1	How pathogens affect the marine habitat use and migration of sea trout (Salmo trutta) in
2	two Norwegian fjord systems
3	
4	Running Head: Ecology of sea trout with pathogens
5	
6	Authors
7	
8	Robert J. Lennox ^{1, §} , Sindre Håvarstein Eldøy ² , Knut Wiik Vollset ¹ , Kristi M. Miller ³ , Shaorong
9	Li ³ , Karia H. Kaukinen ³ , Trond Einar Isaksen ¹ and Jan Grimsrud Davidsen ²
10	
11	¹ NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries,
12	Bergen, Norway
13	² NTNU University Museum, Norwegian University of Science and Technology, Trondheim,
14	Norway
15	³ Pacific Biological Station, Fisheries and Oceans and the Canadian Coastguard, Nanaimo, British
16	Columbia, Canada
17	[§] Corresponding Author: Email: robertlennox9@gmail.com; telephone: +47 911 94 442
18	
19	
20	Keywords- pathogens, acoustic telemetry, Salmon Fit-Chips
21	
22	
23	

- 24 Abstract
- 25

Wild fish are confronting changing pathogen dynamics arising from anthropogenic disturbance 26 27 and climate change. Pathogens can influence animal behaviour and life histories, yet there is little 28 such data from fish in the high north where pathogen dynamics may differ. We aimed to compare 29 the pathogen communities of 160 wild anadromous brown trout in two fjords in northern Norway 30 and determine whether pathogens influenced area use or return to spawn. Application of high-31 throughput qPCR detected 11 of the 46 pathogens screened for; most frequently encountered were 32 Ichthyobodo spp., Flavobacterium psychrophilum, and Candidatus Branchiomonas cysticola. The 33 rate of returning to freshwater during the spawning season was significantly lower for the 34 Skjestadfjord fish. Piscichlamydia salmonis and F. psychrophilum were indicator species for the 35 Skjerstadfjord and pathogen communities in the two fjords differed according to perMANOVA. 36 Individual length, Fulton's condition factor, and the time between first and last detection of the 37 fish were not related to the presence of pathogens ordinated using non-metric multidimensional 38 scaling (NMDS). However, there was evidence that pathogen load was correlated with expression 39 of smoltification genes, which are upregulated by salmonids in freshwater. Correspondingly, 40 percentage of time in freshwater after release was longer for fish with greater pathogen burdens.

42 Introduction

43

44 Pathogens may have complex life histories and are transmitted to hosts either horizontally 45 through the environment or in their food, or vertically from mother to offspring (Marcogliese, 46 2002). Infection by pathogens cause endemic diseases and can therefore be observed consistently 47 within host populations, having population dynamics linked to their host populations (Dobson, 48 2004). Depending on pathogen prevalence, host condition/immunity, and environmental 49 conditions (e.g. temperature), infections can have variable impacts on host condition and 50 performance. Drastic changes to the landscape including an increase in host abundance, shifts in 51 climate, or other factors can enhance the abundance or virulence of pathogens and result in 52 epidemics. Epidemics in wild animals have significant negative consequences to their host 53 populations and many can affect human institutions including agri/aquaculture (e.g. bovine 54 tuberculosis, Woodroffe et al., 2006; salmon lice, Vollset et al., 2017) and recreation (e.g. 55 chronic wasting disease, Needham et al., 2007; ciguatera, Cooke et al., 2018). Migratory species 56 may serve as reservoirs of pathogens and their movements across environments can expose them 57 to a higher diversity of potential pathogens or allow them to escape spatially discrete pathogen 58 reservoirs (Altizer et al., 2011).

Interest in characterizing the pathogen dynamics of wild fishes and the potential role that they have in regulating their host populations is expanding. Although host-pathogen ecology is less studied relative to processes such as predator-prey relationships, pathogens also have a critical role in regulating their hosts and can influence host behaviour. Pathogens themselves can have etiological effects that can also interact with other stressors to enhance vulnerability to disturbance and catalyze the development of disease (Altizer et al., 2013). Recent interest in

65	investigating the influence of pathogens on fish ecology has yielded insights into interactions of
66	certain pathogens with other stressors, particularly fisheries, and how pathogens can enhance
67	vulnerability of individuals to anthropogenic disturbance (Miller et al., 2014). Many fish
68	pathogens are known to occur among salmonids in Norway including Flavobacterium
69	psychrophilum, Piscine orthoreovirus-1 and -3 (PRV), salmonid gill pox virus (SGPV),
70	infectious salmon anemia (ISA), and more (Zubchenko and Karaseva, 2002; Garseth et al.,
71	2013a, 2103b, 2018). However, little is known about the prevalence, distribution, and impacts on
72	performance of key pathogens on wild anadromous salmonids in the North Atlantic.
73	Anadromous brown trout (Salmo trutta; aka sea trout) are a relevant model system for surveying
74	salmonid pathogens because (1) they occupy and spawn in small creeks often highly impacted by
75	climate change and (2), are targeted by recreational fisheries and spend most of the summer
76	months in coastal areas overlapping with many areas exploited by humans (e.g. salmon farming;
77	Eldøy et al., 2015; Thorstad et al., 2015; Bordeleau et al., 2018).
78	Pathogens can exert substantial influence on performance and fate of their hosts (e.g.
79	Bradley and Altizer, 2005) and we aimed to investigate how viruses, bacteria, and parasites
80	present on wild sea trout as they exit freshwater in multiple locations in northern Norway affect
81	marine behaviour and fate. We also applied a new salmon Fit-Chip technology to assess
82	relationships between pathogens and movement metrics with indices of stress, disease, and
83	osmoregulatory state of the sea trout host (Miller et al., 2017; Houde et al., 2019a,b). We tagged
84	fish in river systems belonging to two fjords in northern Norway to compare pathogen abundance
85	and diversity and to relate movement patterns within arrays of acoustic receivers to disease. Our
86	objective was to describe pathogens and physiological states relevant to these ecological
87	communities and identify how these factors contributed to the fate of the wild fish. As climate

88	change and human stressors are projected to have substantial impacts on these northern
89	ecosystems, our research will contribute to establishing a baseline state in areas relatively
90	unimpacted by human activity that are dominated by sea trout.
91	
92	Methods
93	
94	Study Site
95	
96	This study took place in the two fjord systems Tosenfjord and Skjerstadfjord in Northern
97	Norway (Figure 1). The study site in Tosenfjord consists of two interconnected fjords with
98	approximately 150 km ² surface area, more than 270 km of shoreline and is connected to the open
99	sea by a 15 km long strait. In Tosenfjord, the tracked fish were tagged in the two watercourses
100	Urvold and Åbjøra. The Urvold watercourse has a common water discharge of 5 m^3s^{-1} and is
101	characterised by a 200 meter steep river stretch draining from a lake, as well as an approximately
102	1 km river stretch upstream of the lake available for anadromous populations. Åbjøra
103	watercourse have about 23 km of river stretch available for anadromous salmonids. The
104	Skjerstadfjord system consists of four interconnected fjords (Skjerstadfjord, Misværfjord,
105	Valnesfjord and Saltdalsfjord). The study system in the Skjerstadfjord is more than 40 km long,
106	with a surface area of about 230 km ² , and is connected to the open coast by an approximately 15
107	km long strait, including the strong tidal current of the Saltstraumen Maelstrom. In the
108	Skjerstadfjord, the fish were tagged in the three watercourses Saltdalselva (65 km anadromous
109	stretch), Botnvassdraget (10 km anadromous stretch), and Laksåga in Sulitjelma (27 km
110	anadromous stretch).

111	Multiple open net-pen aquaculture operations are located within both of the two study
112	sites (Fig 1). In Tosenfjord, there were five registered marine aquaculture sites for salmonids in
113	2017 with a combined total allowed biomass of 15 300 tons. In Skjerstadfjord, there were seven
114	registered marine aquaculture sites for salmonids in 2018 with a total allowed biomass of 17 800
115	tons. The farmed salmon are regularly screened for diseases by the salmon farmers, and detection
116	of two diseases, pancreas disease and infectious salmon anemia, requires mandatory reporting to
117	the national authorities. In Tosenfjord, farmers reported suspicion of a pancreas disease outbreak
118	in October 2016 with confirmed pancreas disease on farmed fish in the fjord from 17 November
119	2016 and throughout the study period in this fjord system. Neither pancreas disease nor
120	infectious salmon anemia were reported on farmed fish in the Skjerstadfjord fjord system during
121	the study period.
100	
122	
122	Sampling and Tracking of Wild Sea Trout
	Sampling and Tracking of Wild Sea Trout
123	Sampling and Tracking of Wild Sea Trout All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016,
123 124	
123 124 125	All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016,
123 124 125 126	All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016, or April 28 – May 29, 2017. The trout had 2-7 seasonal feeding migrations before the sampling.
123 124 125 126 127	All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016, or April 28 – May 29, 2017. The trout had 2-7 seasonal feeding migrations before the sampling. A total of 340 trout (135-730 mm TL) in Tosenfjord (2015-2017) and 267 trout (169-890 mm
123 124 125 126 127 128	All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016, or April 28 – May 29, 2017. The trout had 2-7 seasonal feeding migrations before the sampling. A total of 340 trout (135-730 mm TL) in Tosenfjord (2015-2017) and 267 trout (169-890 mm TL) in Skjerstadfjord (2016-2018) were caught using fishing rods and gillnets that were
 123 124 125 126 127 128 129 	All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016, or April 28 – May 29, 2017. The trout had 2-7 seasonal feeding migrations before the sampling. A total of 340 trout (135-730 mm TL) in Tosenfjord (2015-2017) and 267 trout (169-890 mm TL) in Skjerstadfjord (2016-2018) were caught using fishing rods and gillnets that were continuously monitored, and kept in holding nets for up to four hours prior to tagging. The fish
 123 124 125 126 127 128 129 130 	All brown trout were sampled during March 28 – May 31, 2016, September 22-25 2016, or April 28 – May 29, 2017. The trout had 2-7 seasonal feeding migrations before the sampling. A total of 340 trout (135-730 mm TL) in Tosenfjord (2015-2017) and 267 trout (169-890 mm TL) in Skjerstadfjord (2016-2018) were caught using fishing rods and gillnets that were continuously monitored, and kept in holding nets for up to four hours prior to tagging. The fish were sedated using 2-phenoxy ethanol, and acoustic transmitters (Thelma Biotel AS, Norway,

134 recovery from the sedation in a tank for up to 15 minutes followed by release at a calm site at the 135 tagging location. Scales were visually analyzed to determine individual age and migration 136 history. The experimental procedures were approved by the Norwegian National Animal 137 Research Authority (permission number 2012/22965 & 2015/8518). 138 In both fjord systems, arrays of acoustic receivers (Vemco Inc., Halifax, Canada; models 139 VR2, VR2W and VR2-AR) were deployed in fresh- and saltwater to monitor the movements of 140 the tagged fish. Acoustic receivers (i.e. hydrophones) are listening stations tuned to the same 141 frequency as tag transmissions so that they can identify individual tags from detections when in 142 range. Detection ranges in the two fjords ranged from 200-400 m. In Skjerstadfjorden, detection 143 efficiency at the outermost array of receivers were 100 %, will the efficiency of the receivers 144 arrays in Tosenfjord ranged from 81-100% (Bordeleau et al., 2019; Davidsen et al., 2019). Based 145 on size of the fish and sampling and tagging in the springtime, fish were expected to have been 146 animals that had previously been to sea, overwintered in freshwater for several months, and now 147 beginning to move back into the marine environment for the summer. 148 149 Genomic Analysis 150 151 For this study, 160 of a total of 607 trout were sub-selected for genomic analysis. Ninety 152 three of the trout originated from the Tosenfjord, of which 60 were from Urvoll and 33 from 153 Åbjøra. The remaining 67 were from the Skjerstadfjord system, 29 from Sulitjelma Laksåga, 23

