk in Eq. 
(11)) associated with the chosen learning model. This conversion en
sures very minor modifications of the IES introduced previously for the 
purpose of accounting for model errors in history matching problems, as 
will become evident soon. Third, in general, the kernel-based learning 
model in Eq. (11) will be able to accommodate a mixture of different 
types of kernel functions, which is the reason that we adopt a subscript k 
for each kernel function Kk therein. In addition, the intrinsic kernel 
parameters βk will be estimated in the process of history matching, 
instead of being manually set a priori. 

In consistency with ensemble-based history matching, let us define 

Θi+1 ≡ {θi+1
j }

Ne

j=1 as an ensemble of learning-model parameters at the 

(i+1) th iteration step, then to take into account the presence of model 
errors, the MAC problem in Eq. (3) is modified as follows: 

m̂i+1
j ≡

[(
mi+1

j

)T
,
(

θi+1
j

)T]T
, (14)  

ĝ
(

m̂i+1
j

)

≡ g
(

mi+1
j

)
+ r̂

(
mi+1

j ; θi+1
j

)
, (15)  

where m̂i+1
j is an augmented vector consisting of both reservoir model 

variables mi+1
j and learning-model parameters θi+1

j ; ĝ is the modified 
forward simulator, which takes as the output the sum of the simulated 
data from the original imperfect forward simulator g and a residual term 
calculated by r̂; and Cm̂

i stands for the sample covariance matrix 

derived from the augmented ensemble M̂
i+1

≡ {m̂i+1
j }

Ne

j=1. 

A comparison between the MAC problems in Eqs. (3) and (13) re
veals that they are essentially the same type of optimization problem. As 
a result, the IES algorithm (including the adopted TSVD and localization 
techniques for performance improvement) introduced in the preceding 
sub-section can be readily applied to solve the MAC problem in Eq. (13), 
but with some necessary minor modifications as indicated in Eqs. (14) 
and (15), namely, the augmentation of reservoir model variables and 
learning-model parameters, and the modification of the “effective” for
ward simulator, respectively. 

4. Application to 4D SHM in the full norne field case study: case- 
study settings 

Norne is an offshore oil field located in the Norwegian Sea. In the 
current study, we use a numerical reservoir model for the full Norne field 
from the website http://www.ipt.ntnu.no/~norne. This numerical 
model consists of four segments: C, D, E and G, and has five primary 
formations (from top to bottom): Garn, Not, Ile, Tofte and Tilje. The 
dimension of the reservoir model is 46× 112× 22. Therefore, the total 
number of reservoir gridblocks is 113,344, among which 44,927 grid
blocks are active. 

History matching real production and/or seismic data of the Norne 
field through a certain ensemble based method has been carried out in 
some recent work, e.g., Chen and Oliver (2014); Evensen and Eikrem 
(2018); Lorentzen et al. (2020); Lu and Chen (2020); Luo et al. (2019). 
Especially, Lu and Chen (2020) considered to account for potential 
model errors through assimilating production data. In the current work, 
we focus on accounting for model errors from a perspective of machine 

Table 1 
Parameterization of the reservoir models.  

Parameter Krg Krw NTG MULTFLT MULTREGT MULTZ OWC PERMX PORO 

Number 4 4 44,927 53 3 13,309 5 44,927 44,927  

argmin
{

m̂
i+1
j

}Ne

j=1

1
Ne

∑

j=1
Ne

{(

do − ĝ
(

m̂ i+1
j

))T

C− 1
d

(

do − ĝ
(

m̂i+1
j

))

+ γi
(

m̂i+1
j − m̂i

j

)T (
Cm̂

i )− 1
(

m̂i+1
j − m̂i

j

)}

, (13)   
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learning. We adopt the kernel-based learning approach, which can be 
considered as an analogy to a neural network with a single hidden layer, 
and is trained by the IES. We use seismic data as the “training dataset”, 
and adopt production data to cross-validate the qualities of reservoir 
models obtained from 4D SHM. 

This section mainly aims to explain the case-study settings in the 
field case study. Following the outline of the 4D SHM framework in 
Fig. 1, we document the details of setting up different components 
within the following three procedures, namely, forward seismic simu
lations, data processing (sparse representation and noise estimation) 
and model updates through history matching. 

4.1. The forward seismic simulator 

As indicated in Fig. 1 and discussed in the corresponding text, the 
forward seismic simulator contains a forward reservoir simulator and a 
rock physics model. In addition, a residual model is also included to 
account for potential model errors in forward seismic simulations. 

4.1.1. The forward reservoir simulator and reservoir model parametrization 
A forward reservoir simulator takes a numerical reservoir model as 

the input to simulate certain dynamical fields (e.g., fluid saturation and 
pressure) at some specified time instances. In our case study, we use the 
ECLIPSE© black oil simulator, which was executed under the control 
mode of reservoir volume for production wells, and the mode of fluid 
(water alternating gas) rates (RATE) for injection wells. 

The parametrization of the numerical reservoir model, in terms of 
uncertain parameters to be estimated in history matching, is summa
rized in Table 1. Specifically, in history matching, the uncertain pa
rameters include porosity (PORO) Φ, x-dimensional permeability 
(PERMX, in the scale of natural logarithm)3 and net-to-gross (NTG) ratio 
distributed over active reservoir gridblocks. In addition, we also esti
mate 13,309 vertical transmissibility multipliers (MULTZ, in the scale of 
log10) distributed over active reservoir gridblocks in six layers (namely, 
layer 1, 8, 11, 12, 15 and 18), 53 fault transmissibility multipliers 
(MULTFLT, in the scale of log10), 8 multipliers for scaled end-point 
water (Krw) and gas (Krg) relative permeabilities of four geological 
formations (with the inactive Not formation being excluded), 3 trans
missibility multiplier between regions (MULTREGT, from region num
ber 17 to 13, 18 to 14, and 19 to 15, respectively, in the scale of log10), 
and 5 oil-water-contact (OWC) depth values in equilibration (EQUIL) 
data specification. Under this setting, the total number of parameters to 
estimate is 148,159. An initial ensemble of 100 reservoir models with 
this parametrization setting can be found from GitHub (Lorentzen, 
2018), which is the one used in the 4D SHM study below. We note that 
the same initial ensemble was previously used in both synthetic and real 
field case studies, see Lorentzen et al. (2019, 2020). 

4.1.2. The rock physics model 
A rock physics model (RPM) (also referred to as petro-elastic model) 

aims to link properties within reservoir and seismic domains. They are 
used to simulate various seismic attributes, such as P-wave velocity (vp), 
S-wave velocity (vs), density (ρ), acoustic impedance (zp), shear 
impedance (zs) etc., using both dynamic and static reservoir model 
variables like water saturation (Sw), pore-pressure (P), porosity (Φ) and 
so on, as the inputs. 

