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A B S T R A C T

In science and engineering, non-linear constrained optimization has been a useful mathematical technique for
many practical applications. Of interest to us is its applicability in the modeling and prediction of hydrocarbon
reservoir production. In this paper, a new efficient, robust, and accurate optimal solution strategy based on
the exterior penalty function (EPF) method and the adaptive ensemble-based optimization (EnOpt) approach
(with backtracking line-search technique) for non-linear constrained optimization problems is presented. The
purpose of this work is to provide a better user-friendly strategy which mitigates the problem often faced
with the current constraints handling technique utilized when using the EnOpt method to solve constrained
problems of water or EOR flooding. This study notes that the problem contributes to uncertainties in the
gradient computation of the objective function and hence leads to the poor convergence rate of the standard
EnOpt method. In this work, we used the EPF method to transform a given constrained optimization problem
to a sequence of unconstrained subproblems and then sequentially solve the subproblems by unconstrained
EnOpt procedure until convergence to the solution of the original problem. To demonstrate the advantage of
the proposed methodology, we used it to solve analytical 2D bound constrained Rosenbrock’s problem and a
practical high dimensional bound constrained water flooding optimization problem associated with a 2D 5Spot
field and a 3D Reek reservoir field. The numerical results are compared with EnOpt using classical Lagrangian
approach, as well as the traditional EnOpt. Our findings showed that the proposed solution method has a fast
convergence rate and is more accurate and robust.
. Introduction

In reservoir production optimization, finding an injection/ produc-
ion strategy (with high precision) for a particular oil recovery method
hat is economical at the expense of little or no negative environmental
mpact for a given reservoir type can be problematic. One reason for
his problem is based on how the uncertain geological parameters in
he reservoir of interest are quantified and utilized in the solution
ethod for the reservoir optimization problem. Having a good quantifi-

ation of the uncertain parameters using production history in reservoir
tudies has been the major contribution of closed-loop reservoir man-
gement (Aanonsen et al., 2009; Jansen et al., 2009; Jung et al., 2018;
hang et al., 2019; Mirzaei-Paiaman et al., 2021). Several solution
ethods for the non-linear constrained optimization problems (Nocedal

nd Wright, 2006), usually encountered in hydrocarbon reservoir fields
ave been proposed and used extensively for different applications
see e.g., Sarma et al. (2005, 2006), Jansen (2011), Li and Reynolds
2011), Zhou et al. (2013), Xu et al. (2018) and Zhao et al. (2020)). For
nstance, of interest to us is the ensemble-based optimization (EnOpt)
ethod, a popular and robust stochastic optimization technique, first

∗ Corresponding author at: University of Stavanger, 4036, Stavanger, Norway.
E-mail address: micheal.b.oguntola@uis.no (M.B. Oguntola).

introduced in Lorentzen et al. (2006), and further developed into its
current form in Chen et al. (2009, 2010) and Fonseca et al. (2014).
In EnOpt, the uncertainty descriptions in the reservoir are taken into
account. However, the current constraint handling technique often
utilized in the EnOpt method (see Chen et al. (2009)) poses uncertainty
in the optimization result, which thus reduces its accuracy. In this
study, we presented a more accurate means to deal with the constraints
of the optimization problem in EnOpt by using the penalty function (PF)
method (Nocedal and Wright, 2006; Rao, 2019). We demonstrate the
convergence and added advantage (in terms of accuracy compared to
the standard method) of the proposed coupling (of the PF method with
EnOpt) using analytical and practical examples.

In constrained optimization problems, usually, one sorts to find the
best feasible solution (out of a pull of solutions) called the optimal
solution for the control variables that gives the extremum of a given
objective function subject to a set of equality and/or inequality con-
straints. Here, feasibility implies that the underlying constraints are
satisfied. In practice, the design of the control variables could take
different forms. For instance, in reservoir optimization problems, the
vailable online 29 June 2021
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control variables could include the number of well-type (producer
or injector) to be sequentially drilled, their drilling order and loca-
tion, the operational controls (such as the well-rates or bottom hole
pressures over the production period), etc. Whence, the total number
of control variables to be optimized is often of the order 100 and
above. The objective function is usually some reservoir performance
measures (such as net present value (NPV), oil recovery factor (ORF),
etc.) defined on the given set of control variables. Several methods
(with advantages and disadvantages Islam et al., 2020) have been
established to find the optimal solutions to the optimization problems.
They are majorly categorized as gradient-based and derivative-free
techniques (Jesmani et al., 2020). Each of the techniques moves in
the design solution space in a special pattern in search of the optimal
solution. The gradient-based method mainly utilize (either analytically
or by approximation) the derivatives of the objective function with
respect to the control variables to control the search pattern while
the derivative-free methods mostly use the objective function values
in a stochastic way at each optimization iteration. The derivative-
free methods are known to be computationally very efficient for low
dimensional problems but struggle to converge once the dimension of
problem is high (Arouri and Sayyafzadeh, 2020) (for a detailed review
of the derivative-free methods, we refer interested readers to the work
of Chen et al. (2020) and Semnani et al. (2021). Because of the large
size of unknown variables often encounter in reservoir optimization
problems, the gradient-based methods are more suitable to use.

Several gradient-based methods have been devised and utilized to
solve different optimization problems such as well placement and con-
trol problems (Hutahaean et al., 2019; Liu et al., 2019; Sun et al., 2019;
Epelle and Gerogiorgis, 2020). In terms of efficiency and accuracy, the
adjoint method is ranked number one on the list of gradient-based
methods because of its efficient and accurate gradient computation.
However, for practical optimization applications such as the one in the
management of subsurface hydrocarbon reservoirs, the adjoint method
becomes very difficult to implement because (1) the adjoint-based
gradient calculation with respect to the control variables is complicated
and cannot be directly reused for different problems; (2) it requires user
access to the reservoir simulator (Sarma et al., 2005, 2006; Jansen,
2011). To avoid the problem (1) faced with the adjoint method in
well placement optimization, indirect approaches were developed (see,
for e.g. Sarma et al. (2008) and Zandvliet et al. (2008)). However,
problem (2) is inevitable. For these reasons, viable alternative solution
methods that do not rely the adjoint method of gradient calculation
are developed. The simplest one is the finite difference gradient ap-
proximation (FDGA) method which uses finite difference scheme to
approximate each component of the gradient. In this case, at each
iteration, the approximate gradient computation requires 2𝑁𝑢 func-
ion evaluations, where 𝑁𝑢 is the size of the unknown variables to

be optimized. Therefore, for high-dimensional problems, the FDGA
method becomes computationally very expensive to use (Zhou et al.,
2013; Jesmani et al., 2020). Other approximate gradient-based solution
methods that are more efficient than the FDGA have been proposed
in the literature. The most popular ones for reservoir optimization are
the simultaneous perturbation stochastic approximation (SPSA) (Spall,
1998; Spall et al., 2006; Foroud et al., 2018), modified SPSA based on
finite difference method (SPSA-FDG) (Zhou et al., 2013), the stochas-
tic simplex approximation gradient (StoSAG) method Fonseca et al.
(2017), and the ensemble-based optimization (EnOpt) method (Chen
et al., 2010). These solution methods approximate the gradient of
the objective function by simultaneously perturbing all the unknown
variables at the same time, unlike the FDGA method where one variable
is perturbed at a time. Theoretically, it has been proven by Do and
Reynolds (2013) using the steepest descent scheme that a small differ-
ence in gradient computation exists between StoSAG, EnOpt, and SPSA
(as well as its variants such as Gaussian-SPSA) methods. These methods
have gained popularity recently due to their ability to incorporate
2

uncertainty represented by multiple realizations of the reservoir model
in their approximate gradient computation (Hutahaean et al., 2019;
Jesmani et al., 2020).

The standard EnOpt is an iterative method, formulated based on
a first-order inexact line search (with a simple backtracking tech-
nique Nocedal and Wright, 2006) steepest ascent optimization method
(Snyman and Wilke, 2018). In this case, the approximate gradient of
the objective function (in the line search direction) at each iterate is
computed using a stochastic process. At each iteration, an ensemble
of control vectors is sampled from a multivariate Gaussian distribution
with a known mean (same as the current iterate) and a user-defined
covariance matrix to compute the sample cross-covariance of the ob-
jective function and control variables. Using suitable assumptions, it is
not hard to show that the sample cross-covariance is approximately the
(regularized) gradient of the objective function (Chen et al., 2010; Do
and Reynolds, 2013). Therefore, pressing issues with EnOpt will mainly
be on the quantities (or inputs) that can impact the accuracy of the
estimated gradient needed for a considerable increase in the objective
function value at subsequent optimization iterations. In other words,
uncertainty can be introduced by some quantities in the line search
direction utilized in the EnOpt iterative method. Inappropriate choice
of some of these quantities have proven to affect the convergence rate
of the method. Sometimes, this could translate to the need for a higher
number of iterations for convergence. To mention a few, quantities such
as the ensemble size, sampling strategies, and distribution covariance
matrix (or the perturbation size), etc., have been extensively studied in
the literature. For instance, Fonseca et al. (2015) investigated the im-
pact of ensemble size on the quality of the approximate EnOpt gradients
(by comparing it with the exact adjoint gradient) for the Rosenbrock
optimization problems and for a hydrocarbon reservoir. In their study,
they provided a more computationally efficient and modified version
of EnOpt using hypothesis testing. In other studies by Fonseca et al.
(2014) and Stordal et al. (2016), they found that by systematically
updating the perturbation size (through a method called covariance ma-
trix adaptation (CMA)) at each optimization iteration would effectively
improve the quality of the approximate gradient. Ramaswamy et al.
(2020) evaluated the impact of different sampling strategies on the
performance of the approximate EnOpt gradient for high-dimensional
analytical and robust optimization problems. Their findings suggested
the sampling design to consider in general for gradient approximation
schemes in supersaturated cases, i.e., where the number of perturbation
vector is less than the optimization unknowns. Zhang et al. (2018a,b)
considered a slightly different iterative scheme, the trust region method
with the conjugate gradient method rather than the line search method
often utilized in EnOpt and demonstrated a fast convergence rate with
applications on simple toy and synthetic reservoir problems.

Over recent years, the EnOpt method has received a lot of treat-
ments towards improving its efficiency and accuracy, as mentioned
above. However, in practice, we found that constrained optimization
problems solved using the EnOpt technique were dealt with in an
unconstrained manner. In reservoir optimization problems, there is
usually a set of bound constraints imposed on the designed control
variables. A common way to deal with this is to systematically dis-
card or truncate values of control variables that do not satisfy the
constraints, which leads to inaccurate gradient directions. An alter-
native is to use some transformation (see e.g., Chen et al. (2009)
and Do and Reynolds (2013)) to enforce the constraints on the re-
spective control variables. A transformation is not always advisable,
especially for problems with complex non-linear constraints. Conse-
quently, both truncation or transformation of control variables can
contribute to uncertainties in the computation of the approximate gra-
dient and hence lead to poor convergence to a desired local optimum.
For this reason, we introduce a better and user-friendly approach, the
PF method, to deal with constraints when using the EnOpt method to
solve constrained optimization problems.