- 154 from Botnvassdraget, and 15 from Saltdalselva. Sea trout from the Skjerstadfjord were larger (t =
- 155 2.90, df = 102.07, P < 0.01) on average (507 \pm 139 mm) than those from the Tosenfjord (451 \pm

156 86 mm) but there was no difference in Fulton's condition factor. Expression data for two fish 157 failed and was excluded, so the maximum sample for data including genomic analysis was 158. 158 Gill tissues samples from the fish were preserved at-196° C and the expression of host-159 and microbe- related biomarkers were analyzed by quantitative real-time polymerase chain 160 reaction (qPCR) as described in Teffer et al. (2019). On the first dynamic array run, nucleic acids 161 obtained from gill samples were assessed for pathogens capable of causing disease (hereafter 162 referred to as pathogens, but note that the detection of a pathogen does not imply the detection of 163 a disease; Table 1: 12 viruses, 12 bacteria, and 14 microparasites) using 39 qPCR assays to 164 pathogens and three host reference genes (S100 calcium binding protein, Coiled-coil domain-165 containing protein 84, 39S ribosomal protein L40, mitochondrial precursor described in Miller et 166 al., 2017). All pathogen assays and host reference genes were run in duplicate. On a second 167 dynamic array run, nucleic acids from gill samples were assessed for transcriptional activity of 168 63 host biomarkers comprised of panels of genes that when co-expressed are predictive of 169 specific physiological processes of interest in our study (e.g. thermal (Akbarzadeh et al., 2018), 170 hypoxia, osmotic (taken from smoltification studies (Houde et al., 2019a,b), viral disease (Miller 171 et al., 2017), immune stimulation, general stress, and mortality related (Miller et al., 2011); See 172 Table 2) run as singletons, along with duplicate assays to the same three host reference 173 (housekeeping) genes. Dynamic arrays containing these curated host biomarker panels to assess 174 host health and condition are termed "Salmon Fit-Chips" (Houde et al., 2019a). 175 Total RNA was extracted by homogenization of tissue in TRI reagent (Ambion Inc., 176 Austin, TX) followed by aqueous separation using 1-bromo-3-chloropropane. Resulting 177 supernatants were used to extract purified total RNA using the Magmax-96 for Microarrays 178 RNA kit (Ambion Inc.) on a Biomek NXP (Beckman-coulter, Mississauga, ON, Canada)

179 automated liquid handler according to the manufacturers "spin method". Extracted RNA 180 (0.25ug) was reverse transcribed to cDNA using the SuperScript VILO master mix kit 181 (Invitrogen, Carlsbad, CA) following the manufacturer's method. The BioMark platform 182 employs nanofluidics, as per manufacturer's recommendations, and specific target amplification 183 (STA) of assays is required (Dhoubhadel et al., 2014). The cDNA (1.3 μ l) from each sample was 184 preamplified with a mixture of $0.2 \mu M$ of primer pairs for each of the assays applied in a given 185 dynamic array run using TaqMan Preamp MasterMix (Applied Biosystems, Foster City, 186 California) in a 5 µl reaction. The preamplification was run for 14 amplification cycles, as per the 187 BioMark protocol. ExoSAP enzyme treatment (Affymetrix, Santa Clara, CA) was used to 188 remove unincorporated primers from the assays, which were then diluted 1:5 in DNA Suspension 189 Buffer (Teknova, Hollister, CA). For pathogen quantification, artificial positive constructs (APC) 190 were created from each microbe assay region's sequence, with an additional sequence added that 191 allowed for the detection of vector contamination (see Miller et al., 2016). A serial dilution of 192 these APC clones was run on the dynamic array for calculation of assay efficiency. For the 193 Salmon Fit-Chips, a serial dilution of gill cDNA was included in STA processing to be used in 194 gene expression analysis. BioMark Fluidigm Dynamic Arrays were run according to the 195 manufacturer's instructions. Cycle threshold (CT) values were determined using the BioMark 196 Real-Time PCR analysis software (Fluidigm Corp., CA), and duplicates handled with limits of 197 detections applied (Miller et al., 2016) through an access database. For pathogens, only samples 198 with detections for both duplicate assays were considered positive. For host biomarkers, sample 199 gene expression was normalized with the $\Delta\Delta$ Ct method (Livak and Schmittgen, 2001) using the 200 non-diluted pool sample as the calibrator. Gene expression was then log transformed: $log_2(2^-)$ $\Delta\Delta Ct$).

9

203 Data Analysis

204

- 205 Pathogen Data
- 206

207 Pathogen loads were measured as the number of cycles for initial detection in the qPCR 208 runs (C_T values) executed with a maximum of 45 cycles. For analyses and visualizations, qPCR 209 results are transformed by subtracting the C_T value from 45 with not detected pathogens 210 (negative results) given as 0, such that high values (pathogen loads) are then closer to 45. 211 Pathogen loads were then transformed to relative load to scale the values for multivariate 212 ordination; this was preferred to standardization because ordination cannot handle negative 213 values produced by z-scores (Teffer et al., 2017). Relative infection burden was calculated as the 214 sum of the relative load of each pathogen. Shannon diversity, a measure of abundance and 215 evenness of an ecological community (Hurlburt, 1971) was computed with the *diversity* function 216 in the R package vegan (Oksanen et al., 2019) and compared between the Tosenfjord and 217 Skjerstadfjord by a t-test with the *t.test* function in R. Indicator species, which are species 218 associated with sites based on pattern matching, were investigated using multilevel pattern 219 analysis (*multipatt* function in indicspecies package; De Caceres and Lagendre 2009). Pathogen 220 readings were unsuccessful for two of the 160 individuals. 221

222 Summarising Observed Movements

224	Acoustic telemetry detections from each of the two fjords were used to identify
225	movement patterns and spatial area use by the tagged sea trout. We used movement to estimate
226	1) survival; 2) network use; and 3) time spent in freshwater. All analyses were carried out using
227	R.
228	
229	1. Survival to spawn
230	
231	Despite not having details of the death of any fish, we had detection histories for each individual
232	that we used to estimate fate of all 160 individuals. Each fish is expected to return to rivers
233	between August and October, where they then overwinter. Given that we had good coverage of
234	rivers in the system, we registered fish that were detected in freshwater between August and
235	October following tagging; those that were not recorded at freshwater receivers were coded as
236	missing spawning (note that this does not necessarily mean they died). Survival time was
237	modeled by time to event analysis (event being the last detection) by the cph function in the rms
238	package (Harrell, 2019). Time to event was the number of days between the event and the date of
239	release and was modeled against fish length, condition factor, fjord of origin, tagging year, and
240	pathogen diversity for that individual (see below). A second model was run with only fjord of
241	origin. Assumption of proportionality of hazards was checked by the cox.zph function in the rms
242	package. Three individuals were excluded from the survival analysis owing to lack of data.
243	
244	2. Network analysis metrics
245	

246	To classify individual movement patterns, we extracted detection data from the acoustic
247	telemetry arrays in the Tosenfjord and Skjerstadfjord. Network analyses were conducted for each
248	individual to summarise their use of the available receiver array. From individual networks, we
249	calculated mean betweenness, mean degree, and diameter. Betweenness is a measure of the
250	shortest paths through a receiver and is measured for each receiver, degree is the number of other
251	receivers visited directly after visiting that given receiver, and the diameter is the shortest
252	distance through all nodes (receivers) in a network (Csardi and Nepusz 2006). Network metrics
253	were compared between fjords using a t test with the <i>t.test</i> function in R.
254	
255	3. Time spent in freshwater
256	
257	The proportion of time spent in freshwater was calculated by subtracting the time between two
258	detections and adding them for all receiver locations grouped by habitat type (river, estuary,
259	fjord). This yielded an estimated time interval spent in each habitat type, but we focused on
260	freshwater.
261	
262	Non-metric multidimensional scaling
263	
264	Non-metric multidimensional scaling (NMDS) is an ordination method often used to
265	analyze predictor variables explaining ecological community data based on species counts at
266	sites (Oksanen et al., 2019). We implemented NMDS with the metaMDS function in the vegan
267	package using 999 permutations, 100 iterations and three dimensions, rather than the default of
268	two dimensions due to lack of convergence. We ordinated information on pathogens for 126 of

269 the 160 sea trout that were sampled, excluding all that had all zero pathogen values because 270 NMDS would not run with rows having all zero values. Twelve of these 126 were captured by 271 gill net and 114 were captured by angling. We were interested in relationships between these 272 community data and the site as well as gene expression data and individual metrics. Gene 273 expression data were ordinated onto the NMDS using the *envfit* function, which ordinates 274 additional variables into the analysis. For visualisation, only significant genes (P < 0.05) are 275 displayed with unscaled arrow segments. A second *envfit* function was passed to the NMDS to 276 add individual information: length, condition factor, total detection interval (days from first to 277 last detection), proportion of time in freshwater, and three network analysis summary statistics 278 (degree, betweenness, diamater; see above for calculation details in *Summarising Observed* 279 *Movement*). Two fish were missing condition factor; instead of deleting them, we imputed them 280 as having the mean of the fish from that fjord. To test results of the NMDS we used permutated 281 analysis of variance (perMANOVA) implemented with the *adonis* function in vegan, with fjord, 282 length, condition factor, total detection interval (days from first to last detection), proportion of 283 time in freshwater, network betweenness, degree, and diameter as predictors. The perMANOVA 284 was run with 999 permutations. Plots were drawn with ggplot2 (Wickham et al., 2016). 285 286 **Results** 287 Pathogen Data 288

289

All fish were sampled in freshwater rivers but had previously been to the ocean based on scale analyses. Eleven pathogens were detected, with at least one pathogen detected in 126 of the

292	158 fish tested (80%). The most common pathogen recorded in the sample was Ichthyobodo sp.,
293	present in 63% of the 158 sampled fish, followed by <i>Flavobacterium psychrophilum</i> (34%),
294	Candidatus Branchiomonas cysticola (31%), and Ichthyophthirius multifiliis (18%; Table 3;
295	Figure 2). Analysis of diversity was conducted on 158 individuals including individuals with no
296	pathogens observed. Shannon diversity scores of pathogens ranged from 0-1.60 with a mean of
297	0.52. The individual having diversity=1.60 registered presence of five pathogens. Pathogen
298	communities were more diverse (t = 6.35, P < 0.01) in the Skjerstadfjord (mean = 0.81 ± 0.50)
299	than the Tosenfjord (mean = 0.32 ± 0.44). According to multilevel pattern analysis,
300	<i>Flavobacterium psychrophilum</i> (stat = 0.62 , P = 0.01) and <i>Piscichlamydia salmonis</i> were
301	indicator species for the Skjerstadfjord. There were no significant indicator species for the
302	Tosenfjord.
303	
304	Summarising observed movements
305	
306	Sea trout were tracked for a minimum of three and a maximum of 806 days (mean $= 155$
307	\pm 132 d). Trout from the Tosenfjord were detected for a mean of 156 \pm 102 d, similar to the
308	Skjerstadfjord where they were tracked for a mean interval of 154 ± 166 d. By average,
309	Tosenfjord trout spent 31% of the detections at freshwater receivers whereas Skjerstadfjord spent
310	18%. Overall only eight of 160 trout were never detected outside of freshwater, suggesting a
311	95% rate of marine migration in this sample. Eighty nine trout were detected between August

and October (when they would be expected to return to spawn) following tagging (56%), only 45

