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A B S T R A C T

Reservoir simulation models are used to forecast future reservoir behavior and to optimally manage reservoir
production. These models require specification of hundreds of thousands of parameters, some of which may
be determined from measurements along well paths, but the distance between wells can be large and the
formations in which oil and gas are found are almost always heterogeneous with many geological complexities
so many of the reservoir parameters are poorly constrained by well data. Additional constraints on the values
of the parameters are provided by general geologic knowledge, and other constraints are provided by historical
measurements of production and injection behavior. This type of information is often not sufficient to identify
locations of either currently remaining oil, or to provide accurate forecasts where oil will remain at the end
of project life.

The repeated use of surface seismic surveys offers the promise of providing observations of locations of
changes in physical properties between wells, thus reducing uncertainty in predictions of future reservoir be-
havior. Unfortunately, while methodologies for assimilation of 4D seismic data have demonstrated substantial
value in synthetic model studies, the application to real fields has not been as successful. In this paper, we
review the literature on 4D seismic history matching (SHM), focusing discussions on the aspects of the problem
that make it more difficult than the more traditional production history matching. In particular, we discuss the
possible choices for seismic attributes that can be used for comparison between observed or modeled attribute
to determine the properties of the reservoir and the difficulty of estimating the magnitude of the noise or bias
in the data. Depending on the level of matching, the bias may result from errors in the forward modeling, or
errors in the inversion. Much of the practical literature has focused on methodologies for reducing the effect
of bias or modeling error either through choice of attribute, or by appropriate weighting of data. Applications
to field cases appear to have been at least partially successful, although quantitative assessment of the history
matches and the improvements in forecast is difficult.
. Introduction

Reservoir simulation models are increasingly used for making fore-
asts of future reservoir behavior. It is standard practice to calibrate
arameters of the simulation model to match production data, as
his generally provides greater confidence in the forecast of future
roduction. Unfortunately, production data are available only at widely
eparated well locations, and the relationship between production data
nd model parameters is complex. Consequently, seismic data is some-
imes acquired to assist in determining fluid movement between well
ocations. For reservoir monitoring, 4D or time-lapse seismic data
re especially useful as they may assist in identifying regions of the
eservoir where changes in pressure or fluid content have occurred.
ualitative comparisons between model predictions and actual 4D

eismic data are more common than history matching and, when done
ell, can provide insight into problems with the model (Maleki et al.,
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2018). The primary drawback to qualitative comparisons is that the
information content in the data is not fully utilized and uncertainty
in forecasts is impossible to assess. Despite the potential for increased
resolution of model parameter estimates, the use of the 4D seismic data
as a further history matching constraint has not yet become standard.

Challenges to the quantitative use of 4D seismic data for reservoir
model improvement include the difficulty of assimilating potentially
large amounts of data into reservoir models with limited numbers of
degrees of freedom, the difficulty of weighting various types of data
for simultaneous assimilation, the challenge of choosing parameters
capable of matching data while still maintaining plausible distributions
of rock properties, prior uncertainty distributions on model param-
eters that are too narrow, significant errors in forward modeling of
seismic data and attributes and large nonlinearity in the relationship
between model parameters and data. Fig. 1 illustrates a very high-level
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Fig. 1. Generic workflow for seismic history matching.
overview of a general workflow for history matching of production and
time-lapse seismic data.

Although history matching of 4D seismic data is difficult even on
synthetic ‘‘twin’’ experiments, the application to actual field data has
additional challenges, so it has generally been necessary to make a
number of simplifying assumptions when history matching real 4D
seismic data. These assumptions include (1) the use of relatively small
numbers of history matched models to provide estimates of uncertainty
in forecasts, (2) qualitative interpretation of data such as interpreted
change in oil–water-contact from seismic for assimilation, (3) Gaussian
approximations of uncertainty and neglect of scenario uncertainty, (4)
neglect of differences in scale between observed seismic data and sim-
ulated seismic data, (5) neglect of imperfections in the simulators and
neglect of errors in quantification of initial uncertainty in parameters,
and (6) neglect of correlations in data error.

The effects of model error appear to be more pronounced in 4D
seismic history matching than in traditional history matching of pro-
duction data because of the additional need for modeling of the seismic
attributes from reservoir simulation models (Section 3.2), and because
of the volume of data (Section 2). It has been said that ‘‘With enough
data—and often only a fairly moderate amount—any analyst could re-
ject any model now in use to any desired level of confidence’’ (Gelman
and Shalizi, 2013). Approaches to handling model deficiencies must
therefore be an important part of any real-world application of 4D
seismic history matching. A consequence of inadequate model assump-
tions is that the naïve use of Bayes rule for combining information
may not improve the model or the forecasts (Vink et al., 2015) and
in fact may lead to predictions that are biased and yet overly confi-
dent (Brynjarsdóttir and O’Hagan, 2014; Oliver and Alfonzo, 2018). An
approach that has been advocated in the petroleum industry to avoid
the problem of overconfidence in incorrect forecasts is to reduce weight
on the data (Sun et al., 2017), but the effect of this action is to possibly
ignore important information in the seismic data, simply because it is
inconsistent with the prior model. In Section 4.2.3 we review methods
for dealing with model error in 4D seismic history matching.

One large potential source of model error in 4D seismic history
matching is the petro-elastic model (PEM), which links fluid and reser-
voir rock properties, such as porosity, saturation, and pressure, to
elastic properties such as acoustic velocity and saturated rock density.
The PEM is essential for data assimilation of inverted seismic attributes
or for forward simulation of seismic amplitudes. In Section 3.1 we
review approaches to choosing a PEM for 4D seismic history match-
ing and in Section 3.2 we review methods for simulation of seismic
attributes. Algorithms that have been proven useful for dealing with
large models and large amounts of data are discussed in Section 5.
In Section 6 we provide brief summaries of key field cases that have
been discussed in the open literature, focusing on approximations that
were required due to the complexity of the case and on the choice
2

of approach for each case. Although matching of reservoir production
data is an important part of seismic history matching, we have largely
ignored that aspect of the problem as it has been reviewed fairly
recently (Oliver and Chen, 2011).

In a generic inverse problem, one attempts to estimate values of pa-
rameters that allow a model to approximately reproduce observed data.
In a seismic reflection inverse problem, the observations typically consist
of pressure amplitudes and the model parameters are typically elastic
properties such as density and bulk modulus (Tarantola, 1984) or P-
wave velocity, S-wave velocity, and density (Buland and Omre, 2003).
The final goal, however, is not simply to estimate elastic properties, but
usually to infer reservoir properties such as fluid saturations, porosity
and pressure from the observations (Bosch et al., 2010), as these are
the properties that determine the amount of hydrocarbons remaining
in a reservoir. Hence a second step in the inversion is sometimes
applied, in which the rock physics model is used to infer saturation
and pressure from density and bulk modulus. If the seismic inversion
produces estimates of reservoir properties, then those properties are
sometimes referred to as parameters of the model (Landrø and Kvam,
2002), although they may be time varying.

Seismic history matching can be thought of as a type of seismic
inversion; that is, one observes seismic amplitudes and from these
measurements one attempts to determine the reservoir properties that
are consistent with the data. The primary difference between seismic in-
version as performed by the geophysicists, and seismic history matching
is that, in history matching, physical constraints such as conservation
of mass and Darcy’s law are used to restrict the range of plausible
distributions of inverted saturation and pressure. In history matching,
however, one seldom directly estimates saturations and pressures. In-
stead, one estimates reservoir properties such as permeability, porosity
and fault transmissibilities, then uses these parameters in the model to
estimate saturations and pressures. Hence in seismic history matching
applications, the term parameter usually refers to reservoir and rock
properties that would be input to a reservoir simulator, not to the
output of the simulator. In this paper, we sometimes refer to reservoir
states such as saturation as a parameter when it is used in the context
of seismic inversion.

Regarding the citation of papers: We have attempted to include
references to papers that appear to have been influential, based on
frequency of citation, but we have also included references that appear
to be important based on our assessment of the usefulness of the ap-
proach described, or on insight to be gained by discussion of field cases.
We have preferentially cited journal papers over conference papers as
the journal papers have been peer reviewed and tend to include more
information than extended abstracts. We have, however, included many
extended abstracts for the simple reason that this method of publication
is more common in the geophysical community.
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2. Data

The major contribution of seismic data, in reservoir characteriza-
tion, comes in terms of static reservoir model building. The construction
of the static reservoir framework relies on reliable geological input.
Since no single data type contains sufficient information to accurately
characterize the reservoir, there is a benefit from integrating a variety
of types of data, such as 4D seismic, well logs, petrophysical, core and
production data. 3D seismic data as well as 4D data play a valuable
role in the construction of geological models and further in distribution
of reservoir properties away from the wells. Seismic data contribute
in different stages of reservoir characterization workflows. For exam-
ple, construction of structural maps of various reservoir formations is
carried out by interpreting seismic horizons (Alfi and Hosseini, 2016;
Santos et al., 2018). Reservoir facies models are generated by com-
bining the information from seismic, well logs and core data. Seismic
attributes such as inverted acoustic impedance are used to constrain the
distribution of various reservoir properties (i.e., porosity, net-to-gross
ratio, permeability, etc.) geostatistically over the reservoir zones (Bo-
gan et al., 2003). 4D or time-lapse seismic data are sensitive to changes
in pressure and saturation within the reservoir, thus potentially helping
in identification of fluid flow barriers and reservoir flow properties.

2.1. Levels of seismic data integration

For integration of seismic data in history matching workflows,
there is a need to define a common domain so that seismic data and
simulation results can be compared. In general, 4D seismic observations
can be represented in different forms and levels, such as in time or
depth, and as seismic amplitudes, impedances or even as pressure and
fluid saturation maps. The three main levels for comparison are (1)
the seismic level, (2) the elastic parameter level and (3) the simulation
model level (see Fig. 2).

In the first level of integration – the seismic domain level – no
inversion of seismic data is required, rather observed seismic data are
compared directly with simulated seismic data. In this level, a wide
variety of data types have been used for history matching including
amplitude (Fagervik et al., 2001; Fahimuddin et al., 2010; van Gestel
et al., 2011; Skjervheim et al., 2007), time-shift or time-strain (van
Gestel et al., 2011; Kjelstadli et al., 2005; Tolstukhin et al., 2012)
or amplitude versus angle (AVA) (Luo et al., 2017, 2018a; Soares
et al., 2020). AVA data usually provide better insight on reservoir
fluid-pressure as well as on lithology and can be effective in complex
reservoir scenarios. However, the AVA data tends to be more prone
to seismic noise compared to zero-offset seismic data as the AVA
is produced using a limited number of seismic traces coming from
certain angles. Time-shift and time-strain seismic data are sensitive to
porosity, pore-pressure changes inside the reservoirs and are therefore
useful for compacting reservoirs like Ekofisk and Vallhall. Although
matching at this level avoids the need for inversion, one needs to
generate synthetic/simulated data combining seismic modeling with
rock physics or petroelastic modeling. The generated synthetic seismic
is then compared with observed seismic data (Dadashpour et al., 2008;
Luo et al., 2017, 2018a). The forward modeling process can be complex
and time consuming, and must be performed each time the reservoir
model is changed. Its success depends on the construction of a good
PEM and/or sim2seis models as well as the quality of the underlying
reservoir or geological models (Section 3).

A cursory review of recent literature indicates that the second level –
the elastic parameters level – is the most popular for data integration in
4D seismic history matching. In most cases, acoustic impedance is used
as data (e.g., Aanonsen et al., 2003; Gosselin et al., 2003; Roggero et al.,
2012; Stephen et al., 2006) as it is generally thought to provide better
insight in fluid-pressure changes within reservoirs than seismic ampli-
tude (Maleki et al., 2018; Roggero et al., 2007; Sagitov and Stephen,
3

2013) and techniques for seismic inversion into impedance data are
widely available. Other data that have been used for history matching
at the elastic parameter level include Poisson’s ratio (Gosselin et al.,
2003), density, Vp/Vs (Castro et al., 2009) or even ratios of elastic
parameters between base and monitors (Alerini et al., 2014; Ayzenberg
et al., 2013). These types of data can be equally valuable as acoustic
impedance data, however, they are often more noisy and uncertain
than the acoustic impedance (Gosselin et al., 2003; Ayzenberg et al.,
2013). On the seismic forward modeling side, synthetic impedances
or elastic parameters are computed using a petro-elastic model (PEM)
that takes saturations and pressures from reservoir flow simulation as
inputs (Emerick and Reynolds, 2012; Gosselin et al., 2003; Roggero
et al., 2007; Skjervheim et al., 2007). The synthetic elastic parameters
from the model are then compared with inverted impedance or elas-
tic parameters, which convert the seismic reflectivity into volumetric
property based data that are more suited to cross-domain comparison.
Although the need for forward modeling is reduced, data integration
in this level is still challenging as the inversion process is inherently
more difficult than forward modeling and care must be taken to insure
that the inverted results are compared to the modeled results within
the seismic frequency bandwidth.

In the third level – the simulation model level – the seismic data
are inverted reservoir parameters/states such as maps of pressure and
saturation changes (Bhakta et al., 2018; Landrø, 2001). For exam-
ples, Zhang and Leeuwenburgh (2017) used saturation maps as data
in history matching; whereas Souza et al. (2010) and Park et al.
(2015) used both pressure and saturation maps to update reservoir
model parameters. These maps or data are then compared directly
with simulated outputs. Estimation of these reservoir parameters from
seismic data can be obtained either as one-step inversion (e.g., Bhakta,
2018; Bhakta et al., 2020; Landrø, 2001) or as two-step inversion (e.g.,
Grana and Mukerji, 2015). In two-step inversion, seismic data are
first inverted for elastic properties, similar to the situation in the case
of second level inversion, then these inverted properties are further
inverted for reservoir properties such as pressure and saturation. In
one step inversion, seismic data are inverted directly for reservoir
properties, where the relationship between amplitude changes and
reservoir state changes is approximated directly (Landrø, 2001). One
challenge with the use of this approach in data assimilation is the
complexity of the uncertainty in the inverted saturation and pressure
fields. This level does not, however, require seismic forward modeling
for the data comparison.

It is worth mentioning that having a reliable petro-elastic model
would always be beneficial for successful data integration irrespective
of the level at which the comparison is made. This is because the
PEM will be used either on the data side for inversion or on the
forward modeling side or on both sides depending on the level of
data integration. In most cases, conversion of simulation results into
seismic data (for example acoustic impedance) directly in reservoir
grid scale is considered as fair practice (Davolio and Schiozer, 2019).
However, a better way of data integration should first simulate seismic
traces by combining simulation results with PEM and seismic modeling.
Then the data integration can be done in any level of our choice
as both observed and simulated data will go through same inversion
or interpolation procedures. This way of data integration where both
simulated and observed data are in an equivalent form can improve
the correlation between them and hence improve the applicability of
seismic data (Davolio and Schiozer, 2019; Sagitov and Stephen, 2012).

2.2. Description of seismic attributes

From seismic data, various attributes can be computed. Selection
of an appropriate seismic attribute can be instrumental in a successful
history match. Seismic attributes potentially contain a large amount
of information that is not available from production data. However,
not all seismic attributes are sensitive to all reservoir properties, thus

there is a need to identify the most useful. For example, the time-shift
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Fig. 2. The various levels of seismic data integration.
attribute is good for detecting pressure changes, whereas amplitude or
impedance changes are better suited for detecting saturation changes.
Further, a producing field can have a variety of distinct production
related effects that can be decoupled/distinguished if several attributes
with different sensitivity are available for assimilation. Selection of
one or more attributes for history matching should be based on a pre-
sensitivity analysis to decide how dynamic changes effect the potential
attributes. Extraction of a proper attribute depends on other factors too,
for example, increase of precision of the extracted attribute escalates
both the demand for computational power as well as the complexity of
the seismic analysis (Jin et al., 2012b). The potential of the extracted
attributes is partially dependent on the goodness of corresponding
simulated attributes, thus on seismic and rock physics forward model-
ing. However, this forward modeling process is often time consuming
and complex in nature (Obidegwu et al., 2017). Therefore, deciding
on attributes is somewhat constrained by the availability of forward
seismic modeling. In the following sections, we will discuss various
attributes that are used in seismic history matching.

2.2.1. Conventional seismic attributes
Surface and volume attributes are the two most used seismic at-

tribute types in seismic history matching. They are extracted or com-
puted over various reservoir horizons or over reservoir volumes.

Maps One of the most common and robust attributes in seismic history
matching is map or surface based. Attribute maps can be generated
along an interpreted horizon or by averaging several layers or horizons.
Map-based attributes are less susceptible to data noise than volume-
based attributes as the mapped attribute is usually computed over a
time-window. However, there is a trade-off between the resolution and
robustness of the attribute when choosing the width of the window.
A long time window results in less noise, but lowers the resolution,
i.e., it does not contain any vertical information, unless multiple maps
are used.

