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Abstract: During CO2 storage, CO2 plume mixes with the water and oil present at the reservoir,
initiated by diffusion followed by a density gradient that leads to a convective flow. Studies are
available where CO2 convective mixing have been studied in water phase but limited in oil phase.
This study was conducted to reach this gap, and experiments were conducted in a vertically packed
3-dimensional column with oil-saturated unconsolidated porous media at 100 bar and 50 ◦C (rep-
resentative of reservoir pressure and temperature conditions). N-Decane and crude oil were used
as oils, and glass beads as porous media. A bromothymol blue water solution-filled sapphire cell
connected at the bottom of the column was used to monitor the CO2 breakthrough. With the increase
of the Rayleigh number, the CO2 transport rate in n-decane was found to increase as a function of a
second order polynomial. Ra number vs. dimensionless time τ had a power relationship in the form
of Ra = c × τ−n. The overall pressure decay was faster in n-decane compared to crude oil for similar
permeability (4 D), and the crude oil had a breakthrough time three times slower than in n-decane.
The results were compared with similar experiments that have been carried out using water.

Keywords: convection; porous media; reservoir conditions; oil; CO2 dissolution; 3-dimensional
column

1. Introduction

CO2 storage is a commonly considered topic when it comes to climate change miti-
gation. Injection of CO2 to active and abandoned oil and gas fields is a well-discovered
solution for a viable utilization of CO2 due to its commercial benefits of enhancing the oil
recovery (EOR) as well as achieving permanent CO2 storage [1,2]. During CO2 injection
into existing oil fields for EOR, the added CO2 will swell and reduce the viscosity and will
lead to an increase of the oil recovery percentage [3,4]. EOR for CO2 utilization can also
reduce a significant cost of the whole CCS value chain [5–7].

When CO2 is injected into the oil fields, a CO2 plume will usually develop above
the fluid phases inside the porous media due to the low density of CO2 compared to
the density of the reservoir fluids, as shown in Figure 1 [8]. Initially, this CO2 plume
mixes with the oil and water phases present in the reservoir mainly due to diffusion.
The mixing process creates a density gradient (e.g., increase the density of oil). This
phenomenon leads to a convective flow, which will accelerate the CO2 mixing and mass
transfer and will significantly enhance the underground CO2 storage rate as well as the oil
production [7,9–11].

It is essential to know the behavior of the CO2 plume in the reservoir along with how
CO2 will dissolve convectively into the oil phase. This helps to understand how CO2 will be
transported during long-term storage after injection for storage and EOR. The convectively
driven dissolution has been extensively studied for accelerated CO2 dissolution in saline
water for CO2 storage in 2-dimensional (2-dim) Hele-Shaw experimental setups [12–18] and
using 3-dimensional (3-dim) confined experimental setups [19–24]. An extensive review
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on available CO2 convective mixing experiments in water is available in Amarasinghe
et al. [12].
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Figure 1. Simplified sketch of convection-driving dissolution of CO2 with oil inside the reservoir. 
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phase inside a Hele-Shaw cell using the Schlieren visualization method. Farajzadeh et al. 
[26] performed a few PVT experiments using n-decane and n-hexadecane to investigate 
the CO2 mass transfer at gaseous conditions. They concluded that CO2 mass transfer in-
creases in n-decane with the increase of pressure, while mass transfer in n-hexadecane is 
slower compared to n-decane. Zhao et al. [21] investigated and visualized CO2 flooding 
in porous media (bead pack) inside a vertical high-pressure PVT cell. They monitored CO2 
front movement, piston-like miscible regions, CO2 channeling, and fingering using MRI 
technology for both supercritical and gaseous miscible conditions in n-decane. Mean-
while, Seyyedsar and Sohrabi [27] visually investigated the formation of a new oil phase 
during immiscible CO2 injection into heavy oil-saturated porous media under reservoir 
conditions. Wei et al. [28] carried out a visualization study on oil swelling due to CO2 
miscibility inside a high-pressure cylindrical cell under reservoir conditions. In terms of 
simulations, Gasda and Elenius [11], Gasda et al. [29], Both et al. [30], Ahmed et al. [31], 
and Rongy et al. [32] have conducted CO2 gravity-driven convective mixing in oil. They 
showed the CO2 interaction with single component oil types and phase behavior including 
gravity convection fingering. 