313 of which were detected at freshwater receivers anytime in these months. A greater proportion of

trout from the Tosenfjord (43%) were tracked to or beyond the beginning of the spawning

 terms failed the assumption of proportionality of hazards (χ² = 22.29, P < 0.01) but the simple single-term model revealed a significant difference between fjords with respect to return to freshwater for spawning (χ² = 20.78, P < 0.01; Figure 3). <i>Non-metric multidimensional scaling</i> Non-metric multidimensional scaling on the 126 individuals having non-zero pathogen prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vir disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 freshwater for spawning (\(\chi_2 = 20.78, P < 0.01; Figure 3). <i>Non-metric multidimensional scaling</i> Non-metric multidimensional scaling on the 126 individuals having non-zero pathogen prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vir disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 Non-metric multidimensional scaling Non-metric multidimensional scaling Non-metric multidimensional scaling on the 126 individuals having non-zero pathogen prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight via disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 Non-metric multidimensional scaling Non-metric multidimensional scaling on the 126 individuals having non-zero pathogen prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vin disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 Non-metric multidimensional scaling on the 126 individuals having non-zero pathogen prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vir disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
Non-metric multidimensional scaling on the 126 individuals having non-zero pathogen prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vin disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in	
 prevalence revealed significant overlap of disease profiles for individuals from the Tosenfjord and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vir disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 and the Skjerstadfjord and therefore no significant differences (Figure 4). Envfit revealed significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vin disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 significant associations with four of 11 smoltification genes on NMDS 1 and 2 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight vitilities genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 (SMLT_CCL19_V1, SMLT_IL2B_V1, SMLT_WAS_V1, SMLT_CCL4_V1), two of eight via disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 disease genes (VDD_GAL3_MGL2, VDD_MX_ONTS), three of six MRS genes (MRS_C7, MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
 MRS_RPL7, MRS_NKA_B1), one of 14 heat shock genes (HX_PGK), and one of two inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	ral
 inflammation genes (INF_MMP25). No immune stimulation, general stress, osmotic stress, stress-mortality, or thermal stress related genes were significantly associated with pathogens in 	
330 stress-mortality, or thermal stress related genes were significantly associated with pathogens in	
axis 1 or 2 of the NMDS (Figure 4). The smoltification family of genes being expressed are	L
332 consistent with NMDS2 positive fish being in freshwater for some time and ill-prepared for	
333 saltwater entry at the time of tagging, consistent with the significantly longer post-release	
334 "freshwater" residency displayed by these fish, as depicted by <i>envfit</i> layering in Figure 4. Also	
consistent was the greater tendency of NMDS2 positive fish towards infection, especially with	
freshwater transmitted agents (Table 1). Alternately, the negative end of NMDS3 revealed a	
337 clear signature consistent with viral infection (up-regulation of multiple genes within the viral	

disease development [VDD] panel), although this signature was not associated with any virusesin our panel.

340	The envfit revealed that the percentage of time in freshwater, receiver network diameter,
341	and condition factor of the fish were significant along NMDS 1 (Figure 4). Condition factor was
342	ordinated opposite time in freshwater, suggesting that fish in higher condition spent less of their
343	time in freshwater. Cross-validation with perMANOVA to test for associations between the
344	ordinated infection metrics and putative predictors indicated that pathogen community was
345	related to time in freshwater (F = 3.61, P = 0.01), and fjord of origin (F = 2.86, P = 0.03).
346	
347	Discussion
347 348	Discussion
	Discussion The pathogen data described in this paper represents an important baseline evaluation for
348	
348 349	The pathogen data described in this paper represents an important baseline evaluation for
348349350	The pathogen data described in this paper represents an important baseline evaluation for these northern Norwegian fjord communities that are anticipated to change in the near future.

354 reservoirs from which pathogens can spillback to wild populations and vice versa (Krkošek,

355 2017). Potential to intensify aquaculture operations in these northern regions of Norway will

import a high density of potential hosts that could harbour pathogens relevant to wild salmonids;

importantly, these will likely include those we found to be rare or absent from these populations

at this time. Sea trout may be particularly vulnerable to the impacts of pathogens from

aquaculture given that they spend much of the marine phase of their life history in coastal zones

and fjords where aquaculture operations are sited (Thorstad et al., 2016).

361 Five pathogens had relatively high prevalence in our sample. The most common was 362 *Ichthyobodo* sp., a group of flagellate fish parasites causing ichthyobodosis (Isaksen et al., 2010; 363 Isaksen, 2013). Records of ichthyobodosis in fish farms exist for over a century and species from 364 the complex have been recorded infecting brown trout (Isaksen et al., 2010, 2012). The two 365 primary species are *I. necator*, a freshwater species, and *I. salmonis*, a euryhaline species that can 366 affect salmonids in both the marine and freshwater environments (Isaksen et al., 2010, 2011). 367 The ciliate *Ichthyophthirius multifiliis* is the etiological agent of white-spot disease and is more 368 prevalent at warmer water temperatures (Bass et al., 2017). Ichthyophthirius multifiliis seems to 369 proliferate at high host density such as on spawning grounds and in hatcheries (Bass et al., 2017). 370 In Pacific salmon, I. multifilis can be a major cause of pre-spawning mortality (Traxler et al., 371 1998). Flavobacterium psychrophilum was one of the most prevalent pathogens infecting sea 372 trout in the northern Norwegian fjords. This is a cosmopolitan fish pathogen that causes bacterial 373 cold-water disease in salmonids with highest virulence at temperatures < 15 °C (Nematollahi et 374 al., 2003). Flavobacterium psychrophilum seems to covary with senescence in adult salmon and 375 be a predictor of mortality in migrating juvenile and adult salmonids (Furey 2016; Bass et al., 376 2017; Teffer et al., 2017). Bass et al. (2017) suggested a link between F. psychrophilium and 377 Candidatus Branchiomonas cysticola, a bacterium first described in Norwegian farmed salmon 378 (Toenshoff et al., 2012). Among sea trout in our sample, however, the two bacteria only co-379 occurred in 20% of individuals. Ca. B. cysticola is implicated in the formation of epitheliocysts 380 in the gills and skin of salmon (Mitchell et al., 2013), recently also demonstrated in wild 381 Chinook salmon [Di Cicco, unpublished data]). Twardek et al. (2019) identified high prevalence 382 of both Flavobacterium and Ca. B. cysticola in steelhead (Oncorhynchus mykiss) returning to 383 their spawning river in northern British Columbia, and found that the prevalence of both was

high among fish captured earlier in the migration below a natural barrier than above the barrier
by recreational anglers. Therefore, these two pathogens may be implicated in premature
mortality of migrating fish.

387 We anticipated that pathogens identified in sea trout in our sample would correlate to the 388 migration of fish in the Tosenfjord and Skjerstadfjord as observed by acoustic telemetry. On the 389 contrary, we found that the infections were inconsistently related to the movement patterns we 390 observed. We did, however, identify the proportion of time spent in freshwater after release to be 391 significantly related to the pathogen community based on NMDS and perMANOVA. Based on 392 the ordinations, it seemed that Ichthyobodo was perhaps associated with time in freshwater. 393 Ectoparasitic salmon lice (Lepeophtheirus salmonis) can alter behaviour of sea trout (Thorstad et 394 al., 2015), causing them to move more frequently back to freshwater. Mechanistic details of the 395 action of certain pathogens on the energy processing and swimming power/endurance is lacking 396 except for Pacific salmonids, for which pathogens have been shown to influence the likelihood 397 of en-route mortality of smolts leaving rivers (Miller et al., 2014; Jeffries et al., 2014; Furey, 398 2016) and adults returning to spawn (Teffer et al., 2017). There are also key interactions between 399 pathogen communities and stressors, suggesting that pathogens increase susceptibility to 400 disturbances (Teffer et al., 2017; Bass et al., 2019). Although this was beyond the scope of our 401 study, it is relevant to note that such effects have been noted elsewhere.

Gene expression data revealed some potentially important details about each individual's acclimatization to freshwater and exposure to pathogens. The majority of the osmoregulatory (SMLT) genes up-regulated in fish portioning in the upper right corner of Figure 4a are expressed at higher levels in fish comfortable in freshwater (e.g. these are down-regulated in smolts). Our samples were predominantly taken from trout presumed to be migrating out of freshwater, which

had already been at sea the year before and had overwintered in freshwater. We did not know the
history of these fish, but expect that they entered freshwater from August-October the previous
year. We could speculate that fish in the upper right corner of Figure 4a have been in rivers for
longer than those partitioning in the lower left. This is consistent not only with the genes being
expressed, but also with the pathogens that are more (*I. hoferi* and *F. psychrophilum*), and less (*P. salmonis*), prevalent in these fish according to the NMDS plot.

413 We did not find significant activation of genes associated with stress and immunity in 414 infected fish based on NMDS. Three genes with role in intracellular, largely but not exclusively 415 viral (if a fuller range of VDD genes were not differentially expressed), responses were 416 upregulated in the bottom of Figure 4a—Mx and GAL3. Smoltification and the physiological 417 preparation for moving to sea are expected to coincide with a downregulation of the immune 418 response (Houde et al., 2019). These gene signatures are clustering most strongly with 419 Tetracapsuloides bryosalmonae, an agent transmitted from freshwater bryozoans that causes 420 proliferative kidney disease. This is consistent with the freshwater affinity of the fish at the top 421 right corner of the plot. Given that this parasite is only known to impact kidney tissue, 422 differential immune stimulation in the gill is unlikely to be related to *Tetracapsuloides* 423 bryosalmonae infection. Disease data could be prone to survivor bias given that most of the 424 sampling was in the springtime and overburdened individuals could have died during winter. We 425 did resolve a signature of viral disease development on NMDS3 that has been previously shown 426 to predict fish that are responding to an RNA viral infection (Miller et al., 2017). Whereas none 427 of the viruses on our panel were associated with this signature, it is possible that these fish were 428 responding to a virus not on our panel; this panel of genes has, in fact, led to the successful 429 discovery of several uncharacterized viruses (see Mordecai et al., 2019). Future research should

430 sample fish at sea or returning to rivers to spawn in the summer and autumn to more accurately
431 reflect the influence of marine pathogens on sea trout, which were likely underrepresented in our
432 study given sampling took place in freshwater.

433 We only had two fjords for comparison but found a significant difference between fjords 434 in terms of the pathogen community composition and diversity, with significantly higher 435 diversity in the more northerly Skjerstadfjord. The mechanisms for the differences are unclear, 436 and a greater number of samples from different fjords could help elucidate what spatial and 437 environmental factors contribute to the fish pathogen communities. Spatiotemporal pathogen 438 dynamics are important to explore, particularly as these areas are facing climate change, which is 439 expected to affect northern marine habitats more drastically (Burrows et al., 2011). Fjords in 440 Norway are connected by marine species that migrate and disperse, which can be vectors for 441 pathogens that generate local hotspots in the landscape. Human activities can influence the 442 presence of pathogens and aquaculture operations, for example, can import pathogens or provide 443 a reservoir in which pathogens can thrive and be transmitted to wild fish (Jones et al., 2015; 444 Wiik-Neilsen et al., 2017). More research on the presence and prevalence of these pathogens in 445 wild and farmed salmonids in other Norwegian fjords is important for comparison with our 446 results to develop an understanding of the factors limiting the distribution of relevant salmonid 447 pathogens. As conditions in these fjords continue to change with increasing human influence and 448 climate change, sustained monitoring of these populations will be useful to track changes 449 compared to our results that can act as a baseline for this area.

There are some important limitations to our study that merit expansion and further
investigation. Our screening was limited to 46 pathogens and we selected candidates of interest,
which may have excluded some potential pathogens. Notably, we did not know the exact history

453 of the tagged fish with respect to their previous time spent at sea or area occupied although all 454 were exposed to marine pathogens before based on scale analysis. Although Bass et al. (2017) 455 suggested sex is an important factor contributing to the pathogen community infecting chinook 456 salmon, we were unable to include this factor in our analysis because of incomplete information 457 about sex from several individuals. We were unable to determine the precise age or prior history 458 of enough fish that we sampled for this study, complicating some interpretations of our findings 459 because modelling would exclude several individuals with uncertain age or sex and we opted for 460 a simpler model with greater sample size. Larger individuals tend to be older, but body length 461 was not significant in any analyses. This is somewhat counterintuitive given that larger 462 individuals, if indeed they are older, should have had longer exposure to potential pathogens and 463 more likely had previous marine exposure. However, there is survivor bias in this given that the 464 large individuals sampled were non-random. Indeed, angling may be selective against pathogens; 465 Twardek et al. (2019) found that angling selected for individuals with lower pathogen loads than 466 net fishing, although there may have been spatial sampling bias.