Various approaches are used to extract the maps. For example,
time-horizons from top, base and/or intra-reservoir boundaries can
be extracted as 4D maps (Kazemi and Stephen, 2012; Stephen et al.,
2009; Waggoner et al., 2003). Further a map of root-mean-square
(RMS) amplitude generated over a time-window or whole reservoir
zone can be used in data integration (Souza et al., 2018; Stephen et al.,
2006; Stephen and MacBeth, 2008). The map can be extracted from
various types of data such as seismic amplitude, time-shift, time-strain
data (Fagervik et al., 2001; van Gestel et al., 2011) or from inverted
seismic data such as acoustic impedance (Emerick, 2016). Even maps
4

of saturation or pressure can be used as seismic attributes. van Gestel
et al. (2011) extracted attribute maps of both seismic amplitude and
time-shift using 4D processed life of field seismic surveys of the Valhall
field. In that study, the time-shift attribute was converted into observed
compaction maps for comparison with simulated compaction. Another
way of using seismic amplitude is by summing negative amplitudes
(SNA) over a reservoir formation interval (Briceño, 2017; Côrte et al.,
2020; Geng et al., 2017). The rationale for the use of only negative parts
of the seismic signal is that, usually, a porous reservoir is acoustically
softer than the background formation. The changes of SNA values from
base seismic data indicate changes in fluid-pressure distribution due to
production or injection within reservoirs.

Cubes Another common way to assimilate seismic data is by using
volume or cube attributes (Lorentzen et al., 2020, 2019; Luo et al.,
2018a). Volume attributes can be computed in the time or depth
domain and/or seismic or reservoir grid domain. For example, Luo et al.
(2018a) and Soares et al. (2020, 2019) use volume of amplitude versus
angle (AVA) seismic data in time. Whereas, Alfonzo and Oliver (2019)
and Lorentzen et al. (2020, 2019) use volume of acoustic impedance
data in depth where the acoustic impedance are interpolated/upscaled
for comparison on the reservoir grid. Usually seismic data have lower
vertical resolution than the reservoir model layer thicknesses. There-
fore, generating or interpolating seismic attributes for each reservoir
grid cell does not increase the information content.

2.2.2 Additional seismic attributes
We will discuss in Sections 3.1 and 3.2 the process of building a real-

istic forward model, including both seismic and petro-elastic modeling.
The modeling of seismic attributes is typically complex and expensive
and many of the parameters of the models are poorly constrained.
Therefore, simpler alternatives have been proposed as an alternative to
full modeling, for example, fluid fronts (Leeuwenburgh and Arts, 2014;
Trani et al., 2012) and binary image-based attributes (e.g., Jin et al.,
2012a,b; Obidegwu et al., 2017; Tillier et al., 2013). The details of these
alternative attributes are discussed below.

Fluid front Interpretation and parameterization of seismic informa-
tion in terms of front propagation can be considered as a seismic
attribute (Leeuwenburgh and Arts, 2014; Mannseth and Fossum, 2018;
Zhang and Leeuwenburgh, 2017). The technique was first introduced
by Kretz et al. (2004) based on streamline simulation and applied
in simple 2D cases. The method was further developed and imple-
mented for conventional finite-difference reservoir simulators and in
the ensemble-based data assimilation context by Trani et al. (2012),
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where they parameterized inverted saturation data in terms of front
arrival times. However, there is a potential drawback of using travel
times as it requires at least twice as long simulation run time for
accurate ensemble arrival time predictions (Trani et al., 2017). This
shortcoming can be addressed by parametrizing the seismic data in
terms of front positions (Leeuwenburgh and Arts, 2014). Different
types of seismic data (i.e., seismic amplitude maps, inverted acoustic
impedance or saturations from reservoir grid cells) can be used for
the parameterization. In many cases, the front attribute is extracted
directly from seismic amplitude, which avoids the necessity of seismic
inversion. The assumption that the observed seismic amplitude front
can compared with the saturation front requires that other effects are
negligible, including for example the effect of pressure variation or
compaction, the effect of variation in porosity or net-to-gross ratio.
If trends in these quantities are, in fact, important, then the results
of a direct comparison will be biased. Leeuwenburgh et al. (2016)
discuss how different seismic interpretations can be equally plausible
for the same time-lapse amplitude maps due to various factors such as a
different seismic processing sequence and understanding of the seismic
signal, poor quality of the data or using various threshold values, and
thus lessens the efficacy of the method to a great extent.

Binary images A closely related approach to avoid the forward model-
ing part in history matching is to use a binary image as an attribute (Jin
et al., 2012a,b; Obidegwu et al., 2017). In this approach, first 4D
seismic data or anomalies are interpreted and clustered into ‘harden-
ing’ and ‘softening’ signals (Obidegwu et al., 2017) and then further
converted into binary maps (Chassagne et al., 2016). The attribute
contains mostly first order information from 4D seismic data, thus
it provides a quick and effective way to integrate the most obvious
information (Jin et al., 2012b). The binary map attribute can be seen
as a reduction of level of information into two states (0 and 1). Thus
the success of extracting proper binary images, i.e., selecting of the
zones, requires interpretation of the 4D seismic response associated
with the dynamic changes in the reservoir (Jin et al., 2012b) and results
will depend on the threshold selection. Jin et al. (2012b) converted
flooded-zone pattern derived from 4D seismic data into binary images,
whereas, Chassagne et al. (2016) converted seismic information to
binary gas maps by interpreting various reservoir processes like gas
expansion, dissolution and displacement. Obidegwu et al. (2017) ex-
tracted binary (water and gas) maps by interpreting and deciphering
potential gas and water signals due to the injector/producer location.
Recent work from Davolio and Schiozer (2018) shows computation of
binary maps by clustering high and low pressurized zone from seismic
data.

Onset time The onset time attribute for seismic data, introduced
by Vasco et al. (2014), is defined as the calendar time when changes
in time-lapse data crosses a pre-specified threshold value at a given
location (Vasco et al., 2015). Therefore, the attribute is generated
by collapsing multiple seismic surveys into a single map of changes
propagating in the reservoir (Hetz et al., 2017). The threshold value is
crucial to compute the onset time attribute and itself depends on the
signal-to-noise ratio of seismic data as well as on the reservoir state that
is being tracked (e.g. saturation front and/or pressure front). The main
advantages of this attribute is the ability of substantial data reduction.
Therefore, this approach becomes a computationally efficient method
to integrate frequent time-lapse seismic surveys (Hetz et al., 2017).
Further, the attribute is not very sensitive to the choice of petro-
elastic models, but rather strongly sensitive to fluid-pressure changes
within the formation (Vasco et al., 2014). Hetz et al. (2017) showed
the applicability of this attribute to estimate permeability variation
between boreholes in a CO2 monitor site. The attribute was used for a
eavy oil reservoir in the Peace River Field, Canada, where daily time-
apse seismic surveys are recorded by the permanently buried seismic
onitoring system to monitor the steam injection process. However,

mplementation of this attribute becomes less promising in most of the
5

producing fields due to the fact that less frequent seismic surveys may
not have sufficient information to resolve and build the onset time map.
Even interpolation of the attribute will not benefit for highly infrequent
seismic surveys as dominant underlying physics might not be captured
by the seismic surveys, for example shifting from saturation dominated
case to pressure and/or temperature dominated case (Liu et al., 2020).

Well2seis attribute Another efficient way of integrating frequently ac-
quired seismic data is to use the ‘well2seis’ attribute. In this approach,
the large volumes of seismic data coming from several repeated surveys
is condensed into a single attribute (Yin et al., 2019). The attribute
is extracted by defining a linear relationship between 4D seismic re-
sponses and the cumulative changes of reservoir fluid volumes derived
from wells (Yin et al., 2015, 2019). The attribute has been applied
in various North Sea reservoir scenarios (Yin et al., 2015, 2019).
However, there are a couple of challenges for successful application
of the attribute. To obtain a statistically significant estimate of the
well2seis attribute, at least four seismic surveys are required (Yin et al.,
2019). Further, proponents state that a clear understanding of the
communication and connectivity between wells and the similarity of
the well behavior is the fundamental prerequisite for the success. This,
however, is the objective of history matching.

As mentioned above 3D and 4D seismic data may contain large
amount of valuable information. However, optimal information ex-
traction depends on many factors coming from seismic acquisition,
processing and inversion of seismic data. Therefore, proper filtering,
time-shift correction and frequency matching are required prior to the
extraction of different attributes. In addition, the data must be properly
calibrated and normalized to match quantitatively with model predic-
tions (Kazemi et al., 2011). Proper scaling (upscaling and/or downscal-
ing) is required before comparing with the modeled response (Kazemi
and Stephen, 2012; Stephen and Kazemi, 2014). Further, time-to-depth
conversion of data and quantification of both 3D and 4D noise play a
very crucial role in successful seismic data integration.

2.3 Summary

• Seismic data is often complementary to other types of reservoir
data, and thus is potentially beneficial. Optimal value extraction
of seismic data depends on various factors, such as availability of
inversion or forward modeling tools and low noise levels on the
data.

• Various types of seismic data coming from different levels can
be assimilated. However, recent trend indicates that the sec-
ond level – the elastic parameters level – and specially acoustic
impedance data is the most popular for data integration in 4D
seismic history matching due to its relatively low computational
cost, straightforwardness of data interpretation and cross-domain
comparison.

• Map or volume based seismic attributes are common to be used
in history matching. These types of attribute require a PEM
and/or simulator-to-seismic tool to be in place for data compar-
ison either for seismic inversion or for forward modeling or for
both. As there is always a challenge to simulate corresponding
attributes due to the lack of proper seismic and petro-elastic
model, other attributes like displacement front, binary images are
being introduced.

3 Forward modeling

3.1 Petro-elastic models (PEM)

Application of seismic forward modeling in reservoir characteriza-
tion and exploration projects has been common for several decades.
As 3D and 4D seismic data started to be used actively to evaluate
and update reservoir models, the need for producing realistic seis-
mic forward modeling based on geo- and reservoir simulation models
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(sim2seis) increased. The objective of sim2seis is to produce synthetic
seismic data to compare with real seismic observations and apply the
mismatch in either manual or automatic updating of critical reservoir
model parameters. There are several challenges related to computation
of realistic synthetic seismic data from the simulation models. The sim-
ulation models are constructed to give optimal modeling and prediction
of the fluid flow and are not specifically designed for forward seismic
modeling. Seismic modeling needs seismic velocities and densities in
a complete 3D volume including the reservoir zones and also parts of
the over-and underburden and of non-reservoir zones, all of which are
missing from typical reservoir simulation models.

Construction of a 3D velocity model suitable for seismic modeling
relies on petro-elastic models (PEM) that convert fluid and static rock
properties to elastic parameters. In addition, for use in 4D work,
the PEMs should include a fluid substitution model and a model for
pressure sensitivity. The PEM constitutes the most important building
block in the sim2seis process.

Amini (2014) gives a thorough review of PEM construction for
sim2seis workflows. This includes guidelines to construct PEMs suitable
for use in history matching projects. Mavko et al. (2009) and Grana
et al. (2021) provide comprehensive reviews of the underlying rock
physics models used. In Fig. 3, a simplified workflow for construction of
PEM is presented. The basic equations for calculating seismic velocities
from elastic parameters are

𝑉P =

√

√

√

√

𝐾sat +
4
3𝜇sat

𝜌sat
and 𝑉S =

√

𝜇sat
𝜌sat

(1)

where 𝐾sat , 𝜇sat and 𝜌sat are the bulk modulus, shear modulus and
density of the saturated medium, respectively. 𝑉P and 𝑉S are P-wave
nd S-wave velocities. They are the velocities related to compressional
nd shear waves propagation, respectively.

The most common model for estimating the effect of saturation
hanges on the elastic parameters is the Gassmann fluid substitution
aw (Gassmann, 1951):

sat = 𝐾dry +
(1 −

𝐾dry
𝐾s

)2

𝜙
𝐾f

+ 1−𝜙
𝐾s

−
𝐾dry

𝐾2
s

and 𝜇sat = 𝜇dry (2)

where 𝐾dry, 𝜇dry, 𝐾f , 𝜙 are dry frame bulk modulus, dry frame shear
modulus, effective fluid bulk modulus of the fluid mixture, and poros-
ity, respectively. 𝐾s is the bulk modulus of the mineral constituting the
matrix. The effective fluid bulk modulus and density can be calculated
using the equations given by Batzle and Wang (1992).

Estimation of the matrix bulk modulus, 𝐾s, is based on the frac-
ions of minerals constituting the rock. Most applications are based on
veraging of the Hashin–Shtrikman upper and lower bounds (Hashin
nd Shtrikman, 1963) or the Voigt–Reuss–Hill average (Hill, 1963)
arithmetic mean of Voigt (1929) as upper and Reuss (1929) as lower
ounds). 𝐾f can be calculated similarly using the Voigt–Reuss–Hill
verage. 𝜌f can be computed by averaging the volume fraction and
ensity of each fluid phase in the pores.
𝐾dry can be estimated from lab measurements on core samples.

lternatively, it is possible to use Eq. (1) with velocity and density mea-
urements from relevant well logs to estimate 𝐾sat at the well log scale.
hen 𝐾dry can be estimated by a simple rewriting of the Gassmann
quation (Eq. (2)). Empirical equations for 𝐾dry and 𝜇dry are normally
btained in 4D projects by assuming a polynomial dependence on
orosity. Often polynomial regression curves of the form

dry = 𝐾s(𝑎𝜙2 − 𝑏𝜙 + 𝑐) and 𝜇dry = 𝜇s(𝑑𝜙2 − 𝑒𝜙 + 𝑓 )

re used (Briceño, 2017) where 𝐾s and 𝜇s are the effective martix
oduli, respectively.

In addition to porosity and mineral dependency, effective stress
6

ensitivity should also be explicitly introduced in the determination
of 𝐾dry. The prediction of stress sensitivity is often based on the
Hertz–Mindlin contact model:

𝐾dry = 3

√

𝐶2(1 − 𝜙)2𝜇2
𝑠

18𝜋2(1 − 𝜈𝑠)2
𝑃eff and

𝜇dry =
5 − 4𝜈𝑠
5(2 − 𝜈𝑠)

3

√

3𝐶2(1 − 𝜙)2𝜇2
𝑠

2𝜋2(1 − 𝜈𝑠)2
𝑃eff

(3)

here 𝐶 is the average number of contacts per grain, 𝜇𝑠 and 𝜈𝑠 are the
hear modulus and Poisson’s ratio of the solid grains and 𝑃eff is the
ffective stress.

Considering two different effective stress states in Eq. (3), 𝑃 𝑖
eff at

he initial reservoir state and 𝑃 𝑡
eff at a given production time t, we find

simple relation between the bulk moduli and effective stress:

𝐾dry(𝑡)

𝐾 𝑖
eff

=

(

𝑃eff (𝑡)
𝑃 𝑖
eff

)
1
3

and similarly for the shear moduli. In practice, the exponent will differ
from 1

3 and needs to be calibrated using ultrasonic core measurements,
thus the relationship becomes
𝐾dry(𝑡)

𝐾 𝑖
eff

=
(𝑃eff (𝑡)

𝑃 𝑖
eff

)ℎk

where ℎk is referred to as the Hertz coefficient. Having established
𝐾 𝑖

eff and 𝜇𝑖
eff values for the initial state, this gives us the pressure

dependency of the moduli that is now calibrated to the ultrasonic core
measurements and can be used in the Gassmann equation (Eq. (2))
and finally in Eq. (1) to find the velocities in the saturated states with
pressure sensitivity included.

Although the formulas for the PEM may seem to be straightforward,
challenges are frequently reported in the application of the PEMs in
sim2seis work. The PEMs are relations transforming the fine-scaled
(core, log scale) static and dynamic properties to elastic parameters.
To be useful in sim2seis applications, they need to be upscaled from
the fine scale to the simulation grid scale and calibrated to field
observations at the seismic scale. This is a non-trivial exercise as
the fine-scaled PEM is lithology and rock fabric specific, while at
the simulator grid scale, these effects are mixed. Thus, the effect of
assumptions introduced in the PEM calibration and upscaling process,
especially related to handling of sub-seismic heterogeneities in real
reservoir settings should be understood and described. Also, since the
simulators typically use cut-offs to porosity and 𝑉clay when upscaling
from the geomodel to the reservoir model, this has to be handled
when the fine scale PEM is upscaled to the coarse reservoir model.
An important aspect of this problem is the handling of sand/shale
sequences (Avseth et al., 2006). 𝐾dry is determined as a function of
porosities from the zero porosity mineral point to critical porosity by
using modified Hashin–Shtrikman bounds. Thus, a consistent variation
of 𝐾dry going from the net sand parts to the non-reservoir shaly parts is
established. Falcone et al. (2004) described a methodology for selecting
a scale dependent PEM in 4D SHM and demonstrated the proposed
workflow on a field case. Menezes and Gosselin (2006) developed a
methodology for selection of upscaled PEMs based on the fine scale
PEMs through an optimization procedure in the calibration of the dry
rock parameters at reservoir scale. In the procedure they used upscaled
impedances based on the log scale PEM as the ‘observed’ data and the
parameters based on the upscaled PEM as ‘predicted’ data.