The PF method belongs to an important class of solution methods for

constrained optimization problems. It transforms a given constrained
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problem into a sequence of unconstrained subproblems. See Nocedal
and Wright (2006), Sun and Yuan (2006), Deb (2012) and Rao (2019)
for a concrete theoretical overview of the PF method. In each subprob-
lem, there exists a penalty function constructed by adding a penalty
term (which is the constraint violation multiplied by a penalty param-
eter) to the objective function. Usually, the penalty term takes different
forms depending on the type of constraint (equality or inequality). So, if
an estimate of a control variable violates a given constraint, the objec-
tive function is penalized by an amount measured by the penalty term.
More efficiently and robustly, the PF method works by sequentially
solving each subproblem using a suitable unconstrained optimization
procedure. In this case, the optimum found in one subproblem is
utilized as the initial guess for the next unconstrained subproblem.
In the subsequent subproblems, the solution improves gradually and
eventually converges to the desired optimum of the original constrained
optimization problem. However, we noted that the choice (in terms of
initialization and subsequent adaptation) of the penalty parameter in
the penalty term is very crucial to the convergence rate. Our study
adopts the ideas in Nocedal and Wright (2006) and Rao (2019) for
the adaption of the penalty parameter and hence the structure of the
penalty term.

Over time, the PF method has evolved and its approach has been
utilized to solve constrained problems in different areas of science and
engineering. For instance, Zhang et al. (2016) used a variant of the PF
method, the augmented Lagrangian method, and a stochastic gradient
finite difference (SGFD) approach (Yan and Reynolds, 2014) to solve
constrained oil reservoir optimization problem. They showed that the
combined strategies give accurate results based on their comparison of
SGFD and Gaussian distribution Simultaneous Perturbation Stochastic
Approximation (G-SPSA) on simple high dimensional constrained ana-
lytical problem. However, the said SGFD is not very efficient compared
to the EnOpt method because of the higher number of function evalua-
tions and required storage associated with SGFD, especially for complex
high dimensional constrained problems.

In this paper we present an efficient, accurate, and robust extension
of EnOpt, to solve non-linear constrained optimization problems often
encounter in science and engineering. We employ the exterior penalty
function method with bracket operator (for inequality constraints)
penalty term (Deb, 2012) to transform the original constrained opti-
mization problems into a sequence of unconstrained subproblems and
then utilize the adaptive EnOpt method as the unconstrained optimiza-
tion procedure. For simplicity, we refer to the combined strategies
as the EPF-EnOpt method. Our choice of the exterior PF is to allow
for the flexibility of initialization for the unconstrained optimization
procedure. We provide proof of convergence of the EPF method using
suitable assumptions. Further, we demonstrate the use of the method-
ology with a challenging constrained analytical problem and practical
constrained 2D 5-spot and 3D Reek oil reservoir problems and compare
results with the standard EnOpt approach. In addition, we compare
the EPF-EnOpt results with the classical Lagrangian constraint handling
technique (similar to the formulation in Deb (2012) and Lu et al.
(2017)) coupled with the standard EnOpt for the 3D Reek field to
further illustrate the efficiency and accuracy of our proposed method.
The Lagrange multiplier is estimated using a scheme similar to the
one in Snyman and Wilke (2018). The rest of the paper is as follows;
Section 2 discusses the mathematical model of constrained optimization
problems. Section 3 looks at the theory of the exterior PF formulation
for general constrained optimization problems and the derivation of
the adaptive EnOpt procedures. Section 4 builds on previous sections
to formulate the EPF-EnOpt algorithm and discuss its convergence, and
finally, Sections 5 and 6 present applications (with relevant discussion)
3

and conclusion, respectively.
2. Constrained optimization problem and techniques

The mathematical model of constrained optimization is useful for
many applications in science and engineering. For instance, in hy-
drocarbon reservoir management, resources such as the injecting and
producing facilities are limited in capacities. Therefore, the optimiza-
tion of the objective function, usually a given reservoir performance
index (such as the oil recovery factor or the net present value (NPV),
etc.) is necessarily subject to a well-defined set of constraints on the
designed control variables (such as the water rate of each injecting
well at each control time step, etc.). This is usually referred to as an
optimal control problem during reservoir development, and the goal of
this problem is to find the best (optimal) strategy of control variables
for maximum profit.

In this section, we present a general constrained optimization (max-
imization) problem, often encountered in science and engineering. Let
𝐮 ∈ R𝑁𝑢 be the vector of designed control variables (optimization
unknowns) i.e, 𝐮 = [𝑢1, 𝑢2,… , 𝑢𝑁𝑢

]𝖳 (𝖳 means transpose). Again, the
form of 𝐮 can differ for different problems. In reservoir optimization
problems, the components of 𝐮 can represent the wells (injectors or pro-
ducers) target rates or bottom hole pressures in a specific control time
step during water flooding. The general 𝑁𝑢−dimensional constrained
optimization problem is to find the optimum /best 𝐮 ∈ R𝑁𝑢 that

maximize
𝐮∈R𝑁𝑢

𝐽 (𝐮) (1)

subject to: 𝑔𝑖(𝐮) ≥ 0, ∀𝑖 ∈ I (2)

ℎ𝑗 (𝐮) = 0, ∀𝑗 ∈ E, (3)

where 𝐽 is the objective function (from R𝑁𝑢 into R), 𝑔𝑖 and ℎ𝑗 are
the underlying constraint functions (from R𝑁𝑢 into R respectively), I
and E are the indexing sets for the inequality and equality constraints
respectively. The optimization problem stated in Equations (1) - (3)
becomes unconstrained should I ∪ E = ∅. Since,

max
𝐮∈R𝑁𝑢

𝐽 (𝐮) = − min
𝐮∈R𝑁𝑢

(−𝐽 (𝐮)), (4)

without the loss of generality, the maximization problem (1) - (3)
can be considered as a minimization problem by replacing (1) with
(4). Therefore, the focus of this study is on constrained minimization
problems of the type:

min
𝐮∈R𝑁𝑢

𝑓 (𝐮) (5)

subject to: 𝑔𝑖(𝐮) ≥ 0, ∀𝑖 ∈ I (6)

ℎ𝑗 (𝐮) = 0, ∀𝑗 ∈ E, (7)

where 𝑓 is a continuous objective function. The structure of the con-
straints in Eqs. (6)–(7) varies from one problem to another. In reservoir
optimization problems constraints are often given as linear inequality
constraints. The simplest type are bound constraints where each in-
equality only depends on a single control variable. In this case, suppose
that 𝑢low

𝑖 and 𝑢upp
𝑖 are the lower and upper bounds respectively for each

control variable 𝑢𝑖, the bound constraints are given as:

𝑢low
𝑖 ≤ 𝑢𝑖 ≤ 𝑢upp

𝑖 , ∀𝑖 ∈ 1, 2,… , 𝑁𝑢. (8)

Constraint types called the ‘‘output constraints’’ in the petroleum in-
dustry are also very commonly utilized during petroleum production.
These are non-linear constraints that represent operational limits and
they are usually evaluated using the reservoir simulator. A typical
example is pressure limits for injectors or producers in a model where
the wells are operated using flow rate targets (given by the control
variables). Our primary goal with this paper is handling of bound
constraints, but, it is not limited to this alone as the exterior PF
methodology can be used for complicated constraints (like the out-
put constraints). However, as a common practice, one could let the
reservoir simulator handle the output constraints. Next, we explain two
traditional ways in the literature to handle the bound constraints, and

then we continue with the methodology using the exterior PF.
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2.1. Bound constraints transformation

Suppose that Eq. (8) is the only set of constraints impose on the
control variables in the optimization problem (5)–(7). A given optimal
solution method like the EnOpt method finds an approximate solution
that solves the optimization problem until convergences. At each op-
timization iteration, to ensure that each solution obtained is feasible,
i.e., the underlying constraints are satisfied, either of the following two
procedures is useful.

1. Linear transformation with truncation.
For each 𝑖 ∈ {1, 2,… , 𝑁𝑢}, a bijective linear function is defined
to transform the domain of the control variable 𝑢𝑖 into the closed
interval [0, 1]. That is

𝑇𝑖 ∶ [𝑢low
𝑖 , 𝑢upp

𝑖 ] ⟶ [0, 1], (9)

𝑢𝑖 ⟼ 𝑇𝑖(𝑢𝑖) ∶= �̂�𝑖 =
𝑢𝑖 − 𝑢low

𝑖

𝑢upp
𝑖 − 𝑢low

𝑖

, 𝑢upp
𝑖 ≠ 𝑢low

𝑖

(this transformation follows from the result of a simple algebraic
rearrangement of the inequalities in Eqs. (8), and then divide
through by 𝑢upp

𝑖 − 𝑢low
𝑖 ), where �̂�𝑖 is the transformed control

variable 𝑢𝑖. In this case, the optimization process is carried out
in the interval [0, 1]. Because the linear function (9) is bijective,
its inverse exist. Thus, any value of �̂�𝑖 found can easily be trans-
formed into its equivalent value in the domain [𝑢low

𝑖 , 𝑢upp
𝑖 ] by

using;

𝑢𝑖 = (𝑢upp
𝑖 − 𝑢low

𝑖 )�̂�𝑖 + 𝑢low
𝑖 . (10)

Here, any value of �̂�𝑖 that falls outside the closed interval [0, 1] is
systematically approximated (or truncated) as follows;

�̂�𝑖 =

{

1, if �̂�𝑖 > 1
0, if �̂�𝑖 < 0.

(11)

Vital estimates of control variables for accurate gradient direc-
tions can easily be lost using this truncation. As a consequence,
this can affect the convergence rate of the solution method.

2. Logarithmic transformation.
Here, for each 𝑢𝑖, 𝑖 ∈ {1, 2,… , 𝑁𝑢}, a logarithmic (log) function
is used to transform the domain (excluding the boundary points)
of 𝑢𝑖 to the entire set of real numbers i.e, R = (−∞,+∞). The
transformation is defined by:

𝐿𝑖 ∶ (𝑢low
𝑖 , 𝑢upp

𝑖 ) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (−∞,+∞) (12)

𝑢𝑖  ←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝐿𝑖(𝑢𝑖) ∶= �̂�𝑖 = log𝑒
( 𝑢𝑖 − 𝑢low

𝑖

𝑢upp
𝑖 − 𝑢𝑖

)

.