467

468 <u>Conclusions</u>

469

The importance of host-pathogen dynamics in structuring ecosystems is increasingly recognized and the potential influence of pathogens on host populations is receiving attention as an avenue to understand population dynamics (Miller et al., 2014) yet limited research has been conducted on the pathogen profiles of fish in northern areas. We applied salmon Fit-Chips, recently developed in the Miller laboratory, for this study. Fit-Chips contain curated host biomarker panels predictive of shifts in immune status, specific and general stress responses,

476 smolt readiness, and imminent mortality (death within 24-72 hours) for application across 477 salmonid species. Pairing individual data with pathogen and host biomarker data using Fit-Chips 478 provides a generalizable method for rapidly assessing the status of individual salmonids to 479 investigate whole animal "health" status and test hypotheses about population-level responses 480 through the lens of the individual. Fit-Chips have been recently for salmonids in the Pacific, 481 Arctic, and Atlantic Oceans and have great potential to improve our understanding of fish and 482 food web ecology in these regions. Our research revealed relatively limited diversity of viruses, 483 bacteria, and parasites among anadromous brown trout sampled from rivers in two fjords in 484 northern Norway. We focus on the eleven pathogens that had positive tests in our sample but equally important is the large number of pathogens not present in the two fjords we sampled, but 485 486 that have the potential to colonize as increasing human activity and climate add new stressors to 487 these areas. Molecular signatures of pathogens including *Gyrodactylus salaris*, salmon gill pox 488 virus, viral hemorrhagic septicemia, and Yersinia ruckeri (enteric redmouth) is important 489 particularly as G. salaris causes substantial economic damage among wild Norwegian salmon. 490 Ichthyobodo, F. psychrophilum, and Ca. B. cysticola were the most prevalent pathogens, all of 491 which are relatively cosmopolitan and likely endemic. The baseline provided by this research 492 should generate new opportunities for comparing pathogen communities of salmonids in other 493 areas of Norway and in southern populations along the coast of Europe as well as temporal 494 contrast in the future when changes to the pathogen community could precipitate from changing 495 conditions in these northern regions of Norway.

496

497 Acknowledgments

498

499	Dr. Amy Teffer (University of British Columbia) provided input and some code for analysis of the
500	infection data. Amy Tabata (Department of Fisheries and Oceans Canada) compiled the data and
501	conducted early exploratory analyses. We sincerely thank Marc André Francis Daverdin
502	(Norwegian University of Science and Technology) for generating Figure 1. Funding provided by
503	Norges Forskningsråd no. 5314702.
504	
505	Data Availability
506	
507	The data that support the findings of this study will be made publicly available through the Ocean
508	Tracking Network database for animal telemetry data following publication of the data.
509	
510	Conflict of Interest

511512 The authors declare no competing interests.

513 **References**

- 514
- 515 Akbarzadeh, A., Günther, O. P., Houde, A. L., Li, S., Ming, T. J., Jeffries, K. M., Hinch, S.G., &
- 516 Miller, K. M. (2018). Developing specific molecular biomarkers for thermal stress in
- 517 salmonids. *BMC Genomics*, 19, 749.
- Altizer, S., Bartel, R., & Han, B. A. (2011). Animal migration and infectious disease risk. *Science*, 331, 296-302.
- Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S., & Harvell, C. D. (2013). Climate change and
 infectious diseases: from evidence to a predictive framework. *Science*, 341, 514-519.
- 522 Bass, A. L., Hinch, S. G., Teffer, A. K., Patterson, D. A., & Miller, K. M. (2017). A survey of
- microparasites present in adult migrating Chinook salmon (*Oncorhynchus tshawytscha*)
 in south-western British Columbia determined by high-throughput quantitative

525 polymerase chain reaction. *Journal of Fish Diseases*, 40, 453-477.

- 526 Bordeleau, X., Davidsen, J. G., Eldøy, S. H., Sjursen, A. D., Whoriskey, F. G., & Crossin, G. T.
- 527 (2018). Nutritional correlates of spatiotemporal variations in the marine habitat use of
- brown trout (*Salmo trutta*) veteran migrants. *Canadian Journal of Fisheries and Aquatic Sciences*, 75, 1744-1754.
- Bradley, C. A., & Altizer, S. (2005). Parasites hinder monarch butterfly flight: implications for
 disease spread in migratory hosts. *Ecology Letters*, 8, 290-300.
- 532 Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M.,
- 533 Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V.,
- 534 Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman,

- W. J., & Richardson, A. J. (2011). The pace of shifting climate in marine and terrestrial
 ecosystems. *Science*, 334, 652-655.
- 537 Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space
 538 and habitat use by animals. *Ecological Modelling*, 197, 516-519.
- 539 Cooke, S. J., Twardek, W. M., Lennox, R. J., Zolderdo, A. J., Bower, S. D., Gutowsky, L. F.,
- 540 Danylchuk, A. J., Arlinghaus, R., & Beard, D. (2018). The nexus of fun and nutrition:
 541 Recreational fishing is also about food. *Fish and Fisheries*, 19, 201-224.
- 542 Csardi, G., Nepusz, T. (2006). The igraph software package for complex network research,
 543 InterJournal, *Complex Systems*, 1695. http://igraph.org
- 544 Davidsen, J.G., Eldøy, S.H., Meyer, I., Halvorsen, A.E., Sjursen, A.D., Rønning, L., Schmidt,
- 545 S.N., Præbel, K., Daverdin, M., Bårdsen, M.T., Whoriskey. F. & Thorstad, E.B. (2019).
- 546 Anadromous brown trout and Arctic charr in the Skjerstad Fjord Marine migrations,
- 547 area use and population genetics NTNU Vitenskapsmuseet naturhistorisk rapport 2019,
 548 5, 1-80.
- 549 De Caceres, M., Legendre, P. (2009). Associations between species and groups of sites: indices
 550 and statistical inference. *Ecology*, 90, 3566-3574.
- Dobson, A. (2004). Population dynamics of pathogens with multiple host species. *The American Naturalist*, 164, S64-S78.
- 553 Draghi, A., Popov, V. L., Kahl, M. M., Stanton, J. B., Brown, C. C., Tsongalis, G. J., West, A.
- B., & Frasca, S. (2004). Characterization of "*Candidatus* piscichlamydia salmonis"
- 555 (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in
- farmed Atlantic salmon (*Salmo salar*). *Journal of Clinical Microbiology*, 42, 5286-5297.

557	Eldøy, S. H., Davidsen, J. G., Thorstad, E. B., Whoriskey, F., Aarestrup, K., Næsje, T. F.,
558	Rønning, L., Sjursen, A. D., Rikardsen, A. H., & Arnekleiv, J. V. (2015). Marine
559	migration and habitat use of anadromous brown trout (Salmo trutta). Canadian Journal
560	of Fisheries and Aquatic Sciences, 72, 1366-1378.
561	Fryer, J. L., & Hedrick, R. P. (2003). Piscirickettsia salmonis: a Gram-negative intracellular
562	bacterial pathogen of fish. Journal of Fish Diseases, 26, 251-262.
563	Furey, N. B. (2016). Migration ecology of juvenile pacific salmon smolts: the role of fish
564	condition and behaviour across landscapes (Doctoral dissertation, University of British
565	Columbia).
566	Garseth, Å. H., Ekrem, T., & Biering, E. (2013a). Phylogenetic evidence of long distance
567	dispersal and transmission of piscine reovirus (PRV) between farmed and wild Atlantic
568	salmon. PLoS One, 8, e82202.
569	Garseth, Å. H., Fritsvold, C., Opheim, M., Skjerve, E., & Biering, E. (2013b). Piscine reovirus
570	(PRV) in wild Atlantic salmon, Salmo salar L., and sea-trout, Salmo trutta L., in Norway.
571	Journal of Fish Diseases, 36, 483-493.
572	Harrell, F.E. (2019). rms: Regression Modeling Strategies. R package version 5.1-3.
573	https://CRAN.R-project.org/package=rms
574	Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel,
575	M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science,

- 576 296, 2158-2162.
- 577 Hijmans, R. J. (2019). raster: Geographic Data Analysis and Modeling. R package version 2.9-5.
 578 https://CRAN.R-project.org/package=raster

579	Houde, A. L. S., Akbarzadeh, A., Günther, O. P., Li, S., Patterson, D. A., Farrell, A. P., Hinch, S.
580	G., & Miller, K. M. (2019a). Salmonid gene expression biomarkers indicative of
581	physiological responses to changes in salinity, temperature, but not dissolved oxygen.
582	Journal of Experimental Biology, 222, 198036.
583	Houde, A. L. S., Günther, O. P., Strohm, J., Ming, T. J., Li, S., Kaukinen, K. H., Patterson, D.
584	A., Farrell, A. P., Hinch, S. G., Miller, K. M. (2019b). Discovery and validation of
585	candidate smoltification gene expression biomarkers across multiple species and ecotypes
586	of Pacific salmonids. Conservation Physiology, 7, coz051.
587	Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative
588	parameters. Ecology, 52(4), 577-586.
589	Isaksen, T. E., Karlsbakk, E., Repstad, O. and Nylund, A. (2012). Molecular tools for the
590	detection and identification of Ichthyobodo spp. (Kinetoplastida), important fish
591	parasites. Parasitology International, 61, 675-683.
592	Isaksen, T. E., Karlsbakk, E., Sundnes, G. A., & Nylund, A. (2010). Patterns of Ichthyobodo
593	necator sensu stricto infections on hatchery-reared Atlantic salmon Salmo salar in
594	Norway. Diseases of Aquatic Organisms, 88, 207-214.
595	Isaksen, T. E., Karlsbakk, E., Watanabe, K., & Nylund, A. (2011). Ichthyobodo salmonis sp. N.
596	(Ichthyobodonidae, Kinetoplastida), an euryhaline ectoparasite infecting Atlantic salmon
597	(Salmo salar L.). Parasitology, 138, 1164-1175.
598	Jones, S. R., Bruno, D. W., Madsen, L., & Peeler, E. J. (2015). Disease management mitigates

- 599 risk of pathogen transmission from maricultured salmonids. *Aquaculture Environment*
- *Interactions*, 6, 119-134.

601	Jeffries, K. M., Hinch, S. G., Gale, M. K., Clark, T. D., Lotto, A. G., Casselman, M. T., Li, S.,
602	Rechinsky, E. L., Porter, A. D., Welch, D. W., & Miller, K. M. (2014). Immune response
603	genes and pathogen presence predict migration survival in wild salmon smolts. Molecular
604	Ecology, 23(23), 5803-5815.
605	Kocan, R., Hershberger, P., & Winton, J. (2004). Ichthyophoniasis: an emerging disease of
606	Chinook salmon in the Yukon River. Journal of Aquatic Animal Health, 16(2), 58-72.
607	Krkošek, M. (2017). Population biology of infectious diseases shared by wild and farmed fish.
608	Canadian Journal of Fisheries and Aquatic Sciences, 74, 620-628.
609	Lafferty, K. D. (2004). Fishing for lobsters indirectly increases epidemics in sea urchins.
610	Ecological Applications, 14, 1566-1573.
611	Lennox, R. J., Espedal, E. O., Barlaup, B. T., Mahlum, S., Vollset, K. V. (2019). A test of
612	migratory coupling in the salmon-trout predator-prey complex of a subarctic fjord. Boreal
613	Environment Research, 00, 00-00.
614	Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-
615	time quantitative PCR and the $2-\Delta\Delta CT$ method. Methods, 25(4), 402-408.
616	Marcogliese, D. J. (2002). Food webs and the transmission of parasites to marine fish.
617	Parasitology, 124, 83-99.
618	Miller, K. M., Günther, O. P., Li, S., Kaukinen, K. H., & Ming, T. J. (2017). Molecular indices
619	of viral disease development in wild migrating salmon. Conservation Physiology, 5,
620	cox036.