A potential solution to the problem of selecting the optimal number
of PEMs and selecting the minimum vertical grid size in the flow
model to obtain satisfactory match with seismic observations has been
described by Alfred et al. (2008) while Amini (2014) emphasized
the challenges involved with the use of an upscaled PEM in sim2seis
workflows. When choosing the coarser scale, it is important to perform
sensitivity analyses to determine the acceptable degree of coarsening
by setting a limit on the degree of preservation of the seismic modeling

response from the upscaled model. This is a crucial step in successful
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Fig. 3. The workflow of a petro-elastic (PEM) model. The PEM workflow starts by using the individual rock minerals and fluid properties to determine the effective matrix and
fluid moduli, respectively. Then the dry rock moduli are determined as a function of porosity and pressure. Further, saturated rock density is calculated using porosity and fluid
saturations as input. The saturated rock moduli are then determined using the Gassman fluid substitution law. Finally, the seismic parameters are calculated using the saturated
moduli and rock density. In the 4D PEM, it is necessary to include fluid and stress sensitivity as shown in the green boxes.
field application, but one that is not often described in the published
literature.

There are also normally large uncertainties related to the stress sen-
sitivity models for elastic moduli. One main challenge is that properties
estimated from measurements made on cores at ultrasonic frequen-
cies are often not representative of properties to be used at reservoir
simulation scale. There are always heterogeneities (faults, fractures,
inhomogenities . . . ) between core scale and the coarser simulator scale
that complicate the prediction of effective velocities at reservoir grid
and seismic scale. In addition, the coring process itself and the change
in stress tend to introduce changes to the core, making the estimates
of properties less reliable. Finally, there are dispersion effects that
can make the ultrasonic measurements (at Mhz frequencies) not rep-
resentative at seismic frequencies (5–100 Hz). These challenges are
well-known in the geophysical community and methods to assess the
reservoir stress sensitivity have been discussed in the literature. Nes
et al. (2002) gives a thorough description of the challenges related
to application of ultrasonic core measurements in 4D seismic studies,
focusing on core representativity issues and effects of core damage on
measured velocities. Landrø and Kvam (2002) used real field 4D data
sets combined with the Hertz–Mindlin theory to develop equations to
quantify overpressure from multiple 4D seismic surveys.

MacBeth (2004) developed a formulation to capture the effect of
core weakness by introducing the concept of excess of compliance,
leading to the formulae

𝐾dry =
𝐾∞

1 + 𝐸𝑘𝑒
−𝑃eff
𝑃𝑘

and 𝜇dry =
𝜇∞

1 + 𝐸𝜇𝑒
−𝑃eff
𝑃𝜇

where 𝐾∞ and 𝜇∞ are the background, high-pressure asymptotes,
𝐸𝑘, 𝑃𝑘, 𝐸𝜇 and 𝑃𝜇 are rock stress sensitivity constants from avail-
able core measurements that define the shape of the stress sensitivity
curve. Avseth and Skjei (2011) and Avseth et al. (2016) also consider
core measurements to be too unreliable to directly establish stress sensi-
tivities. They develop a methodology for prediction of stress sensitivity
in patchy cemented sandstones based on a Hashin–Shtrikman approach
combined with contact theory. The method has been applied to the
prediction of observed 4D time shifts in a real field case from the North
Sea. One important parameter in the study is the degree of cementation
in the sandstones — even a few percent cementation is shown to
give large impact on the stress sensitivity. Omofoma and MacBeth
(2016) use 4D seismic data to establish the stress sensitivity. They
analyze 4D amplitudes from several repeated surveys in areas where
7

the 4D response was believed to be due to pressure changes. From this,
empirical relations were established that were used in quantifying 4D
pressure effects in several field cases.

Acquisition of repeated sonic logs in producing or dedicated obser-
vation wells would increase the confidence in the stress sensitivity and
4D fluid substitution models used, but these are hard to acquire due
to cost and operational issues (Falcone et al., 2004). Proper calibration
data for the stress sensitivity and fluid substitution effects are believed
to have the highest improvement potential in PEM construction in 4D
applications.

As a consequence of the challenges related to establishment of reli-
able PEMs for history matching projects and to avoid the complexities
in running a complete sim2seis as part of the SHM process, the use
of proxies to the PEM have been proposed. MacBeth et al. (2016)
introduced a proxy that links the 4D seismic attribute change (𝛥𝐴)
to production related changes (pressure and saturations) by a second
order Taylor series expansion:

𝛥𝐴 = (𝑎1𝛥𝑃 + 𝑎2𝛥𝑆w + 𝑎3𝛥𝑆g + 𝑎4𝛥𝑃
2 + 𝑎5𝛥𝑆

2
w + 𝑎6𝛥𝑆

2
g + 𝑎7𝛥𝑃𝛥𝑆w

+ 𝑎8𝛥𝑃𝛥𝑆g + 𝑎9𝛥𝑆w𝛥𝑆g)𝐴0

where 𝐴0 is the attribute computed from the reference dataset. 𝛥𝑃 ,
𝛥𝑆w, 𝛥𝑆g are changes in pore-pressure, water saturation and gas satura-
tion, respectively. The coefficients are constant over the area of interest.
The proxy is thus limited to areas/volumes with small variations in
the static PEM parameters. The proxy facilitates the integration of 4D
data in the history matching loop. 𝐴0 can in principle be any seismic
attribute, for robustness it is recommended to use differences of 3D
maps as the 4D attribute. The maps are preferably linked to a time
window around a clear, stable horizon. Often the top reservoir horizon
is a natural choice. The method is applied and compared with the use
of a complete PEM and sim2seis modeling in a 4D SHM loop giving
satisfactory results for two synthetic datasets. Danaei et al. (2020) uses
a simplified version of MacBeth’s proxy:

𝛥𝐴 = 𝑎𝛥𝑆w + 𝑏𝛥𝑃

keeping only the linear part linking water saturation and pressure
changes to 4D acoustic impedance changes (𝛥𝐴). The method is applied
to ensemble based data assimilation on a synthetic case based on an oil
field in the Campos basin and compared with the use of the full petro-
elastic models. Their conclusion is that the PEM proxy gives promising
results, especially in reproducing the past reservoir behavior, while
data assimilation with the complete PEM gave more reliable future
forecasts.
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3.2 Sim2seis

The upscaled and calibrated PEM (normally, several PEMs are used
depending on lithofacies) are applied to the static and dynamic values
in each active cell of the reservoir model, giving the seismic veloc-
ities and densities needed for seismic simulation. In each cell, the
NTG is normally used to separate models for the sandy and shaly
parts. The majority of reported field cases in 4D SHM do the inte-
gration of seismic data in the history matching loop by comparing
seismic inversion results in terms of acoustic impedance with the
simulated impedance (𝐼𝑝 = 𝜌𝑉𝑝) calculated from the PEM in the reser-
oir model domain. This requires a time/depth conversion, horizontal
pscaling and resampling to the reservoir grid of the seismically derived
mpedance cube. However, no sim2seis computation is typically per-
ormed in this approach other than possible vertical band-pass filtering
f the synthetic impedance cube to account for the frequency differ-
nces between observed and synthetic impedances (Alfonzo and Oliver,
019; Emami Niri and Lumley, 2015). Alternatively, the synthetic
mpedances are areally downscaled to the seismic grid by interpolation
echniques (Stephen et al., 2006); and the matching performed at
he seismic bin domain. Enchery et al. (2007) suggest to downscale
ressure and saturation values from the coarse reservoir grid to a finer
rid in targeted smaller downscale areas by performing new fluid flow
alculations on the finer grid. The resulting values are then used as
nput to sim2seis and compared to seismic attributes at the seismic bin
cale.

To perform a complete sim2seis, we need to supply seismic param-
ters also in the non-active cells. The seismic response is dependent
n acoustic contrasts not only between active cells, but just as im-
ortantly on the acoustic contrast between reservoir and non-reservoir
nits. Thus, the non-active cells and units must be filled with elastic
arameters derived from relevant well logs. Similarly, parts of the over-
nd underburden must also be included, covering a length more than
ne seismic wavelength, to ensure capture of the seismic reflections
t top and base reservoir and possible tuning effects from layers di-
ectly above and below the reservoir. To precondition the completely
opulated 3D reservoir model to a seismic modeling grid, seismic
elocities and densities have to be interpolated to the regular Cartesian
eismic grid. The choice of modeling algorithm is not much discussed in
he literature, although a comparison of different approaches is given
n Amini et al. (2020). It is shown there that for the considered field
ase, the 1-D convolution method gives satisfactory results compared
o a complete 2D pre-stack elastic finite difference simulation. This
eans that the effects of internal multiples, mode conversions and

ransmission are of secondary order. As 4D SHM using sim2seis may
equire a huge number of seismic simulations, it is mandatory to apply
fficient modeling algorithms. The degree of complexity needed in the
eismic modeling depends on the selected 4D attributes. As mentioned,
sing seismic inversion results as the seismic observations does not,
n principle, require seismic forward modeling. However, consistency
etween the synthetic seismic data based on the 3D initial static model
nd the pre-production 3D seismic data is important to avoid possible
ivergence in the history matching loop (Emami Niri and Lumley,
015). Also, Sagitov and Stephen (2012) demonstrated the need to
atch predicted and observed data using the sim2seis output in the
rediction step. This is exemplified in a field case where observed data
re in the form of RMS maps of colored inversion (pseudo-impedance)
esults. It is shown that the SHM results improve when the misfit
unction is based on predicted pseudo-impedances estimated from the
ynthetic seismic sections using the sim2seis process rather than using
mpedance values calculated directly from the PEM.

.3 Reservoir flow simulation

The sim2seis procedure requires input of dynamical quantities de-
8

cribing the state of the petroleum reservoir. The dynamic modeling is
performed by the reservoir simulation model. Here, the partial differen-
tial equations describing the fluid-flow are solved on a numerical grid.
In most cases, the unknowns are the saturation and pressure values in
all grid cells. The solution at a given time-step can then be utilized
in the sim2seis calculation, or to predict relevant production/injection
values at the wells. Reservoir flow simulation is a large topic, and a
comprehensive review of this topic is outside the scope of this work. We
will refer to Aziz and Settari (1979), Chen et al. (2006) and Peaceman
(1977) for more information regarding the topic. In the following, we
focus on the issues that are relevant for 4D seismic modeling.

3.3.1 Saturation and pressure
In a petroleum reservoir, there exists a range of different chemical

components, both in the fluid phase and in the gas phase. A standard
procedure is to assume that the reservoir fluid consist of three com-
ponents: water, oil and gas in a three-phase system. The interaction
between the oil phase, the gas phase and the water phase can then be
modeled numerically always keeping the mass balance preserved. This
modeling setup is denoted a black oil simulator. There are, however,
some cases where it is necessary to model the individual chemical
components. Preserving the mass balance of each component, the in-
teraction between the components in the different phases are modeled
numerically. This modeling setup is denoted compositional simulation.
For applications of 4D seismic history matching, this approach might
be necessary in certain cases, for instance those involving CO2, e.g., Ey-
dinov et al. (2008), Hosseininoosheri et al. (2018), Leeuwenburgh et al.
(2016), Ouenes et al. (2010), Pamukcu et al. (2011), Shi et al. (2019)
and Singh et al. (2010).

3.3.2 Compaction
Compaction is an important driving force in many petroleum reser-

voirs, and can be caused by, e.g., pressure reduction, or water-
weakening associated with water injection. The latter effect is most
prominent in carbonate reservoirs. For the Ekofisk field, 4D seismic
analysis helps to perform reservoir compaction mapping (Smith et al.,
2002). Here, seismic compaction maps were generated by comparing
seismic travel time changes between seismic surveys. This information
was used to manually tune the reservoir model. Moreover, the 4D
seismic signal was used to develop a geocellular model to properly
account for the reservoir compaction. In Tolstukhin et al. (2012) a
computer-assisted history matching process was considered. In the
forecast stage, compaction of the reservoir is modeled using an in-house
flow simulator and a geomechanical model. In a study of the Valhall
field (Han et al., 2013), a geomechanical model was coupled with the
flow simulator. For every numerical time step, when the flow simulator
has produced a new pressure field, the geomechanical model computes
the stress and strain response in three dimensions with corresponding
changes in compressibility, porosity and permeability. The improved
simulation results were utilized to model the reservoir compaction.
Here, the model was validated using 4D seismic. Furthermore, the
coupled model provided a better match to the observed production
data. However, no history matching was done.

3.3.3 Temperature
Accurate temperature modeling is important for many applications,

such as Steam Assisted Gravity Drainage (SAGD), in situ combustion,
and CO2 injection. In Hiebert et al. (2013), a thermal simulator was
used to model the effect of temperature on changes in the volume
of the steam chamber for history matching of 4D seismic data in a
SAGD setup. The paper showed that changes in the steam chamber
size gave a large seismic response. Depending on the gas saturation
and temperature, a simulation block was determined to be part of
the chamber, or not, leading to a binary map used as seismic data.
Following this approach, a simulation chamber was produced, which
again was compared with the measured 3D shape of the chamber,

derived from the measured seismic data. In Lerat et al. (2009) the added



Journal of Petroleum Science and Engineering 207 (2021) 109119D.S. Oliver et al.

I
a
b
i

w
‘
d
t
T
a
t
i
m
m
m
m
m
t
e

c
E
p
t
f
t
i
o
d

o
m

value of 4D seismic data in the context of SAGD was demonstrated. In
addition to the thermal evolution, the geomechanical effects were mod-
eled by coupling the flow simulator and the geomechanical simulator.
The study was performed on a field located in the Athabasca oil sands.
Unfortunately, neither seismic nor observation well data was available
for history matching. Another coupling of the flow simulator and ge-
omechanical simulator for a SAGD application was reported in Gu et al.
(2011). A history match was performed in which measured fluid rates,
cumulative fluid volumes, temperatures, pressures and steam quality
at the injection/production wells; temperature, pressure, deformation,
and miscroseismic events measured at observation-well or at the sur-
face; and 4D seismic data were all utilized. The authors claim that
coupled simulation and history matching should be repeated until a
satisfactory match is obtained. The paper does not consider automation
of the history-matching process, and there is no method for evaluating
the quality of the history match.

The movement of a thermal front during an in situ combustion
procedure has been investigated by Vedanti and Sen (2009). The paper
showed that the thermal front could be detected from 4D seismic mea-
surements. However, no history matching, or modeling was performed
in this paper. Moreover, to our knowledge, there has not been any in
situ combustion applications where 4D seismic data is used for history
matching.

Finally, thermal modeling is often necessary for CO2 applications.
n Zhang et al. (2014), studying Layer 9 in the Sleipner field model,
n approximate match with the observed CO2 plume was achieved
y introducing lateral permeability anisotropy coupled with either an
ncreased reservoir temperature with CH4 impurities in the CO2 stream

or a second feeder from the deeper layers. The study used a compre-
hensive publicly accessible data-set for the Sleipner field, including
six 4D seismic surveys and well log data. The paper does not provide
details regarding the model calibration procedure, and the evaluation
of the calibrated model is done by visually comparing the simulation
results with the inverted seismic data. Another application with coupled
thermal and rock-mechanical simulation is given in Shokri et al. (2019)
for cold injection of CO2. In this paper, 3D seismic data was utilized
initial characterization of geology but not for history matching.

3.4 Summary

A reliable forward modeling of seismic attributes in SHM is critical
to take advantage of high quality 4D data. The most important factors
in the forward modeling part of the SHM workflow are :

• Calibration and optimal upscaling of the PEM. The upscaling
should use conservation of the seismic response as guideline
(Amini, 2014). If the final PEM is considered too uncertain to
be used in the HM workflow, a proxy model could be evalu-
ated (MacBeth et al., 2016).

• The simulation of the 4D baseline seismic data from the static
reservoir model should be consistent with the structural 3D
seismic interpretation. Parameters in the static model should
be conditioned on 3D seismic data prior to quantitative 4D
SHM. (Emami Niri and Lumley, 2015; Stephen et al., 2006).

• The observed 4D attributes used in the HM workflow should
preferably be matched to synthetic versions of the same attributes
computed from the output from a full sim2seis workflow (Sagitov
and Stephen, 2012).

• Application of an efficient, fit-for purpose seismic modeling tech-
nique (Amini et al., 2020). The need for advanced applications
(visco-elastic, anisotropic, 3D FD modeling) should be docu-
mented through an upfront modeling study due to their large
impact on simulation run time.

• The field of numerical reservoir simulation has the necessary
maturity to model a wide range of complex reservoir physics. The
literature shows that many unconventional recovery techniques
also provides a substantial 4D signal. Hence, the 4D signal also
has potential for history matching in complex reservoir settings.
9

4 Weighting data

When any type of data assimilation is performed, there is a need to
integrate information from a variety of sources. In time-lapse seismic
history matching it is common to combine information from repeated
seismic surveys, production and injections wells, cores, well logs, PVT
analysis of fluids, and analog outcrops. When the measurements to
be assimilated are noisy and the models are imperfect, information
from various sources may appear to be in conflict. Additionally, if the
parameters in a model are physically motivated, information in the data
may be in conflict with prior estimates of model parameters or with
physical constraints (e.g. porosity between 0 and 1).

In all practical applications of history matching, the parameters of a
model of the physical system are adjusted in such a way that the misfit
between observed data and simulated data is minimized, while attempt-
ing to keep values of the parameters in the plausible range (Oliver and
Chen, 2011). The misfit is usually defined through a total objective
function that is the sum of two terms: one that measures the misfit
between the observed data and the simulated data and another that
measures the difference between the history matched model and the
best estimate of model parameters prior to history matching. When the
objective function is minimized and the value of the objective function
is sufficiently small, the model is said to be history matched.