In this case, the optimization procedure occurs in the transformed
domain, (−∞,+∞). Therefore, since [0, 1] ⊂ (−∞,+∞), the trans-
formed optimization unknown, �̂�𝑖 can now fluctuate or vary in a
set of points larger than the optimization domain obtained from
the linear transformation. Similarly, 𝐿𝑖 is a well-defined bijective
function and hence its inverse can be computed as;

𝑢𝑖 =
𝑢upp
𝑖 exp(�̂�𝑖) + 𝑢low

𝑖
exp(�̂�𝑖) + 1

. (13)

Using the log transformation helps to reduce the possibility of
truncation often encounter with the linear transformation. How-
ever, if the initial solution guess is close to the boundary, it is
difficult to find a suitable gradient direction for improvements. In
addition, problems in which the optimal solution of one or more
control variables lie on the boundary of the solution domain can
be hard to solve. It is because of the following simple observation
(from Eq. (12));

�̂�𝑖 =

{

+∞, if 𝑢𝑖 = 𝑢low
𝑖

−∞, if 𝑢𝑖 = 𝑢upp
𝑖

(14)

whereas, neither 𝑢low, 𝑢upp ∈ (𝑢low, 𝑢upp) nor −∞,+∞ ∈ (−∞,+∞).
4

𝑖 𝑖 𝑖 𝑖
pplication of any of the described procedures above transforms the
iven constrained optimization problem (with only bound constraints)
n Eqs. (5)–(7) to an unconstrained optimization problem. The resulting
nconstrained optimization problem is then solved by suitable uncon-
trained minimization methods (like the ones considered in Li and
eynolds (2011), Do and Reynolds (2013), Zhao et al. (2013) and
hou et al. (2013), etc.) and thus leading to the solution of the initial/
riginal constrained optimization problem (5)–(7). This has been a
ommon practice, especially in the petroleum industries.

In addition to the shortcomings mentioned above, the procedures
f handling bound constraints cannot easily be extended to more com-
licated (possibly non-linear) equality or inequality constraints. Next
n this study, we present a more accurate method to solve a general
onstrained minimization problems.

. Exterior PF formulation

Suppose that a given constrained optimization problem is in the
orm of Eqs. (5)–(7). Let  ⊂ R𝑁𝑢 be the domain of feasible solutions.

Hence, R𝑁𝑢∖ is the set of infeasible points. To solve the problem,
irst, we transform it into a sequence of unconstrained subproblems,
𝑃𝑘}∞𝑘=1 using the exterior quadratic PF method. In each subproblem,
𝑘, 𝑘 = 1, 2,…, is a penalty function defined as follows;

𝑘 ∶ R𝑁𝑢 × (0,+∞) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ R (15)

(𝐮, 𝑟𝑘)  ←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑃𝑘(𝐮, 𝑟𝑘) = 𝑓 (𝐮)

+ 𝑟𝑘
(

∑

𝑖∈I
(min{𝑔𝑖(𝐮), 0})2 +

∑

𝑗∈E
|ℎ𝑗 (𝐮)|2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄(𝐮)

(

we set,𝑃𝑘 ∶= 𝑃𝑘(𝐮, 𝑟𝑘)
)

, where {𝑟𝑘}∞𝑘=1 is an increasing sequence of pos-
itive penalty parameters (which control the iteration of 𝑃𝑘) well-defined
such that

lim
𝑘→+∞

𝑟𝑘 = +∞. (16)

For convenience, we consider a simple sequence of penalty parameters
given by the relation

𝑟𝑘+1 = 𝑐𝑟𝑘, 𝑘 = 1, 2,… , (17)

where 𝑐 ≥ 1 and the first term, 𝑟1 > 0 are carefully selected constants.
Different values of 𝑟1 can mean different number of subproblems to
solve before convergence. Cases of subproblems with exact penalty
functions have been treated extensively (we refer readers to Han and
Mangasarian (1979) and Nocedal and Wright (2006) for more informa-
tion on the impact of the different selection criteria for 𝑟1). For each
𝑖 ∈ I, we define the bracket operator on 𝑔𝑖(𝐮) as

min{𝑔𝑖(𝐮), 0} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔𝑖(𝐮), if 𝑔𝑖(𝐮) < 0
(i.e. 𝐮 ∈ R𝑁𝑢∖ (constraint is violated))

0, if 𝑔𝑖(𝐮) ≥ 0
(i.e. 𝐮 ∈  (constraint is satisfied))

(18)

and for each 𝑗 ∈ E,

|ℎ𝑗 (𝐮)| =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−ℎ𝑗 (𝐮), if ℎ𝑗 (𝐮) < 0
(i.e. 𝐮 ∈ R𝑁𝑢∖ (constraint is violated))

0, if ℎ𝑗 (𝐮) = 0
(i.e. 𝐮 ∈  (constraint is satisfied))

ℎ𝑗 (𝐮), if ℎ𝑗 (𝐮) > 0
(i.e. 𝐮 ∈ R𝑁𝑢∖ (constraint is violated)).

(19)

Since ℎ𝑗 is a real-valued function, then |ℎ𝑗 |
2 = ℎ2𝑗 , and hence Eq. (19)

can be neglected. However, in a situation where an 𝑙 -penalty function
1
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definition (Nocedal and Wright, 2006) is used in Eq. (15) or a complex-
valued function ℎ𝑗 is considered, then (19) is retained. In Eq. (15), 𝑄 is
alled the exterior penalty term defined based on the given constraints
6)–(7). When a given estimate of the control vector 𝐮 is infeasible to a
iven constraint, it means a violation of the constraint by the estimate.
or such a violation, we penalize the objective function by an amount
easured by 𝑄. Therefore, using Eqs. (18) and (19), it is not hard to see

hat for a feasible solution, 𝑄 is zero and for an infeasible solution, 𝑄 is
ositive with an amount proportional to the square of the value given
y Eq. (18) (for inequality constraint) and/ or Eq. (19) (for equality
onstraints). So, in general:

(𝐮) ≥ 0, ∀𝐮 ∈ R𝑁𝑢 . (20)

ext, we sequentially (with successively increasing 𝑟𝑘 values) solve the
ubproblem

min
𝐮∈R𝑁𝑢

𝑃𝑘(𝐮, 𝑟𝑘), ∀𝑘 = 1, 2,… , (21)

here 𝑃𝑘 is defined by Eq. (15) (and we will often replace the pair
𝐮, 𝑟𝑘) by 𝐮(𝑟𝑘) in the rest of this section) and 𝑟𝑘 is defined by Eq. (17).
his is an unconstrained optimization problem. Note that 𝑃𝑘 is non-
ifferentiable at the points 𝐮 that lie on the border between the feasible
nd the infeasible domains (because of Eqs. (18) and (19)), that is
ts gradient does not exist at the said points. Therefore, unconstrained
umerical solution methods based on analytic gradient computation is
ot suitable. The bundle methods solve non-differentiable optimization
roblems more effectively and are reliable (Bagirov et al., 2014). How-
ver, for an extensive application, we instead utilize the EnOpt method,
hich does not rely directly on analytic gradient. For any 𝑟𝑘, 𝑘 = 1, 2,…,

he EnOpt method finds an approximate minimum point of 𝑃𝑘, denoted
y 𝐮∗𝑘 ∶= 𝐮∗(𝑟𝑘). Usually, 𝑃𝑘 possesses a minimum as a function of
in the infeasible region, especially when its initial guess, 𝐮𝑘−1 is

n infeasible point. The sequence of unconstrained minima denoted
y 𝐮∗𝑘, 𝑘 = 1, 2,… converges to the desired minimizer of the original
onstrained optimization problem (5)–(7) as 𝑘 → +∞. Therefore, 𝐮∗𝑘
pproaches the feasible domain gradually, and eventually lies in the
easible region (equivalently, |𝑄(𝐮∗𝑘)| → 0) as 𝑟𝑘 → +∞, with 𝑘 → +∞.

The EnOpt method for solving the unconstrained optimization prob-
em of the type presented in Eq. (21) is next described.

.1. EnOpt procedures

We consider the problem (21) for any fixed penalty parameter,
𝑘. The EnOpt is an iterative optimal solution method in which the
ser starts by selecting an initial control vector 𝐮1 according to some
ules, and then proceed to find the best approximation to the optimum
olution 𝐮, that minimizes 𝑃𝑘(𝐮, 𝑟𝑘) using a preconditioned gradient
escent method given by

𝑙+1 = 𝐮𝑙 −
1
𝛽𝑙

𝐂𝑙
𝐮𝐆

𝖳
𝑙

‖𝐂𝑙
𝐮𝐆𝖳

𝑙 ‖2
, ∀𝑙 = 1, 2,… , (22)

ntil convergence, where 𝑙 is the iteration index; 𝐆𝑙 is the sensitiv-
ty (an approximate gradient) of 𝑃𝑘(𝐮, 𝑟𝑘) with respect to the control

variables 𝑢𝑖, 𝑖 = 1, 2,… , 𝑁𝑢, also called the search direction at the
𝑙th iteration; 𝛽𝑙 is the tuning parameter for iteration step size. It is
used to ensure a sufficient descend along the search direction. Here,
we employ the backtracking line search method (Nocedal and Wright,
2006) to compute (and update when necessary) 𝛽𝑙 at each iteration
(see Algorithm 1). 𝐂𝑙

𝐮 denotes a real symmetric positive definite matrix
defined as the covariance matrix of control variables at the 𝑙th iteration;
‖.‖2 is the 𝑙2− norm. In hydrocarbon reservoir management, it is not
very common to have controls (like water rate and oil rate) at different
wells (injector and producer) to correlate. However, the water rate
(for example) of a particular injection well can be correlated in time
throughout the production period in a water flooding scenario. Because
of this, in Eq. (22), 𝐂𝑙 is defined to avoid inappropriate dependence
5

𝐮

among control variables. It also ensures possible smoothness, correla-
tion, and long-term fluctuations in the control variables of the same
kind (Do and Reynolds, 2013).