- 621 Miller, K. M., Gardner, I. A., Vanderstichel, R., Burnley, T., Angela, D., Li, S., Tabata, A.,
- 622 Kaukinen, K. H., Ming, T. J., & Ginther, N. G. (2016). Report on the performance

623	evaluation of the Fluidigm BioMark platform for high-throughput microbe monitoring in
624	salmon (p. 282). Fisheries and Oceans Canada, Ecosystems and Oceans Science.
625	Miller, K. M., Teffer, A., Tucker, S., Li, S., Schulze, A. D., Trudel, M., Juanes, F., Tabata, A.,
626	Kaukinen, K. H., Ginther, N. G., Ming, T. J., Cooke, S. J., Hipfner, J. M., Patterson, D.
627	A., & Hinch, S. G. (2014). Infectious disease, shifting climates, and opportunistic
628	predators: cumulative factors potentially impacting wild salmon declines. Evolutionary
629	Applications, 7, 812-855.
630	Miller, K.M., Li, S., Kaukinen, K.H., Ginther, N., Hammill, E., Curtis, J.M., Patterson, D.A.,
631	Sierocinski, T., Donnison, L., Pavlidis, P. and Hinch, S.G. (2011). Genomic signatures
632	predict migration and spawning failure in wild Canadian salmon. Science, 331, 214-217.
633	Mitchell, S. O., Steinum, T. M., Toenshoff, E. R., Kvellestad, A., Falk, K., Horn, M., &
634	Colquhoun, D. J. (2013). 'Candidatus Branchiomonas cysticola'is a common agent of
635	epitheliocysts in seawater-farmed Atlantic salmon Salmo salar in Norway and Ireland.
636	Diseases of Aquatic Organisms, 103, 35-43.
637	Mordecai, G. J., Miller, K. M., Di Cicco, E., Schulze, A. D., Kaukinen, K. H., Ming, T. J., Li, S.,
638	Tabata, A., Teffer, A., Patterson, D. A., Ferguson, H. W., & Suttle, C. A. (2019).
639	Endangered wild salmon infected by newly discovered viruses. eLife, 8, e47615.
640	Needham, M. D., Vaske, J. J., Donnelly, M. P., & Manfredo, M. J. (2007). Hunting
641	specialization and its relationship to participation in response to chronic wasting disease.
642	Journal of Leisure Research, 39(3), 413-437.
643	Nematollahi, A., Decostere, A., Pasmans, F., & Haesebrouck, F. (2003). Flavobacterium
644	psychrophilum infections in salmonid fish. Journal of Fish Diseases, 26(10), 563-574.

645	Nylund, A., Hansen, H., Brevik, Ø. J., Hustoft, H., Markussen, T., Plarre, H., & Karlsbakk, E.
646	(2018). Infection dynamics and tissue tropism of Parvicapsula pseudobranchicola
647	(Myxozoa: Myxosporea) in farmed Atlantic salmon (Salmo salar). Parasites & Vectors,
648	11, 17.
649	Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R.,
650	O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., and Wagner H.
651	(2019). vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-
652	project.org/package=vegan
653	Pedersen, T. L. (2019). tidygraph: A Tidy API for Graph Manipulation. R package version 1.1.2.
654	https://CRAN.R-project.org/package=tidygraph.
655	R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
656	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
657	Teffer, A. K., Hinch, S. G., Miller, K. M., Patterson, D. A., Farrell, A. P., Cooke, S. J., Bass, A.
658	L., Szekeres, P., & Juanes, F. (2017). Capture severity, infectious disease processes and
659	sex influence post-release mortality of sockeye salmon bycatch. Conservation
660	Physiology, 5, cox017.
661	Teffer, A. K., Hinch, S., Miller, K., Jeffries, K., Patterson, D., Cooke, S., Farrell, A., Kaukinen,
662	K. H., Li, S., & Juanes, F. (2019). Cumulative effects of thermal and fisheries stressors
663	reveal sex-specific effects on infection development and early mortality of adult coho
664	salmon (Oncorhynchus kisutch). Physiological and Biochemical Zoology, 92(5), 505-529.
665	Thorstad, E. B., Todd, C. D., Uglem, I., Bjørn, P. A., Gargan, P. G., Vollset, K. W., Halttunen,
666	E., Kålås, S., Berg, M., & Finstad, B. (2015). Effects of salmon lice Lepeophtheirus

- *salmonis* on wild sea trout *Salmo trutta* a literature review. *Aquaculture Environment Interactions*, 7, 91-113.
- 669 Thorstad, E. B., Todd, C. D., Uglem, I., Bjørn, P. A., Gargan, P. G., Vollset, K. W., Halttunen,
- 670 E., Kålås, S., Berg, M., & Finstad, B. (2016). Marine life of the sea trout. *Marine*
- 671 *Biology*, 163, 47.
- Toenshoff, E. R., Kvellestad, A., Mitchell, S. O., Steinum, T., Falk, K., Colquhoun, D. J., &
 Horn, M. (2012). A novel betaproteobacterial agent of gill epitheliocystis in seawater
 farmed Atlantic salmon (*Salmo salar*). *PLoS One*, 7, e32696.
- 675 Traxler, G. S., Richard, J., & McDonald, T. E. (1998). *Ichthyophthirius multifiliis* (Ich)
- 676 epizootics in spawning sockeye salmon in British Columbia, Canada. *Journal of Aquatic*677 *Animal Health*, 10, 143-151.
- 678 Twardek, W. M., Chapman, J. M., Miller, K. M., Beere, M. C., Li, S., Kaukinen, K. H.,
- 679 Danylchuk, A. J., & Cooke, S. J. (2019). Evidence of a hydraulically challenging reach
- 680 serving as a barrier for the upstream migration of infection-burdened adult steelhead.
- 681 *Conservation Physiology*, 7, coz023.
- Vollset, K. W., Barlaup, B. T., Mahlum, S., Bjørn, P. A., & Skilbrei, O. T. (2016). Estimating the
 temporal overlap between post-smolt migration of Atlantic salmon and salmon lice
- 684 infestation pressure from fish farms. *Aquaculture Environment Interactions*, 8, 511-525.
- 685 Vollset, K. W., Dohoo, I., Karlsen, Ø., Halttunen, E., Kvamme, B. O., Finstad, B., Wennevik V.,
- 686 Diserud, O. H., Bateman, A., Friedland, K. D., Mahlum, S., Jørgensen, C., Qviller, L.,
- 687 Krkošek, M., Åtland, A., & Barlaup, B. T. (2017). Disentangling the role of sea lice on
- the marine survival of Atlantic salmon. *ICES Journal of Marine Science*, 75, 50-60.
- 689 Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.

690	Wiik-Nielsen, J., Gjessing, M., Solheim, H. T., Litlab, A., Gjevre, A. G., Kristoffersen, A. B.,
691	Powell, M. D., & Colquhoun, D. J. (2017). Ca. Branchiomonas cysticola, Ca.
692	Piscichlamydia salmonis and Salmon Gill Pox Virus transmit horizontally in Atlantic
693	salmon held in fresh water. Journal of Fish Diseases, 40, 1387-1394.
694	Wood, C. L., Lafferty, K. D., & Micheli, F. (2010). Fishing out marine parasites? Impacts of
695	fishing on rates of parasitism in the ocean. Ecology Letters, 13, 761-775.
696	Woodroffe, R., Donnelly, C. A., Cox, D. R., Bourne, F. J., Cheeseman, C. L., Delahay, R. J.,
697	Gettinby, G., McInerney, J. P., & Morrison, W. I. (2006). Effects of culling on badger
698	Meles meles spatial organization: implications for the control of bovine tuberculosis.
699	Journal of Applied Ecology, 43, 1-10.
700	Zubchenko, A. V., & Karaseva, T. A. (2002). Ichthyophonus hoferi as one of possible causes of
701	increased marine mortality in post-smolts of Atlantic salmon (No. 4, pp. 90-92). NPAFC
702	Technical Report.
703	
704	

705 Tables

706

Table 1. High throughput qPCR screened for the following bacteria, parasites, and viruses from
sea trout *Salmo trutta* in northern Norway. Agents are presented with their pathogen type, assay
name, and primer codes.

Agent Name	Assay	Agent	Forward	Reverse	MGB-Probe-
	Name	Туре	Primer	Primer	6fam
Aeromonas	ae_sal	Bacterium	TAAAGCA	GCTACTTCA	ACATCAGCA
salmonicida			CTGTCTGT	CCCTGATTG	GGCTTCAGA
			TACC	G	GTCACTG
Atlantic Salmon	ascv	Virus	ACCGACT	CTCCGATTG	CTTAGGGTTA
Calici Virus			GCCCGGT	CCTGTGAT	AAGCAGTCG
			TGT	AATACC	
Atlantic salmon	aspv	Virus	CCCATATT	CGTTAAGG	AGCCCTTTTG
paramyxovirus			AGCAAAT	AACTCATC	TTCTGC
			GAGCTCT	ATTGAGCTT	
			ATCTT		
Candidatus	c_b_cys	Bacterium	AATACAT	GCCATCAG	CTCGGTCCCA
Branchiomonas			CGGAACG	CCGCTCAT	GGCTTTCCTC
cysticola				GTG	TCCCA

TGTCTAGT

G

Coronavirus	COV	Virus	GGATAAT	GCATGAAA	CGATCCCGA
(Nidovirus)			CCCAACC	TGTTGTCTC	TTATC
			GAAAAGT	GGTTTAA	
			TT		
Dermocystidium	de_sal	Parasite	CAGCCAA	GACGGACG	AAGCGGCGT
salmonis			TCCTTTCG	CACACCAC	GTGCC
			CTTCT	AGT	
Flavobacterium	fl_psy	Bacterium	GATCCTTA	TGTAAACT	AAACACTCG
psychrophilum			TTCTCACA	GCTTTTGCA	GTCGTGACC
			GTACCGT	CAGGAA	
			CAA		
Gyrodactylus	gy_sal	Parasite	CGATCGT	GGTGGCGC	TCTTATTAAC
salaris			CACTCGG	ACCTATTCT	CAGTTCTGC
			AATCG	ACA	
Ichthyobodo spp.	icd	Parasite	ACGAACT	TGAGTATTC	TCCACGACT
			TATGCGA	ACTYCCGA	GCAAACGAT
			AGGCA	TCCAT	GACG

Ichthyophonus	ic_hof	Parasite	GTCTGTAC	TCCCGAAC	TAAGAGCAC
hoferi			TGGTACG	TCAGTAGA	CCACTGCCTT
			GCAGTTTC	CACTCAA	CGAGAAGA
Ichthyophthirius	ic_mul	Parasite	AAATGGG	AACCTGCC	ACTCGGCCTT
multifiliis			CATACGTT	TGAAACAC	CACTGGTTCG
			TGCAAA	TCTAATTTT	ACTTGG
				Т	
Infectious	ipnv	Virus	GCAACTT	GAGACCTC	CGAGAATGG
pancreatic necrosis			ACTTGAG	TAAGTTGT	GCCAGCAAG
virus			ATCCATTA	ATGACGAG	CA
			TGCT	GTCTCT	
Infectious salmon	isav7	Virus	TGCT	GTCTCT GTCCAGCC	CTCTCTCATT
Infectious salmon anemia virus	isav7	Virus	TGCT CAGGGTT		CTCTCTCATT GTGATCCC
	isav7	Virus		GTCCAGCC CTAAGCTC	
	isav7	Virus	CAGGGTT	GTCCAGCC CTAAGCTC	
	isav7	Virus	CAGGGTT GTATCCAT	GTCCAGCC CTAAGCTC	
	isav7 lo_sal	Virus Parasite	CAGGGTT GTATCCAT GGTTGAA	GTCCAGCC CTAAGCTC	
anemia virus			CAGGGTT GTATCCAT GGTTGAA ATG	GTCCAGCC CTAAGCTC AACTC	GTGATCCC
anemia virus			CAGGGTT GTATCCAT GGTTGAA ATG GGAGTCG	GTCCAGCC CTAAGCTC AACTC	GTGATCCC