In the current work, we use acoustic impedances (AI) zp distributed 
over active reservoir gridblocks as the seismic attribute in 4D SHM, 
whereas the corresponding RPM is outlined in Appendix A. Putting 
together Eqs. (A.1) – (A.7) therein, the effective RPM is summarized as 

zp =RPM
(
Φ,NTG, Sw, Sg,P, ρw, ρg, ρo

)
, (16)  

which depends on both static reservoir model variables Φ (porosity) and 
NTG to be estimated through SHM, and dynamical variables like fluid 
saturations Sw and Sg, pore pressure P and fluid densities ρw, ρg and ρo 

that are all generated by the reservoir simulator (ECLIPSE). Eq. (16) 
does not contain oil saturation So, as it can be calculated through the 
constraint So = 1 − Sw − Sg. On the other hand, all the other quantities 
that are involved in Eqs. (A.1) – (A.7) but do not appear in Eq. (16) (e.g., 
Kquartz and Gquartz), have preset and fixed values. We treat these quan
tities as constants of the RPM and thus do not include them in Eq. (16). 
We note that the dynamical variables such as Sw, Sg and P are obtained 
from reservoir simulations, and thus (implicitly) depend on static 
reservoir model variables like porosity, NTG, permeability and so on. As 
such, the RPM in Eq. (16) can be considered as a function that essentially 
describes the relations between static reservoir model variables and the 
AI data. 

4.1.3. The residual model 
Complementary to the RPM in Eq. (16), we introduce a residual 

model r̂ to each active reservoir gridblock. For simplicity, r̂ is set to be 
the same for all active reservoir gridblocks at all seismic survey time 
instances. Following Eq. (30) of Luo (2019), the residual model ̂r on the 
ℓ -th gridblock consists of a set of Gaussian kernels, defined as follows 
(also cf. Eq. (11) of the current work)4: 

r̂(Vℓ; θ)=
∑Ncp

k=1
Ncpck exp

{
− 〈β2

k , (Vℓ − Vcp
k )

2〉
}
, ℓ= 1, 2,⋯,Nagb, (17)  

θ ≡
[
c1, c2,⋯, cNcp , βT

1 , βT
2 ,⋯, βT

Ncp

]T
, (18)  

〈β2
k , (Vℓ − Vcp

k )
2〉≡

1
2mv

∑mv

s=1
mvβ2

k,s

(
Vℓ,s − Vcp

k,s

)2
, (19)  

where ck, βk and Vcp
k are weight parameter, scale parameter and center 

point associated with the k-th Gaussian kernel function, respectively; 
Nagb (= 44927) is the number of active gridblocks; and Ncp is the number 
of kernel functions (or center points), which is set to 20,000 through a 
trial-and-error procedure, by examining its impact on the data mismatch 
of forecast production data. The scale parameter βk is in the same 
dimension (denoted by mv) as Vcp

k , meaning that for each element of Vℓ 

and Vcp
k , denoted by Vℓ,s and Vcp

k,s respectively in Eq. (19), there is an 
associated scale coefficient βk,s. In 4D SHM, the weight and scale pa
rameters will be simultaneously estimated together with the afore
mentioned reservoir model variables (cf. Table 1). 

In Eq. (17), the vector Vℓ contains a set of properties as the inputs 
into the residual model. In the current work, 

Vℓ =
[
Φℓ,NTGℓ, Sw,ℓ, Sg,ℓ,Pℓ, zop,ℓ

]T
, (20)  

where Φℓ, NTGℓ, Sw,ℓ, Sg,ℓ, Pℓ and zo
p,ℓ represent porosity, NTG, water 

and gas saturations, pressure and observed AI data, respectively, on the 

Table 2 
Ranges of the first five inputs of the residual model.  

Input Φ  NTG  Sw  Sg  P (MPa) 

Range [0.001,0.4] [0.001,1] [0.001,1] [0.001,1] [1,65.22]

3 We did not take permeability along y (PERMY) and z (PERMZ) directions as 
uncertain parameters, because in the reservoir models, the values of PERMY 
and PERMZ are proportional to those of PERMX. 

4 For notational convenience and distinction, here we have used a different 
notation, V rather than m, to represent a set of model parameters associated 
with each active reservoir gridblock. 
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ℓ -th reservoir gridblock. Likewise, Vcp
k are defined in a similar way: 

Vcp
k =

[
Φcp

k ,NTG
cp
k , S

cp
w,k, S

cp
g,k,P

cp
k , z

o,cp
p,k

]T
. (21) 

The first five inputs of Vℓ, namely Φℓ, NTGℓ, Sw,ℓ, Sg,ℓ and Pℓ, are 
adopted in light of the RPM in Eq. (16). Our experience indicates that the 
fluid densities, namely ρw, ρg and ρo, have relatively narrow ranges with 
respect to different ensemble members, thus we do not include them in 
Eq. (20) to reduce the dimension of the input Vℓ (which in turn helps to 
save computer memory, as will be discussed later). On the other hand, 
we choose to add the observed AI data zo

p,ℓ into Vℓ, as we expect that zo
p,ℓ 

contain certain information of the underlying RPM that led to the 
observed data. In addition, this also allows us to include hard data (if 
any) into the residual model, as will be explained soon. 

The vectors Vcp
k in Eq. (17) represent a set of Ncp center points which 

are pre-chosen and fixed throughout the field case study. Note that Vcp
k 

are not required to be affiliated with any reservoir gridblock (or any 
physical location), therefore the subscript ℓ is not present therein. If 
there are hard data (e.g., core or well log data), then they can be used as 
some of the center points, in the form of, e.g., 
[Φhard,NTGhard, Shard

w , Shard
g ,Phard, zhard

p ]
T . In the case study, we do not use 

any hard data due to their availability (e.g., well log data contain part, 
but not all, of the required information). Instead, to generate Vcp

k , we 
first specify the ranges of the first five inputs, Φ, NTG, Sw, Sg and P (in the 
unit of MPa), of the residual model, which are summarized in Table 2. 
Based on these ranges, we then adopt Latin hypercube sampling (McKay 
et al., 1979) to generate Ncp samples of [Φcp

k ,NTGcp
k , Scp

w,k, S
cp
g,k,P

cp
k ]

T. 
Given the above sample points, the next step is to specify the asso

ciated AI data zo,cp
p,k . In general, we do not have precise information to 

find the proper values of zo,cp
p,k (perhaps except for those of hard data). As 

a result, some empirical approach will have to be adopted here. In this 
study, we carry out the allocations of zo,cp

p,k to [Φcp
k ,NTGcp

k , Scp
w,k, S

cp
g,k,P

cp
k ]

T in 
the following way: With the initial ensemble of reservoir models, we run 
reservoir simulations and collect the profiles of simulated pressure, 
water and gas saturations at all seismic survey time instances. From 
these, we compute mean fields of Φ, NTG, Sw, Sg and P that are 
distributed over active reservoir gridblocks.5 Let 

Umean
ℓ ≡

[
Φmean

ℓ ,NTGmean
ℓ , Smean

w,ℓ , Smean
g,ℓ ,Pmean

ℓ

]T
,ℓ = 1, 2,⋯,Nagb, (22)  

be a vector containing the values of the mean fields of Φ, NTG, Sw, Sg and 
P distributed on the ℓ -th (active) reservoir gridblock, then we treat 
{Umean