We initialize the covariance matrix, 𝐂𝑙
𝐮 differently at the start of

iteration, 𝑙 = 1 for the different optimization problems considered
in this study. For analytical problem (like the 2D Rosenbrock prob-
lem Snyman and Wilke, 2018) where the 𝑁𝑢−unknowns are distinct
and do not need to be correlated over time, we used a 𝑁𝑢 × 𝑁𝑢−
diagonal matrix where the variances of unknown variables are the
diagonal elements. Suppose that 𝜎2𝑖 , 𝑖 = 1, 2, 3,… , 𝑁𝑢 is the variance of
the unknown control variable 𝑢𝑖, 𝑖 = 1, 2,… , 𝑁𝑢 respectively. The initial
covariance matrix is taken as

𝐂1
𝐮 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜎21 0 0 ... 0
0 𝜎22 0 ... 0
.
.
.
0 0 0 ... 𝜎2𝑁𝑢

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (23)

For the water flooding reservoir optimization problem considered
n this study, we initialize the covariance matrix, 𝐂𝑙

𝐮 using a stationary
AR(1) model (similar to the one in Oguntola and Lorentzen (2020)) to
simulate the correlation of control variables at individual well and as-
sume control variables at different wells are not correlated. To achieve
this scenario, we used the following covariance function:

Cov(𝑢𝑚[𝑡], 𝑢𝑚[𝑡 + ℎ]) = 𝜎2𝑚𝜌
ℎ
( 1
1 − 𝜌2

)

, ∀ ℎ ∈ [0, 𝑁𝑡 − 𝑡], (24)

where 𝑢𝑚[𝑡] is the control variable of well 𝑚 = 1, 2,… , 𝑁well at the
control time step 𝑡, 𝑁well is the total number of wells, 𝜎2𝑚 is the variance
for the well 𝑚, and 𝜌 is the correlation coefficient used to introduce
some dependence between controls of individual wells at different
control time steps. Since the AR(1) model is stationary, then 𝜌 ∈
(−1, 1). This formulation (in addition to using the symmetric property
of covariance matrix) gives a block diagonal matrix, 𝐂1

𝐮 of the form

𝐂1
𝐮 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐂1
𝐮1

0 0 ... 0
0 𝐂1

𝐮2
0 ... 0

.

.

.
0 0 0 ... 𝐂1

𝐮𝑁well

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (25)

In Eq. (25), 𝐂1
𝐮𝑚 is the user-defined covariance matrix (obtained by

using Eq. (24)) to ensure some degree of correlation and smoothness on
the control vector, 𝐮𝑚 for the well 𝑚 = 1, 2,… , 𝑁well at iteration 𝑙 = 1;
𝐮𝑚 = [𝑢𝑚1 , 𝑢

𝑚
2 ,… , 𝑢𝑚𝑁𝑡

] is the vector of control variables at well 𝑚 for all
the 𝑁𝑡 control time steps. For example, 𝑢𝑚𝑖 denotes the control variable
for well 𝑚 at the 𝑖th control time step. In general, for this problem, the
complete optimization unknowns (control vector) can be written as;

𝐮 = [𝐮1,𝐮2,… ,𝐮𝑁well ]𝖳 = [{𝑢𝑚𝑛 }
𝑁𝑡
𝑛=1 ∶ 𝑚 = 1, 2,… , 𝑁well]𝖳

= [𝑢1, 𝑢2,… , 𝑢𝑁𝑢
]𝖳 (26)

where 𝑁𝑢 = 𝑁well ×𝑁𝑡 is the total number of control variables.
At subsequent iterations, 𝑙 ≠ 1, the covariance matrices in (23) and

(25) are updated using the statistical approach presented in Stordal
et al. (2016) to get an improved covariance matrix, 𝐂𝑙+1

𝐮 . In the EnOpt
community, this process is called the Covariance Matrix Adaptation
(CMA)-EnOpt method (Fonseca et al., 2014) (we shall refer to this
as simply the ‘‘standard EnOpt method’’). Also, in Eq. (22), pre-
multiplying 𝐆𝖳

𝑙 by 𝐂𝑙
𝐮 has shown to produce a better performance, see

e.g. Amari (1998). Indeed, the product 𝐂𝑙
𝐮𝐆

𝑇
𝑙 is the natural gradient for

this problem. It is independent of the problem parameterization and
accounts for gradient uncertainty.

The preconditioned approximate gradient, 𝐂𝑙
𝐮𝐆

𝖳
𝑙 is computed as

follows; At the 𝑙th iteration, we sample 𝑁 control vectors, 𝐮 , 𝑗 =
𝑙,𝑗
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1, 2,… , 𝑁 from a multivariate normal distribution with mean equal
to the 𝑙th control vector, 𝐮𝑙, and covariance matrix 𝐂𝑙

𝐮, i.e., 𝐮𝑙,𝑗 ∼
(𝐮𝑙 ,𝐂𝑙

𝐮), 𝑗 = 1, 2,… , 𝑁 , where 𝑁 is the number of perturbations.
ere, the subscript 𝑗 is used to identify the perturbation vector, 𝐮𝑙,𝑗
nd hence separate it from the one obtained by optimization itera-
ion (see Eq. (22)). Each perturbation vector, 𝐮𝑙,𝑗 , 𝑗 = 1, 2,… , 𝑁 is

then coupled with the penalty parameter 𝑟𝑘 to compute the penalty
function values, 𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘), 𝑗 = 1, 2,… , 𝑁 (see Eq. (15)). Next, we
utilize the perturbations to compute the approximate sample cross-
covariance of the control vector 𝐮𝑙 and the objective function 𝑃𝑘(𝑢𝑙 , 𝑟𝑘)
as follows (Fonseca et al., 2017):

𝐂𝑙
𝐮,𝑃𝑘(𝐮,𝑟𝑘)

≈ 1
𝑁 − 1

𝑁
∑

𝑗=1
(𝐮𝑙,𝑗 − 𝐮𝑙)

(

𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘)
)

. (27)

Note that, in this case, we have used the fact that the mean of {𝐮𝑙,𝑗}𝑁𝑗=1
can be approximated by 𝐮𝑙, since

𝐮𝑙,𝑗 ∼  (𝐮𝑙 ,𝐂𝑙
𝐮), 𝑗 = 1, 2,… , 𝑁.

By first order Taylor series expansion of 𝑃𝑘(𝐮, 𝑟𝑘) about 𝐮𝑙, one can
easily show that Eq. (27) is an approximation of 𝐂𝑙

𝐮𝐆
𝖳
𝑙 . Since 𝑟𝑘 is fixed,

then it is not hard to see (by Taylor expansion about 𝐮𝑙) that,

𝑃𝑘(𝐮, 𝑟𝑘) = 𝑃𝑘(𝐮𝑙 , 𝑟𝑘) +
[ 𝜕𝑃𝑘(𝐮𝑙 , 𝑟𝑘)

𝜕𝐮

]𝖳
(𝐮 − 𝐮𝑙) + 𝑂(‖(𝐮 − 𝐮𝑙)‖2)

⟹ 𝑃𝑘(𝐮, 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘) =
[ 𝜕𝑃𝑘(𝐮𝑙 , 𝑟𝑘)

𝜕𝐮

]𝖳
(𝐮 − 𝐮𝑙) + 𝑂(‖(𝐮 − 𝐮𝑙)‖2). (28)

Pre-multiply both sides of (28) by (𝐮 − 𝐮𝑙) and set 𝐮 = 𝐮𝑙,𝑗 , we get

(𝐮𝑙,𝑗 − 𝐮𝑙)(𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘))

= (𝐮𝑙,𝑗 − 𝐮𝑙)𝐆𝖳
𝑙 (𝐮𝑙,𝑗 − 𝐮𝑙) + 𝑂(‖(𝐮𝑙,𝑗 − 𝐮𝑙)‖3), ∀𝑗 = 1, 2,… , 𝑁, (29)

where, 𝐆𝖳
𝑙 = 𝜕𝑃𝑘(𝐮𝑙 ,𝑟𝑘)

𝜕𝐮 is the value of the approximate gradient of
𝑘 at (𝐮𝑙 , 𝑟𝑘) and 𝑂(‖(𝐮𝑙,𝑗 − 𝐮𝑙)‖3) is the remaining terms containing

higher order (≥ 3) of (𝐮𝑙,𝑗 − 𝐮𝑙). Assuming that the magnitude of the
difference, (𝐮𝑙,𝑗−𝐮𝑙) is very small, then with first order Taylor expansion
(

by neglecting, 𝑂(‖(𝐮𝑙,𝑗 − 𝐮𝑙)‖3)
)

, we obtain the following from (29).

1
𝑁 − 1

𝑁
∑

𝑗=1
(𝐮𝑙,𝑗 − 𝐮𝑙)(𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘))

≈
( 1
𝑁 − 1

𝑁
∑

𝑗=1
(𝐮𝑙,𝑗 − 𝐮𝑙)(𝐮𝑙,𝑗 − 𝐮𝑙)

)

𝐺𝖳
𝑙

⟹ 𝐂𝑙
𝐮,𝑃𝑘(𝐮,𝑟𝑘)

≈ 𝐂𝑙
𝐮𝐆

𝖳
𝑙 . (30)

The iterative scheme of the EnOpt (see Eq. (22)) is repeated until a
specified stopping (or convergence) criteria is satisfied. In this study,
we used the following criteria
|𝑃𝑘(𝐮𝑙+1, 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘)|

|𝑃𝑘(𝐮𝑙 , 𝑟𝑘)|
< 𝜖3, (31)

where 𝜖3 is a specified tolerance.

3.1.1. Backtracking line search method
The backtracking method (similar to the one in Nocedal and Wright

(2006)) considered in this study is demonstrated in Algorithm 1 (the
Armijo condition for sufficient decrease).

Algorithm 1: Procedure for step size selection
Step 1. Fix parameters 𝛼1 ∈ (0, 1) and 𝛼2 ∈ (0, 1).
Step 2. Start iteration with step size 𝜆 ∶= 1

𝛽1
> 0.

while 𝑃 (u𝑙+1, 𝑟𝑘) ≥ 𝑃 (u𝑙 , 𝑟𝑘) − 𝛼2𝜆∇𝖳
u𝑃 (u𝑙 , 𝑟𝑘)g𝑙 do

𝜆 = 𝛼1𝜆
end while
6

In Algorithm 1, 𝐠𝑙 is the search direction at the 𝑙𝑡ℎ iteration evalu-
ted using,

𝑙 =
∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)

‖∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2

,

∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘) is the regularized approximate gradient of 𝑃 (𝐮𝑙 , 𝑟𝑘) com-
uted using Eq. (27), 𝛼1 is the backstepping or step size contraction
arameter, and 𝛼2 is a given constant. From vector dot product, it is
lear that,
𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)𝐠𝑙 = ‖∇𝖳

𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2‖𝐠𝑙‖2 cos 𝜃

= ‖∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2

‖

‖

‖

‖

‖

∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)

∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)

‖

‖

‖

‖

‖2
cos 𝜃

⟹ ∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)𝐠𝑙 = ‖∇𝖳

𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2, (since 𝜃 = 0) (32)

here 𝜃 is the angle between the vectors ∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘) and 𝐠𝑙. Therefore,

or convenience, we utilize Eq. (32) in Algorithm 1.

. EPF-EnOpt method

The combined strategies of the Exterior PF method with the EnOpt
ethod give rise to a more accurate and robust optimal solution
ethod, the EPF-EnOpt method, for constrained optimization prob-

ems. More concisely, we present the workflow of the EPF-EnOpt
rocedures in Algorithm 2.