Furthermore, it is important to know the CO2 transport rate through an oil-saturated 
porous media to obtain a better understanding of real geological CO2 storage. It will pro-
vide a better indication of the behavior of CO2 plume and location of CO2 front at a given 
time. The results also can be further used to develop and validate mathematical models 
in order to upscale towards the whole reservoir. In the literature, such an experimental 
study has not been found. The same authors conducted an experimental study to investi-
gate CO2 convective dissolution and breakthrough time in water-saturated unconsoli-
dated porous media [24]. The objective of the presented work was to investigate CO2 con-

Figure 1. Simplified sketch of convection-driving dissolution of CO2 with oil inside the reservoir.

However, similar studies with the presence of oil (or residual oil) are still very limited.
This represents a gap in defining and validating the adequate mathematical models and
upscaling procedures for CO2 storage and EOR, and the lack of input parameters for un-
certainty estimation. In the literature, Amarasinghe et al. [25] and Khosrokhavar et al. [16]
have conducted CO2 convective dissolution visualization experiments into the oil phase
inside a Hele-Shaw cell using the Schlieren visualization method. Farajzadeh et al. [26]
performed a few PVT experiments using n-decane and n-hexadecane to investigate the
CO2 mass transfer at gaseous conditions. They concluded that CO2 mass transfer increases
in n-decane with the increase of pressure, while mass transfer in n-hexadecane is slower
compared to n-decane. Zhao et al. [21] investigated and visualized CO2 flooding in porous
media (bead pack) inside a vertical high-pressure PVT cell. They monitored CO2 front
movement, piston-like miscible regions, CO2 channeling, and fingering using MRI tech-
nology for both supercritical and gaseous miscible conditions in n-decane. Meanwhile,
Seyyedsar and Sohrabi [27] visually investigated the formation of a new oil phase during
immiscible CO2 injection into heavy oil-saturated porous media under reservoir conditions.
Wei et al. [28] carried out a visualization study on oil swelling due to CO2 miscibility
inside a high-pressure cylindrical cell under reservoir conditions. In terms of simulations,
Gasda and Elenius [11], Gasda et al. [29], Both et al. [30], Ahmed et al. [31], and Rongy
et al. [32] have conducted CO2 gravity-driven convective mixing in oil. They showed the
CO2 interaction with single component oil types and phase behavior including gravity
convection fingering.

Furthermore, it is important to know the CO2 transport rate through an oil-saturated
porous media to obtain a better understanding of real geological CO2 storage. It will
provide a better indication of the behavior of CO2 plume and location of CO2 front at a given
time. The results also can be further used to develop and validate mathematical models in
order to upscale towards the whole reservoir. In the literature, such an experimental study
has not been found. The same authors conducted an experimental study to investigate
CO2 convective dissolution and breakthrough time in water-saturated unconsolidated
porous media [24]. The objective of the presented work was to investigate CO2 convective
dissolution in oil-saturated unconsolidated porous media of different permeabilities at
realistic reservoir conditions. In this study, we only focused on pressure and temperature
with relation to reservoir conditions. In terms of other reservoir properties such as usage of
actual reservoir rock and three-phase systems, we have not addressed them in this study.
This study reduces the gap of experimental results of CO2 convective mixing in oil, which
will lead to a better understanding of the process in reservoirs.
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2. Experimental Method
2.1. Materials

Hydrophilic glass beads of different diameters were used to prepare porous media of
different permeabilities (0.5 D, 4 D, 16 D, and 76 D). The permeability of the bead packs was
determined by the waterflooding of packed glass bead tubes. The particle size distribution
of each glass bead type is shown in Figure 2. n-Decane and a North Sea crude oil (see
Table 1 for the composition) were used as oils. Bromothymol blue (BTB) pH indicator
solution (0.004 wt % BTB with 0.01M NaOH prepared in deionized water) of pH around 8
was used as the water phase. The BTB solution changes color from blue to yellow when
the pH changes due to CO2 mixing.
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Table 1. Crude oil composition.