4.1 Objective function

The most common objective function used for seismic history
matching is obtained from Bayes rule for the computation of the
posteriori probability distribution for model parameters (Tarantola,
2005). If the prior uncertainty in model parameters can be modeled
adequately as multivariate Gaussian with mean 𝑚pr and covariance
𝐶𝑚, and if the observation errors are additive and Gaussian, then to
compute the most probable vector of model parameters, 𝑚map, one need
only solve for the minimizer of

𝐽 (𝑚) = ‖𝑚 − 𝑚pr
‖

2
𝐶−1
𝑚

+ ‖𝑑obsseis − 𝑔seis(𝑚)‖2𝐶−1
d,seis

+ ‖𝑑obsprod − 𝑔prod(𝑚)‖2𝐶−1
d,prod

(4)

here 𝑚 is the vector of model parameters, 𝑑obsseis is the vector of
‘observed’’ seismic attributes, 𝑑obsprod is the vector of observed production
ata, 𝐶d,seis is the covariance of the noise in the observed seismic at-
ribute and 𝐶d,prod is the covariance of the noise in the production data.
he forward model 𝑔seis(𝑚) maps model parameters to simulated seismic
ttribute data (see Section 3.2) and 𝑔prod(𝑚) maps model parameters
o simulated production data (Section 3.3). Real applications generally
nclude other types of data with the same need for characterization of
easurement errors. If the data are modeled in the simulator (e.g., RFT
easurements), then they are usually included in the production data
ismatch term. Core data and porosity log data are usually used in
odel building and the subsequent uncertainty is included in the prior
odel mismatch term. There is no requirement in usage of Eq. (4) that

he variance in the noise is the same for all data of the same type, but
stimation of varying level of uncertainty may be difficult.

Although the Bayesian history matching approach is widely ac-
epted, a number of assumptions limit the general applicability of
q. (4). First is the assumption that the prior distribution for model
arameters can be adequately modeled as multivariate Gaussian. Al-
hough Gaussian parameters can often be accomplished through trans-
ormation of variables (Bennion and Griffiths, 1966; Freeze, 1975) or
hrough the introduction of latent variables (Armstrong et al., 2003), it
s not always the case. Second, there is an assumption that noise in the
bservations are additive and Gaussian, and that the modeling of the
ata is perfect, neither of which is valid in general.

In many cases, the weightings of various data mismatch terms in the
bjective function are given by estimates of the inverse of the measure-
ent error covariance matrix (Dong and Oliver, 2005; Emerick, 2016;
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Gosselin et al., 2003; Skjervheim et al., 2007), which can in principle
be obtained from the manufacturer of the measurement instrument or
computed if the ‘‘observations’’ have been processed. This would be
the correct weighting if the assumptions of perfect model and additive
Gaussian errors were satisfied.

Although Eq. (4) might be described as the standard objective
function for seismic history matching, it is sometimes modified for
computational convenience or to account for limitations in the model.
In particular, the prior probability term is sometimes omitted, espe-
cially when the number of model parameters is small (Chassagne and
Aranha, 2020; Ketineni et al., 2020; Stephen et al., 2006), in which
case strong assumptions on the prior probability have been implicitly
applied through the parameterization, or the term may be omitted
because of limitations in the history matching software (Gosselin et al.,
2003). The measurement error is often modified to include the effects of
modeling error (Section 4.2) and in some cases, a bias correction term is
added to the objective function to improve predictability with imperfect
models (Lu and Chen, 2020; Oliver and Alfonzo, 2018; Stephen et al.,
2009). In many applications, it is additionally assumed for simplicity
that the noise in the data is independent, although Liu and Rabier
(2002) have shown that this assumption exaggerates the information
content in some applications. In Section 4.2.1, we review the evidence
for correlated observation errors in both production and seismic data.

Chassagne and Aranha (2020) used synthetic, error-free seismic
data to compare four different formulations of the objective function,
concluding that the traditional least squares metric gave enough infor-
mation to perform a good history matching. By neglecting errors in
the data, however, they appear to have ignored the most important
reason for choosing a measure of the data mismatch. We note that a
least squares mismatch is the appropriate form for additive Gaussian
error.

Computation of the most probable model parameter values by
searching for the minimizer of Eq. (4) requires specification of the
observation error covariance matrix 𝐶d for each data type and speci-
fication of the prior model covariance matrix 𝐶m. It is fairly standard
practice to ignore the uncertainty in 𝐶d and 𝐶m when history matching,
unless the history match was not successful in which case 𝐶d and
𝐶m might be modified and the history match repeated. An alternative
approach is to use a multiobjective approach for dealing with the
conflicting information from the various types of data (Park et al., 2015;
Volkov et al., 2018; Watanabe et al., 2017). Although characterization
of the observation error is not as critical in this approach, the level
of noise does impact the trade-off between the seismic data and the
production data (Volkov et al., 2018).

In some cases, additional weights have been applied to various
terms in the objective function to reflect the importance of various
types of data for history matching (Gosselin et al., 2003; Roggero
et al., 2012). This might be done, for example, in a case where two
types of data are in conflict and the model has insufficient degrees of
freedom to match both, or when one of the data types is more closely
related to a quantity of interest. In that case, one might want to ensure
that the most important data are well assimilated (and give the data
of lesser importance small or zero weight). This appears to be the
rationale for increasing the weight on the production data mismatch
term in Lorentzen et al. (2019). Haverl et al. (2005) described a
somewhat standard objective function, but neglected the prior term and
spatial correlations of seismic data errors. They also applied additional
weighting of the seismic data term in order to get the seismic data
to more strongly influence the results. Because of the other approxi-
mations, such as neglect of spatial correlation of seismic data error,
it is not clear if the weighting would have been needed if errors had
been properly utilized. The objective function for Huang et al. (1997)
included weighting factor that allowed the user to vary the relative
weighting on the seismic and production data to achieve some desired
objective, without providing a rationale for any particular weighting.
10
Instead of determining an appropriate measurement error for
weighting the likelihood, it has been suggested that the quality of
seismic data can be determined by analyzing the data in regions of
known properties — typically near injection wells where pressure and
saturation may be relatively well known. Stephen and MacBeth (2008)
propose an approach of this type for characterizing data as good or
bad. Bad data could then be ignored in the history matching or given
reduced weighting. Similarly, Emerick (2016) eliminated seismic data
in regions of the model for which the match was not good. Ignoring
data from regions where the match is poor runs the risk of making the
model appear to be better than it actually is. Data should of course be
down weighted if the quality of the data in a region is expected to be
poor because of poor repeatability due to location of an FPSO (Osdal
et al., 2006) or because of shadowing effects from overlying reservoir
layers (Stephen and MacBeth, 2008).

Although the data assimilation process is often described in
Bayesian terms, in which case the weighting of data mismatch terms
should be determined by the likelihood function, it is also fairly com-
mon to simply choose a level of observation error that corresponds to an
‘‘acceptable’’ level of matching. Examples of this approach include the
assumption by Zhang and Leeuwenburgh (2017) of uncorrelated errors
in observations of seismic front location with a standard deviation of
100 ft and Avansi et al. (2016) who define an objective function for
production data with weighting 𝛾 determined by the user, based on
acceptability of the mismatch. The potential difficulty of this approach
is that it is impossible to investigate the need for improvement in the
model parameterization, as the level of misfit is often chosen to allow
for model imperfections.

4.2 Total observation error

Errors in some types of data can be readily estimated from knowl-
edge of the instruments used for measurement, but errors in inverted
seismic ‘‘data’’ are generally difficult to quantify as the ‘‘data’’ are
the result of a lengthy and complex series of processing and inversion
steps (Robinson et al., 1986) and they must be compared to models that
are inherently imperfect. In this case, the observed seismic attributes
can be modeled as consisting of three components: (1) the ‘‘true’’
attribute, (2) an observation error or systematic bias due to processing,
and (3) a component of noise due to non-repeatable variations in
positioning or surface conditions, etc. For a given set of conditions,
actual (processed or inverted) observations are modeled as (Oliver and
Alfonzo, 2018)
actual obs
⏞⏞⏞
𝐝obs =

true obs
⏞⏞⏞
𝐝true +

obs error/bias
⏞⏞⏞
𝜹𝑜 +

noise
⏞⏞⏞
𝐞𝑑 .

The random error in the observation is assumed to be additive and
Gaussian with mean 0 and covariance 𝐶𝑑 . Similarly, the simulated
seismic attributes may be modeled as consisting of two components: the
true value of the attribute at the same scale as the observation, and a
model error or bias component resulting from deficiencies in the model,
which for convenience might be modeled as Gaussian, e.g. 𝐞𝑡 ∼ 𝑁[0,𝐂𝑡],
simulated obs
⏞⏞⏞
𝐠(𝐦) =

true obs
⏞⏞⏞
𝐝true +

model error
⏞⏞⏞

𝐞𝑡

where 𝐦 are parameters of the models. Although modeling the bias
as a Gaussian random field is straightforward, it requires use of a
covariance with a very long range (Oliver and Alfonzo, 2018). A
more common approach is to model the bias using basis functions
with uncertain coefficients (Kennedy and O’Hagan, 2001). Even if the
‘‘true’’ parameters are used in the model to simulate observations, the
simulated data will not match the observed data exactly. The difference
will be due to deficiencies in processing and inversion, deficiencies in
the forward model, and noise in the data. The last component is the

one that is typically referred to as measurement error, but the other
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two components may, in fact, have larger magnitudes and are almost
certainly correlated.

The total measurement error (or total observation error) can be
separated into three components: (1) a component that is result of
the lack of repeatability of the measurement, (2) a component that
is a result of errors in the processing or seismic inversion, (3) a
component that is a result of deficiencies in the forward model of the
seismic attributes. Desroziers and Ivanov (2001) and Desroziers et al.
(2005) suggest directly estimating the total observation error through
analysis of the residuals after data assimilation. Alfonzo and Oliver
(2020) applied a similar approach to estimate total observation error
for assimilation of 3D seismic data at the Norne Field. Based on a study
with controlled model error, they concluded that the correlation range
for the total observation error may be between 600 and 2000 m.

4.2.1 Repeatability error (seismic noise)
In almost every approach to history matching, knowledge of the

‘measurement’ error or repeatability error is important for determining
the weighting. Even in those cases where a ‘total observation error’
is used instead of the actual measurement error for the weighting, it
is often important to know the actual measurement error in order to
understand the deficiency in the model and the information that could
be gained through model improvement (Oliver, 2020).

In the geophysical literature, the terms measurement error or obser-
vation error are not the most common terms. This is perhaps because
seismic data are generally processed before inversion, in which case
it is the error in the processed data that may be of importance for
inversion, and the error in the inverted attributes that may be important
for history matching. In neither case, is the quantity that is treated as
data actually directly measured.

The term ‘‘measurement error’’ is usually used to describe the lack
of repeatability of a measurement (Bland and Altman, 1996), i.e., if
a measurement is repeated several times, the measurement will be
different each time because of uncontrollable variations in the envi-
ronment or the equipment. Although seismic surveys may be acquired
several times under similar conditions, the results will be different
because of variations in wave noise, or human traffic, or geophone
positions. Depending on the source of the nonrepeatability, the noise
can have both additive and distortion components (Houck, 2007) due
to distortion of the wavelet and artifacts introduced during acquisition
and processing.

The term seismic noise may also refer to repeatable parts of the
signal that do not fit the conceptual model. Thus, Kumar and Ahmed
(2020) identifies four categories of seismic noise: (1) ambient sources,
(2) wave propagation related noise, (3) data acquisition related noise,
and (4) data processing artifacts and notes that even S-wave reflections
may be considered noise when the geophysicist is interested in P-wave
primary reflections.

In order to estimate the component of seismic measurement error
that is not repeatable, it is necessary to have repeated measurements.
For time-lapse seismic, the noise can be estimated from the difference
in data between different surveys in domains where the seismic signal is
expected to be repeatable. Thus, it is common in 4D seismic to estimate
the noise in a time-window above the reservoir, unless it is suspected
that there have been production induced changes in the overburden.
Common measures of repeatability include the normalized root mean
square (nrms) and predictability (Kragh and Christie, 2002). The nrms
is the difference of the two traces, within a given time window, divided
by the average rms of the inputs. Although nrms is used to quantify
repeatability, Kragh and Christie (2002) point out that fluctuations
observed in nrms may have little to do with signal repeatability but
instead depend strongly on the seismic signal strength.

If it is possible to legitimately assume that the seismic noise is
characterized by higher frequency than the seismic signal, then it may
be possible to filter the image to at least partially separate the noise
11

from the signal, and hence either to denoise the data or to characterize
the data noise covariance. This has been a fairly common approach
in the history matching literature (Aanonsen et al., 2003; Emerick,
2016; Luo and Bhakta, 2017; Zhao et al., 2007). This assumption does
not appear to be supported by other methods of estimation (Abreu
et al., 2005; Alfonzo and Oliver, 2020; Nivlet et al., 2017). Aanonsen
et al. (2003) applied this method to a North Sea oil field where they
used a moving average filter on normalized and trend-removed data to
estimate a correlation range for observation error of approximately 200
m. Using a similar approach, Emerick (2016) estimated the correlation
range for 4D seismic data from the Campos basin as 500 m.

In many cases, the estimation of noise is done in a domain that is not
expected to show a production response. Stephen et al. (2006) argued,
however, that 4D data in the overburden could not be used to assess
the data error in the reservoir because of a difference in the migrations,
and because of the treatment of imaging at faults. To calculate the
covariance of the measurement error, they instead band-pass filtered
both seismic and production datasets to separate the data error and
estimated signal.

Factorial co-Kriging has been used to separate noise from signal
without making the assumption that the noise is spatially uncorrelated
or that it is of a much different frequency than the signal (Abreu et al.,
2005; Alfonzo and Oliver, 2020; Coléou et al., 2002). In factorial co-
Kriging, two surveys could be separated into three parts: a common part
that is presumed to derive from the geology, and two spatially indepen-
dent residual fields that result from non-repeatable sources. Estimates
of the non-repeatable part of the data for both surveys can be obtained
from both surveys. Abreu et al. (2005) identified a major component
of coherent noise in a Canadian heavy oil field with a correlation
range of approximately 500 m. Similarly, Alfonzo and Oliver (2020)
used factorial co-Kriging to identify coherent noise above the reservoir
in the repeat surveys for the Norne field with correlation range of
approximately 300 m. Although spatially correlated observation can be
characterized using factorial co-Kriging, it is not clear that the results
are reliable as the assumptions of stationarity and linearity are unlikely
to be valid.

4.2.2 Deficiencies in processing and inversion
The magnitude and source of the observation errors in 4D seismic

‘‘data’’ depends greatly on the level at which the data are matched
(Section 2.1). It can be argued that the most basic usable seismic data
are seismic amplitudes in two-way travel times. If the data are history
matched at the seismic level, then the observed seismic amplitudes
may be used for comparison with synthetic seismic amplitudes. The
magnitude of the observation error associated with the actual data
at well locations can be estimated by doing well ties and comparing
synthetic seismograms (‘‘true observation’’) in well position with final
processed data that has been depth migrated (White and Simm, 2003).
This comparison will include some aspects of the forward modeling
error including potential errors in the wavelet, but will not account
for potential bias in the synthetic seismic in history matching resulting
from errors in the PEM.

When the comparison is made at the elastic level, errors in the
wavelet will again affect the comparison, but in this case the errors
will affect the inversion so they might be considered as part of the
actual observation error, while errors in the PEM will again be a
part of the modeling error as they will affect the synthetic seismic
impedances. In addition, comparison at the elastic level may require
additional non-seismic information to extend the seismic frequency
band and ultimately quantify absolute values of the underlying elastic
parameters. As modern 3D/4D data are produced through high quality
acquisition surveys and optimized processing schemes, the main chal-
lenge in seismic history matching is not seismic noise but rather bias
and errors linked to the forward modeling/inversion (caused by errors
in the PEM, geometrical structure, missing model parameters, etc.) and

the physical limitations in seismic resolution.
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Observation bias has many sources, which can be attributed to seis-
mic acquisition and processing or to deficiencies in seismic inversion.
A combined list might include use of a 1D convolutional model, use
of the acoustic-wave equation instead of the anisotropic visco-elastic
wave equation, imperfections in data processing, uncertain wavelet
estimates, and uncertainty on the low-frequency model (Ball et al.,
2018; Madsen and Hansen, 2018; Thore, 2015). Larner et al. (1983)
shows that some clear patterns of coherent noise in stacked sections are
not seen in the same data when viewed as unstacked traces arranged
by common mid-point CMP, indicating that the processing may be one
source of coherent noise. Thore (2015) attributes much of the uncer-
tainty in inverted seismic attributes to uncertainties in metaparameters
of the inversion or processing. Fixing these parameters at an incorrect
value introduces a bias in the processed or inverted attributes. Roach
et al. (2015) show that the effect of every step in the processing is to
increase the similarity between subsequent surveys as measured by the
nrms. The cost of the decrease in variability is generally an increase in
bias, however. For qualitative interpretation, the bias may be relatively
unimportant, but for quantitative comparison of model to data, the bias
cannot be ignored. The notion that correlated observation errors should
be expected in highly processed data has been noted in other fields,
particularly numerical weather prediction (Fowler et al., 2018; Stewart
et al., 2008).