Algorithm 2: Procedures for solving constrained optimization
problems
Step 1. Given tolerances 𝜖1 > 0 and 𝜖2 > 0, a suitable initial penalty
parameter 𝑟1 > 0, and a growth constant 𝑐 ≥ 1, initial starting point
(feasible or infeasible) u1 ∶= u(𝑟1) ∈ R𝑁𝑢 . Set 𝑘 = 1.
Step 2. Formulate the term, 𝑃𝑘 of the sequence {𝑃𝑘}∞𝑘=1, using
Eq. (15).
Step 3. Find a solution u∗𝑘 ∶= u∗(𝑟𝑘) of the unconstrained mini-
mization problem stated in Eq. (21) using the EnOpt procedures (in
sub-section 3.1).
Step 4. Check the stopping criteria:
if |𝑃𝑘(u∗(𝑟𝑘)) − 𝑃𝑘(u(𝑟𝑘))| < 𝜖1 then

if |𝑄(u∗(𝑟𝑘))| ≤ 𝜖2 then
set, u∗ = u∗𝑘

(

u∗ is the solution of the original problem (5)–(7)
)

and terminate;
else

go to Step 5
end if

else
go to Step 5

end if
Step 5. Select 𝑟𝑘+1 = 𝑐𝑟𝑘,u𝑘+1 = u∗𝑘. Set 𝑘 = 𝑘+1, and turn to Step 2.

4.1. Convergence of the EPF method

In this section, we consider the problem (5)–(7) where 𝑓, 𝑔𝑖,∀𝑖 ∈ I,
nd ℎ𝑗 ,∀𝑗 ∈ E are continuous functions defined on R𝑁𝑢 and a sequence
f penalty parameters, {𝑟𝑘}∞𝑘=1 that satisfies the condition of Eq. (16).
ssume that for each 𝑘 = 1, 2,…, 𝐮∗𝑘 ∶= 𝐮∗(𝑟𝑘) is the optimal solution

(or the desired minimizer) of the unconstrained optimization problem
(21). Also, we assume that the desired optimal solution, 𝐮∗ of the
original constrained optimization problem (5)–(7) exist and is unique.
We establish in Lemma 4.1, the basic properties of the exterior PF
formulation, and the proof of convergence of the EPF procedures is
thereafter presented.

Lemma 4.1. Suppose that {𝑟𝑘}∞𝑘=1 is a strictly increasing sequence, i.e. 0 <

𝑟𝑘 < 𝑟𝑘+1,∀𝑘 = 1, 2,…, then
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P

W

1. 𝑃𝑘(𝐮∗𝑘) ≤ 𝑃𝑘+1(𝐮∗𝑘+1),
2. 𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗𝑘+1),
3. Q(𝐮∗𝑘) ≥ 𝑄(𝐮∗𝑘+1).

roof.

1. Using the definition of 𝑃𝑘, 𝑘 = 1, 2,…, in Eq. (15) and since 𝐮∗𝑘
and 𝐮∗𝑘+1 are the minimizers of 𝑃𝑘 and 𝑃𝑘+1 respectively, we have

𝑃𝑘(𝐮∗𝑘) ≤ 𝑃𝑘(𝐮∗𝑘+1), (33)

and

𝑃𝑘+1(𝐮∗𝑘+1) ≤ 𝑃𝑘+1(𝐮∗𝑘). (34)

Because, 𝑟𝑘, 𝑘 = 1, 2,…, is an increasing sequence, then

𝑃𝑘(𝐮∗𝑘+1) ≤ 𝑃𝑘+1(𝐮∗𝑘+1). (35)

It follows from inequalities (33) and (35) that

𝑃𝑘(𝐮∗𝑘) ≤ 𝑃𝑘+1(𝐮∗𝑘+1), ∀𝑘 = 1, 2,… , (36)

Hence, the proof of Statement 1.
2. Divide both sides of inequalities (33) and (34) by 𝑟𝑘 and 𝑟𝑘+1,

respectively to obtain,
1
𝑟𝑘

𝑃𝑘(𝐮∗𝑘) ≤
1
𝑟𝑘

𝑃𝑘(𝐮∗𝑘+1)

⟹
1
𝑟𝑘

(

𝑓 (𝐮∗𝑘) + 𝑟𝑘𝑄(𝐮∗𝑘)
)

≤ 1
𝑟𝑘

(

𝑓 (𝐮∗𝑘+1) + 𝑟𝑘𝑄(𝐮∗𝑘+1)
)

(using the definition of 𝑃𝑘)

⟹
1
𝑟𝑘

𝑓 (𝐮∗𝑘) +𝑄(𝐮∗𝑘) ≤
1
𝑟𝑘

𝑓 (𝐮∗𝑘+1) +𝑄(𝐮∗𝑘+1) (37)

and
1

𝑟𝑘+1
𝑃𝑘+1(𝐮∗𝑘+1) ≤

1
𝑟𝑘+1

𝑃𝑘+1(𝐮∗𝑘)

⟹
1

𝑟𝑘+1

(

𝑓 (𝐮∗𝑘+1) + 𝑟𝑘+1𝑄(𝐮∗𝑘+1)
)

≤ 1
𝑟𝑘+1

(

𝑓 (𝐮∗𝑘) + 𝑟𝑘+1𝑄(𝐮∗𝑘)
)

⟹
1

𝑟𝑘+1
𝑓 (𝐮∗𝑘+1) +𝑄(𝐮∗𝑘+1) ≤

1
𝑟𝑘+1

𝑓 (𝐮∗𝑘) +𝑄(𝐮∗𝑘). (38)

Adding inequalities (37) and (38) and rearranging the result, we
get
( 1
𝑟𝑘

− 1
𝑟𝑘+1

)

𝑓 (𝐮∗𝑘) ≤
( 1
𝑟𝑘

− 1
𝑟𝑘+1

)

𝑓 (𝐮∗𝑘+1). (39)

Recall from the definition of 𝑟𝑘 that for each 𝑘 = 1, 2,…,

𝑟𝑘 < 𝑟𝑘+1 ⟹
1
𝑟𝑘

> 1
𝑟𝑘+1

⟹
1
𝑟𝑘

− 1
𝑟𝑘+1

> 0. (40)

Using (40), we can easily divide both sides of the inequality (39)
by ( 1

𝑟𝑘
− 1

𝑟𝑘+1
) to obtain

𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗𝑘+1). (41)

Thus the statement 2. holds for any 𝑘 = 1, 2,… ,.
3. Adding inequalities (33) and (34) gives

𝑃𝑘(𝐮∗𝑘) + 𝑃𝑘+1(𝐮∗𝑘+1) ≤ 𝑃𝑘(𝐮∗𝑘+1) + 𝑃𝑘+1(𝐮∗𝑘)
⟹ 𝑃𝑘(𝐮∗𝑘) − 𝑃𝑘+1(𝐮∗𝑘) −

(

𝑃𝑘(𝐮∗𝑘+1) − 𝑃𝑘+1(𝐮∗𝑘+1)
)

≤ 0

⟹ 𝑟𝑘𝑄(𝐮∗𝑘) − 𝑟𝑘+1𝑄(𝐮∗𝑘) −
(

𝑟𝑘𝑄(𝐮∗𝑘+1) − 𝑟𝑘+1𝑄(𝐮∗𝑘+1)
)

≤ 0

⟹ (𝑟𝑘 − 𝑟𝑘+1)𝑄(𝐮∗𝑘+1) ≥ (𝑟𝑘 − 𝑟𝑘+1)𝑄(𝐮∗𝑘). (42)

Since, 𝑟𝑘 < 𝑟𝑘+1 ⟹ 𝑟𝑘 − 𝑟𝑘+1 < 0, then dividing both sides of
the inequality (42) by (𝑟𝑘 − 𝑟𝑘+1), a negative value, reverses the
inequality sign and hence leads to

𝑄(𝐮∗) ≥ 𝑄(𝐮∗ ), (43)
7

𝑘 𝑘+1
This completes the proof of Statement 3. Also, this confirms
the fact that for any initial infeasible solution 𝐮∗𝑘, the next ap-
proximate solution 𝐮∗𝑘+1 obtain by the Algorithm 2 is indeed an
improved solution (less infeasible), and would eventually lead to
feasible solution as 𝑟𝑘 → +∞ as shown in the next theorem. □

Theorem 4.2 (Convergence Theorem). Let  be the set of feasible solutions
to the given constrained optimization problem (5)–(7). Suppose that the
penalty function 𝑃𝑘(𝐮, 𝑟𝑘) is sequentially minimized for a strictly increasing
sequence of penalty parameters 𝑟𝑘, 𝑘 = 1, 2,…, i.e., for any fixed 𝑘, the
optimal solution, 𝐮∗𝑘 of the subproblem (21) becomes the initial starting
point for the subproblem at 𝑘 = 𝑘 + 1, with 𝑟𝑘+1 > 𝑟𝑘. If the sequence
of the unconstrained minima, {𝐮∗𝑘}

∞
𝑘=1 converges, then its limit is the desired

optimum, 𝐮∗ ∈  of the original constrained problem (5)–(7) and 𝑄(𝐮∗𝑘) →
0 as 𝑘 → +∞ respectively.

Proof. Assume that {𝐮∗𝑘}
∞
𝑘=1 has a convergent subsequence whose limit

is 𝐮∗ in R𝑁𝑢 . Hence,

lim
𝑘→+∞

𝐮∗𝑘 = 𝐮∗. (44)

e need to show that 𝐮∗ is feasible to the original constrained optimiza-
tion problem (5)–(7) and that 𝐮∗ = 𝐮∗. Since for each 𝑘 = 1, 2,… , 𝐮∗𝑘 is
the optimal solution of 𝑃𝑘(𝑢, 𝑟𝑘), then the following holds:

𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗𝑘) + 𝑟𝑘𝑄(𝐮∗𝑘) = 𝑃𝑘(𝐮∗𝑘, 𝑟𝑘) ≤ 𝑃𝑘(𝐮∗, 𝑟𝑘) = 𝑓 (𝐮∗)

(since, 𝑄(𝐮∗) = 0) (45)

⟹ 𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗). (46)

Also from the inequality (45), we have

𝑟𝑘𝑄(𝐮∗𝑘) ≤ 𝑓 (𝐮∗) − 𝑓 (𝐮∗𝑘) ⟹ 𝑄(𝐮∗𝑘) ≤
1
𝑟𝑘

(

𝑓 (𝐮∗) − 𝑓 (𝐮∗𝑘)
)

(47)

Taking the limit as 𝑘 → +∞ on both sides of the inequality (47), we
get

lim
𝑘→+∞

𝑄(𝐮∗𝑘) ≤ lim
𝑘→+∞

1
𝑟𝑘

(

𝑓 (𝐮∗) − 𝑓 (𝐮∗𝑘)
)

= 0 (since, lim
𝑘→+∞

1
𝑟𝑘

= 0)

⟹ lim
𝑘→+∞

𝑄(𝐮∗𝑘) ≤ 0 ⟹ 𝑄( lim
𝑘→+∞

𝐮∗𝑘) ≤ 0

⟹ 𝑄(𝐮∗) ≤ 0 (using Eq. (44)). (48)

It follows from (20) and (48) that

𝑄(𝐮∗) = 0. (49)

Hence, 𝐮∗ is feasible (i.e., 𝐮∗ ∈ ) to the original problem (5)–(7). By
the definition of 𝐮∗, then,

𝑓 (𝐮∗) ≤ 𝑓 (𝐮∗) (50)

Since 𝑓 is continuous and monotone increasing with respect to 𝐮∗(𝑟𝑘)
(according to Statement 3 of Lemma 4.1), taking the limit as 𝑘 → +∞
on both sides of (46) gives

lim
𝑘→+∞

𝑓 (𝐮∗𝑘) = 𝑓 (𝐮∗) ≤ 𝑓 (𝐮∗) (51)

Using inequalities (50) and (51) lead to

𝑓 (𝐮∗) = 𝑓 (𝐮∗). (52)

Thus, 𝐮∗ is the desired optimal solution of the original problem (5)–(7).
This concludes the proof of the fact that the sequence {𝐮∗𝑘}

∞
𝑘=1 converges

to the optimal solution 𝐮∗ as 𝑘 → +∞. □

5. Applications

In this section, we utilize numerical results to compare the con-
vergence rate and accuracy of the standard EnOpt method with our
proposed EPF-EnOpt method. We examine the two optimal solution
methods by solving one analytical problem, and one simple water
flooding constrained optimization problem.
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Fig. 1. The contour plot of the objective function in Eq. (53) and its global minimum
point in the feasible region.