ℓ }
Nagb
ℓ=1 as if it were the “true” inputs of the RPM that led to the 

observed AI data {zo
p,ℓ}

Nagb

ℓ=1
. In other words, we allocate zo

p,ℓ to Umean
ℓ , and 

then create a set of mean-field vectors {Vmean
ℓ }

Nagb
ℓ=1, with 

Vmean
ℓ ≡

[(
Umean

ℓ
)T
, zop,ℓ

]T
. (23) 

Analogous to Eq. (22), let us define 

Ucp
k ≡

[
Φcp

k ,NTG
cp
k , S

cp
w,k, S

cp
g,k,P

cp
k

]T
, k = 1, 2,⋯,Ncp (24)  

for the k-th center point Vcp
k . To obtain zo,cp

p,k that is associated with Ucp
k , 

we then search Knn vectors from the set {Umean
ℓ }

Nagb
ℓ=1 that are the closest 

ones to Ucp
k . Here let us denote the set of indices of the Knn nearest 

neighbours of Ucp
k by 

S
cp
k (Knn)≡

{
ℓk
s :U

mean
ℓk
s
​ are ​ the ​ Knn ​ nearest ​ neighbours ​ of ​ Ucp

k

}
,k=1,⋯,Ncp,

then zo,cp
p,k is calculated as the average of the observed AI data zo

p,ℓk
s 

that 

are associated with the vectors Umean
ℓk

s 
in S cp

k (Knn), i.e., 

zo,cpp,k =
1
Knn

∑Knn

s=1
Knnzop,ℓk

s
, ℓk

s ∈ S
cp
k (Knn). (25) 

In the current work, we set Knn = 10. In general, zo,cp
p,k calculated 

through Eq. (25) may not be consistent with the corresponding Ucp
k in Eq. 

(24). The impact of this inconsistency, however, can be somewhat 
mitigated by adjusting the associated scale parameter in Eq. (19). 

After choosing Vℓ and Vcp
k , we are able to determine the size of the 

residual model, in terms of the number of elements of the parameter 
vector θ in Eq. (18). Under this setting, the residual-model size is then 
equal to (1 + mv)× Ncp. In the current case study, mv = 6 and Ncp =

20000, therefore the residual-model size is 140,000. 
To integrate the residual model into ensemble-based 4D SHM, we 

need to create an initial ensemble of the residual-model parameters (cf 
Eq. (13) – (15)), which is denoted by Θ0 ≡ {θ0

j }
Ne

j=1 hereafter. The 

initialization is carried out as follows. 
At the first step, we initialize the scale parameters βk,s associated with 

each element of the center point Vcp
k (cf. Eq. (19)). For Gaussian kernels, 

these scale parameters can be interpreted as the inverse of standard 
deviations (STD) of certain Gaussian distributions. As such, we use the 
STDs of the mean property fields (cf. Eq. (22)) or observed AI data to 
create the initial ensemble. Take the 6th element, zo,cp

p,k , of Vcp
k as an 

example, we first compute the STD of observed AI data zo
p,ℓ distributed 

on active gridblocks over all survey time instances, denoted by σzp 

hereafter. Let β0
k,6,j be the scale parameter associated with zo,cp

p,k in the j-th 

ensemble member θ0
j , then β0

k,6,j is given by 

β0
k,6,j = eξ

/
σzp , ​ for ​ k = 1, 2,⋯,Ncp; j = 1, 2,⋯,Ne, (26)  

where ξ is a random number drawn from the normal distribution with 
zero mean and unit variance for Ncp × Ne times. Scale parameters β0

k,s,j 

(s = 1,2,⋯,5) associated with the others element of the center point Vcp
k 

are computed in a way similar to that in Eq. (26), but with the STD 
values therein being replaced by those of the respective mean property 
fields in Eq. (22). 

Given the values of β0
k,s,j, at the second step we aim to compute the 

weight parameter, c0
k,j, of the k-th kernel function in the j-th ensemble 

member θ0
j . At this stage, we want the residual model in Eq. (17) to be 

able to partially explain the residuals (differences) between the observed 
AI data and the simulated AI data (through Eq. (16)) with respect to the 
initial ensemble of reservoir models. For this reason, we do not adopt the 
random sampling strategy to initialize c0

k,j. Instead, we use some anchor 
points for the purpose of initialization. More specifically, given the re
sidual fields (distributed on active reservoir gridblocks over all seismic 
surveys), we randomly select Ne points, denoted by ̃ro,ir

j (j = 1,2,⋯,Ne), 
where the superscripts o and ir stand for “observed” and “initial resid
ual”, respectively. In light of the residual model in Eq. (17), for each 
ensemble-member index j, we want to find a weight vector 

c0
j ≡

[
c0

1,j, c
0
2,j,⋯, c0

Ncp ,j

]T
, (27)  

which approximately solves the following equation 

r̃o,irj =
(

c0
j

)T
Kvec

j , (28) 5 Note that the mean fields of Φ and NTG are over the ensemble members 
since they are static variables, whereas those of Sw, Sg and P are over both the 
ensemble members and the seismic surveys. 
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β0
k,j ≡

[
β0
k,1,j, β

0
k,2,j,⋯, β0

k,6,j

]T
, (30)  

where V(r̃o,ir
j ) represent an input vector of the residual model Eq. (17). 

The static elements (Φ and NTG) of V(r̃o,ir
j ) correspond to those in the j-th 

reservoir model of the initial ensemble, on the same reservoir gridblock 
as r̃o,ir

j . Likewise, the dynamical variables (Sw, Sg and P) of V(r̃o,ir
j )

correspond to the respective saturation or pressure profile generated by 
the j-th reservoir model of the initial ensemble, on the same reservoir 
gridblock and at the same seismic survey time instance as r̃o,ir

j . The 

observed AI data (zo
p) contained in V(̃ro,ir

j ) are identified in a similar way. 
Eq. (28) is approximately solved in terms of 

c0
j = r̃o,irj × Kvec

j

/(
b+

(
Kvec

j

)T
Kvec

j

)
, (31)  

where b is a relatively small constant introduced to avoid the potential 
issue of division-by-zero, and is set to 0.01 throughout this work. 

At the last step of computing the initial ensemble Θ0 of residual- 
model parameters, we take into account the fact that the scale param
eters β0

k,j from the first step is obtained through random sampling. As a 
result, we choose to update the ensemble Θ0 so that the residual model 
Eq. (17) can better match the field of initial residuals distributed over 
active reservoir gridblocks over all seismic surveys, given the vector 
fields V with respect to the initial ensemble of reservoir models. 
Essentially, this boils down to a parameter estimation problem (similar 
to history matching), and can thus be solved by ensemble-based data 
assimilation. For this reason, we choose to use the IES introduced pre
viously to update Θ0 (without localization, and with the observation 

error covariance matrix Cd being an identity matrix). To avoid over- 
fitting, only one iteration is conducted. After the update, the obtained 
ensemble Θ0 is deployed for 4D SHM later on. 