4.2.3 Forward modeling error
Modeling error and observation bias are closely related and, de-

pending on the attributes used for history matching, could have similar
sources. For example, if the comparison between observed data and
simulated data is made at the saturation and pressure level, then the
PEM has been used for inversion and errors in the PEM would result
in bias in the observed data. In a more typical case where the data
are compared at the level of time shift or impedance, an error in the
PEM would result in an error in the forward modeling (model error).
The effect on the analysis is similar in both cases, although fixing the
error is more straightforward when the error is in the model and can
be reduced through the inclusion of additional uncertain parameters.

Modeling of seismic data, i.e. the mapping from model parameters
such as reservoir permeability, locations of facies or rock types, fault
transmissibilites, pressure dependence on velocity, to seismic attributes
has been discussed in Section 3. Many of the sources of model error
in 4D seismic history matching are similar to the sources of model
error in history matching of production data. Thus errors due to dis-
cretization of the fluid flow equations or due to the replacement of
the flow simulator by a simulator with approximate physics will affect
the ability to match data in both types of history matching. Stephen
(2007) and Stephen et al. (2009) discuss the effect of model error
resulting from the use of a streamline simulator on seismic history
matching problems and discuss methods of compensating for the error
in the reservoir simulation. Based on results from Knight et al. (1998)
and Stephen (2007) also pointed out that the coarseness of the dis-
cretization affects the validity of Gassmann’s equation. Hence, a PEM
that might be valid at the core scale will not be valid at the simulation
scale. Model error resulting from the PEM can also result from choice
of an inappropriate model or from fixing the parameters in the PEM
at inappropriate values. Alfonzo and Oliver (2020) showed that errors
in the PEM could result in model errors that are correlated and have
similar magnitudes to the signal.

One of the most common sources of modeling error in any type
of history matching is not directly a result of errors in the forward
simulation, but a result of missing parameters in the assessment of
uncertainty. If there are insufficient degrees of freedom in the model be-
cause parameters cannot be modified, then it will generally be difficult
or impossible to use parameters that can match data at the appropriate
level. Some types of history matching utilize low levels of parameteri-
zation. Examples of this type include the use of ‘‘gradzones’’ (Gosselin
et al., 2003), pilot points (Stephen et al., 2009) to reduce the number
of parameters, or gradual deformation (Roggero et al., 2012), which
uses a linear combination of a small number of model realizations to
12

characterize the solution space.
4.3 Dealing with residual model error in 4D SHM

The evidence from the literature shows that model error and obser-
vation bias in seismic attributes are correlated and of magnitude that is
often larger than that of the measurement error (Madsen and Hansen,
2018; Stephen, 2007; Thore, 2015), in which case it is necessary to
include the effect in the weighting of data — data with large model
errors or uncorrected bias must be weighted less heavily than other,
more accurate data. A relatively easy approach to including model error
is to inflate the observation error covariance matrix (Stephen et al.,
2006). Vink et al. (2015) describe an approach for estimating a single
inflation factor that accounts for model error and bias. Sun et al. (2017)
extend that approach to the case in which different inflation factors are
used for different data types. It has also been demonstrated that it might
be possible to estimate the effect of model error on the total observation
error through analysis of the residuals in the data mismatch after model
calibration (Alfonzo and Oliver, 2020; Lu and Chen, 2020; Oliver and
Alfonzo, 2018). In this case, the observation error covariance is not
diagonal.

5 Algorithmic methods for big data/big models

Solving the history matching problem amounts to minimizing an
objective function. In a properly defined Bayesian case the objective
function might be given as in Eq. (4). The history matching problem
might alternatively be solved as an inverse problem (non-Bayesian),
in which case the prior term in Eq. (4) might either be replaced with
a regularization term or omitted. In the latter case other measures
will typically, implicitly or explicitly, be used to for regularization
of the problem. A common approach will be to reduce the number
of parameters. Regardless of how the objective function is going to
be minimized, a parameterization of the problem needs to be per-
formed. We will discuss choices with respect to parameterization in
Section 5.1, followed by Section 5.2 on data compression. With respect
to solving the minimization problem (Eq. (4)), or analogous equations,
for instance leaving out the prior term, we will not classify them as
Bayesian/non-Bayesian as some of the algorithms might be used with
both interpretations. An overview of methodology for minimization is
given in Section 5.3. We briefly discuss uncertainty quantification in
Section 5.4 and analysis of the reservoir model by interpreting seismic
data in Section 5.5.

5.1 Parameterization

A suitable parameterization of the poorly known properties of the
subsurface is key for obtaining a good history match. Ideally there
should be sufficient degrees of freedom to allow the data to be matched,
and to characterize the underlying variability in the subsurface prop-
erties, while still allowing efficient numerical calculations. Some of the
parameters, such as, vertical and horizontal permeabilities, porosity,
net-to-gross ratios, etc., need to be defined on all the numerical grid-
cells of the reservoir simulator. For real-field application, the number
of grid-cells can be quite large. In the following, we describe some
of the parameterization methods which have been applied for history
matching of 4D seismic data.

5.1.1 Pilot point
In this method, introduced by Marsily et al. (1984), a number of

cells are marked as pilot points and their values are updated indepen-
dently during the history match. To populate the full reservoir grid
with properties, one interpolates between the pilot points using kriging.
This method effectively limits the dimension of the history matching
problem to the number of pilot points. The method has been utilized
for parameterization of geological properties during history matching
on several real field cases with 4D seismic data. In many of these stud-

ies, permeability and NTG were represented by pilot points (Kazemi
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and Stephen, 2012; Kazemi et al., 2011; Stephen and Kazemi, 2014;
Stephen and MacBeth, 2008; Stephen et al., 2009, 2006). Strategies
for selecting the number, and position of the pilot points, vary among
the studies. In Stephen and MacBeth (2008) it was shown that the
quality of the history match depends on the position, and density, of the
pilot points. Typically, 9–25 pilot points, per well location, have been
utilized to represent the petrophysical values on the grid. However,
for Stephen and Kazemi (2014), pilot points representing properties
within a geological interval were considered as one parameter. Out of
13 wells, 7 wells represented one interval while 6 wells represented
two intervals. Hence, uncertainties in NTG, horizontal permeability,
and vertical permeability fields were characterized by 19 parameters.

5.1.2 Reservoir grid cells
As mentioned above, the reservoir simulator requires that some

parameters are represented in every grid-cell on the numerical-grid. It
is possible to represent the parameters directly on the grid, and utilize
this representation for history matching 4D seismic data. However,
retaining such a large number of parameters requires strong prior
assumptions. Several studies have utilized this discretization for history
matching field cases with 4D seismic data. This method is especially
common for ensemble-based methods, as described in Section 5.3.2.

5.1.3 Divide and conquer
For some applications it can be efficient to perform a reparameteri-

zation of the poorly known parameters. Typically, a reparameterization
is applied to reduce the size of the space of parameters. Several methods
are available for history matching, see, e.g. Oliver and Chen (2011).
The divide and conquer method was introduced as a technique for sepa-
rating a large history matching problem into manageable sub-problems
which can be treated identically using existing algorithms (Sedighi and
Stephen, 2010). Using a proxy model one can analyze the interaction
between parameters and the misfit. The volume of the parameter space
can be subdivided and searched separately, leading to a much more
efficient algorithm. The divide and conquer strategy, in combination
with pilot points, has been utilized for history matching 4D seismic data
for the Nelson field (Stephen, 2018).

5.2 Data compression

Reduction of the amount of data may be necessary for several
reasons. Seismic information may be available as processed seismic
data (e.g., AVO data), inverted attributes (e.g., acoustic impedance),
or even raw seismic traces (see also Section 2). Depending on the
resolution of the data, selected seismic attribute or feature, and size
of the reservoir, the memory requirements for handling the data may
vary from gigabytes, terabytes, and even petabytes. There exist several
techniques for further reduction of the amount of data. Luo and Bhakta
(2017) introduced a compression method based on image denoising and
Discrete Wavelet Transforms. In this approach, wavelet coefficients (𝑐)
re computed using a 3D transform 𝑐obs = DWT(𝑑obs), that decomposes
he data (𝑑obs) into a series of wavelets with different frequencies and
ubbands. Next, an estimate of the noise standard deviation (𝜎) for the
avelet coefficients, and a truncation level (𝜏), are computed. Wavelet

oefficients below the truncation level are assumed to be associated
ith noise, and are removed from the signal using hard thresholding.
compressed signal, 𝑐obs > 𝜏 is then obtained where coefficients with

ndices denoted  are kept. During data assimilation the simulated data
= 𝑔(𝑚) are transformed using the same decomposition (i.e. same

nalyzing wavelet and level of decomposition) as for the actual obser-
ations and then compressed as 𝑐 = 𝑐(). In the case of correlated noise
n the original signal, it is assumed that the noise is transformed to
ll subbands in the decomposition. The noise for the remaining (kept)
avelet coefficients is represented by a diagonal covariance matrix
ith the values of 𝜎2 on the diagonal. We note here that all wavelet

oefficients are assumed to contain noise, not only the values that are
13
runcated. Data compression based on DWT is used in a study of the
orne field in Lorentzen et al. (2020). It was also applied and tested
n synthetic data in Luo et al. (2017) and Lorentzen et al. (2019).

A different approach is pursued in Soares et al. (2020). Here dictio-
ary learning based on the K-SVD algorithm is used to approximate the
ata. The dataset is divided into a fixed number of 𝑁𝑡𝑠 subsets (patches)
nd approximated as [𝑑obs1 ,… , 𝑑obs𝑁𝑡𝑠

] ≈ 𝐷𝛤 , where 𝐷 is the dictionary
atrix and 𝛤 is a sparse matrix computed using an Orthogonal Match-

ing Pursuit (OMP) method. The algorithm is initialized with a Discrete
Cosine Transform (DCT) function as the dictionary, and the dictionary
is then iteratively updated (learned). The methodology is applied to
a synthetic 4D seismic dataset (the Brugge benchmark case) using the
RLM-MAC for data assimilation. The authors report that the dictionary
learning approach is an efficient method for reducing the amount of
data without significant loss of information. A similar approach is
pursued in Etienam (2019), but in that paper the PUNQ-S3 reservoir
model is investigated using a modified ES-MDA for assimilation.

Finally we mention Liu and Grana (2019) where time-lapse seismic
data are compressed to a low-dimensional feature space using a Deep
Convolutional Variational Autoencoder (DCAE). The methodology is
tested on synthetic datasets, and data assimilation is done using the ES-
MDA algorithm. They report improved results using time-lapse seismic
and production data compared to production data only, and conclude
that the low-dimensional seismic information is valuable for recovering
the reservoir properties.

5.3 Minimization

In this section we review methodologies for solving the minimiza-
tion problem (Eq. (4)). We will start by discussing gradient based
methods in Section 5.3.1. The ensemble-based methods have become
very popular over the last decade and are treated in Section 5.3.2.
Then we treat the gradient free methods in Section 5.3.3. Some authors
define the history matching problem as a multi-objective minimization
problem. We discuss these approaches according to the algorithms used
to solve the minimization problem.

5.3.1 Gradient methods
A crucial step in utilizing gradient based methods is getting access

to the gradients. This can be done in several different ways. The most
straight forward might be the finite-difference method, where one addi-
tional simulation is required for each model variable that is tuned. Due
to the significant computation time that is typical with field models,
this gives a limitation in the number of variables that can be tuned.
More efficient methods are available, as the forward method and the
adjoint method. However, these methods depend on the availability of
the products in the simulator, or access to the simulator code. The
finite-difference method, forward method and the adjoint method are
all described and reviewed in Oliver and Chen (2011). This paper also
discusses streamline-based sensitivities, which is a fourth approach for
approximating sensitivities.

In contrast to the extensive development of gradient-based algo-
rithms for production history matching, there are far fewer examples
of the use of gradient-based algorithms for minimizing the objective
function for 4D seismic history matching. This might be due both to
shifted focus over the last decade towards ensemble-based approaches,
but also that obtaining good fit to the 4D seismic data might require
higher spatial resolution and therefore more parameters.

Finite-difference method By reducing the number of variables to a man-
ageable size, the finite differences approach might be viable and,
combined with the gradual deformation method, this approach would
still allow spatial variation of the correction fields. Gradual deformation
is an approximate method for gradually deforming continuous geosta-
tistical models to achieve a data match. It was originally introduced

by Hu (2000) (see also Roggero and Hu, 1998), and utilized for history
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matching in e.g., Hu et al. (1999). The principle of the gradual defor-
mation method is that a linear combination of a set of independent
Gaussian random functions is also a Gaussian random function. The
simplest form of the algorithm has a pair of Gaussian parameter vectors,
𝑧1 and 𝑧2, combined

𝑧 (𝜁 ) = 𝑧1 cos (𝜋𝜁 ) + 𝑧2 sin (𝜋𝜁)

here 𝜁 is a deformation parameter. The procedure for history match-
ng using gradual deformation is iterative. First the initial vectors 𝑧1
nd 𝑧2 are generated, and the value 𝜁 is found by minimizing an
bjective function. The optimal value 𝜁∗ is then used to define a new
1 = 𝑧 (𝜁∗). By iteratively generating a new 𝑧2 and repeating the
inimization procedure, it may be possible to obtain a model that
atches data.

The gradual deformation method has been utilized to adjust the
etrophysical properties while history matching 4D seismic data in
everal field cases. Le Ravalec et al. (2012) used gradual deformation
o vary the spatial distribution of rock facies and Roggero et al. (2007)
sed gradual deformation parameters to control the facies realizations
n each reservoir unit. Because the final solution must lie in the sub-
pace spanned by the initial vectors, 𝑧𝑖, it can be difficult to assimilate
arge amounts of information efficiently (Liu and Oliver, 2004).

Both in Le Ravalec et al. (2012) and Roggero et al. (2007) (see
lso Roggero et al., 2012) history matching was done by optimizing
weighted least square formulation, with terms including both pro-

uction and seismic data. Both papers utilize the gradual deformation
ethod to simultaneously work with a restricted number of parameters,
hile still striving to maintain geological realism. In Roggero et al.

2007) an additional element is included for updating facies propor-
ions. Roggero et al. (2007, 2012) reported that gradual deformation
ith the Powell’s dogleg algorithm (Powell, 1968) was suitable to his-

ory match the production data. However, this approach did not work
ell when 4D seismic data was included. For combined minimization
f 4D seismic and production data they proposed a new optimization
lgorithm based on global adaptive learning of the objective function
response surface fitting of the objective function).

orward method The forward method was implemented in a com-
ercial reservoir simulator, and was exploited for time-lapse history
atching in which the number of parameters first were reduced us-

ng gradzone analysis (Bissell, 1994), and a Levenberg–Marquardt ap-
roach was utilized for solving the nonlinear least squares system.
he methodology was demonstrated on a North Sea field, and a field
rom the Adriatic sea (Gosselin et al., 2003). They found that the
arameterization using gradzone analysis worked well on a synthetic
ield example, but was less successful on a real field case. This his-
ory matching feature of the commercial reservoir simulator was used
y de Brito et al. (2010) for history matching of the Marlim field,
large offshore field in Brazil. The parameters that can be updated

sing this approach are either regional parameters applied to specific
rid blocks or non-regional such as fault transmissibilities and aquifer
roperties. A limitation of such an approach is related to the selection
f parameters and the additional cost of getting the sensitivity for each
arameter. Emerick et al. (2007) stated that the additional cost in the
radient calculation is 20% of the cost of one reservoir simulation per
arameter, obviously putting a limitation on the number of parameters
hat can be included in the objective function.

djoint method For the adjoint method the gradient of the objective
unction can be obtained with an additional cost of the order of one
eservoir simulation (Emerick et al., 2007; Oliver and Chen, 2011). The
djoint method has been used to compute gradients of the objective
unction in a number of synthetic 4D seismic history matching studies
Dong and Oliver, 2005; Emerick et al., 2007; van Essen et al., 2012;
ydinov et al., 2008; Kahrobaei et al., 2013; Volkov et al., 2018).

The limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
14

ethod, which is a Gauss–Newton type of algorithm, has been utilized t
ogether with gradients obtained utilizing adjoints in a synthetic study
otivated from an actual reservoir model to estimate permeability and
orosity based on production data and changes in impedances (Dong
nd Oliver, 2005). The authors concluded that the data did not provide
nough information to get a high resolution characterization of the
ermeability and porosity, but that improved predictions could be
btained. The LBFGS method has the advantage that it utilize an
pproximation of the Hessian based on a set of gradients, and is suitable
or minimization in large-scale problems. While Dong and Oliver (2005)
ere able to use the adjoint formulation for 4D seismic data because

hey had access to the simulator code, van Essen et al. (2012) described
method for using the adjoint feature in a commercial simulator to as-

imilate saturation data by converting seismic data to pseudo well data.
ahrobaei et al. (2013) presented a workflow for updating structural
arameters of the model, specifically the bottom horizon. For the model
pdating they use a simple descent method. In a synthetic study they
ound that adding time-lapse seismic data to the production data gave
igher spatial resolution and better predictive performance. Volkov
t al. (2018) used an adjoint-gradient-based approach for solving a bi-
bjective history matching problem. The two objectives consisted of the
roduction data and time-lapse seismic data mismatches, respectively.
hey reported a successful demonstration using synthetic data from a
omplex 3D model based on the Norne field, and concluded that it
ill be important to test the methods they have developed on real

ield cases. The latter statement of course applies to utilizing adjoint
ethods for 4D seismic history matching in general.