Component mol %

C5 2
C6 3
C7 5
C8 5
C9 6
C10 4
C11 4
C12 4
C13 4
C14 3
C15 3

C15+ 57

Total 100

2.2. Experimental Setup

A steel cell with an inner height of 27.5 cm and an inner diameter of 7.75 cm (approxi-
mately 1.3 L of volume) was used to carry out CO2 mixing experiments in oil-saturated
porous media. The steel cell was vertically placed and was connected to water and oil-filled
sapphire cell at the bottom (see in Figures 3, 4a, 5 and 6a). The end piece at the bottom
of the steel cell had a single hole that connected the steel cell and the sapphire cell (see
Figure 4b). A Spectrum Spectra Mesh woven filter (Supplier: Spectrum Laboratories, USA)
was added at the bottom of the cell to prevent glass beads penetrating the sapphire cell
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(see Figure 3). The sapphire cell was connected to a back-pressure regulator set at 100 bar.
A piston cell filled with CO2 was used as the CO2 source and another piston cell was filled
with the type of oil that was being used. A Quizix pump (Supplier: Chandler Engineering,
USA) was used to control injection and pressure monitoring. A simplified sketch of the
whole experimental setup is given in Figure 5, including the main valves that are used in
following text to describe the experimental procedure. All the experiments were carried
out at 50 ◦C using the pressure decay method starting from 100 bar.
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2.3. Experimental Procedure

1. The steel column was wet packed with glass beads manually (filled the column with
oil type first and dry glass beads into oil), with the specified size to a height of 18 cm,
and filled the rest of the volume to the top with the oil type that was being used.

2. After mounting all the devices, V1, V3, and V5 were opened and the oil was pumped
through the packed column using the Quizix pump and pressurized to 100 bar until
produced through the back-pressure regulator to make sure 100% oil saturation
was obtained.

3. The pump was stopped and waterside from the CO2 piston cell (V2) was opened
while V1, V3, and V5 were kept opened.

4. Then, the system was heated to 50◦. With the temperature increase, CO2 inside the
CO2 piston cell expanded. Hence, water from the CO2 piston cell was transferred to
the oil piston cell where pressurized oil was transferred through the packed column
via the back-pressure regulator. This way, it was made sure that packed column
pressure and the CO2 piston cell pressure stayed the same.



Energies 2021, 14, 233 6 of 13

5. Afterward, V1 and V3 were closed. CO2 piston cell was introduced to the packed
column by opening V4. A specified amount of CO2 (450 mL) was injected at a high
rate (50 mL/min) and out through the back-pressure regulator (V5 was still opened)
to create a 9.5 cm height of free phase of CO2 on top of the oil-saturated porous media
(as shown in Figure 3). With previous experience, it was calculated that a height of
9.5 cm was required to compensate for the oil swelling so that swelled oil due to CO2
mixing was not transported into the CO2 piston cell.

6. The connection between the packed column and back-pressure regulator (V5) was
closed after the injection and the pump was stopped and pressure decay data were
logged using the computer application.

7. A small web camera with an interval timer shooting was used to monitor the break-
through of CO2 into the sapphire cell. CO2 was transported through the oil-saturated
porous media and a breakthrough was observed through the color change of water
solution from blue to yellow (see Figure 6b).

2.4. Set of Experiments

The set of experiments carried out is shown in Table 2, together with the results of
average breakthrough times and average CO2 transport speed. Rayleigh number (Ra) was
calculated using the equation Ra = (∆ρgkH)/(µDΦ), where ∆ρ is the density increase
of oil due to CO2 dissolution, g is the acceleration of gravity, k is the permeability of the
porous media, H is the height of porous media, µ is the dynamic viscosity of the oil, D is
the molecular diffusion coefficient of CO2 in oil, and Φ is the porosity of porous media.
The height of porous media was 18 cm, while the other parameter values used to calculate
the Ra number are given in Table 3. Ra number was calculated only for experiments with
n-decane due to the unavailability of ρ(oil+CO2)mix value and diffusion co-efficient of CO2
in crude oil value for crude oil.

Table 2. Set of experimental cases with CO2/oil at 100 bar and 50 ◦C, and average breakthrough time and average CO2

transport speed.

Test No. Glass Beads
(µm) Oil Type

Estimated
Permeability

(D) *

Rayleigh
Number (Ra)

Average
Breakthrough

Time

Average CO2
Transport Speed

(V—mm/min)

1 400–600 n-decane 76 2015 8 min 23.08
2 100–200 n-decane 16 424 2.75 h 1.09

3 (2 repeats) 70–110 n-decane 4 106 7.5 h 0.11
4 0–50 n-decane 0.5 13 102.5 h 0.03
5 70–110 crude oil 4 not calculated 29 h 0.1

* Determined in waterflooding of packed tubes.