4.2. Data processing for history matching 

The 4D seismic datasets used in the current study are the same as 
those in Lorentzen et al. (2020). Here we only outline the essential 
procedures involved in seismic data processing (see Fig. 2). For more 
information, readers are referred to Lorentzen et al. (2020). 

The Norne open dataset (http://www.ipt.ntnu.no/~norne) contains 
amplitude-versus-offset (AVO) data from four seismic surveys in 2001 
(base), 2003 (monitor #1), 2004 (monitor #2) and 2006 (monitor #3), 
respectively. In the field case study, however, we converted the AVA 
data into AI data at each survey time, through a procedure described in 
Lorentzen et al. (2020). The actual data used in SHM are the 4D dif
ferences of AI data between monitor and base surveys. As a result, there 
are three AI-difference datasets. 

In the Norne field model, the thickness of each individual layer is 
around 5 m on average, and is below the typical vertical resolution of 
seismic data, which is in the order of 10–20 m (Souza et al., 2019). To 
limit the sub-scale variations of the AI data that are not captured with 
the relatively low seismic vertical resolution, the AI-difference data are 
averaged within each reservoir formation (Garn, Ile, Tilje, and Tofte). 
This formation-based averaging strategy does not necessarily lead to any 
theoretical advantages, but is chosen largely from an engineering 
perspective to mitigate the impact of insufficient vertical resolution of 
seismic data (Lorentzen et al., 2020). 

DWT are then applied to these averaged AI-difference data, while a 
set of leading wavelet coefficients is selected for sparse data represen
tation in the wavelet domain, following the work of Luo et al. (2017, 

Fig. 2. Procedures involved in seismic data processing.  

Kvec
j ≡

[

exp

{

− 〈(β0
1,j

)2
,

(

V
(

r̃o,irj

)

− Vcp
1

)2

〉
}

, exp

{

− 〈(β0
2,j

)2
,

(

V
(

r̃o,irj

)

− Vcp
2

)2

〉
}

,⋯, exp

{

− 〈(β0
Ncp ,j

)2
,

(

V
(

r̃o,irj

)

− Vcp
Ncp

)2

〉
}]T

(29)   
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2018a); Lorentzen et al. (2019). The number of original AI datasets 
(from four seismic surveys) on active reservoir gridblocks is 4×

44927 = 179708, after the processing procedures (4D difference, for
mation average and DWT), the total number of leading wavelet coeffi
cient is reduced to 24,232. 

Moreover, as a by-product of the sparse representation procedure, 
one can also estimate the noise levels associated with the leading 
wavelet coefficients through a wavelet-based denoising method (Luo 
and Bhakta, 2017). The information of noise levels will be subsequently 
exploited by the history matching algorithm. 

Since history matching typically exploits the differences between 
observed and simulated data for reservoir model updates, when a sparse 
data representation procedure is applied to the observed data, the same 
procedure also needs to be applied to the simulated data in order for the 
comparison between observed and simulated data to make sense. As a 
result, DWT are also applied to the simulated averaged AI-difference 
data generated by the RPM and the subsequent procedures of 4D dif
ference and formation average. For the purpose of comparison, we select 
wavelet coefficients of the simulated averaged AI-difference data that 
are located in the same positions as the leading wavelet coefficients of 
observed averaged AI-difference data. 

In relation to the focus of the current study, when we use the RPM to 
generate simulated AI data, we consider two situations in which the 
previously described residual model is or is not added to the original 
RPM. These two scenarios correspond to the choices of whether to ac
count for model errors from RPM or not. 

The Norne open dataset also contains a set of production data from 
1997 to 2006. For our purpose here, production data are not used for 
history matching. Instead, they are adopted to cross-validate the quali
ties of estimated reservoir models from SHM, in terms of averaged data 
mismatch (to be defined later) between the observed production data 
and the forecast production data from the estimated reservoir models. 
Following the previous work (Chen and Oliver, 2014; Lorentzen et al., 
2020; Luo et al., 2019), the production data used for cross-validation 
include oil, water and gas production rates from production wells, 
denoted by WOPR, WWPR and WGPR, respectively. The total number of 
these production data is 5038. In order to compute data mismatch 
values, the noise levels associated with WOPR, WWPR and WGPR are set 
to 100 Sm3/d, 200 Sm3/d and 20,000 Sm3/d, respectively. 

4.3. Model updates through the IES 

RLM-MAC proposed by Luo et al. (2015) is adopted as the history 
matching algorithm in the field case study. To improve numerical sta
bility, TSVD is conducted in the implementation of the IES (see, e.g., 
Iterative-Ensemble-Smoother-master, 2019), in such a way that the sum 
of the retained leading singular values is no less than 95% of the sum of 
all singular values. 

Given the relatively large amount of observations (24,232 data 
points) in SHM, we choose to project all observations onto a sub-space 
spanned by the leading singular vectors obtained from TSVD, 
following Lorentzen et al. (2020). 

Due to the projection, the “effective” observations do not possess 
clear physical locations. As such, we adopt correlation-based adaptive 
localization in history matching, using the hard thresholding strategy 
originally proposed in Luo et al. (2018b). 

The threshold values in correlation-based adaptive localization are 
computed in the following way: For reservoir model variables, such as 
PERMX, PORO and NTG in Table 1, which have spatial distributions 
(hence unambiguous physical locations), we first compute the correla
tion fields between these model variables and the projected data. By 
treating these correlation fields as images, we apply a wavelet-based 
image denoising method (Luo and Bhakta, 2017) to calculate the noise 
levels of these correlation fields, and then compute estimated threshold 
values through the universal rule (Donoho and Johnstone, 1994). To 
avoid possible underestimations of the threshold values, we further 

specify a lower bound for them, in the form of 3/
̅̅̅̅̅̅
Ne

√
(based on an 

asymptomatic result discussed in Luo and Bhakta, 2020), whereas the 
final threshold values are the maximum ones between the estimated 
threshold values and the lower bound. On the other hand, for reservoir 
model variables without any spatial distributions and clear physical 
locations (e.g., Krg and Krw as in Table 1), we simply use 1/

̅̅̅̅̅̅
Ne

√
as the 

threshold value, following the choice in Lorentzen et al. (2020, 2019); 
Luo et al. (2019).6 

When the kernel-based residual model is introduced to account for 
potential model errors in the RPM, we have an additional set of residual- 
model parameters (140,000 per realization), which are associated with 
individual kernel functions and do not possess physical locations. For 
the purpose of conducting localization for these parameters, we adopt 
correlation-based adaptive localization based on the hard thresholding 
strategy again. In this case, we choose to use 3/

̅̅̅̅̅̅
Ne

√
as the threshold 

value. 
The configuration of the IES in the current study largely follows that 

in Luo et al. (2019). Specifically, based on the basic update formulae 
Eqs. (4) and (5), one needs to specify how the scalar γi therein evolves 
along the iteration process. Here we adopts the following rule: 

γi = ηi trace
(

S̃i
d

(

S̃i
d

)T)/
trace(I), (32)  

where trace represents the operator that gets the trace of a relevant 

matrix, ̃Si
d is a square root matrix obtained by applying the TSVD to Si

d in 
Eq. (5), and I is the identity matrix with a suitable dimension. Readers 
are referred to Luo et al. (2015, 2019) for the rationale behind the 
parameter rule in Eq. (32). The scalar factor ηi itself also varies with the 
iteration, in the form of: 

ηi+1 = β ηi, ​ with 0 < β < 1 . (33) 

Given a limited number of iteration steps, the choice of the initial 
value η0 has a substantial impact on the history matching performance 
when model errors are not accounted for, as will be demonstrated later. 