Example 1

Here, we consider a classical constrained 2D Rosenbrock’s optimiza-
tion problem (also called the Hock & Schittkowski problem 1 (Hock
and Schittkowski, 1981; Snyman and Wilke, 2018)) with an additional
constraint on the variable 𝑢1. The problem is given as follows.

min
𝐮∈R2

𝑓 (𝐮) = 100(𝑢2 − 𝑢21)
2 + (1 − 𝑢1)2 (53)

subject to: 𝑢1 ≥ 0. (54)

𝑢2 + 1.5 ≥ 0, (55)

where 𝐮 = [𝑢1, 𝑢2]𝖳. By considering a point 𝐮 = [0, 1]𝖳 in the feasible
region, we see that the Hessian of the objective function 𝑓 (𝐮) given by

∇2𝑓 (𝐮) =
[

1200𝑢21 − 400𝑢2 + 2 −400𝑢1
−400𝑢1 200

]

(56)

has a negative eigenvalue (and thus, the Hessian of 𝑓 is not positive
definite). This shows that the function is non-convex in the feasible
region, and hence in the entire R2. Because of this, convergence to the
global minimizer of the problem (53)–(55) using a numerical minimiza-
tion procedure can be difficult to achieve. However, an approximation
can be found. In theory, the global minimum value of the problem
(53)–(55) is at the point 𝑢1 = 1 and 𝑢2 = 1 as shown in Fig. 1.

First, we apply the standard adaptive EnOpt method of Section 3.1
and the linear transformation of subsection 2.1 to find the solution
of problem (53)–(55). In this case, we choose an initial guess 𝐮1 =
[−2, 0.5]𝖳 (see Fig. 2(b)), the initial step size, 𝛽−11 is set to 0.5. The
initial perturbation size for each variable is taken as 0.05 (in other to
compute the initial covariance matrix (23)), and the initial step size for
covariance adaptation is set to 0.1. Here, we used 𝑁 = 100 perturbation
control vectors at each iteration and set 𝜖3 = 1.0×10−6 as the tolerance
for convergence. The backtracking parameters, 𝛼1 & 𝛼2 are chosen as
0.5 and 0.001 respectively. The maximum number of trials for the
process of backtracking (see Algorithm 1) is set to 20. To use the linear
transformation, we set the upper limit, 𝑢upp

𝑖 = 5 for each variable 𝑢𝑖, 𝑖 =
1, 2. After 600 iterations, the standard EnOpt procedure converges
(for which |𝑓 (𝐮𝑙+1) − 𝑓 (𝐮𝑙)| ≤ 𝜖3|𝑓 (𝐮𝑙)| is sufficiently satisfied) to the
minimum point as shown in Fig. 2(a). Fig. 2(b) further illustrates, on a
contour plot, the convergence of the corresponding objective function
values (in blue dots) at optimization iterations to its minimum (in red
dot) in the feasible region.

However, the large iterations required before convergence to the
solution of problem (53)–(55) by using the standard EnOpt method
can be significantly reduced by using the proposed EPF-EnOpt method
presented in Algorithm 2. To utilize the EPF-EnOpt Algorithm 2 for this
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example, first, we construct the general term of the penalty function
sequence in (15) as follows:

𝑃𝑘(𝐮(𝑟𝑘)) = 𝑓 (𝐮(𝑟𝑘)) + 𝑟𝑘𝑄(𝐮(𝑟𝑘)), 𝑘 = 1, 2,… ,

= 100(𝑢2(𝑟𝑘) − 𝑢1(𝑟𝑘)2)2 + (1 − 𝑢1(𝑟𝑘))2

+ 𝑟𝑘
(

(min{𝑢1(𝑟𝑘), 0})2 + (min{(𝑢2(𝑟𝑘) + 1.5), 0})2
)

, (57)

where 𝐮(𝑟𝑘) = [𝑢1(𝑟𝑘), 𝑢2(𝑟𝑘)]𝖳 denotes a value of 𝐮 at a given penalty
parameter 𝑟𝑘 (Note that, the subproblem associated with (57) according
to Eq. (21) shall simply be called the ‘‘subproblem 𝑃𝑘’’). We set the
initial penalty parameter, 𝑟1 and the growth constant, 𝑐 to 1.5 respec-
tively and choose 𝜖1 = 1.0 × 10−6 and 𝜖2 = 1.0 × 10−6. Similarly, we
utilize an infeasible initial guess 𝐮(𝑟1) = [−2, 0.5]𝖳 (see Fig. 3(b)). For
the purpose of results comparison, same initialization (as before) of
parameters in the EnOpt procedures are used (in Step 3 of Algorithm
2). In addition, we normalize each variable 𝑢𝑖(𝑟𝑘), 𝑖 = 1, 2 using the
same linear transformation of subsection 2.1 (without truncation) with
𝑢upp
𝑖 = 5,∀𝑖 = 1, 2. However, we note that normalizing the variables

this way is not compulsory as one could use a fixed constant or
the maximum of the variables. On the application of Algorithm 2,
the resulting successive minimum points (including the initial starting
point) of the penalty function terms (or subproblems) in the sequence
𝑃𝑘, 𝑘 = 1, 2, 3,… , 24 are presented in Fig. 3(a). Here, we found that,
the Algorithm 2 converges to the minimum of problem (53)–(55) after
the solution of the subproblem 𝑃24. The total number of unconstrained
minimization iterations (from the starting point) before convergence is
52 as shown in Fig. 4. Fig. 3(b) depicts the corresponding values (in
blue dots) of the objective function (53) at the initial guess and the
obtained minimum points of subproblems {𝑃𝑘}24𝑘=1 respectively. From
the numerical optimization results of this example, we see that the EPF-
EnOpt method gives a faster convergence rate and also more accurate
results than the standard EnOpt method.

For this example, the large number of iterations required by stan-
dard EnOpt method is seen as the effect of the truncation (see Eq. (9))
that often occurs with the perturbed vectors (sampled from a Gaussian
distribution with adapted covariance matrix and the approximate so-
lution (at each iteration) as the mean) and the approximate solution
respectively. As pointed out in Section 2.1, the truncation affects the
quality of the approximate gradient and hence a small step size is
required for a decrease of the objective function. This continues at each
iteration until convergence and hence the reason for a large number of
iterations. Also, with different perturbation size (ranging from 0.0001
to 0.5) for each unknown variable and different updating step sizes
for the covariance matrix (ranging from 0.001 to 0.1) we found no
improvement in the number of iterations required for the standard
EnOpt convergence.

However, in EPF-EnOpt method, infeasible perturbed vectors and
iterates are kept. Instead of truncation due to infeasibility (as it is done
in the standard EnOpt), the violations of the constraints are handled by
the penalty term. By doing this resolves the large number of iterations
required by the standard EnOpt to 52.

Example 2

In this case, we consider a practical 𝑁𝑢−dimensional constrained
optimization problem of water flooding for a single (i.e we assume
no geological uncertainty) 5-Spot oil reservoir (see Fig. 5). This is
a synthetic 2D reservoir model with three-phase flow (including oil,
water and gas) solved using the OPM-Flow simulator (opm-project.org).
The model has a central injection and four production wells spatially
distributed in a five-spot pattern as shown in Fig. 5. The reservoir model
is uniformly discretized into 50 × 50 grid cells, with 𝛥𝑥 = 𝛥𝑦 = 100
m. On average, it has approximately 30% porosity with heterogeneous
permeability map. The initial reservoir pressure is 200 bar. The initial
average oil and water saturations are 0.6546 and 0.3454 respectively
(i.e, no free gas). The original oil in place (OOIP) is 4.983 × 106 sm3.
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Fig. 2. Minimization of the constrained 2D Rosenbrock problem (53)–(55) using the Standard EnOpt method. (a) Plot of values of control variables versus iteration count. (b) The
contour plot of the objective function (53) and its values (in blue dots) at different estimates of the control variables from optimization iterations.
Fig. 3. Minimization of the constrained 2D Rosenbrock problem (53)–(55) using the EPF-EnOpt Algorithm. (a) Plot of the unconstrained minimum points of subproblems in the
penalty function sequence. (b) The contour plot of the objective function (53) and its values (in blue dots) at the initial guess and minimum points of subproblems.
Fluid properties is close to that of a light oil reservoir. The viscosity (in
cP) for saturated oil at varying bubble point pressure is in the interval
[0.1, 0.56] and viscosity of water is 0.01 cP. The densities of oil and
water are respectively 732 kg∕m3 and 1000 kg/m3. The optimization
problem is to find the best/ optimum 𝐮 ∈ R𝑁𝑢 that maximizes the net
present value (NPV) defined by the objective function:

𝐽 (𝐮) =
𝑁𝑡
∑

𝑖=1

𝑟𝑜𝑄𝑜,𝑖(𝐮) + 𝑟𝑔𝑄𝑔,𝑖(𝐮) −
(

𝑟𝑤𝑖𝑄𝑤,𝑖(𝐮) + 𝑟𝑤𝑝𝑄𝑤𝑝,𝑖(𝐮)
)