Moritella viscosa	mo_vis	Bacterium	CGTTGCG	AGGCATTG	TGCAGGCAA
			AATGCAG	CTTGCTGGT	GCCAACTTC
			AGGT	ТА	GACA
Myxobolus	my_ins	Parasite	CCAATTTG	CGATCGGC	CTCTCAAGG
insidiosus			GGAGCGT	AAAGTTAT	CATTTAT
			CAAA	CTAGATTC	
				А	
Nanophyetus	na_sal	Parasite	CGATCTG	CCAACGCC	TGAGGCGTG
salmincola			CATTTGGT	ACAATGAT	TTTTATG
			TCTGTAAC	AGCTATAC	
			А		
Neoparamoeba	ne_per	Parasite	GTTCTTTC	GAACTATC	CAATGCCATT
perurans			GGGAGCT	GCCGGCAC	CTTTTCGGA
			GGGAG	AAAAG	
Oncorhynchus	omv	Virus	GCCTGGA	CGAGACAG	CCAACAGGA
masou herpes virus			CCACAAT	TGTGGCAA	TGGTCATTA
			CTCAATG	GACAAC	
Parvicapsula	pa_pse	Parasite	CAGCTCC	TTGAGCAC	CGTATTGCTG
pseudobranchicola			AGTAGTG	TCTGCTTTA	TCTTTGACAT
			TATTTCA	TTCAA	GCAGT

Paranucleospora	pa_ther	Parasite	CGGACAG	GGTCCAGG	TTGGCGAAG
theridion			GGAGCAT	TTGGGTCTT	AATGAAA
			GGTATAG	GAG	
Piscichlamydia	pch_sal	Bacterium	TCACCCCC	GAATTCCA	CAAAACTGC
salmonis			AGGCTGC	TTTCCCCCT	TAGACTAGA
			TT	CTTG	GT
Piscirickettsia	pisck_sal	Bacterium	TCTGGGA	TCCCGACCT	TGATAGCCC
salmonis			AGTGTGG	ACTCTTGTT	CGTACACGA
			CGATAGA	TCATC	AACGGCATA
Piscine	pmcv	Virus	AGGGAAC	CGTAATCC	TGGTGGAGC
myocarditis virus			AGGAGGA	GACATCAT	GTTCAA
			AGCAGAA	TTTGTGA	
Piscine	prv	Virus	TGCTAAC	TGAATCCG	CGCCGGTAG
orthoreovirus			ACTCCAG	CTGCAGAT	CTCT
			GAGTCAT	GAGTA	
			TG		
Renibacterium	re_sal	Bacterium	CAACAGG	CTATAAGA	CTCCAGCGC
salmoninarum			GTGGTTAT	GCCACCAG	CGCAGGAGG
			TCTGCTTT	CTGCAA	AC
			С		

Strawberry disease	rlo	Bacterium	GGCTCAA	GTGCAACA	CCCAGATAA
(Rickettsia-like			CCCAAGA	GCGTCAGT	CCGCCTTCGC
organism)			ACTGCTT	GACT	CTCCG
Salmon alphavirus	sav	Virus	CCGGCCC	GTAGCCAA	TCGAAGTGG
1, 2, and 3			TGAACCA	GTGGGAGA	TGGCCAG
			GTT	AAGCT	
Salmon (Gill)	sch	Bacterium	GGGTAGC	CCCATGAG	TCCTTCGGGA
chlamydia			CCGATAT	CCGCTCTCT	CCTTAC
			CTTCAAA	СТ	
			GT		
Salmon Gill Pox	sgpx	Virus	ATCCAAA	CAACGACA	CTCAGAAAC
Virus			ATACGGA	AGGAGATC	TTCAAAGGA
			ACATAAG	AACGC	
			CAAT		
Sphaerothecum	sp_des	Parasite	GGGTATC	CCCAAACT	CGTGTGCGCT
destruens			CTTCCTCT	CGACGCAC	TAAT
			CGAAATT	ACT	
			G		
Spironucleus	sp_sal	Parasite	GCAGCCG	CGAACTTTT	ACACGGAGA
salmonicida			CGGTAAT	TAACTGCA	GTATTCT
			TCC	GCAACA	

Tetracapsuloides	te_bry	Parasite	GCGAGAT	GCACATGC	CAAAATTGT
bryosalmonae			TTGTTGCA	AGTGTCCA	GGAACCGTC
			TTTAAAA	ATCG	CGACTACGA
			AG		
Tenacibaculum	te_mar	Bacterium	TGCCTTCT	CTATCGTTG	CACTTTGGA
maritimum			ACAGAGG	CCATGGTA	ATGGCATCG
			GATAGCC	AGCCG	
Viral erythrocytic	ven	Virus	CGTAGGG	GGAGGAAA	TCTTGCCGTT
necrosis virus			CCCCAAT	TGCAGACA	ATTTCCAGCA
			AGTTTCT	AGATTTG	CCCG
Viral hemorrhagic	vhsv	Virus	AAACTCG	TCTGCGATC	TAGAGGGCC
septicemia virus			CAGGATG	TCAGTCAG	TTGGTGATCT
			TGTGCGTC	GATGAA	TCTG
			С		
Vibrio anguillarum	vi_ang	Bacterium	CCGTCAT	CCATACGC	TCATTTCGAC
			GCTATCTA	AGCCAAAA	GAGCGTCTT
			GAGATGT	ATCA	GTTCAGC
			ATTTGA		
Vibrio salmonicida	vi_sal	Bacterium	GTGTGAT	GCTATTGTC	TCGCTTCATG
			GACCGTT	ATCACTCTG	TTGTGTAATT
			CCATATTT	TTTCTT	AGGAGCGA

Yersinia ruckeri	ye_ruc_g	Bacterium	TCCAGCA	ACATGGCA	AAGGCGGTT
	lnA		CCAAATA	GAACGCAG	ACTTCCCGGT
			CGAAGG	AT	TCCC

Table 2. Gene biomarkers, their biological function, primer sequences, and assay performance
metrics. MRS is the "mortality related signature" from Miller et al., 2011; VDD is a panel of
biomarkers predictive of a viral disease state from Miller et al. (2017); thermal biomarkers are
from Akbarzadeh et al (2018) and Houde et al. (2019a); hypoxia biomarkers are from Houde et
al. (2019a); stress-mortality is from Houde et al. (2019a); and Top smoltification biomarkers are
from Houde et al. (2019a,b).

		Forward	Reverse	MGB-Probe-		
Biomarker	Function	Primer	Primer	6fam	\mathbb{R}^2	Efficiency
		GTCAAG				
		ACTGGA	GATCAAG	AAGGTGATT		
		GGCTCA	CCCCAGA	CCCTCGCCG		
HK_78d	Housekeep	GAG	AGTGTTTG	TCCGA	0.99	107.36
		GCTCATT				
		TGAGGA	CTGGCGAT			
HK_Coil-		GAAGGA	GCTGTTCC	TTATCAAGC		
P84_R2_tm	Housekeep	GGATG	TGAG	AGCAAGCC	0.99	104.00
		CCCAGT				
		ATGAGG	GTTAATGC			
HK_MrpL4		CACCTG	TGCCACCC	ACAACAACA		
0_F1_tm	Housekeep	AAGG	TCTCAC	TCACCA	1.00	97.99

GGGTCA

		CACAGA	GCGCTCTA			
	General	AGCCAA	TAGCGTTG	AGACCAAGC		
GS_HSC70	Stress	AAG	ATTGGT	СТАААСТА	0.99	89.14
		TGGGCT				
		ACATGG	TCCAAGGT			
	General	CTGCCA	GAACCCA	AGCACCTGG		
GS_HSP90	Stress	AG	GAGGAC	AGATCAA	0.96	102.20
		TTGTTGC	CCTGTTGC			
		TGGTGA	CCTATGAA			
	General	GAAAAC	TTGTCTAG	AGACTTGGG		
GS_JUNB	Stress	TCAGT	Т	CTATTTAC	0.99	105.17
		CGTGATT				
		CAGTGTT	TTCCTCCA			
		GTCATCT	GTGTTTTT	AAGTACATG		
HX_ALD_1	Hypoxia	TGA	TTCAGTCA	TGCCTTCTT	1.00	99.87
		GCCCCG				
		TGTGACT	TCGTCCCA	TCTACAAAT		
HX_COX6		GGTATA	TTTCTGGA	CACTGTGCC		
B1_19	Hypoxia	AG	TCCA	С	1.00	91.28

		AGCAGA				
		CGCTGG	CACGCCTG			
		GAGAGA	GTACGCCT	CTGACAACG		
HX_ECE-2	Hypoxia	AC	TATAG	GAGGCC	1.00	92.82
		TGGCAC				
		AGAGAA				
		CAAGTC	CACCGGCC			
HX_Enolas		TAAGTTT	TTGCACAC	CCATCCTGG		
e_2	Hypoxia	G	А	GCGTGTC	1.00	95.59
		AGGCCA				
		GTCCTTC	GGCAGGA			
		AGTGCA	CCAGGAG	TGGGCCTGG		
HX_GPX3	Hypoxia	Т	GTAACA	TAACC	0.99	87.16
		AGAGGA				
		GGCAGT	GGGACAA			
HX_HIF1A		GCTGTAT	GGCCCTCC	AGGGCCCTG		
_6	Hypoxia	TCAA	AAT	ACCATG	0.99	88.92
		CCGAGG	TCAGCTGC			
HX_MFHA		CCTGGG	TCCACAGA	TCAGTGGCT		
S1	Hypoxia	TGAAC	GAAGAA	GCTAGTC	1.00	101.01

		TGTAGG	TCTTAACA			
		AGATGC	GAGCGAT	TGCTAAAGT		
		AGCCAC	GTTCAGCT	TCTCCTCTG		
HX_PAM	Hypoxia	AGA	Т	AC	1.00	90.69
		CGAACC				
		AAGTGG	CCGGACAT			
HX_RAMP		TGCAAG	GCCTGGA	CTTCATCCA		
1	Hypoxia	ACT	AGA	GATCCATTC	1.00	95.15
		GAGAGT				
		ACAAGG	GCCCGCCG			
		CCATTAT	AGGACAA	CGGCAGGAG		
HX_SOX-5	Hypoxia	GAGGAA	G	ATGAG	0.97	83.74
		CTTCAA				
		GGTGCC	CGAGTGCT			
		TGAGAC	TCTCTCCA	CCGCCAGTC		
HX_glu1	Hypoxia	CAA	CCAGTAC	GGCT	1.00	106.04
		TGGAGG	GAAACAC			
		CGTTTGT	AGCAGGA			
		AGCTGA	AGGAACA	CCACCCTCA		
HX_PgK	Hypoxia	А	TAA	CATGCA	1.00	94.30

		TTCCAC	GTTTGTGT			
		ACGGAG	TGTAGTGA	TCCAGACTG		
		TCATCAT	AAGAGGT	TTTGAACTA		
HX_Ngb1	Нурохіа	GTT	TGAG	G	1.00	87.31
		AACTGT				
		CAGAAA	GAAGTATT			
		GCAGAA	CTCACACC	AAGTTTTTG		
		CTACTTC	GAGTCCTA	TCACCACTG		
HX_VEGFa	Hypoxia	СТ	TCT	TAT	0.99	99.18
		ATTGGC	AGCTTCAG			
		CTGTCC	ATCAAGG	TGGAATCTG		
	Immune	AAAACA	AAGAAGT	TGTGTCTGA		
Im_C3	stimulation	CA	TC	ACCCC	0.99	98.16
		ACGCAC	CAGTGGA	TTGCCGTGT		
	Immune	CTTGAG	AACCAGC	CGCTGAGCT		
Im_C5aR	stimulation	GGTCATT	ACAGG	TCTT	0.99	98.20
		GTGGCG	CTTGTGGA			
		GCATTG	TACTTCTT	CACCATCAG		
	Immune	CTGATAT	ACTCCTTT	CTATGTCAT		
Im_CD83	stimulation	Т	GCA	CC	1.00	97.20