Table 3 
Data mismatch of simulated seismic data with respect to the final ensembles 
obtained in four sets of history-matching studies, in terms of mean ± STD. For 
the cases with MEC, two sets of data mismatch values are presented, in the form 
of A/B, which correspond to the cases that residuals are included (A)/not 
included (B) in the course of calculating data mismatch, respectively.   

With MEC No MEC 

η0 = 1  (2.8552±2.1247) × 107 /  
(1.2457±0.5492)× 107  

(0.7052±0.2445)× 107  

η0 = 10  (2.0788±1.2039) × 107 /  
(1.2773±0.5655)× 107  

(1.5284±0.7247)× 107   

Table 4 
Data mismatch of forecast production data with respect to the final ensembles 
obtained in four sets of history-matching studies, in terms of mean ± STD.   

With MEC No MEC 

η0 = 1  (4.9841±0.7099)× 105  (5.8287±0.6741)× 105  

η0 = 10  (5.2984±0.9342)× 105  (5.3273±0.9182)× 105   

6 This choice was made in light of the observation that sample correlations 
between this kind of reservoir model variables and projected data tend to be 
weaker, in comparison to sample correlations with respect to reservoir model 
variables with physical locations. We thus decided to lower the threshold values 
to allow the latter type of reservoir model variables to have more impact on 
history matching in our previous work. 
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Fig. 3. Inverted or simulated seismic data, in the unit of (m/s) (g/cc). (a) Seismic data inverted from the field AVO datasets. Here the seismic data map is the vertical 
average (within the Garn formation) of the time-difference (2004–2001) of acoustic impedance (AI) data; (b) Map of corresponding seismic data (averaged over 
ensemble members), generated by the original rock physics model (RPM) using the initial ensemble of reservoir models; (c) As in (b), but with respect to the final 
ensemble of reservoir models in the case of MEC; (d) Map of corresponding residual data (averaged over ensemble members), generated by the residual model using 
the initial ensemble of reservoir models and kernel parameters; (e) As in (d), but with respect to the final ensemble of reservoir models and kernel parameters in the 
case of MEC. 
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The iteration process of IES is guided by the average data mismatch 
(ADM) with respect to the ensemble of reservoir models. Given an 
ensemble M i+1 = {mi+1

j }
Ne

j=1 
of reservoir models, the corresponding ADM 

Ξ(M i+1) is calculated as 

Ξ
(
M

i+1)
≡

1
Ne

∑Ne

j=1

(
do − geff

(
mi+1

j

))T
C− 1

d

(
do − geff

(
mi+1

j

))
(34)  

where geff is the effective forward simulator, which is equal to the 
original physics-based forward simulator g if model errors are not taken 
into account, or the modified forward simulator ĝ = g + r̂ if a residual 
model r̂ is introduced to account for potential model errors in g (cf. Eq. 
(15)). 

Through model updates, if a new ensemble M i+1 leads to lower ADM 
than the current ensemble M i, then we accept M i+1 and use it as the 
background ensemble at the next iteration step to search another new 
ensemble that has a potential to further reduce the ADM. Otherwise, if 
Ξ(M i+1) ≥ Ξ(M i), then an inner loop is adopted to try a reduced step 
size by replacing ηi by α ηi (α > 1) until lower ADM is found, or the 
maximum number of the inner loop iteration is reached, see, for 

instance, the demonstration in (Iterative-Ensemble-Smoother-master, 
2019). In this study, we set α = 2, β = 0.9, and the maximum number of 
the inner loop iteration to be 5. 

To run the IES, we also need to specify certain stopping criteria. In 
this work, we adopt the following three stopping criteria as in Luo et al. 
(2019): (1) the maximum number of (outer) iteration steps reaches 10; 
(2) the relative change of the average data mismatch in two consecutive 
outer iteration steps is less than 1%; and (3) the average data mismatch 
is less than 4p, with p being the number of observations. 

5. Numerical results 

This section aims to investigate the impact of model errors on the 
performance of SHM. To this end, we conduct four sets of history- 
matching studies (cf. Tables 3 and 4), among which the differences lie 
in (a) whether a MEC mechanism (through the kernel based residual 
model) is introduced or not; and (b) the scalar factor η0 (cf. Eq. (32) – 
(33)) is set to 1 or 10. Apart from these mentioned differences, all other 
settings are identical in the studiess. 

Based on Eqs. (4), (5) and (32), it is clear that a larger value for η0 

implies a larger value for γ0, hence a smaller step size for model updates. 

Fig. 4. Box plots of seismic (top) and production (bottom) data mismatch (in the scale of log10) with respect to the ensembles of reservoir models at different 
iteration steps. In the MEC case, the data mismatch values are calculated by combining the simulated seismic data from the original RPM and the outputs of the 
residual model. 

X. Luo et al.                                                                                                                                                                                                                                      



Journal of Petroleum Science and Engineering 196 (2021) 107961

12

In a practical history matching problem, given the limited computa
tional resources, the IES is often applied with a relatively small number 
of iteration steps (e.g., 10 steps or even less). As a result, the choice of η0 

has a substantial impact on the history matching performance, which is 
measured in terms of ADM of forecast against observed data in the 
current work. 

Table 3 reports the data mismatch values, in terms of mean ± STD, 
with respect to seismic data from the final ensembles obtained in four 
sets of history-matching studies. For the cases with MEC, we show data 
mismatch values in two scenarios, which correspond to the cases that 
residuals are included (Scenario A)/not included (Scenario B) in the 
course of calculating data mismatch, respectively. Note that in history 
matching, it is the ADM values of Scenario A that are used to guide the 
iteration process, whereas the ADM values of Scenario B are calculated 
after history matching. 

From Table 3, it is clear that, with residuals being included (Scenario 
A), the ADM values of seismic data in the cases with MEC are higher than 
those in the cases without MEC. After excluding residuals from the 
calculations (Scenario B), the ADM values in the cases with MEC become 
lower than those in the case without MEC at η0 = 10, but still higher 
than those in the case without MEC at η0 = 1. Meanwhile, using 
different η0 values in the cases with MEC tends to result in less variations 
of ADM values, in contrast to the cases without MEC. These results 
suggest that, in the current field cast study, the residual model has a 
substantial impact on the performance of SHM; and in the cases with 
MEC, the history matching performance appears less sensitive to the 
choice of η0. 