Despite the fact that several groups have investigated the use of
djoints for history matching 4D seismic data, there is a lack of ap-
lication on real field data. An exception is the work of Ahmadinia and
hariatipour (2020), but in that work only the time-lapse seismic data
as used for history matching, focusing on the CO2 injection at the
leipner field. This is in contrast to what is observed in another large-
cale related inversion problem, seismic full-waveform-inversion (FWI).
or seismic FWI of acoustic waves, the adjoint equations are nearly
dentical to the forward equations and utilizing adjoints is common,
lso for real world problems. On the other hand, less focus has been
aid to quantification of the uncertainty of the solution in the FWI
roblem (Virieux et al., 2017).

Some more recent lines of research on utilizing adjoints are pre-
ented in Li et al. (2020), de Moraes et al. (2020) and de Moraes et al.
2018). These papers are investigating different new workflows exploit-
ng gradients for coupled processes, as could contain both reservoir
low, rock physics modeling and seismic modeling, which in a longer
erm can lead to improved workflows for 4D seismic history matching.

treamline-based sensitivities A fourth approach to computing gradients
s to utilize streamline based sensitivities. Watanabe et al. (2017)
resent a streamline-based semi-analytic approach for computing
odel-parameter sensitivities, accounting for both pressure and satu-

ation effects. They point out that the streamlines can be computed not
nly from streamline based simulators, but also by post-processing the
utput from finite-difference simulators. They demonstrated the use of
heir methodology to update permeability fields on the Norne field,
sing the provided model for the other parameters.

Although the ensemble-based approach does not utilize gradients,
imilarities between the ensemble Kalman filter and a Gauss–Newton
pproach to history matching have been pointed out (Reynolds et al.,
006). We discuss this similarity in Section 5.3.2.

.3.2 Ensemble methods
In this section we give an overview of the most common ensemble

ethods used for assimilating seismic data. Currently the industry
tandard is use of iterative ensemble smoothers that assimilate all
vailable data for each iteration. The benefit compared to traditional
nsemble Kalman Filters (EnKF) is that time consuming restarts of

he flow simulator are avoided. For detailed reviews of the traditional
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ensemble Kalman filter in reservoir engineering we refer to Aanonsen
et al. (2009) and Oliver and Chen (2011).

Consider the objective function (Eq. (4)) introduced in Section 4.
The ensemble formulation for this problem is written

𝐽 (𝑚𝑗 ) = ‖𝑚𝑗 − 𝑚pr
𝑗 ‖

2
𝐶−1
𝑚

+ ‖𝑑obs𝑗 − 𝑔(𝑚𝑗 )‖2𝐶−1
d
, 𝑗 = 1,… , 𝑁, (5)

where we have simplified the expression by merging 𝑑obs = [𝑑obsprod, 𝑑
obs
seis],

and similarly for 𝑔 and 𝐶𝑑 . In the above equation each 𝑚pr
𝑗 represents an

ensemble member from the (possibly non-Gaussian) prior distribution
and 𝑑obs𝑗 = 𝑑obs+𝜖𝑗 are perturbed observations using samples 𝜖𝑗 from the
ata error distribution  (0, 𝐶𝑑 ). An updated ensemble (𝑚𝑗) of model

realizations are computed by minimizing the objective function for
each ensemble member, although it is known that, for a general non-
linear observation operator the distribution of samples obtained by
minimization is only an approximation of the posteriori distribution.
A common feature when deriving the ensemble smoothers is use of the
first order Taylor approximation

𝑔(𝑚𝑖
𝑗 ) ≈ 𝑔(�̄�𝑖) + 𝑔′(�̄�𝑖)(𝑚𝑖

𝑗 − �̄�𝑖), �̄�𝑖 = 𝑁−1
𝑁
∑

1
𝑚𝑖
𝑗 . (6)

An exception from this approach is a recently developed ensemble
subspace formulation (Raanes et al., 2019; Evensen et al., 2019) of the
Ensemble Randomized Maximum Likelihood method (EnRML) (Chen
and Oliver, 2012). In the subspace formulation approximations are
justified using linear regression.

The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) ES-
MDA was introduced in Emerick and Reynolds (2013a) as an approach
to improve the traditional Ensemble Smoother (ES) (Skjervheim et al.,
2011) when working with non-linear problems. Instead of performing a
single update step, the algorithm assimilates the data 𝑁MDA times with
inflated noise variance. In the linear Gaussian case, it is shown (Emerick
and Reynolds, 2013a) that multiple data assimilation is equivalent to
the single ES data assimilation step. The algorithm is based on the fact
that the likelihood term in Bayes formula can, in the Gaussian case, be
rewritten as a product of 𝑁MDA exponential terms with inflated data
covariance. The resulting update formula for each ensemble member
(𝑗 = 1,… , 𝑁) is then given by:

𝑚𝑖+1
𝑗 = 𝑚𝑖

𝑗 + 𝑆𝑖
𝑚(𝑆

𝑖
𝑑 )

𝑇 (𝛼𝑖𝐶𝑑 + 𝑆 𝑖
𝑑 (𝑆

𝑖
𝑑 )

𝑇 )−1(𝑑obs +
√

𝛼𝑖𝜖𝑖𝑗 − 𝑔(𝑚𝑖
𝑗 )), (7)

where 𝑖 = 0,… , 𝑁MDA − 1, and ∑𝑁MDA−1
0 𝛼𝑖 = 1. In the above equation

we use the definitions:

𝑆 𝑖
𝑚 = (𝑁 − 1)−

1
2 [𝑚𝑖

1 − �̄�𝑖,… , 𝑚𝑖
𝑁 − �̄�𝑖], (8)

𝑆 𝑖
𝑑 = (𝑁 − 1)−

1
2 [𝑔(𝑚𝑖

1) − �̄�𝑖,… , 𝑔(𝑚𝑖
𝑁 ) − �̄�𝑖], (9)

and �̄�𝑖 = 𝑁−1 ∑𝑁
1 𝑔(𝑚𝑖

𝑗 ). In order to derive Eq. (7) we set the derivative
𝜕𝐽 (𝑚𝑗 )∕𝜕𝑚𝑗 = 0 and make use of the approximation �̃� 𝑖

𝑚𝑑 ≈ 𝑔′(�̄�𝑖)�̃� 𝑖
𝑚𝑚,

where �̃� 𝑖
𝑚𝑑 = 𝑆𝑖

𝑚(𝑆
𝑖
𝑑 )

𝑇 and �̃� 𝑖
𝑚𝑚 = 𝑆𝑖

𝑚(𝑆
𝑖
𝑚)

𝑇 . This gradient approxima-
tion is justified using the Taylor expansion (Eq. (6)), see e.g. Chen and
Oliver (2012).

The ES-MDA method was utilized for 4D seismic history matching of
a heavy-oil turbidite reservoir in Campos Basin (Emerick and Reynolds,
2013b) where results were compared to the results obtained using
the standard EnKF. The performance of the methodology was further
analyzed in Emerick (2016), where the same field was investigated,
but ES-MDA was compared to the standard ES. The conclusions from
the papers are that ES-MDA outperformed both the EnKF and the ES
in the joint assimilation of production and seismic data, but that the
reduction in the ensemble variance was excessive. There exist numer-
ous other applications of ES-MDA for 4D seismic history matching (e.g.,
Leeuwenburgh et al., 2016; da Nobrega et al., 2018; Yin et al., 2019).
In general, the mismatches to both seismic and production data were
15

reduced at reasonable computational expense.
The Ensemble Randomized Maximum Likelihood method (EnRML) En-
RML (Chen and Oliver, 2012) searches for the minimum of the objective
functions (Eq. (5)) using an ensemble-based approximation of the
Gauss–Newton method. It does not rely on a predefined number of as-
similation steps, and differs in that sense from the ES-MDA. The method
does, however, require a convergence criteria and the step length
parameter is determined by standard line search. The methodology was
later improved using the Levenberg–Marquardt algorithm (LM-EnRML),
for better selection of the step size and faster convergence (Chen and
Oliver, 2013). However, the original LM-EnRML involves the inverse
of the state covariance matrix (�̃� 𝑖

𝑚𝑚), which is found to be sensitive to
the level of truncation in the singular value decomposition (see also
the discussion below), which has lead to the most widely used form
of the LM-EnRML ignoring the updates from the model mismatch term
(�̃� 𝑖

𝑚𝑚)
−1(𝑚𝑖

𝑗 − 𝑚pr
𝑗 ) (see Chen and Oliver, 2013 for details):

𝑚𝑖+1
𝑗 = 𝑚𝑖

𝑗 + 𝑆 𝑖
𝑚(𝑆

𝑖
𝑑 )

𝑇 [(1 + 𝜆𝑖)𝐶𝑑 + 𝑆𝑖
𝑑 (𝑆

𝑖
𝑑 )

𝑇 ]−1(𝑑obs𝑗 − 𝑔(𝑚𝑖
𝑗 )), (10)

Here 𝑆𝑚 and 𝑆𝑑 are the same as for ES-MDA and given by Eqs. (8)
and (9). The Levenberg–Marquardt tuning parameter is denoted 𝜆𝑖. For
details regarding adaptive updates of 𝜆𝑖 we refer to Chen and Oliver
(2013).

A flavor of the EnRML is presented in Luo et al. (2015). In that
work a Regularized Levenberg–Marquardt algorithm is used to solve
a Minimum Average Cost problem (RLM-MAC). The regularization is
in this context the model mismatch term, but contrary to the standard
EnRML described above, the prior term (𝑚pr

𝑗 in (5)) is approximated
ith 𝑚𝑖

𝑗 , thereby circumventing the problematic term (�̃� 𝑖
𝑚𝑚)

−1(𝑚𝑖
𝑗−𝑚pr

𝑗 ).
Furthermore, the Taylor expansion (Eq. (6)) is substituted in the objec-
tive function before computing the derivative 𝜕𝐽 (𝑚𝑗 )∕𝜕𝑚𝑗 = 0, thereby
also avoiding the approximation �̃� 𝑖

𝑚𝑑 ≈ 𝑔′(�̄�𝑖)�̃� 𝑖
𝑚𝑚. The two methods are

compared in Luo et al. (2015) and reports better performance for the
RLM-MAC algorithm, but as the authors clearly states, the conclusion
may be different if the methodologies are investigated on a broader set
of experiments. The RLM-MAC was used for sequential assimilation of
first production data and then seismic data in a digital twin experiment
based on the Norne field (Lorentzen et al., 2019). That study showed
that it was possible to obtain good data match for both data types. In a
subsequent study using real data from the Norne field, Lorentzen et al.
(2020) showed that it is also possible to assimilate both data types
simultaneously, with reduction in mismatch for both production and
seismic data.

Singular value decomposition All smoothers mentioned above require
the inversion of a term like [𝐶𝑑 + 𝑆𝑑𝑆𝑇

𝑑 ] (the step size parameter 𝛼
r 1 − 𝜆, and iteration index 𝑖, are omitted for simplicity). The term
𝑑 has size 𝑁𝑑 × 𝑁 , and if 𝐶𝑑 is not diagonal or sparse it must be
tored as an 𝑁𝑑 × 𝑁𝑑 matrix (the noise associated with seismic data
s usually correlated). If the number of observations is large, inverting
his matrix can be a time consuming task, even if data compression
Section 5.2) is applied. In addition, the matrix to be inverted is
ften singular or badly conditioned, especially when the number of
easurements is large and many of the data are redundant. Truncated

ingular Value Decomposition (TSVD) is a common way of dealing with
hese issues. In order to avoid working with a dense 𝐶𝑑 we use a sample
pproximation:

𝑑 ≈ 𝑆𝜖𝑆
𝑇
𝜖 , where 𝑆𝜖 = (𝑁 − 1)−

1
2 [𝜖1 − 𝜖,… , 𝜖𝑁 − 𝜖], 𝜖 = 𝑁−1

𝑁
∑

1
𝜖𝑗 .

(11)
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If the data are of different magnitude it is necessary to scale the obser-
vations before performing the TSVD. This can be done by introducing
a scaling term, typically selected as a diagonal matrix 𝐶1∕2

sc where the
entries on the diagonal of 𝐶sc are the data error variances. This matrix
can be embedded in 𝑆𝜖 and 𝑆𝑑 and in the following we assume this has
been done and proceed with the current notation. The TSVD of 𝑆𝑑 is
written

𝑆𝑑 ≈ 𝑈𝑝𝑊𝑝𝑉
𝑇
𝑝 ,

where 𝑝 ≤ 𝑁 is the number of retained singular values. The matrix
𝑈𝑝 is the first 𝑝 left-singular vectors with dimension 𝑁𝑑 × 𝑝, 𝑊𝑝 is a
diagonal matrix with the 𝑝 largest singular values on the diagonal, and
𝑉𝑝 is a matrix with the 𝑝 first right-singular vectors with dimension
𝑁 ×𝑝. Following the calculations in Evensen et al. (2019, Sec. 3.4), the
inversion is computed

(𝑆𝜖𝑆
𝑇
𝜖 + 𝑆𝑑𝑆

𝑇
𝑑 )

−1 ≈ (𝑈𝑝𝑊
−1
𝑝 𝑍)(𝐼𝑁 + 𝛬)−1(𝑈𝑝𝑊

−1
𝑝 𝑍)𝑇 ,

where 𝑍 and 𝛬 is defined through the eigenvalue decomposition

𝑊 −1
𝑝 𝑈𝑇

𝑝 𝑆𝜖𝑆
𝑇
𝜖 𝑈𝑝𝑊

−1
𝑝 = 𝑍𝛬𝑍𝑇 .

Finally we note that after the TSVD we are left with the product
𝑈𝑇
𝑝 (𝑑

obs
𝑗 − 𝑔(𝑚𝑗 )). This projection maps the data onto the row-space of

𝑈𝑇
𝑝 and the data are reduced to a 𝑝 dimensional vector.

Localization Localization was introduced for ensemble based data as-
similation of meteorological and oceanographic models, as a technique
to reduce the effect of spurious correlations in estimated covariance
matrices, and to increase the number of degrees of freedom in the
ensemble. Using a limited ensemble size, sample covariance estimates
are bound to significant errors, which results in erroneous updates
of parameters. Spurious correlations are typically larger than the true
correlations for parameters which are far from the observation location.
In addition, it is shown that limited ensemble size combined with large
number of measurements leads to underestimation of model uncer-
tainty (Furrer and Bengtsson, 2007). Using localization, the amount of
data used to update any specific parameter is reduced, thereby reducing
the likelihood of ensemble collapse.

Local analysis (Evensen, 2003; Houtekamer and Mitchell, 1998) (see
Fig. 4, left) is a localization technique based on splitting the parameter
space into a finite number of patches (a patch could consist of a
single gridblock). Each patch is then updated individually, based on
measurements located inside the patch, or in a given vicinity of the
patch. A benefit of this approach is that the update step can easily
be parallelized. However, application to non-local observations is not
always straightforward.

Distance based localization (Hamill et al., 2001; Houtekamer and
Mitchell, 2001) is a different approach where the full set of parameters
is updated simultaneously, but the influence of the available measure-
ments are restricted to certain regions. This is illustrated on the middle
plot on Fig. 4. In this case a data point shown as a red dot is used to
update parameters that fall inside the green region. The localization
domain is usually specified as ellipsoids with given principal semi-
axes (𝑙) and rotation angles, but any shape is possible. A compact
correlation function (e.g., Gaspari and Cohn) is then used to construct
a tapering matrix, 𝑇 , that has value 1 at the measurement location and
gradually decreases to zero at the border of the localization domain.
Distance-based localization is often described as a method of covari-
ance regularization, i.e., 𝑇 ◦ �̃�𝑚𝑚 where ◦ denotes the Schur product.
However, the model covariance matrix is not explicitly formed when
using ensemble smoothers as described above. As an alternative, the
Kalman gain term in Eqs. (7) or (10) is multiplied from the left with
the tapering matrix (Chen and Oliver, 2017).

Although distance based localization is efficient in many cases,
it can be cumbersome to specify localization domains for large and
16

complex fields with many wells. In addition, the approach cannot be d
used for parameters or measurements that do not have a well defined
position in space. Parameters used for end-point scaling of relative
permeability curves is one example. Correlation based localization
(Luo et al., 2018b) was introduced to mitigate the above mentioned
problems. This approach involves computation of the correlations (𝑟)
between the model variables and the simulated observations (or pro-
jected observations in case TSVD is used). Further, a threshold value (𝛿)
s computed and a localization domain is defined as the area where |𝑟| >
(Fig. 4, right). The threshold value can be estimated using wavelet-

ased denoising approach (Luo et al., 2018b), but manual scaling of
he estimate may be required. The correlation based localization is
daptive, and both 𝑟 and 𝛿 are updated for each smoother iteration.
orrelation based localization has been used to reduce the effects of
mall ensemble size in history matching of production and seismic data
rom the Norne Field (Lorentzen et al., 2020).