Table 3. Parameters for Ra number calculation.

Parameter Value ** Units

ρCO2 384.67 kg/m3

H 0.18 m
g 9.81 m/s2

Φ 0.4 -

n-Decane Crude Oil

ρoil 730 913 kg/m3

ρ(oil+CO2)mix 755.2 [33] N/A kg/m3

∆ρ 25.2 N/A kg/m3

D 6×10−9 [34] N/A m2/s
µ 6.9×10−4 [35] 0.045 kg/s·m

** Obtained at 100 bar/50 ◦C.
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3. Results and Discussions

The pressure decay data and the breakthrough times for 76 D (test 1), 16 D (test 2),
and 4 D (test 3) are presented in Figure 7. The pressure decay data and the breakthrough
time for the 0.5 D (test 4) is presented in Figure 8. In Figure 9 shows pressure decay data
and the breakthrough times comparison for the experiments with 4 D permeability with
n-decane (test 3) and crude oil (test 5).
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The CO2 breakthrough time in n-decane-saturated 76 D porous media was very quick
(8 min), which indicates that CO2 was mixing with oil instantly [25]. The breakthrough
time was found to increase with the decrease of permeability (see Table 2). Due to the
high miscibility of CO2 in oil, the pressure decreased rapidly at the beginning and was
then gradually reduced. With the reduction of permeability, the initial pressure decay rate
was reduced (see Figure 7). In 0.5 D porous media, a significant initial instant pressure
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decay was not observed. This was due to the low permeability, which led to a Ra number
(Ra = 13) lower than the Racritical value of 4π2. The theory says that if the Ra ≤ Racritical ,
then the flow is diffusion-dominant (i.e., natural convection is insignificant) [15,36].

For the crude oil, the initial pressure decay rate was slower than for n-decane in 4 D
porous media. Moreover, the pressure decay rate was higher in n-decane compared to crude
oil. The breakthrough time for n-decane-saturated porous media with 4 D permeability
(7.5 h) was three times faster than for crude oil-saturated porous media with the same
permeability (29 h). The overall pressure decay was also higher in n-decane than in crude
oil, which indicated more CO2 was mixed in n-decane compared to in crude oil (see
Figure 9). Generally, CO2 diffusion co-efficient in crude oil is lower than n-decane due to
its presence of heavy carbon numbers (see Table 1) [34]. Hence, lower transport rate of CO2
in crude oil can be expected in comparison to n-decane.
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breakthrough (BT) times.

Due to the CO2 mixing process inside the 3-dim porous media being random and
fingering occurring randomly, the location of the CO2 front fingers at the bottom varies [37].
Especially when CO2 reached the bottom along the boundary, CO2 had to be transported
to the connection of sapphire cell along the bottom surface (see Figure 10). Since the
sapphire cell was connected to the bottom end piece from its center (see Figure 4), different
breakthrough times were reasonable.

After breakthrough of CO2 produced a slight color change of the water solution in the
sapphire cell, it took several minutes to change the color of the water solution completely
from blue to yellow (see Figure 6c). This indicates that even after the breakthrough, CO2
was still invading the sapphire cell and still CO2 convection took place inside the porous
media. From the pressure data (as in Figures 7–9), the pressure was still decaying after the
observation of the CO2 breakthrough.

For scaling purposes of the 3-dim experiments, we have used dimensionless time
(τ), τ =

(
D/H2)× ts, where ts is considered as the breakthrough time. The relationship

between τ and Ra number was compared for n-decane (this study) and water [24] (see
Figure 11). We found that the Ra number vs. τ had a power relationship in the form
of Ra = c × τ−n, with constants c = 2.051 and n = 0.763 for n-decane and c = 26.078
and n = 0.702 for water. A similar power trend has been found by Faisal et al. [15] and
Farajzadeh et al. [38] in their study of the water phase.
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The CO2 transport rate in oil was observed to increase with increasing permeability.
Comparing the results with similar experiments carried out by Amarasinghe et al. [24]
using water, we observed that the CO2 transport rate was generally lower in water than in
n-decane. Density increase in water and oil due to CO2 mixing are 14.75 kg/m3 [39,40] and
25.2 kg/m3 [33], respectively. Hence, faster CO2 mixing in n-decane compared to water
can be justified. With increasing Ra number, the increase of the CO2 transport rate (V)
increased as a function of power

(
V = 1 × 10−5 × Ra1.424) in water and as a function of a

second order polynomial
(
V = 6 × 10−6 × Ra2 − 0.0001 × Ra + 0.1652

)
for n-decane (see

Figure 12 for the relationships between Ra number and CO2 transport rate in both water
and n-decane).