For illustration, Fig. 3 shows a set of inverted or simulated seismic 
data. Fig. 3(a) plots the seismic data map with respect to the time- 
difference (2004–2001) of inverted AI data, averaged vertically within 
the Garn formation (also see our discussion on data processing in the 
preceding section). Fig. 3(b –c) present the corresponding simulated 
seismic data maps (excluding residuals) with respect to the initial and 
final ensembles of reservoir models, respectively, in the case of MEC, 
while Fig. 3(d –e) depict associated residual maps, with respect to the 
initial and final ensembles of reservoir models and kernel parameters, 
respectively. As a common procedure to generate the maps in Fig. 3(b – 

e), given an ensemble of 4D datasets (simulated AI or residual data), we 
first compute the average of the 4D datasets over ensemble members 
(called ensemble-mean hereafter), then compute the 4D differences of 
the ensemble-mean datasets. After that, for a given time-difference 
dataset, we further compute the averages over the layers within indi
vidual formations of the reservoir model, and plot the average values 
onto the active reservoir gridblocks of respective layers. 

Comparing Fig. 3(a – c), we see that the simulated AI data partially 
capture the spatial patterns of the inverted AI data, e.g., in the G segment 
(the lower right corner). After SHM, data match in the G segment seems 
further improved, e.g., the dark-blue region with relatively lower AI 
difference values in Fig. 3(b) becomes light-blue instead in Fig. 3(c), 
closer to the values in the same region of the inverted AI data map. On 
the other hand, for the residual maps, it seems that they (partially) help 
compensate for the differences between the inverted and simulated AI 
maps. For instance, before SHM, in the G segment of Fig. 3(b), the values 
of simulated AI differences in the light-yellow region tend to be lower 
than those of the inverted AI differences in the same region of Fig. 3(a). 
Accordingly, the corresponding residuals in the same region of Fig. 3(d) 
have relatively large values. After SHM, since the simulated AI data in 
the same region of Fig. 3(c) tend to match the inverted AI data better, the 
values of corresponding residuals in the same region of Fig. 3(e) 
decrease accordingly. 

For further performance validation, Table 4 reports the corre
sponding data mismatch values with respect to production data. As it is 
clear therein, for a given η0, when MEC is introduced to SHM, the ADM 
of forecast production data becomes lower than the corresponding case 
without MEC, indicating that the kernel-based residual model indeed 
tends to help improve the quality of reservoir models estimated through 
SHM. On the other hand, in terms of STD of data mismatch, those from 
the case with MEC tends to be larger than those from the case without 
MEC. 

In contrast, when the choice of adopting MEC or not is made, the 
impact of η0 on the history matching performance (in terms of ADM of 
production data) is case dependent. When model errors are not 
considered, then one obtains lower ADM for forecast production data if a 
smaller initial step size (at η0 = 10) is used for model updates. This 

Fig. 5. Changes of average data mismatch (ADM) of production data at different iteration steps, with respect to ADM of production data from the initial ensemble, in 
cases of MEC (blue) and No-MEC (red). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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suggests that, in this case, more model changes (due to a smaller η0) does 
not necessarily lead to improved quality of reservoir models, which is 
likely due to the possibility of over-fitting seismic data in order to 
compensate for the unaccounted model errors, as will be further illus
trated later. Meanwhile, when model errors are taken into account, 
using a smaller η0 value (hence more model changes) does improve the 
quality of reservoir models, in terms of ADM of forecast production data. 

By borrowing the concepts of “under-fitting” and “over-fitting” with 
respect to the training data in supervised learning problems, we provide 
a possible explanation of the results in Tables 3 and 4 In our problem, 
seismic data can be considered as an analogy to the “training dataset”, 
whereas production data an analogy to the “test dataset”. For the case 
without MEC, a relatively small η0 value (e.g., η0 = 1) leads to more 
substantial changes of reservoir models, and this results in an overfitting 

Fig. 6. Production data profiles in some of the wells. In each sub-figure, red dots represent respective observed production data; orange curves stand for the forecast 
production data from a manually history-matched reservoir model provided in the Norne open dataset; and blue curves are the forecasts from the ensembles of 
reservoir models, before or after seismic history matching. The top row shows the water production rates (WPR) from well D-1CH; the middle row displays the oil 
production rates (OPR) from well D-3AH, and the bottom one depicts the gas production rates (GPR) from well E− 1H. On the other hand, the first column presents 
results with respect to the initial ensemble; the second column contains results with respect to the ensemble of reservoir models obtained at the 8th iteration step, 
which are the best in the case of No-MEC according to Fig. 5; and the last column shows results with respect to the final ensemble of reservoir models in the case of 
MEC. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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of the training data. As a consequence, the test performance is worsened 
when the history matching performance is evaluated using the ADM of 
production data. On the other hand, a larger η0 value (e.g., η0 = 10) 
produces less changes of reservoir models, which then causes an 
underfitting of the seismic data, and does not achieve descent perfor
mance neither at the test stage. In contrast, for the case with MEC, more 
proper training is achieved in terms of matching the seismic data for 
different choices of η0 values, and this leads to better performance at the 
test stage. 

In the sequel, we present more numerical results. For succinctness, 
we only compare the results of the cases (with and without MEC, 
respectively) that achieve the best performance in terms of ADM of 
forecast production data, i.e., the results from the case without MEC at 
η0 = 10, and those from the case with MEC at η0 = 1. Without causing 
confusion, we simply call them the No-MEC case and the MEC case, 
respectively. 

Fig. 4 shows box plots of seismic (top) and production (bottom) data 
mismatch (in the scale of log10) with respect to the ensembles of reser
voir models at different iteration steps, in the cases of MEC and No-MEC. 
In terms of seismic data mismatch obtained in history matching, the 
introduction of the residual model appears to result in higher seismic 
data mismatch than that in the No-MEC case. On the other hand, in 
terms of production data mismatch for performance test, it seems 

beneficial to adopt the residual model, as it tends to lead to both lower 
ADM and spread in the MEC case (also see the results in Table 4). 

For better visualization, Fig. 5 reports the changes of ADM of pro
duction data, with respect to ADM of production data resulting from the 
initial ensemble (before SHM), in both cases of MEC (in blue) and No- 
MEC (in red). As one can see there, in the case of No-MEC, the ADM 
tends to decrease until it researches the 8th iteration step. After that, the 
ADM of production data increases instead, indicating a potential over- 
fitting of seismic data during SHM. In contrast, in the case of MEC, in 
the presence of the residual model, the ADM of production data mono
tonically decreases, meaning that the potential issue of over-fitting 
seismic data is mitigated. 