.3.3 Gradient free methods
tochastic neighborhood algorithm The stochastic neighborhood algo-
ithm was introduced as a method to find a set of models with a good
ata match in general geophysical inversion problems (Sambridge,
999). The main idea behind the method is to let the search for new
odels be guided by all previous forward-model evaluations. Given a

et of samples of the parameter, for which the objective function has
een evaluated, a Voronoi diagram is generated. That is, a division
f the model space into unique cells centered at each sample. Each
ell is the nearest neighbor region about the sample with distance
easured by the L2 norm. If the objective function is known for all

amples, one can make an approximation to the objective function
urface by setting the objective function value to a constant inside
ach Voronoi cell. Evaluating the approximate objective function at any
ew point in parameter space is then a matter of finding which of the
revious samples it is closest to. This proxy surface can be utilized for
valuating the objective function for many different sampling methods.
he stochastic neighborhood algorithm has been applied to the problem
f history matching of 4D seismic data (e.g. Kazemi and Stephen, 2012;
tephen et al., 2006). In a numerical comparison study, however, Jin
t al. (2012a) concluded that the neighborhood algorithm was the least
seful of the three method considered for joint history matching of
roduction and time-lapse-seismic data.

onte-Carlo search Markov Chain Monte-Carlo (MCMC) algorithms
re often used to sample from the posterior distribution in Bayesian
pproaches to inverse problems. One advantage of MCMC methods
ver minimization-based approaches is that they have some theoretical
uarantees of correct sampling even for posterior distributions that
re far from Gaussian. In general, however, the conditions that are
equired to ensure that the sampling is correct, cannot be met in
ealistic geoscience inverse problems. One particular flavor of MCMC,
he Metropolis–Hastings algorithm (see Oliver et al., 2008 or Tarantola,
005 for a short introduction) was suggested for sampling in 4D seismic
istory matching problems (Huang et al., 1997). The method converged
lowly, however, and an ad-hoc modification was made to the accep-
ance criterion, resulting in a greedy search, which reduced the data
isfit more quickly, but lacked clear sampling properties. The greedy

pproach was also used for a field study in Waggoner et al. (2003).
major problem with this approach is that despite the modification,
any iterations are required and the computational cost is high.

An approach based on discrete Latin hypercube (DLHC) sampling was
eveloped in a set of synthetic studies (see Maschio and Schiozer, 2016
or details) and later applied to seismic history matching of the Norne
-segment data set (Davolio and Schiozer, 2018). In the latter work

he seismic data was included as binary images, and the benchmark
ase consisting of the G-segment of Norne was used for testing of the
ethodology. The joint history matching of production and seismic

ata used 3000 simulations to produce 99 models of the desired quality.
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Fig. 4. Principles of local analysis (left), distance based localization (middle) and correlation based localization (right). A data point is shown as the red dot. For local analysis,
parameters for a given patch (shown in green) are updated based on observations that fall inside a given region around the patch (shown as the red dotted square). Distance based
localization is illustrated using an ellipse (with given semi-axes) centered on the observation, and parameters within this ellipse are updated using the observation. The domain
obtained using correlation based localization may take any shape, and is not necessarily connected. The domain is determined as the area where the correlations between the
observation and the parameters are above a given threshold.
Simulated annealing (see Tarantola, 2005 for a short introduction) can
be viewed as a variant of the Metropolis–Hastings algorithm designed
for minimization, rather than sampling from the posterior probabil-
ity distribution. In simulated annealing a parameter is introduced,
called the ambient temperature by analogy to the physical process
of annealing, that is decreased slowly towards zero. This parameter
is used in defining Metropolis–Hastings steps, and the construction
is such that when the temperature goes towards zero, the successful
steps will be closer and closer to the maximum likelihood value. The
problem with this approach is that it requires many steps to converge,
and it is therefore very time consuming when the objective func-
tion is expensive to compute. Ingber (1989) proposed a modification
called very fast simulated re-annealing (VFSA) that has been used in
geoscience applications. In a comparison of VFSA with stochastic neigh-
borhood algorithm and particle swarm optimization for 4D seismic
history matching with a relatively small number of parameters, Jin
et al. (2012a) concluded that VFSA was not as useful as particle swarm
optimization.

Particle swarm optimization (PSO) is an optimization method originally
developed as a stylized representation of the movement of organisms
in a bird flock or fish school. A set of particles (the swarm) is up-
dated based on the best solution the particle has visited previously
and the global optimum found so far. All the particles are updated
independently at each iteration of the algorithm, making it easily
parallelizable.

Jin et al. (2012a) compared PSO to very fast simulated annealing
(VFSA) and the stochastic neighborhood algorithm (see the paragraphs
above). Based on results from an initial synthetic study they tested
PSO and VFSA on data from a real reservoir. Their objective function
included both seismic and production data, but not a prior model
mismatch term. A total of 18 continuous and discrete parameters
were varied in the search for a match to data. The authors concluded
that PSO would be preferred in an environment with resources for
parallel computing. In contrast, Tolstukhin et al. (2014) reported that
convergence of the PSO method for history matching of seismic data
at Ekofisk was slow, and an approach relying on proxy models and
multi-dimensional kriging was used instead.

Evolutionary algorithm An evolutionary algorithm (EA) is a population-
based optimization algorithm, inspired by biological evolution pro-
cesses. Evolution of an ensemble of models occurs after repeated appli-
cation of reproduction, mutation, recombination, and selection opera-
tors. An advantage of evolutionary algorithms is that they do not make
any assumptions about the shape of the posterior distribution. The
evolutionary algorithm has been applied for minimizing the objective
function for 4D seismic history matching (Chassagne et al., 2016;
Obidegwu et al., 2017). In both papers the number of parameters
used for optimization has been on the order of 30, and have been
selected from a slightly larger set by experimental design methods. A
Pareto-based evolutionary algorithm, developed for history matching
with multiple objectives, has been applied to the Brugge benchmark
case (Park et al., 2015). For this particular problem with the Pareto-
based multiobjective evolutionary algorithm performed better than
the genetic algorithm that is commonly used in production history
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matching applications.
5.4 Uncertainty quantification

For works in which a gradient-based method was used for 4D seis-
mic history matching, there been little attention paid to the problem of
uncertainty quantification, with the exception of Volkov et al. (2018),
in which the randomized maximum likelihood (RML) (see e.g., Oliver
and Chen, 2011) method was utilized to find several solutions of the
history matching problem. In the RML method, one solves the mini-
mization problem several times, with perturbations of the data term
and the mean value for the prior term in Eq. (4). Volkov et al. (2018)
applied a bi-objective optimization approach, searching for solutions on
a Pareto front. It should be noted that gradients do not directly provide
information for uncertainty quantification.

The ensemble Kalman-based methods are generally framed as Monte
Carlo approximations of the Bayesian data assimilation problem. The
initial ensemble is composed of samples from the prior distribution,
while the final ensemble is interpreted as giving an approximation of
the posterior uncertainty. However, there are some limitations to this
interpretation. For instance, it is well-known that the approaches using
a common Kalman gain for all the ensemble members (as the methods
discussed in Section 5.3.2) cannot represent the uncertainty in bi-modal
distributions.

The MCMC approach is frequently described as the ‘gold-standard’
for sampling from the posterior distribution, but the number of simu-
lations needed to obtain a useful set of independent samples from the
posterior distribution is generally infeasible for history matching prob-
lems. Other gradient-free methods such as the neighborhood method
and the evolutionary methods typically provide a set of history matched
models as the output, but in general there is not a clear probabilistic
interpretation of the set of samples obtained. Moreover, the fact that
one must, in general, reduce the number of parameters implies that
the prior uncertainty is underestimated.

5.5 Reservoir analysis

There exist many papers that aim at improved understanding of
petroleum reservoirs by interpreting seismic data, but do not use
methodology from any of the categories above. Such works contribute
either to preparation for assisted history matching, or analysis of the
reservoir manually or by trial-and-error. In Alfonzo and Oliver (2019)
the suitability of the prior model for the Norne G-segment is investi-
gated using the Mahalanobis distance between measured and simulated
time-lapse seismic observations, and necessary improvements of the
model are suggested. A different approach to model diagnostics for
the Norne field is done in Maleki et al. (2018) where production data
and seismic impedance are used to identify regions of the model that
need improvement. This work was extended in Maleki et al. (2019),
by including a manual history matching procedure for the Norne
field. Further, the reliability of the seismic data for the Norne field
is investigated in Santos et al. (2018), where manual classification of
the data quality is investigated. The prior models for the Namorado
field in Campos Basin in Brazil is analyzed in Souza et al. (2018)
and acceptance thresholds are used to identify model realization that

provide acceptable match with production and seismic amplitudes.
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Within the context of reservoir analysis, significant efforts also exist
for CO2 storage. The In Salah field in Algeria is investigated in Shi et al.
(2019) using InSAR (Interferometric synthetic aperture radar) uplift
data and injection well bottom-hole pressure. The model is improved
by manually adjusting the fracture transmissibility thereby providing
valuable insight into injection-induced seismicity and fracture flow
behavior. CO2 storage is also analyzed in Hodneland et al. (2019), and
here ClAssification and Regression Tree (CART) is used in combination
with a random forest classifier to identify model parameters that are
most important for history matching the model.

5.6 Summary

• Among the gradient-based methods, utilizing the adjoints seem
to be the best alternative as its computation time is not increas-
ing with a growth in the number of parameters. However, we
have not found more than one paper (Volkov et al., 2018) that
utilize adjoints on real field data. Moreover, it does not seem
that utilizing adjoints and updating a single model give an easy
way to provide any uncertainty quantification of the obtained
results. In Volkov et al. (2018) the uncertainty quantification
was dealt with utilizing the randomized maximum likelihood
method, which requires solving one minimization problem for
each sample from the posterior distribution. Obviously, the fact
that the calculating adjoints are requiring access to the simulator
code is hampering its use. If one decide to reduce the number
of parameters there are a number of gradient-free approaches
available, but out literature review does not pin-point any method
being particularly effective.

• The two main ensemble based algorithms for 4D seismic history
matching (of real petroleum fields) are ES-MDA and LM-EnRML.
There are no clear evidence that one is superior to the other,
and both approaches require careful selection of input. For ES-
MDA the inflation coefficients (𝛼𝑖) must be chosen based on the
characteristics (e.g. non-linearity) of the model. Analysis of the
method (Evensen, 2018) indicates that selecting a decreasing
set of inflation coefficients is preferable. This approach is also
pursued in Emerick and Reynolds (2013b). Alternatively, the
modified ES-MDA (Emerick, 2016) can be used, but also this
approach require selection of ad-hoc hyper-parameters. It is not
necessary to specify a fixed number of iterations when using LM-
EnRML. However, in real applications where 𝐶𝑑 is inaccurately
or poorly specified, careful selection of the convergence criteria
is required in order to avoid ensemble collapse. The final solution
also depends on initial value for the damping parameter 𝜆0, and
how this parameter is updated during iterations.

6 Field applications

Many published investigations of 4D seismic history matching have
used synthetic data to illustrate developments in some particular aspect
of the workflow, such as the ability to assimilate large amounts of data,
or to compare information content from production data and seismic
data. In real field cases, the data appear to be more difficult to match
than in synthetic cases because many of the assumptions that make the
analysis for synthetic cases rigorous are not valid. For real field cases
where the consistency of the prior model with reality is not assured, the
‘measurement’ error may be difficult to characterize, and the forward
simulators almost certainly lack physical processes that are important
to the signal. Thus, perhaps the most important lessons that can be
learned from published field cases is how the various limitations of
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methods and models have been dealt with.
6.1 Reservoirs with fluid displacement in relatively homogeneous sands

The Harding Field is relatively simple geologically, with a main
reservoir of nearly homogeneous, high porosity sand that is up to 60
meters thick. The 4D seismic data at Harding showed strong signal,
which was interpreted as being due to the displacement of oil by
water or gas. Several assisted history matches of the 4D seismic data
have been reported (Walker and Lane, 2007), but our discussion will
focus on the most recent (Mitchell and Chassagne, 2019), in which
the seismic attributes used for history matching were created from
minimum and maximum amplitude maps of the 4D differences over
the original oil zone. The difference maps were believed to provide a
good representation of water and gas sweep of the oil zone because
pressure changes were believed to be small and sand properties were
believed to be nearly homogeneous. The maps of saturation change
and observed amplitude change were converted to binary maps and
were compared on a pixel-by-pixel basis. A differential evolutionary
algorithm was used to adjust the values of 7 model parameters to
minimize the difference between the observed and simulated 4D binary
maps. At the end of the minimization, seismic misfit decreased about
10%. Interestingly, although the geology was simple, the reservoir was
nearly homogeneous, and the effect of pressure was thought to be
negligible, the comparison between data and model was not made on
a traditional seismic attribute.

The Norne Field consists primarily of good-quality sandstones with
porosities in the range 25 to 32% and permeabilities on the order of
1 Darcy. Although it appears to be reasonable to model the Norne
Field as being composed as a single sand facies with varying clay con-
tent (Suman and Mukerji, 2013), it has not been possible to ignore the
effect of cementation layers on vertical communication. The reservoir
is partially compartmentalized horizontally by faults and vertically by
relatively thin cementation layers (Osdal et al., 2006). The first seismic
survey was performed in 1992 with repeat surveys acquired in 2001,
2003, 2004, 2006, 2008, 2010, 2013 and 2017. Production began in
1997 with water injection for pressure support and improved recovery.
The field is currently in tail production. Seismic and production data
through 2006 were made available to research groups for evaluation
of history matching methods (Rwechungura et al., 2010). In one of
the earlier published studies, Lygren et al. (2005) used differences
in acoustic impedance to identify displacement of oil by water. This
information was then used, along with RFT data, to modify vertical
transmissibility across cementation layers. The parameters used for
history matching were rectangular zones of vertical transmissibility
multipliers, which had been chosen manually based on visual inspec-
tion of the mismatch. Values of the multipliers were estimated using a
gradient-based minimization. Again, the magnitude of the seismic data
term in the objective function decreased approximately 10% while the
RFT mismatch decreased about 15% in the study. The released seismic
and production data through 2006 have been recently history matched
using an iterative ensemble smoother which allows the use of a far
greater number of model parameters. Lorentzen et al. (2020) made
use of adaptive localization and data reduction techniques based on
truncation of wavelet coefficients. Parameters that were treated as un-
certain, and thus adjustable, included gridblock values of permeability
(horizontal and vertical), net-to-gross ratio and multipliers for vertical
permeability in six layers. Other parameters included initial oil/water
contact depths in 5 compartments, multipliers for end-point scaling
of relative permeability curves for oil and gas, multipliers for fault
transmissibilities, and multipliers for transmissibility between fault
block regions. Monthly production data from all wells were assimilated.
The magnitudes of the standard deviation of observation errors in
production data were selected based on visual inspection of the data.
Inverted acoustic impedance differences were used as seismic data. The
noise level was estimated to be on the order of 10% of the average value
of the 4D impedance differences coming from model based inversion.

This level of noise is smaller than the value estimated by Alfonzo and
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Oliver (2019) who estimated that the magnitude of the observation
error was about 80% of signal strength. Reservoir behavior in more
recent years has become increasingly complex with various compet-
ing effects including gas out of solution, re-solution of gas, pressure
increase and decrease with possible fracturing, and replacement of oil
by water (Osdal and Haverl, 2019).

6.2 Fields with complex stratigraphy

Although complex stratigraphy could mean many things, we use this
term primarily to describe reservoirs in which the rock properties are
determined by facies whose locations are not certain except at well
locations. Turbidite reservoirs in which the extent of lobes may be
uncertain, or in which ‘packages’ of sand and shale predominate, are
the archetypal reservoirs types in this category.

The Nelson Field is a stratigraphically complex field with repeated
3D seismic data with several reports of history matching (Gill et al.,
2012; Kazemi et al., 2011; Stephen and Kazemi, 2014). Early published
history match results were obtained through manual modification of
the net-to-gross ratio, which was identified as the most important
variable for modifying changes in predicted acoustic impedance (Gill
et al., 2012). In more recent history matching studies (Stephen, 2018),
the pilot point method was used to control changes in net-to-gross ratio
and permeability (horizontal and vertical). The number of pilot points
was restricted by placing pilot points at well locations. Changes in
reservoir properties between wells were determined by kriging interpo-
lation. Despite the fact that the Nelson field is believed to be turbiditic,
facies were not modified directly in history matching. To quantify
the difference between the model and the data, the authors com-
pared inverted acoustic impedance to predicted acoustic impedance,
after scaling the observed data to modeled data in regions where
predictions were good. Non-repeatable errors in acoustic impedance
were estimated in regions of the reservoir where no production-related
changes were expected to occur. The neighborhood algorithms was
used to generate history matched samples. As discussed in Section 5,
the method scales relatively poorly with dimension of the parameter
space, so a streamline simulator was used to allow a greater number of
simulations. The weightings of the data terms in the objective function
were then modified to account for modeling error resulting from the
use of the streamline simulator.