(1 + 𝑑𝜏 )
𝑡𝑖
𝜏

, (58)

subject to

𝑢low
𝑖 ≤ 𝑢𝑖 ≤ 𝑢upp

𝑖 , ∀𝑖 = 1, 2,… , 𝑁𝑢, (59)

where 𝑁𝑡 is the total control time steps; 𝑖 is the index for time step; 𝑑𝜏 is
the discount rate (decimal %) for a given period of time 𝜏 (days), and 𝑡𝑖
is the cumulative time (days) starting from the beginning of production
up to the 𝑖th time step; the scalars 𝑟𝑜, 𝑟𝑤𝑖, 𝑟𝑤𝑝, and 𝑟𝑔 denote the price of
oil, the cost of handling water injection and production, and the price
of gas production (in USD/sm3) respectively. Let 𝛥𝑡𝑖 be the length of
time (days) between 𝑡𝑖 and the 𝑡𝑖−1 time steps. In Eq. (58), 𝑄𝑤,𝑖 is the
total water injection (sm3) over the time interval 𝛥𝑡𝑖; 𝑄𝑜,𝑖, 𝑄𝑤𝑝,𝑖, and
𝑄𝑔,𝑖 denote the total oil, water, and gas productions (sm3) over the time
interval 𝛥𝑡𝑖. Also, the quantities 𝑄𝑜,𝑖, 𝑄𝑤,𝑖, 𝑄𝑤𝑝,𝑖, and 𝑄𝑔,𝑖 are primary
variables which depend on the control vector 𝐮 at each control time step
and their respective numerical values are the results of water flooding
reservoir simulation based on a given well configuration data provided
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by some optimization procedures. We simulated water flooding on the
5-Spot field using the OPM-Flow simulator. In Eq. (59), 𝑢low

𝑖 and 𝑢upp
𝑖

are the imposed lower and upper bounds on the control variable 𝑢𝑖, ∀𝑖 =
1, 2,… , 𝑁𝑢.

In this example, the injection well is controlled by water injection
rate at each control time step. The lower and upper bounds for water
injection rate are set to 0 sm3∕day and 1000 sm3∕day respectively.
Each production well is controlled by reservoir fluid production rate
with a lower limit of 0 sm3∕day and upper limit of 250 sm3∕day.
Bottom hole pressure (BHP) limits are imposed on the wells, specifically
maximum 500 bar for the injector and minimum 150 bar for each
producer. The simulation period for the reservoir is 1500 days and
the control time step is set to 30 days. Therefore, the optimization
unknown control vector 𝐮 has a total of (1 + 4) × 50 = 250 components
(control variables). The values of economic parameters utilized for this
optimization problem is given by Table 2.

The constrained water flooding optimization (maximization) prob-
lem (58)–(59) is treated as a minimization problem by using the
transformation in Eq. (4). Next, we seek a solution to the transformed
problem, first by using the standard EnOpt approach (see Section 3.1)
coupled with the linear transformation (with truncation) of Section 2.1.
Here, we select an initial feasible guess, 𝐮1 of control vector (denoted
by the ‘‘ref control’’ in Fig. 6). Namely, a constant 500 sm3∕day for
the water injection rate at the injection well, and 150 sm3∕day for the
reservoir fluid production rate target at each production well. The val-
ues of other optimization parameters considered in the EnOpt algorithm
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Fig. 4. Plot of cumulative number of unconstrained minimization iterations versus the
𝑘𝑡ℎ subproblem for the 2D Rosenbrock problem.

Fig. 5. Porosity distribution of the five-spot field.
10
are given in Table 1. After 20 iterations, the standard EnOpt algorithm
converges (when |𝐽 (𝐮𝑙+1) − 𝐽 (𝐮𝑙)| ≤ 𝜖3|𝐽 (𝐮𝑙)| is sufficiently satisfied) to
a suboptimal solution (represented by the ‘‘standard EnOpt’’ in Fig. 6)
of the problem (58)–(59). The maximum NPV reached is 3.855×108 (in
USD) (see the ‘‘standard EnOpt’’ in Fig. 7(a)).

Furthermore, we used the proposed EPF-EnOpt method (in Algo-
rithm 2) to solve the equivalent minimization problem associated with
problem (58)–(59) in other to demonstrate its added advantage in
the hydrocarbon industries. First, we rewrite the bound constraint
inequalities (59) in the preferred standard form (of inequalities (6)) as
follows:

𝑔1(𝑢𝑖) ∶= 𝑢𝑖 − 𝑢𝑙𝑜𝑤𝑖 ≥ 0, and 𝑔2(𝑢𝑖) ∶= 𝑢𝑢𝑝𝑝𝑖 − 𝑢𝑖 ≥ 0, ∀𝑖 = 1, 2,… , 𝑁𝑢.

(60)

By using Eqs. (58) and (60), the general PF term associated with
problem (58)–(59) is then formulated as follows:

𝑃𝑘(𝐮(𝑟𝑘)) = 𝑓 (𝐮(𝑟𝑘)) + 𝑟𝑘𝑄(𝐮(𝑟𝑘)), 𝑘 = 1, 2,… ,

= 𝑓 (𝐮(𝑟𝑘))

+ 𝑟𝑘
(

𝑁𝑢
∑

𝑖=1
(min{𝑔1(𝑢𝑖(𝑟𝑘)), 0})2 +

𝑁𝑢
∑

𝑖=1
(min{𝑔2(𝑢𝑖(𝑟𝑘)), 0})2

)

, (61)

where 𝑓 (𝐮(𝑟𝑘)) = −𝐽 (𝐮(𝑟𝑘)). Next, we set the initial penalty parameter,
𝑟1 and the growth constant, 𝑐 to 0.1 and 10 respectively, and 𝜖1 =
1.0 × 10−5 and 𝜖2 = 1.0 × 10−6. The initial guess of solution is taken
as 𝐮(𝑟1) ∶= 𝐮1 (see the ‘‘Ref control’’ in Fig. 6). We used the values
of parameters in Table 1 required for the unconstrained minimization
procedures. We apply the linear transformation (without truncation) of
subsection 2.1 to normalize each unknown variable 𝑢𝑖, 𝑖 = 1, 2,… , 𝑁𝑢
(and hence the associated constraint function). On the application
of Algorithm 2, the resulting limit of the solutions of subproblems
𝑃𝑘, 𝑘 = 1, 2, 3,… , 26 (equivalently the solution of problem (58)–
(59)) is represented by the ‘‘EPF-EnOpt’’ in Fig. 6. The corresponding
value of the objective function (58) at the solution of subproblem,
𝑃𝑘, 𝑘 = 1, 2,… , 26 is denoted by the ‘‘EPF-EnOpt’’ in Fig. 7(a). In
this case, the Algorithm 2 is seen to converge to a better suboptimal
solution of problem (53)–(55) at the 24th subproblem with a total
of 51 unconstrained optimization iterations as shown in Fig. 8. The
maximum NPV obtained is 4.420 × 108 (in USD). Therefore, the EPF-
EnOpt method yields an increase of 14.596% in NPV over the standard
Fig. 6. Comparison of the initial (ref) and optimal solutions from standard EnOpt and EPF-EnOpt methods for the optimization problem (58)–(59). Plots (a) to (d) represent the
control (production rate) variation profiles at the four producing wells and (e) denotes the control (injection rate) variation profile at the injection well I1.
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Fig. 7. (a) Comparison of the change in NPV with iteration (for standard EnOpt) or penalty function term (or subproblem). We see that the objective function is flatting out for
both methods, which indicate that the stopping criteria is sufficient for this problem. (b) Comparison of the field oil production total (FOPT) from reference (Ref), standard EnOpt,
and EPF-EnOpt controls.
Table 1
Standard EnOpt parameters.
Parameter Value

Initial step size (𝛽−11 ) 0.3
Initial stepsize for covariance adaptation (−) 0.1
step size contraction (𝛼1) 0.5
Constant (𝛼2) 0.01
Initial control-type variance (𝜎𝑚 ,∀𝑚 = 1, 2,… , 5) 0.001
Number of perturbation control vector (𝑁) 50
Constant correlation factor (𝜌) 0.5
Tolerance for EnOpt convergence (𝜖3) 10−6

Table 2
Economic parameters.

Parameter Value Unit

Oil price (𝑟𝑜) 500 USD/sm3

Price of gas production (𝑟𝑔 ) 0.15 USD/sm3

Cost of water injection or production (𝑟𝑤𝑖 , 𝑟𝑤𝑝) 30 USD/sm3

Annual discount rate (𝑑𝜏 ) 0.1 −

EnOpt approach. Also, Fig. 7(b) compares the field oil production total
from operating the field with the solutions (or control strategies) of the
EPF-EnOpt and standard EnOpt methods respectively and the reference
control. The total field oil production by the standard EnOpt and EPF-
EnOpt solutions are 9.006× 105 sm3 and 1.036× 106 sm3 respectively. It
is an increase of approximately 14.983% in oil production. Hence the
benefit of the EPF-EnOpt method, as shown in this example is in its
better and more accurate result than the traditional EnOpt scheme.

To illustrate that our proposed solution method is not significantly
dependent on the state of random number generation (for objective
function gradient computation), we compare its performance (in terms
of change in NPV and change in cumulative unconstrained iterations)
and that of standard EnOpt with different random seed numbers.
Fig. 9(a) shows the changes in the maximum NPV obtained from using
the EPF-EnOpt and standard EnOpt methods with different seed num-
bers. On average, the maximum NPV for the EPF-EnOpt and standard
EnOpt methods are approximately 4.447 × 108 and 3.857 × 108 (same
as initially obtained) respectively. The corresponding total number of
iterations carried out with the different seed numbers are shown in
Fig. 9(b). The average number of iterations for the standard EnOpt
method is 20 and for the EPF-EnOpt method is 51.

Example 3

To further explore the benefit of the proposed EPF-EnOpt method,
we consider a more realistic industrial standard 3D oil reservoir model
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Fig. 8. Plot of cumulative number of unconstrained minimization iteration versus the
𝑘𝑡ℎ subproblem for the 5-Spot problem.

(the Reek field designed by Equinor). The associated 𝑁𝑢−dimensional
constrained optimization problem of water flooding associated with the
Reek field is given by Eqs. (58)–(59). The reservoir model is synthetic
with three-phase flow (including oil, water and gas). It is defined on an
irregular grid system of dimension 40×64×14. There are total of 35840
grid cells with distinct sizes. The model is divided into UpperReek,
MidReek, and LowerReek zones with six faults and varying porosity and
permeability. The model has five production and three injection wells
as shown in Fig. 10. Two of the injectors are positioned in the water
saturated zones, while the five producers and one injector are spatially
distributed throughout the oil containing region based on engineering
intuition. Fluid properties are similar to that of light oil. On average, it
has approximately 15% porosity with heterogeneous permeability map.
The original oil in place (OOIP) is 4.831 × 107 sm3. The initial average
oil, water, and gas saturations are 0.1658, 0.8342, and 0 respectively. The
viscosity (in cP) for saturated oil at varying bubble point pressure is in
the interval [0.09, 1] and viscosity of water is 0.01 cP. The densities of
oil and water are respectively 732 kg∕m3 and 1000 kg/m3.