In addition, Fig. 6 shows some of the production data profiles, 
namely, water production rates (WPR) from well D-1CH, oil production 
rates (OPR) from well D-3AH and gas production rates (GPR) from well 
E− 1H, with respect to the ensembles of reservoir models before or after 
SHM. In each sub-figure, red dots stand for observed production data; 
yellow curves for forecast production data from a manually history- 
matched reservoir model provided in the Norne open dataset; and 
blue ones for forecasts generated by respective ensembles of reservoir 
models. The first column of Fig. 6 corresponds to the results of the initial 
ensemble of reservoir models; the second column to the forecasts from 
the ensemble of reservoir models at the 8th iteration step in the case of 

Fig. 7. Mean (top) and STD (bottom) maps of x-directional permeability (PERMX) on Layer 1 of the reservoir model, with respect to the initial ensemble (first 
column), the ensemble at the 8th iteration step in the case of No-MEC (second column), and the final ensemble in the case of MEC (third column). The small circles on 
the maps indicate the positions of field wells. 

Fig. 8. As in Fig. 7, but for the mean (top) and STD (bottom) maps of porosity (PORO) on Layer 7 of the reservoir model.  
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No-MEC, which are the best possible results according to Fig. 5; and 
finally, the third column to the results with respect to the final ensemble 
of reservoir models in the case of MEC. 

Comparing the results in the first two columns of Fig. 6, we see that 
after SHM, the production data profiles in the case of No-MEC tend to 
match the observed data better than those from the initial ensemble. 
However, since production data are only reserved for performance test, 
rather than used in history matching, such improvements do not appear 
to be significant, although noticeable. In contrast, in the case of MEC, the 

Fig. 9. Left column: Mean kernel parameters with respect to the initial 
ensemble in the case of MEC. These include the weights c (first row) and scale 
parameters β associated with porosity (PORO, second row), water saturation 
(Swat, third row) and seismic data (Seis, fourth row) of individual center points 
in the residual model, cf. Eq. (17) – (21) of the current work. Right column: for 
ease of visualization, we show the differences (diff) between the mean kernel 
parameters of the initial and final ensembles, in the form of mean parameters of 
the final ensemble minus those of the initial ensemble. Note that for the scale 
parameters, only their magnitudes matter, so we actually calculate the means of 
their absolute values, before computing the differences. 

Fig. 10. As in Fig. 9, but for STDs of kernel parameters.  
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improvements appear to be more substantial. For instance, if one looks 
at the forecasts of WPR from well D-1CH (the top row), around day 
2200, the observed data indicates that there should be no water 
breakthrough. The forecasts from the initial ensemble and the ensemble 
in the case of No-MEC both state that there are relatively high WPR 
values (cf the blue spikes in Fig. 6(a and b)). On the other hand, the 
ensemble in the case of MEC predicts much lower WPR values, which are 
much closer to the observed data. In comparison to the case of No-MEC, 
similar data-match improvements in the case of MEC are also spotted in 
other sub-figures, although tending to be less substantial in general. 

Fig. 7 reports the mean (top row) and STD (bottom row) maps of x- 
directional permeability (PERMX) values distributed on the active 
gridblocks of Layer 1 of the reservoir model, with regard to the initial 
ensemble (first column), the ensemble at the 8th iteration step in the 
case of No-MEC (second column), and the final ensemble in the case of 
MEC (third column), respectively. Comparing to the maps of the initial 
ensemble, there are significant differences in those with respect to the 
cases of MEC and No-MEC. The maps in the cases of MEC and No-MEC 
exhibit similarities in certain regions, but also with substantial differ
ences in others. For instance, for the mean maps, we see some clear 
distinctions in the G segment (lower right corner of the figures). In some 
of the maps, e.g., the mean PERMX map with respect to the case of MEC 
(upper right plot of Fig. 7), certain artificial effects (discontinuity) are 
present, which is largely due to the hard thresholding strategy adopted 
in correlation-based adaptive localization. 

Similar to Figs. 7 and 8 shows mean and STD maps of porosity 
(PORO) values distributed on the active gridblocks of Layer 7 of the 
reservoir model. Different from the situation in Fig. 7, the maps in Fig. 8 
appear more similar to each other. One possible implication of this 
observation is that, in this particular case study, the residual model has 
more impact on certain reservoir model variables (e.g., permeability) 
than the others (e.g., porosity). 

In addition, Fig. 9 reports some of the mean kernel parameters with 
respect to the initial and final ensembles in the case of MEC. The left 
column shows the means (over members of the initial ensemble) of the 
weight parameters c (first row), the scale parameters β with respect to 
porosity (second row), water saturation (third row) and seismic data 
(fourth row), which are associated with 20,000 center points in the re
sidual model, as described in the previous section (cf. Eq. (17) – (21) 
therein). The right column provides respective information corre
sponding to the final ensemble. For ease of visualization, however, we 
choose to present the differences between the mean kernel parameters of 
the initial and final ensembles, in the form of mean parameters of the 
final ensemble minus those of the initial one. We note that, for the scale 
parameters β, it is their magnitudes that really matter in the imple
mentation of the residual model (cf. Eq. (17) – (19)). Therefore, we 
actually calculate the means of their absolute values before computing 
the differences. 

From the left column of Fig. 9, we see that the weight parameters c 
have relatively low magnitudes. The scale parameters for seismic data 
tend to have the largest magnitudes, and the magnitudes of scale pa
rameters for porosity and water saturation are in the middle. In the re
sidual model (cf. Eq. (17) – (21)), however, given the same amount of 
change of an input variable, a larger associated scale parameter implies 
less influence on the output. As a result, one can tell that initially the 
residual model is more sensitive to porosity and water saturation than to 
seismic data. From the second column, we see that, after SHM, the 

magnitudes of changes of the weight parameters are smaller than those 
of the other three presented scale parameters. Overall, the scale pa
rameters for seismic data still tend to have the largest magnitudes. On 
the other hand, in the final ensemble, the scale parameters for water 
saturation become larger than those in the initial ensemble in most of 
the time, meaning that the residual model becomes less sensitive to 
water saturation after SHM. In contrast, for the scale parameters asso
ciated with porosity, the changes contain both positive and negative 
values, implying that the changes of their influence on the residual 
model are mixed. 

Similar to Figs. 9 and 10 indicates the STDs of some of the kernel 
parameters in the initial ensemble (left column), and the changes of the 
STD values after SHM. As expected, through history matching, the STDs 
with respect to the final ensemble are reduced in comparison to those of 
the initial ensemble. On the other hand, the STDs of the kernel param
eters do not appear to concentrate around the zero value, meaning that 
ensemble collapse do not appear to be a problem during history 
matching. 