CGTCAT CTGCAA GGGCGTA TGCAGCACA Immune AGATTG GCTTCTGA GATGTACTG Im_IFNa stimulation GA AATGA ATCATCCA 0.99 104.45 CTTGGCT GGCTAGTG TGGAGAGAA Immune TGTTGAC GTGTTGAA CGAGCAGTT Im_IGMs stimulation GATGAG TTGG CAGCA 1.00 100.90 AGGACA AGGACC CCGACTCC TTGCTGGAG Immune TGCTCA AACTCCAA AGTGCTGTG Im IL1B stimulation ACT CACTA GAAGAA 1.00 109.78 ATCATC CTGTCA TCTGGTGC TGCATCCCC Immune GCCCAG AGTGGTA TCTACACCC Im_ILIR stimulation AG ACTGG CAAA 1.00 92.96 GCGACA GGTTTCT TGTCAGGT TGGTGTCCT Immune ACCCCA GGGAGCTT GGCAGAAAG Im_MHCI stimulation GT TTCTG ACGG 0.99 93.19

GGGAGA TGATTCA TTACGTCC TCGAGGACA Immune GGGTTC CCAGTGGT CGAGGACTC Im_SAA AGCA stimulation CA TAGC 0.99 91.98 GCCAGC AGTCACCT Inflammatio GGAGCA GGAGGCC TCAGCGAGA Inf_MMP13 n GGAA AAAGA TGCAAAG 0.99 108.18 TGCAGT CTTTTCC TCCACATG Inflammatio CCTTGG TACCCACA AGGATTGGC Inf_MMP25 n AT CCTACAC TGGAAGGT 0.98 113.64 GATGCT GACCAC ACCTCTGT ATCAAA CCAGCTCT AACTACCAG MRS_C7 MRS CTGC GTGTC ACAGTGCTG 1.00 95.04 CAAAGC ACCTGATCG CAGTAT TTGTTTTC CCAGTAGCA MRS_COM GGACTG TGCTGCCC TGAGCATGT MD7 MRS TTTCAG CTCTA AC 1.00 93.32

TGCAGA

		TGAGCTT	GCAGTAA	CTCAACGAT		
		GTTGTCT	AGATCTGC	GACATCCAC		
MRS_FYB	MRS	ACAG	CGTTGAGA	AGTCTCCCC	0.99	82.96
		CTTGTAA	TGGTGAA	TCTGTACTG		
		CAGTTC	GCATTTCT	AGCATCCCC		
		GACATG	GTATGTCA	GCACATTAC		
MRS_HTA	MRS	GCTTATT	А	А	1.00	96.68
		CGTCAA				
		GCTGAA	CCTCAGGG			
MRS_NKA		CAGGAT	ATGCTTTC	CCTTGGCCT		
_B1	MRS	CGT	ATTGGA	GAAGTTG	0.99	106.06
		CGCCAC	TCCTCAGC	AGATCCCCA		
		CACAAC	CTCTTCTT	AGACTCTGT		
MRS_RPL6	MRS	CAAGGT	CTTGAAG	CAGACGCCT	1.00	111.92
		GATGCC				
		GGAGGG	CCGACTGG			
		AAAAGA	CTCTTGGA	TCCAAGATG		
Os_PRLR	Osmotic	С	CTTG	TTGGCTGC	0.97	115.72

		TCCCGA				
		CTACAG	TCCTCAGG			
		CGCAGA	GCTAAGTC	TTCCCAATC		
Os_RGS21	Osmotic	Т	GTTCA	CCCC	0.99	99.82
		GACACG				
		GTGTTG	TTGCAGTC			
SM_hsp90a	Stress-	GGTTGG	AACTCTCC	TCATGTGCA		
_15_v2	Mortality	TT	ATGCA	ACATAACAT	1.00	93.69
		AGGTCA	ACACAGTC			
		CAGCCG	TCTGTCTG			
Tm_EEF2_s		CCCTTA	CACACAC	CGACTGCGT		
Tm_EEF2_s sa14	Thermal	CCCTTA G	CACACAC A	CGACTGCGT CTCAGGT	0.97	102.40
	Thermal				0.97	102.40
	Thermal	G ACTATG			0.97	102.40
	Thermal	G ACTATG AGAATG	A CTCGTCCA		0.97	102.40
sa14	Thermal	G ACTATG AGAATG	A CTCGTCCA	CTCAGGT	0.97	102.40
sa14 Tm_FKBP1		G ACTATG AGAATG CCCCCA TCAC	A CTCGTCCA GACCCTCA	CTCAGGT		
sa14 Tm_FKBP1		G ACTATG AGAATG CCCCCA TCAC	A CTCGTCCA GACCCTCA ATCAC	CTCAGGT		
sa14 Tm_FKBP1 0_ssa3-6		G ACTATG AGAATG CCCCCA TCAC CCTGAA GAGATC	A CTCGTCCA GACCCTCA ATCAC GACGATG	CTCAGGT CCTGGGAGC CAACAA		
sa14 Tm_FKBP1		G ACTATG AGAATG CCCCCA TCAC CCTGAA GAGATC	A CTCGTCCA GACCCTCA ATCAC GACGATG	CTCAGGT		

ATGACC

		CTCAGA	CCTCATCA			
Tm_HSP90		CACACT	ATACCCAG	CGCATCTAC		
AA1	Thermal	CCAA	TCCTAGCT	AGAATGA	0.99	89.44
		TTGGAT				
		GACCCT	CGTCAATA			
Tm_HSP90		CAGACA	CCCAGGCC	CCGAATCTA		
alike	Thermal	CACT	TAGCT	CCGGATGAT	1.00	87.49
		GCTCCCT	GCCTCCCT			
Tm_Map3k		GGGTTC	TCAGCAG	CCAGCAATA		
14	Thermal	ATGGAT	AGACA	GCTTATG	0.99	91.78
		GGTCATT	CCTAGATA			
		TTGGTTT	TAGCTATC	TGATACGTG		
Smlt_CA4_	Smoltificatio	TGTACA	CACGTACT	GTATAGAAA		
v1	n	CAGTCT	CACCTA	AG	0.97	105.46
		ACCTGG				
		GTTACA	TGGTTTCG			
Smlt_CCL1	Smoltificatio	GACCTG	TGGCATTT	CTCATGGAC		
9_v1	n	ATGAA	CTTG	CGCCTCA	0.99	96.08

TCTCTTC

		ATTGCA	ACAGCAG			
Smlt_CCL4	Smoltificatio	ACAATC	TCCACGGG	CTACGCAGC		
_v1	n	TGCTT	TACCT	AGCATT	1.00	93.50
		GGAATT				
		TAGTGG	TCCCATCC			
Smlt_EEF2	Smoltificatio	ATGTCTG	CTCACTCG	CCCATTCCTT		
_v1_ssa23	n	ACCATT	TACAG	CTATTCCT	0.99	98.93
		GGGCGT	GCATGCA			
Smlt_FKBP	Smoltificatio	TCCTCTG	GCATTCTC	ACAGGGCCA		
5_v1	n	GGTGTA	CTTTCT	TGGAGA	0.99	111.81
		GTTTGG				
		ATGTACT	GCACCCTC			
Smlt_FMN	Smoltificatio	GGTGGA	CAAGTCA	CTACGCCCA		
L1_v1	n	TTACCT	AACGA	GTGTGAC	0.98	99.29
		GGAGCC				
		TCCCAT	TGGCGTGG			
Smlt_IL12B	Smoltificatio			CCCCTCACA		

TGGAAT

		CAAGGT	CCCACACC			
Smlt_NKAa	Smoltificatio	TATCATG	CTTGGCAA	ATCATCCCA		
1-a_v2	n	GTCACT	TG	TCACTGCGA	0.99	105.26
		TGAAGA	GGCAGAG			
		AGTGGT	ACAATAC	TGAAAGGAG		
Smlt_NKAa	Smoltificatio	GGTTGG	GCAAATC	GAGATAGAA		
1-b	n	AGATC	А	Т	1.00	113.83
		AGGGAG				
			CAGAACTT			
			AAAATTCC			
Smlt NKA	Smoltificatio	AAAGCA	GAGCAGC	ACAACCATG		
Smlt_NKA A1C	Smoltificatio	AAAGCA T	GAGCAGC AA	ACAACCATG CAAGAACT	0.99	106.74
—					0.99	106.74
—					0.99	106.74
—		T GCAGGA			0.99	106.74
A1C	n	T GCAGGA GCTCTAT	AA CAGCAAA		0.99	106.74
A1C	n	T GCAGGA GCTCTAT	AA CAGCAAA	CAAGAACT	0.99	106.74
A1C Smlt_WAS	n Smoltificatio	T GCAGGA GCTCTAT AACCAA	AA CAGCAAA TGCGTGGA	CAAGAACT		
A1C Smlt_WAS	n Smoltificatio	T GCAGGA GCTCTAT AACCAA ATGGT	AA CAGCAAA TGCGTGGA	CAAGAACT		
A1C Smlt_WAS	n Smoltificatio	T GCAGGA GCTCTAT AACCAA ATGGT TGGAGA	AA CAGCAAA TGCGTGGA AGAAG	CAAGAACT		

		AGGGAC				
		AACTTG				
		GTAGAC	TGACGCAC			
VDD_HER	Viral	AGAAGA	ACACAGCT	CAGTGGTCT		
C6	Disease	А	ACAGAGT	CTGTGGCT	1.00	97.59
		CCGTCA				
		ATGAGT	CACAGGC			
VDD_IFIT5	Viral	CCCTAC	CAATTTGG	CTGTCTCCA		
_MGL	Disease	ACATT	TGATG	AACTCCCA	1.00	95.17
		AGATGA				
		TGCTGC	CTGCAGCT	ATTCCCATG		
VDD_Mx_o	Viral	ACCTCA	GGGAAGC	GTGATCCGC		
nts	Disease	AGTC	AAAC	TACCTGG	1.00	106.17
		CCACTT				
		GCCAGA	CGTAACTG			
VDD_NFX	Viral	GCATGG	CCCAGAGT	TGCTCCACC		
_MGL2	Disease	Т	GCAAT	GATCG	1.00	95.74
		TTGTAGC				
		GCCTGTT	TACACTGC			
VDD_GAL	Viral	GTAATC	TGAGGCC	CTTGGCGTG		
3_MGL2	Disease	ATATC	ATGGA	GTGGC	0.99	103.71

GCTCTC

VDD_VHS		GTAAAG	GGGCGAC			
VIP4_MGL	Viral	CCCCAC	TGCTCTCT	AAACTGCAC		
3	Disease	ATC	GATCT	GTCGCGC	1.00	95.52
		GCAAAC				
VDD_VHS		TGAGAA	CCGTCAGC			
V-	Viral	AACCAT	TCCCTCTG	TGTGGAGAA		
P10_MGL2	Disease	CAAGAA	CAT	GTTGCAGGC	1.00	97.19

Table 3. Summary of eleven pathogens detected in our samples from the Tosenfjord and

721 Skjerstadfjord complexes in northern Norway. Note that the designation of origin includes

722 information from >28,000 salmon surveyed for microbes in Canada; detections of microbes in

smolts prior to leaving freshwater have led to the identification of many agents previously only

studied in the marine environment being deemed freshwater and saltwater origin.