In this example, the injection well is controlled by water injection
rate at each control time step. The lower and upper bounds for water
injection rate are set to 0 sm3∕day and 10000 sm3∕day respectively.
Each production well is controlled by reservoir fluid production rate
with a lower limit of 0 sm3∕day and upper limit of 5000 sm3∕day.
Bottom hole pressure (BHP) limits are imposed on the wells, specifically
maximum 500 bar for the injector and minimum 200 bar for each
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Fig. 9. (a) Comparison of the change in NPV from the standard EnOpt and EPF-EnOpt methods with random seed. (b) Comparison of the total number of iteration from the
standard EnOpt and EPF-EnOpt methods with random seed.
𝜆𝜆
Fig. 10. The initial saturation map for oil, water and gas of the Reek field.

producer. The simulation period for the reservoir is 1110 days and the
control time step is set to 30 days. The optimization unknown control
vector 𝐮 has a total of (5+3)×50 = 296 components (control variables).
Thus, the constrained waterflooding optimization problem is to find the
optimal control vector, 𝐮 = {𝑢𝑖}296𝑖=1 that maximizes the NPV in Eq. (58)
subject to the constraints in Eq. (59). Here, the NPV is optimized using
the economic parameters listed in Table 2. First, we seek a solution
to the optimization problem by using the standard EnOpt approach
coupled with the linear transformation (with truncation). In this case,
we utilize feasible initial guess, 𝐮1 of control vector (denoted by the
‘‘ref control’’ in Fig. 11) provided by Equinor. The values of other
optimization parameters considered in the EnOpt algorithm are given
in Table 1.

In 55 iterations, the standard EnOpt algorithm is seen to converge
(when |𝐽 (𝐮𝑙+1) − 𝐽 (𝐮𝑙)| ≤ 𝜖3|𝐽 (𝐮𝑙)| is sufficiently satisfied) to a sub-
optimal solution (represented by the ‘‘standard EnOpt’’ in Fig. 11) of
the problem (58)–(59). The maximum NPV reached is 4.285 × 109 (in
USD) (see the ‘‘standard EnOpt’’ in Fig. 12(a)). Similar to Example 2,
we used the proposed EPF-EnOpt method (in Algorithm 2) to solve the
subproblems (61) associated with the Reek field waterflooding problem
for comparison with the standard EnOpt. We set the initial penalty
parameter, 𝑟1 and the growth constant, 𝑐 to 10 and 1.2 respectively, and
𝜖1 = 1.0× 10−5 and 𝜖2 = 1.0× 10−6. The initial guess of solution is taken
as 𝐮(𝑟1) ∶= 𝐮1 (see the ‘‘Ref control’’ in Fig. 11). The same values of
parameters in Table 1 are utilized for the unconstrained minimization
procedures. Other parameters or transformations not mentioned are the
same as before in Example 2. By applying Algorithm 2, the resulting
limit of the solutions of subproblems 𝑃𝑘, 𝑘 = 1, 2, 3,… , 58 (equivalently
the solution of problem (58)–(59)) is denoted by the ‘‘EPF-EnOpt’’ in
Fig. 11. The corresponding value of the objective function (58) at the
solution of subproblem, 𝑃𝑘, 𝑘 = 1, 2,… , 58 is represented by the ‘‘EPF-
EnOpt’’ in Fig. 12(a). Here, the Algorithm 2 converges to a better
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suboptimal solution of problem (58)–(59) at the 59th subproblem with
a total of 116 unconstrained optimization iterations as shown in Fig. 13.
The maximum NPV obtained is 4.556×109 (in USD). Therefore, the EPF-
EnOpt method yields an increase of 6.324% in NPV over the standard
EnOpt approach.

To further illustrate the efficiency and accuracy of the EPF-EnOpt
method, we utilized the classical Lagrange function (LGF) method
to handle constraints coupled with the standard EnOpt, to solve the
optimization problem and compare results with the EPF-EnOpt. The
Lagrange function associated with the constrained water flooding opti-
mization problem of the Reek field (using Eqs. (58)–(59)) is given by :

𝐿(𝐮, 𝜆𝜆𝜆𝑘, 𝑟𝑘) = 𝑓 (𝐮) + 𝑟𝑘
(

𝑁𝑢
∑

𝑖=1

2
∑

𝑗=1

[

(min{
𝜆𝑗,𝑖
2𝑟𝑘

+ 𝑔𝑗 (𝑢𝑖), 0})2 − (
𝜆𝑗,𝑖
2𝑟𝑘

)2
])

, (62)

where 𝜆𝜆𝜆𝑘 ∶= [{𝜆𝑘𝑗,𝑖}
𝑁𝑢
𝑖=1],∀𝑖 = 1, 2 is the Lagrangian multiplier for the

2𝑁𝑢 constraint functions and 𝑟𝑘 is the penalty parameter. For each 𝑘th
subproblem, we estimate the Lagrangian multiplier using:

𝜆𝑘+1 ∶= min{𝜆𝜆𝜆𝑘 + 2𝑟𝑘𝐠(𝐮), 0}, 𝐠 = [𝑔1, 𝑔2], (63)

and the penalty parameter 𝑟𝑘 is updated using Eq. (17). Using the same
optimization parameters, initialization, and convergence tolerance as
in the EPF-EnOpt method and initial multiplier components, 𝜆𝑗,𝑖 =
0, we sequentially solve (using the standard EnOpt) for the optimal
solution of the Lagrangian in Eq. (62). After 66 subproblems, the La-
grangian converges to a suboptimal value as depicted by ‘‘LGF-EnOpt’’
in Fig. 12(a) with a total of 113 unconstrained iterations as shown by
‘‘LGF-EnOpt’’ in Fig. 13. The limit of solutions of the subproblems is
shown by ‘‘LGF-EnOpt’’ in Fig. 11 (equivalently a suboptimal solution
to the original constrained optimization problem). The maximum NPV
obtained is 4.400×109 (in USD) which is less than that of the EPF-EnOpt
method by 3.55%. The need for the LGF-EnOpt to estimate the Lagrange
multiplier in addition to the penalty parameter shows that the method
requires more subproblem iterations.

Fig. 12(b) compares the field oil production total from develop-
ing the Reek field with the solutions (or control strategies) of the
EPF-EnOpt, LGF-EnOpt, standard EnOpt methods respectively, and the
reference control. The total field oil production by the EPF-EnOpt, LGF-
EnOpt, and standard EnOpt solutions are 1.091×106 sm3, 1.054×106sm6,
and 1.037 × 106 sm3 respectively. The EPF-EnOpt solution gives an
increase of approximately 5.207% and 3.510% in oil production over
the standard EnOpt and LGF-EnOpt solutions respectively. Also, we
compare the corresponding field water production from the three solu-
tions in Fig. 12(c). The total field water production from the EPF-EnOpt,
standard EnOpt, and LGF-EnOpt solutions are 3.338 × 106 sm3, 3.949 ×
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Fig. 11. Comparison of the initial (ref) and optimal solutions from standard EnOpt, EPF-EnOpt, and LGF-EnOpt methods for the constrained optimization problem (58)–(59)
associated with the Reek field. Plots (a) to (e) represent the control (production rate) variation profiles at the five producing wells and (f) to (h) denote the control (injection rate)
variation profile at the three injection wells.
106 sm3, and 3.152 × 106 sm3 respectively. It is approximately 15.47%
and 20.18% in water production by the EPF-EnOpt and LGF-EnOpt
solutions less than the standard EnOpt method. Hence, the EPF-EnOpt
has the potential to find a better optimal solution that will not only
increase oil production but also reduced field water production. This
is similar to the solution obtained by using the LGF-method in Zhang
et al. (2016).

6. Conclusion

In this study, a new optimal solution strategy, the EPF-EnOpt
method, for non-linear constrained optimization problems (such as the
one of hydrocarbon field management) is formulated. The strategy
leans on the exterior penalty function method and adaptive EnOpt
scheme (with backtracking technique). Because of the inappropriate
gradient computation arising from using the traditional truncation of
control variables to honor of the underlying constraints, we utilized the
exterior PF method to transform the constrained optimization problem
to a sequence of unconstrained subproblems. We used the adaptive
EnOpt method to sequentially solve the subproblems, which eventually
leads to the desired solution of the original constrained optimization
problem.

Further, the proposed method is formulated in such a way that
mixed (involving equality and inequality) constraint problems can be
solved efficiently and robustly and also its performance (in terms
of convergence rate and accuracy) is compared with the standard
13
EnOpt method. The optimization results of the analytical 2D con-
strained Rosenbrock problem (see Example 1) showed that the EPF-
EnOpt method has a faster convergence rate (and hence more efficient).
The solutions of the practical 𝑁𝑢− dimensional constrained water
flooding optimization problem associated with the 2D 5Spot field (see
Example 2) and 3D Reek field (see Example 3) showed that the method
is more accurate than the standard EnOpt approach. In addition to in-
creasing oil production, the EPF-EnOpt methods can provide a solution
with less impact (in terms of water production) on the environment
compared to the standard EnOpt with traditional constraint handling
techniques (as shown in Fig. 12(c)). For the Reek field we also com-
pared the EPF-EnOpt method with the classical Lagrangian constraint
handling technique. The results showed higher NPV was obtained with
the EPF-EnOpt.

It is noted that the minima of subproblems obtained lie within
the feasible region of interest because of our choice of parametric
values (irrespective of using infeasible (see Example 1) or feasible (see
Example 2) solution initialization). However, this is not always true as
different sets of values of parameters such as penalty parameter, growth
constant, optimization parameters (such as the number of perturbation
and initial step size, and backtracking constants) can change trend of
solutions. Also, the size of subproblems and number of optimization
iterations before convergence is found to significantly rely on the values
assigned to these parameters. Therefore, careful selection of parametric
values is the key if strictly feasible solutions are required and for fast
convergence rate.
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Fig. 12. (a) Comparison of the change in NPV with iteration (for standard EnOpt) or penalty term or Lagrang e function (or subproblem). (b) Comparison of the field oil production
total (FOPT) from reference(Ref), standard EnOpt, and EPF-EnOpt controls.(c) Comparison of the field water production total (FWPT) from standard EnOpt and EPF-EnOpt controls.
Fig. 13. Plot of cumulative number of unconstrained minimization iteration versus the
𝑘𝑡ℎ subproblem for the Reek field problem.

For future reference, the present methodology will be used to solve
robust constrained optimization problems of oil reservoirs with un-
certain geological parameters. In this paper, we considered bound
constraint optimization problems. However, solution of optimization
problem with mixed or more complex linear or non-linear constraints
are possible. Also, there is room to carry out sensitivity analysis with
influential parameters on the EPF-EnOpt method.
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