In this kind of experiment, measurement/calculation of CO2 mass transferred into
the oil phase would be significant data. Due to the swelling of the oil phase, the CO2–
oil boundary inside the vertical column moves upwards, as observed by Amarasinghe
et al. [25] in their 2-dim Hele-Shaw experiments (see Figure 13). There is a disturbance
to the CO2–oil interface during CO2 injection to generate a free volume of CO2 on top of
the porous media. This may affect the breakthrough time. However, we neglected the
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effects for the observation of breakthrough time and the calculation of CO2 transport speed
through the porous media. In the 3-dim experiments, due to boundary effects, slight hetero-
geneities within the porous pack, contact area CO2, and porous media, internal fingering
merging does add substantial complication to the fingering phenomenon compared to
2-dim experiments [9,25,41].

Figure 12. CO2 transport speed (mm/min) as a function of Rayleigh number (Ra) for n-decane (this study) and for water [24]
in 3-dim column experiments.
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Figure 13. Illustration of oil swelling due to CO2 mixing. Experiments were carried out by Amarasinghe et al. [25] inside a
2-dimensional (2-dim) Hele-Shaw cell using 76 D oil (n-decane)-saturated porous media at 100 bar and 50 ◦C. (a) Beginning
of the experiment with oil-saturated porous media and free CO2 phase. (b) At the end of experiment, after 170 min, with
swelled oil phase (46% of original oil in place (OOIP)). Red circle shows the moved CO2–oil interface.

The scaled experimental data forms a basis for the fine-tuning of the existing math-
ematical model and scaling-up [11,42]. As further work, we suggest carrying out more
experiments in more different oil types (e.g., mixture of oil and different crude oil types
with known compositions) using a wider range of permeabilities to gather more data.
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4. Conclusions

We experimentally investigated CO2 convective mixing inside an oil-saturated porous
media at realistic reservoir pressure and temperature conditions (100 bar and 50 ◦C).
CO2 breakthrough time was quantitatively measured with porous media of different
permeabilities. It was found that Ra number vs. dimensionless time τ had a relationship
in the form of Ra =c × τ−n. In crude oil, the initial pressure decay rate was lower than
for n-decane inside 4 D porous media. The overall pressure decay also was higher in
n-decane than in crude oil for similar permeability (4 D), and crude oil had a breakthrough
time that was three times slower than in n-decane. The results also were compared with
similar experiments carried out by the same authors using water. It was shown that
CO2 transport rate was generally lower in water compared to n-decane due to the lower
density increase of the fluid mixture. With the increase of Ra number, the increase of the
CO2 transport rate increased as a form of power of V = 1 × 10−5 × Ra1.424 in water and
as a function of a second order polynomial for n-decane. It was concluded that due to
geometry, boundary effects, slight heterogeneities within the porous pack, the contact area
between CO2—porous media are responsible for the different results for 2-dim and 3-dim
experiments. The scaled experimental data formed a basis for the validation of the existing
mathematical model and scaling-up to further understanding of CO2 geological storage
processes and plume behavior.
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Nomenclature

ρCO2 Density of CO2 (kg/m3)
ρoil Density of oil (kg/m3)
ρ(oil+CO2)mix Maximum density of oil + CO2 mixture (kg/m3)
∆ρ Density increase of the fluid due to CO2 dissolution (ρ(oil+CO2)mix − ρoil)

( kg/m3)
τ Dimensionless time (-)
Φ Porosity (-)
µ Dynamic viscosity of the fluid (kg/(s·m))
D Molecular diffusion co-efficient of CO2 in the fluid (m2/s)
g Acceleration of gravity (m/s2)
H Test height of porous media (m)
k Permeability of the porous media (m2)
Ra Rayleigh number (-)
Racritical Critical Rayleigh number (-)
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Abbreviations
sCO2 Super critical CO2
2-dim 2-dimensional
3-dim 3-dimensional
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