Finally, Table 5 reports the computational costs (in number of days) 
of the history-matching studies. The way for us to carry out the nu
merical computations is as follows: The forward reservoir (through 
ECLIPSE©) and seismic (through MATLAB©) simulations are conducted 
in a parallel way, using a computer server with 24 AMD Opteron 6180 
CPUs, and 144 GB memory in total, but model updates through the IES 
have to wait until the forward simulations with respect to all ensemble 
members are finished. Under this setting, the computational costs of the 
history-matching studies do not appear sensitive to the hyper-parameter 
η0 of the IES algorithm, but are more affected by the choice of whether 
MEC is conducted or not. When no MEC is introduced, the total 
computational time is around 3 days for both the cases η0 = 1 and η0 =

10. In contrast, with MEC introduced to the IES, the total computational 
time rises to around 5 days. 

This 67% increment of the computational time is largely due to the 
bottleneck of the total computer memory, which is shared by all the 
sessions of parallel forward simulations. Indeed, when MEC is adopted, 
at each seismic survey time, the residual model in each forward seismic 
simulation needs to generates 44,927 AI data points distributed on 
active gridblocks, based on a set of 140,000 input kernel parameters. As 
such, generating all the AI data points simultaneously would require us 
to store a matrix in the dimension of 44927 × 140000 for each seismic 
survey time in each forward seismic simulation, which is not possible for 
our computational platform since we run multiple (24) forward simu
lations simultaneously. To address this problem, instead of simulta
neously generating all the AI data points, we choose to do it sequentially 
in multiple (40) times, each time with a decreased amount of computer 
memory, but at the cost of increased computational time overall. 
Bearing this setting in mind, we expect that the computational overhead 
of adopting MEC would be reduced by conducting parallel numerical 
computations in a more powerful platform. As such, the integrated SHM 
workflow (with kernel-based MEC) will be applicable to (possibly much) 
larger reservoir models, which remains to be tested in future work. 

6. Discussion and conclusion 

In this work, we present an integrated seismic history matching 
(SHM) framework that consists of a few functional modules, namely, 
forward seismic simulations, seismic data processing and ensemble- 
based history matching. As the focus of the current work, we consider 
how to handle model errors arising in forward seismic simulations. To 
this end, we propose to introduce a parametrized residual model to the 
rock physics model, from a perspective of machine learning. During 
seismic history matching, the parameters associated with the residual 
model are then jointly estimated together with the reservoir model 
variables under estimation. In this way, the addition of the residual 
model to the SHM framework would only require some very minor 

Table 5 
Computational costs in four sets of history-matching studies.   

With MEC No MEC 

η0 = 1  ∼ 5 days  ∼ 3 days  

η0 =

10  
∼ 5 days  ∼ 3 days   
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changes of the history matching algorithm, making it convenient for 
practical implementations. 

For demonstration, we apply the integrated SHM framework to the 
full Norne field case study. We document the details in implementing the 
integrated SHM framework, and conduct comparison studies to examine 
the impact of the introduced residual model on history matching per
formance. To this end, we use the production data to cross-validate the 
qualities of the estimated reservoir models. The numerical results indi
cate that, in this particular case study, introducing the residual model to 
SHM leads to better history matching performance, in terms of the 
average data mismatch of forecast production data, compared to the 
case that the residual model is not adopted. On the other hand, a 
consequence of introducing the residual model is the increased 
computational overhead, which, in the current study, appears moderate 
and acceptable, and can be further mitigated by carrying out the com
putations in more powerful facilities. 

As previously mentioned, using a machine-learning-based residual 
model represents a data-driven approach to compensating for the effect 
of model errors during history matching. In general, it would not be able 
to help identity the sources of model errors for model improvements. For 
this reason, we recommend that its use should be after domain knowl
edge, expertise and experience are properly and sufficiently exercised. 

Related to the recent work of Lu and Chen (2020), we expect that it is 
possible to extend the idea in the current work, and build a residual 
model to account for model errors in the forward reservoir simulator 
which generates forecast production data based on the input reservoir 

models. Investigations in this regard will be considered in our future 
work. 
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Appendix A. Details of the rock physics model 

Various RPM have been developed over the years to address various geological formations and their depositional environments. They vary from 
simple empirical relations derived from laboratory measurements to more complex physical models based on granular media theory, inclusion theory 
or other theories (Mavko et al., 2009). 

In this work, we use the average of the Hashin-Shtrikman lower (LHS) and upper (UHS) bounds (Hashin and Shtrikman, 1963) for mineral 
constituents: 

[Ks,Gs]←HS
(
Kquartz,Gquartz,Kclay,Gclay,Vclay

)
, (A.1)  

where Ks and Gs are the effective bulk and shear moduli of mineral mixing, respectively. Similarly, we define Kq and Gq, q ∈ {quartz, clay}, as the 
effective bulk and shear moduli of quartz and clay minerals, respectively. Furthermore, Vclay = 1 − NTG is the volume fraction of clay, where NTG 
stands for the net-to-gross ratio of the formation layers. Here, we assume that the volume fraction of quartz (Vquartz) is equal to NTG. On the other hand, 
the dry bulk (Kini

dry) and shear (Gini
dry) moduli are computed as a function of porosity under initial reservoir conditions: 

[
Kini

dry,G
ini
dry

]
←f Norne(Φ), (A.2)  

where fNorne stands for certain empirical relations specific for the Norne field, which are provided by Equinor but cannot be revealed here due to the 
confidentiality agreement between Equinor and NORCE. In addition, the pore-pressure effect is incorporated based on laboratory measurements 
derived from various core plugs of the Norne Field: 
[
Kdry,Gdry

]
←gNorne

(
Pini,P,Kini

dry,G
ini
dry

)
, (A.3)  

where Pini and P stand for pore-pressures under initial reservoir conditions and those at a later time, respectively. The pressure model is denoted as 
gNorne, and is calibrated using seismic observations in such a way that no pressure effect is observed below 310 bar (Huang et al., 2013). The fluid 
saturation effect on the dry moduli is then introduced by using the Gassmann model (Gassmann, 1951): 

[Ksat,Gsat]←Gassmann
(
Ks,Kdry,Gdry,Kfl,Φ

)
, (A.4)  

here, Ksat and Gsat are saturated bulk and shear moduli, respectively. Kfl is the effective fluid bulk modulus, which is estimated by the Reuss average 
(Reuss, 1929): For the three-phase fluid mixture, Kfl is calculated as 
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Kfl =

(
Sw
Kw

+
So
Ko

+
Sg
Kg

)− 1

, (A.5) 

where Kw, Ko, Kg, Sw, So and Sg are bulk modulus of water/brine, bulk modulus of oil, bulk modulus of gas, saturation of water/brine, saturation of oil 
and saturation of gas, respectively. Further, the saturated density (Mavko et al., 2009) is calculated as (for the three-phase fluid) 

ρsat =(1 − Φ)ρm + Φ
(
Swρw + Soρo + Sgρg

)
, (A.6)  

where ρsat, ρm, ρw, ρo and ρg are saturated density of rock, mineral density, water/brine density, oil density and gas density, respectively. The mineral 
density is expressed as the weighted average between clay and quartz minerals, i.e., ρm = Vclayρclay + Vquartzρquartz. 

The above equations is then used to calculate pressure (P)- and shear (S)-wave velocities (Mavko et al., 2009) as 

vp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ksat +

4
3Gsat

ρsat

√

, (A.7)  

and 

vs =

̅̅̅̅̅̅̅̅
Gsat

ρsat

√

, (A.8)  

where vp and vs represent P- and S-wave velocities, respectively. Moreover, we compute acoustic and shear impedances (zp and zs, respectively) using 
the following equations: zp = vp⋅ρsat and zs = vs⋅ρsat. For more details about the RPM, readers are referred to Bhakta et al. (2016); Mavko et al. (2009) 
and the references therein. 
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