The Schiehallion Field is another turbidite reservoir on the UK
continental shelf. The most comprehensive study of 4D SHM on this
field appears in Stephen et al. (2006). To reduce the influence of model
error in this case, the authors chose to use relative impedance for data.
They then normalized both observed and predicted attributes, scaling
each by the spread. Observation error was estimated by applying a
band-pass filter to both seismic and production data to separate signal
from noise — assuming that the frequency of the noise was higher than
the frequency of the signal. This assumption is unlikely to be valid for
production data where allocation error is likely to be correlated for long
periods. In any event, the spatial correlation of observation error in
seismic was ignored. It is possible that the use of the scaled seismic
attributes was successful in removing some of the spatially correlated
seismic error. As only five parameters were used for history matching,
the information content from data was presumably small, or the model
was already mostly calibrated before the reported history matching.
The authors also noted that the observed dataset contained several
nonproduction-related anomalies (signal where it was not expected)
and noted that the magnitude of resolution error was larger than the
‘observation error’. A stochastic neighborhood algorithm was used for
minimization. A later study of the same field (Sagitov and Stephen,
2012), used particle swarm optimization to adjust a similar number
of parameters. Both methods appeared to be useful for characterizing
when the number of parameters to be adjusted was exceedingly small.

The Girassol Field, offshore Angola, is a turbiditic reservoir made
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up of unconsolidated sands, initially below the bubble point pressure.
The 3D base survey was carried out in late 1999. Production began in
December 2001 and gas and water injection was initiated in mid 2002.
A monitor survey was carried out at the end of 2002. In the history
matching study of Roggero et al. (2012), a truncated plurigaussian
model with non-stationary thresholds was used to populate the initial
models with facies realizations. One year of production and pressure
data from 12 wells was included in the objective function, but at
the end of the history matching period, water breakthrough had only
occurred in 2 wells and gas breakthrough in one. A weighted least-
squares formulation was used to define the objective function, similar
to Eq. (4), but neglecting the prior model mismatch term. Parameters
that were adjusted to match production data included variogram ranges
in petrophysical parameters, average petrophysical properties assigned
to each facies, aquifer parameters, fault transmissivity multipliers, and
well skin factors. Powell’s dogleg algorithm (Powell, 1968) was used to
minimize the production data mismatch. Because the number of param-
eters was relatively small, it was possible to approximate derivatives of
synthetic data with respect to the parameters using finite-differences.
After history matching production data, a second stage of history
matching was performed with both production data and seismic data.
In this stage, real and synthetic acoustic impedance differences were
compared and the resulting mismatch was minimized from an opti-
mization algorithm by varying the 3D facies proportions. The weight
on the seismic data term was increased by a factor of 16 ‘to balance
the influence of 4D seismic data compared to production data’ (Rog-
gero et al., 2012). The ‘observed’ and synthetic acoustic impedance
were compared at the geological model scale, so that the simulated
dynamic variables from the flow simulator had to be downscaled. The
resulting mismatch was minimized from an optimization algorithm by
varying the 3D facies proportions. The inversion parameters in the joint
inversion were the average proportion of sands in regions with good
reservoir properties and the average proportion of shale in regions with
the highest pseudo-Vclay.

6.3 Complex processes

Fields in which the processes cannot be modeled adequately using
a slightly compressible black-oil simulator, include fields with steam
or CO2 injection and fields with large geomechanical effects. In these
cases, the cost of simulation increases substantially if the processes are
modeled during history matching.

Valhall is a large, initially overpressured chalk field with porosity
exceeding 50% in places. The field has been on production since 1982
with large pressure decline and corresponding reservoir compaction
and a strong 4D seismic signal for the first 20 years. A permanent
reservoir monitoring system was installed in 2003 and full-field water
flooding began in 2006. The observed change in seismic attributes has
also been exceptionally clear during the water flooding period (van
Gestel et al., 2011). Because of the difficulty of rigorous modeling of
flow and transport in a strongly compacting reservoir, the simulator
used for history matching approximated compaction effects by spec-
ifying a pore volume multiplier as a function of reservoir pressure.
Two seismic attributes were used as data for comparison: Sum of
Negative Amplitudes (SNA) on impedance traces and time shift (TS) in
a window above the reservoir. Direct comparison between simulated
and ‘observed’ attributes was difficult because of the approximations
made in simulation, so the seismic objective function was represented
by a map-based correlation value (Kjelstadli et al., 2005). Because
of the many approximations in modeling, it was determined that the
‘measurement’ errors could not be used for weighting terms in the
objective function. Tolerances and corresponding weights were then
determined empirically. Monthly production data from seven wells and
a small number of pressure (RFT) surveys were included in the objec-
tive function. The objective function did not include a regularization or
prior term, but uncertainty ranges were specified for each parameter.

The objective function was minimized using a genetic algorithm with
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60 parameters including porosity multipliers, permeability multipliers,
vertical transmissibility multipliers, pore volume compaction trends,
aquifer strength, and wellbore skin values. It was concluded that the
various data sets, SNA, TS and production data provided independent
spatial information (Kjelstadli et al., 2005). It is difficult, however,
to evaluate the quality of any of the matches, although several RFT
measurements appear to have mismatch after history matching on the
order of 400 psi.

The Ekofisk Field is a large fractured chalk reservoir characterized
by high porosity and low permeability. Production began in 1971.
Substantial subsidence was observed in late 1984 and large-scale water
injection began in 1987. The first 3D seismic survey was acquired two
years later. Repeat surveys were acquired in 1999, 2003, 2006 and
2008. After installing a permanent seismic monitoring system in 2010,
surveys were acquired approximately twice per year. History matching
of time-lapse seismic data at the Ekofisk field is complex for a number
of reasons, including the compaction behavior and the belief that flow
depends primarily on the fracture network. Reported studies have used
the time-strain attribute as data in order to capture most information
from the compacting reservoir (Tolstukhin et al., 2012, 2014). Only
nine parameters were used for history matching: six parameters that
represent the morphing combination coefficients between initial three
realizations within the Lower Ekofisk and Upper Tor formations, two
parameters to perturb the fracture permeability and one parameter
for fracture orientation. An objective function that included oil/gas
production and RFT pressures, water production and 4D time-strain was
used for history matching. The weight factors for the misfit functions
were said to have been normalized for each well and 4D seismic data.
The fact that matching could be attempted with such a small number of
parameters is undoubtedly a result of the continual model improvement
that had occurred in previous history matching exercises. A proxy
model was used to replace the reservoir simulator and MCMC was used
to develop representative models that match data.

The Sleipner Carbon capture and storage project has injected CO2
into the Utsira Formation since 1996. As no wells penetrate the reser-
voir where the CO2 is accumulating, monitoring of the spread of the
plume has primarily been accomplished using repeated 3D seismic
surveys acquired in 1994, 1999, 2001, 2004, 2006, 2008, 2010, 2013
and 2016. Surveys up to 2010 are publicly available (Chadwick et al.,
2019). Most attempts at history matching have compared simulated
spread estimated from changes in velocity with the observed spread
(Chadwick et al., 2019; Hodneland et al., 2019; Zhu et al., 2015). Be-
cause of the complexity of the physics, most studies have focused on an
analysis of the influence of a small number of parameters on the match
to seismic interpretation. Zhu et al. (2015) attempted to match data
by manually varying lateral permeability anisotropy, the concentration
of CH4 in the CO2 stream, and reservoir temperatures. Ahmadinia
and Shariatipour (2020) fixed the reservoir temperature, permeability
anisotropy and CH4 concentration, but allowed the topseal topography
to vary. They used adjoints from a simplified model with vertical equi-
librium assumption to compute gradients for the optimization. Williams
and Chadwick (2017) included temperature effects in the modeling, but
investigated only the effect of heterogeneity. Various authors concluded
that it was possible to obtain relatively good matches by introducing
permeability anisotropy or the introduction of permeability heterogene-
ity. Others suggested that calibration of temperature was sufficient,
and others allowed only the topseal topography to vary. Because the
effects of parameters were often studied independently, the extreme
limitations in the selection and in the number of parameters allowed
to vary makes any conclusions about uncertainty impossible.

There have been a relatively large number of applications of 4D
seismic history methods to fields with thermal stimulation. Hetz et al.
(2017) describe an application of history matching to a single cycle of a
cyclic steam stimulation operation at one pad in the Peace River Field,
Alberta, Canada. A seismic monitoring system had been installed in
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2014, allowing daily time lapse seismic surveys. Because the reservoir
under study had been previously subjected to many cycles of steam in-
jection and soaking, the initial condition at the start of the current cycle
was uncertain. Maps of seismic time shift (relative to the base survey)
were computed for each of the 82 monitor surveys measured during the
stimulation cycle. Then a single map of ‘onset time’ was estimated. This
was the calendar time at every location at which the change in seismic
time shift from the base survey exceeded the threshold value of 0.1 ms.
History matching was performed in two stages. In the first stage, low
frequency components of the initial saturation field, initial temperature
field, porosity field, and the permeability field were adjusted using an
evolutionary algorithm. In the second stage, the permeability field for
several models from the first stage was adjusted on a cell-by-cell basis
using sensitivities estimated using streamline computations.

Although the authors used a rock physics model to compute time
shifts for the simulated properties, the computed ‘onset time’ appeared
to be less sensitive to errors in the rock physics model than the time
shift themselves, thus the effect of modeling error on history matching
was reduced. The use of onset time with an evolutionary algorithm
appears to have been successful in obtaining multiple models that
matched the onset data and the BHP data during the first half of a stim-
ulation cycle. In this field example, however, the changes in the states
(temperature, water saturation and pressure) were monotonic during
the history matching period. It is not clear how well the methodology
would work for fields for which the timescale for changes in operating
conditions is similar to or shorter than the frequency of monitoring
surveys.

6.4 Comments on field cases

• Despite the complexity of several of the fields and the large
number of published papers on the importance of model realism,
the locations of facies boundaries were updated in only one of
the seismic history matching field studies (Roggero et al., 2012).
Either including uncertainty in facies distributions is not as im-
portant as sometimes believed, or it is simply too difficult to do
in a meaningful way in realistic field cases. We suspect that the
there may be some truth to both justifications.

• Although carbonate reservoirs hold much of the world’s oil re-
serves, the application of 4D seismic history matching to carbon-
ate reservoirs, other than chalk reservoirs, is extremely limited.
This appears to be partially a result of the stiffness of the ma-
trix which makes detection of saturation changes difficult and
partially a result of the complexity of modeling the permeability
heterogeneity in carbonate reservoirs.

• Of the nine field applications described in this section, the history
matching was performed at the elastic level in five applications
and at the seismic level in three. The remaining case is difficult
to characterize as the actual observations (time-shift) were at
the seismic level, but the observations were thresholded and
compared with a saturation map. None of the field examples used
inversion of seismic data to the pressure or saturation level.

• Limitations in the model have been dealt with several ways. In
some cases, the magnitude of the observation error has been
inflated to partially account for the inadequacy of the model. In
other cases, the data has been specifically chosen to limit the
effect of modeling error. In many cases, the specification of level
of observation error was chosen in an ad hoc manner, which
might have implicitly accounted for model error.

• Although many of the field cases have been carried out care-
fully, it is difficult to describe any as truly ‘successful’. A really
successful SHM would need to match the data to the correct
level (which is difficult to characterize), and would need to
use an appropriate regularization/prior term that is neither too
restrictive or too flexible, and would generate samples from the
potentially nongaussian posterior. None of the cases fulfilled all

of these requirements.
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• In many of the case studies, the number of parameters to be
adjusted was reduced to exceptionally small values through sen-
sitivity studies that identified the parameters that were most
important for matching observations. The reduced parameter-
ization in these cases appears to largely a necessity resulting
from type of optimization algorithms chosen. Any approach that
does not allow a large number of parameters is clearly ignoring
uncertainty in parameters that may be influential in forecast
uncertainty.

Summary

Despite the desirability of integrating 4D seismic data into reservoir
odel characterization, it appears that the problem of history matching
D seismic data is much more difficult than history matching produc-
ion data. There are a number of contributors to the difficulty, but it
oes not appear to be primarily a result of limitations in data assimi-
ation algorithms, which are capable of assimilating large numbers of
ata into models with large numbers of parameters. Although state-
f-the art data assimilation methods for large problems are still not
apable of rigorous uncertainty quantification, it appears to us that the
iggest challenges are in the modeling of seismic data and the proper
eighting of the mismatch between observed and modeled seismic data
r attributes. Modeling of pressure sensitivity of seismic attributes has
een particularly uncertain as it is typically based on measurement of
lastic properties on core samples whose properties might have been
ltered in the coring and retrieval process. Uncertainty in the pressure
ependence has not yet been accounted for in the history matching
orkflows.

It is difficult to characterize the appropriate weighting of seismic
ata against production data and prior information, partly because
eismic data tends to be highly processed and partly because modeling
f seismic attributes is often highly simplified. Nevertheless, when
ctual data are compared to simulated data, it is clearly not sufficient to
se only ‘‘measurement error’’ for weighting; it is necessary to account
or modeling error due to missing physics and missing parameters
r for bias introduced through processing and inversion of seismic
ttributes. Seismic data error for 4D seismic history matching will
lways be correlated and the correlation length may be similar to the
orrelation length of the signal. It is clear that many of the important
ssues related to weighting of model error have been recognized for
any years (Gosselin et al., 2003), yet implementation of solutions has

emained a challenge.
Despite the difficulty of characterizing errors in the seismic attribute

ata, it is important that the error should at least be estimated. For
istory matching, Aanonsen et al. (2003) showed that assuming the
ncorrect value for 𝐶𝐷 limits the usefulness of seismic data in history
atching and for synthetic examples, minimization of an objective

unction with an inappropriate 𝐶𝐷 resulted in a suboptimal solution.
Similar conclusions have been made for numerical weather forecasting.
A second important reason for attempting to correctly characterize
the observation error is that the characteristics of non-repeatable 4D
noise should be an important consideration when choosing the optimal
domain in which to integrate seismic, borehole and reservoir engi-
neering data. In particular, Souza et al. (2017) showed that noise can
be incorrectly interpreted as signal when 𝐶𝐷 is poorly characterized.
Finally, even when performing synthetic studies, it is important to use
realistic noise models as the conclusions are influenced by the type of
noise (Birnie et al., 2020).

In practical applications of seismic history matching with a petroe-
lastic model, the seismic data appear to most commonly be represented
as maps of seismic attributes (i.e., computed over a time window)
as this has the advantage of robustness with perhaps only small loss
of resolution when compared with cubes of attributes. For thick for-
mations, multiple maps have been used when loss of resolution from
21

a single map would be excessive. It also appears that attributes are
most commonly assimilated at either the seismic level (e.g., time-shift
or amplitude) or at the elastic level (e.g., acoustic impedance), but
seldom at the simulation level. Assimilation at the seismic level has
the advantage of avoiding the need for seismic inversion, although
the consequence is that forward modeling of the seismic data must be
performed repeatedly for comparison of modeled with actual data.

Field cases provided insight into practical approaches to dealing
with deficiencies in the model. In some cases, the magnitude of the
observation error has been inflated to partially account for the inade-
quacy of the model and the consequent inability to provide a match at
the expected level. In other cases, the type of data has been specifically
chosen to reduce the effect of modeling error in the PEM (e.g., fronts
or binary fields). In many cases, it appears that the specification of
magnitude of observation error was chosen in an ad hoc manner, which
might have implicitly accounted for model error.

For inverse problems with large, complex models and large num-
bers of observations, the history matching methods can generally be
divided into two classes: one in which the focus is on the potential
nongaussianity of the probability density after history matching and
a second in which the focus is on the ability to assimilate large
numbers of observations by adjusting large numbers of variables. The
first category can perhaps be represented by evolutionary methods or
particle swarm methods. Although neither method actually provides a
representation of the posterior probability density, they are capable of
identifying multiple peaks when the number of parameters is not large.
The second category is best represented by ensemble-Kalman smoother
type algorithms which have been used for problems with tens of
thousands of observations and millions of model parameters. This class
of methods uses approximations of the model covariance for updating
and is therefore most useful when the posterior probability density
is unimodal. We currently believe that the ensemble-Kalman based
approach is more appropriate as it allows more degrees of freedom
and consequently less loss of information. Developing methods capable
of providing a rigorous assessment of uncertainty for large nonlinear
data assimilation problems such as 4D seismic history matching is still
a challenge.

Although it appears that data assimilation or history matching
algorithms are capable of calibrating large models to large data sets,
data assimilation is only a part of an entire workflow. It is difficult,
for example, to describe any of the field cases as truly ‘successful’
as none of the cases demonstrated systematic and rigorous quality
assessment for the history matched models. A really successful SHM
would need to match the data to the correct level (which is determined
by the total observation error and hence difficult to characterize), and
would need to use an appropriate regularization/prior term that is
neither too restrictive or too flexible, and would generate samples from
the potentially nongaussian posterior. None of the field cases fulfilled
all of these requirements. Additionally, a full workflow requires the
opportunity to improve models, not simply calibrate parameters. There
is currently a lack of automated methods for model improvement. This
is clearly also a problem for production history matching, but the need
for model improvement may not be as obvious in production history
matching because the information content is lower when 4D seismic
data are neglected.

Finally, in many of the case studies, the number of parameters to
be adjusted was exceedingly small. The reduced parameterization in
these cases appears to have been largely a necessity resulting from
the type of optimization algorithms chosen. If these history matches
were actually successful in the sense that they indeed matched data at
the appropriate level, then one would have to conclude either that the
amount of information in the 4D seismic data was exceedingly small,
or that much of the information in the seismic data was assimilated
into the ‘base’ model before the automated or assisted history matching
occurred. If the goal of history matching is extremely limited, then
perhaps only a small amount of information is important. An approach
that relies on small numbers of parameters is unlikely to adequately

characterize uncertainty.
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