		Key Etiological				Further
Code	Pathogen	Associations	Taxonomy	Origin	Description	Reading
					A bacterium of marine	
					origin described from	
					affected farmed coho	
					salmon in Chile. Has	
					been recorded affecting	
					many salmonid species	
					including farmed	
	Piscirickettsia				Atlantic salmon in	Fryer et al.,
pisck_sal	salmonis	Piscirickettsiosis	Bacterium	Marine	Norway.	2003

				A parasite of marine	
				fishes shown to transmit	
				vertically from herring to	
				chinook salmon	
				consumers. Rapidly	Zubchenko
				increased in prevalence	and
				in the Yukon River	Karaseva
				causing pre-spawn	2002;
	Ichthyophonus		Freshwater	mortality and spoilage of	Kocan et
ic_hof	hoferi	Protist	and marine	meat.	al., 2004
				A parasite first described	
				in Norwegian Atlantic	
				salmon farms with	
				particularly high	
				prevalence in northern	
				regions of Norway with	
				detection in chinook	
				salmon in British	
				Columbia. Affected fish	
	Parvicapsula			appear lethargic and may	
	pseudobranchi		Freshwater	develop ocular	Nylund et
pa_pse	cola	Parasite	and marine	impairments.	al., 2018

					A chlamydia-like	
					bacterium causing gill	
	Piscichlamydia	Gill			epitheliocystis in farmed	Draghi et
pch_sal	salmonis	epitheliocystis	Bacterium	Marine	Atlantic salmon	al., 2004
					Ciliate protozoan that is	
					the etiological agent of	
					white-spot disease in fish	
					with greater virulence at	
					warmer water	
					temperatures. Suggested	
					as a threat to chinook	
	Ichthyophthiriu	White-spot			salmon runs in British	Bass et al.,
ic_mul	s multifiliis	disease	Protozoan	Freshwater	Columbia.	2017
					Isolated from gills	
					having proliferative gill	
					inflammation, an	
	Atlantic				important cause of	
	salmon	Proliferative gill		Freshwater	mortality in farmed	Kvellstad
aspv	paramyxovirus	inflammation	Virus	and marine	Atlantic salmon.	et al., 2005

					Myxozoan with an	
					intermediate life stage in	
					freshwater bryozoans	
					and infects multiple	
	Tetracapsuloid				species of salmonids.	
	es	Proliferative			Virulence increases with	Bass et al.,
te_bry	bryosalmonae	kidney disease	Myxozoan	Freshwater	water temperature.	2017
					Common, globally-	
					distributed species	
					causing cold water	
					disease. Prevalent in	
					hatcheries and among	
					many species,	
					particularly at cold water	
					temperatures. Load	
					seems to increase with	
	Flavobacteriu				senescence in chinook	
	т	Cold water			salmon during the	Bass et al.,
fl_psy	psychrophilum	disease	Bacterium	Freshwater	spawning migration.	2017

					prevalent among farmed	
					and wild salmon in	
					British Columbia.	Bass et al.,
	Candidatus				Associated with gill	2017;
	Branchiomona			Freshwater	epitheliosis in Norway	Twardek et
c_b_cys	s cysticola		Bacterium	and marine	and recently in BC.	al., 2019
					A group of flagellate	
					parasites causing	
					ichthyobodosis in fish	
					including salmonids.	Isaksen et
	Ichthyobodo				Known to occur among	al., 2010,
IcD	sp.	Ichthyobodosis	Flagellate	Euryhaline	sea trout and several	2011, 2012

			other species.	
			Ichthyobodosis is an	
			economically important	
			disease in aquaculture.	
			Two species are likely to	
			occur here, I. salmonis	
			and I. necator.	
726				

, 20

729 Figures

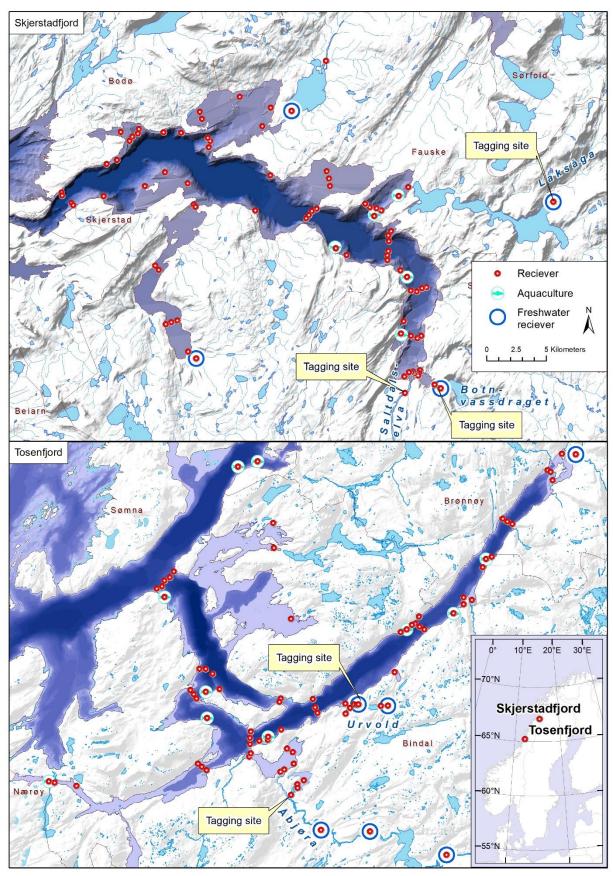


Figure 1. Map of the Skjerstadfjord and Tosenfjord in Norway. Each fjord is a drainage basin for rivers used by sea trout (*Salmo trutta*) that are returning to spawn. Fish were tagged in the rivers from March-May (a small subset tagged in September 2017) 2016 and 2017. Each fjord is covered by an array of acoustic receivers, which is noted in the map. The locations of active aquaculture sites are also indicated for reference.

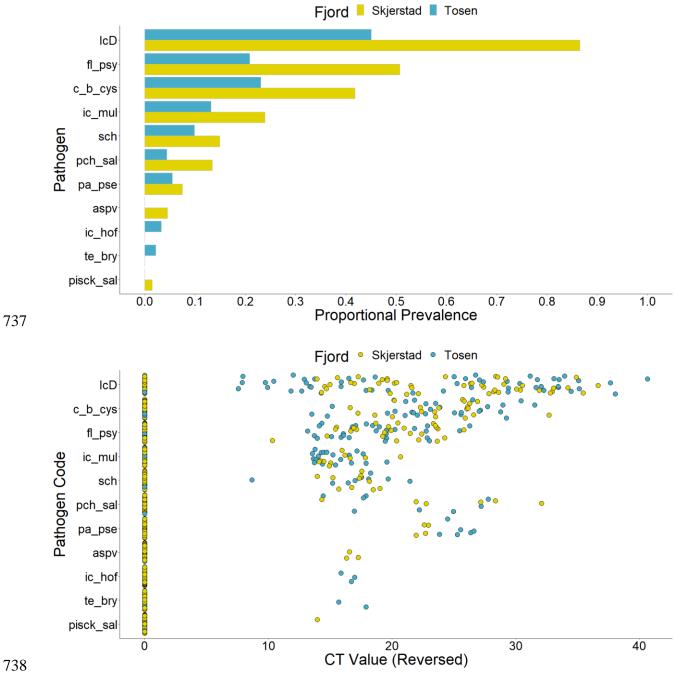


Figure 2. Pathogen prevalence and co-infections in sea trout (*Salmo trutta*) from the Skjerstadfjord and Tosenfjord, Norway. Panel 1 shows the proportional prevalence of each pathogen in the sample after excluding fish with no pathogens present. Panel 2 shows a measure of relative pathogen load, depicted as 45 - raw copy numbers C_T (cycle threshold) of pathogens in each fjord,

- such that null values are zero and high values approach the maximum possible value of 45 (points
- 745 jittered to avoid overlap). Available in colour online only.

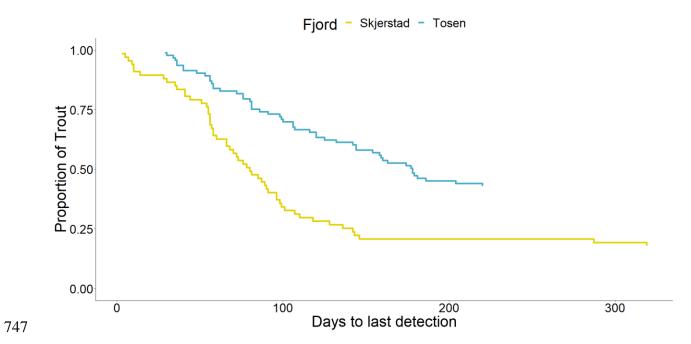
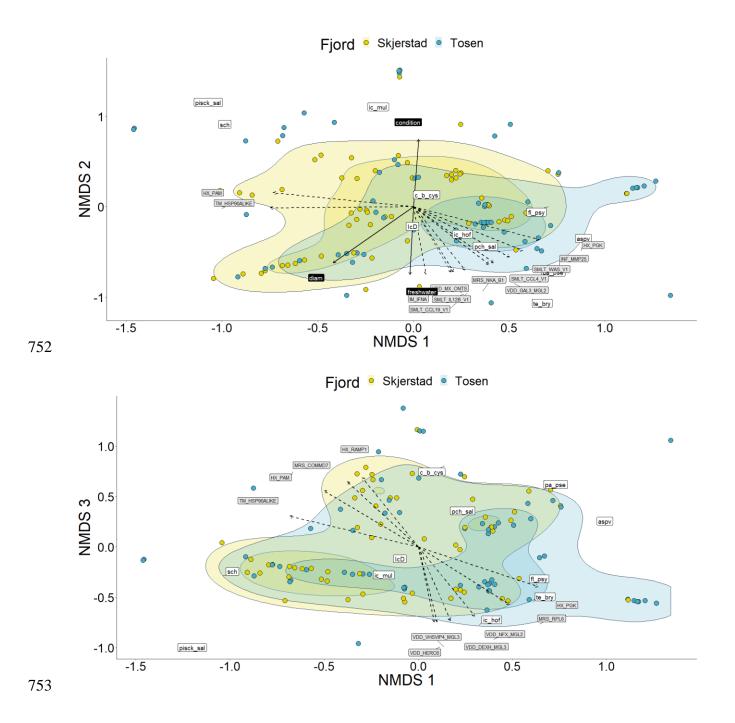
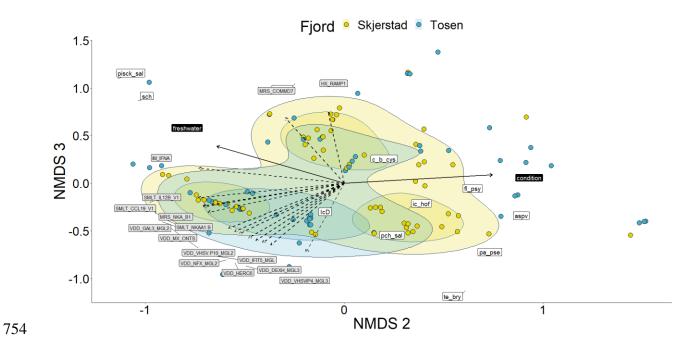




Figure 3. Detections of sea trout (*Salmo trutta*) tagged in the Skjerstadfjord and Tosenfjord,
Norway. Steps are made when a fish in each group was last detected. From the Tosenfjord, 54%
of sea trout were considered survivors compared to 30% of fish from the Skjerstadfjord. Available
in colour online only.

755 Figure 4. Biplots of non-metric multidimensional scaling (NMDS) results for sea trout (Salmo 756 trutta) sampled from the Skjerstadfjord (red) and Tosenfjord (blue), Norway. The NMDS was fit with three axes, so three plots are shown to display all combinations. Pathogens (white text boxes), 757 758 gene expression (grey text boxes with dashed lines from origin), and individual metrics (black 759 boxes with black arrows from the origin) are shown in ordinated space. Density contours show the 760 positions of fish from each fjord (according to contour colour) in ordinated space. Note that only 761 genes (grey) and individual metrics (black) deemed significant by the *envfit* call are included on 762 the plot. Refer to Table 1 for pathogen codes. Available in colour online only.