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A B S T R A C T

It is possible to improve oil-reservoir simulation models by conditioning them on 4D seismic data. Compu-
tational issues may arise related to both storage and CPU time due to the size of the 4D seismic dataset.
An approach to reducing the computational requirements is to use a sparse representation method, e.g.,
Dictionary Learning, to select only the main features of the 4D seismic data. However, the introduction of
a sparse representation method incurs an additional computational cost. Alternatively, if one uses ensemble-
based methods, it is possible to reduce storage and CPU time by projecting the full seismic dataset on a
smaller subspace. This paper evaluates the potential of sparsely representing the seismic data. We compare
two experiments, one where we condition on the full dataset projected on a smaller subspace, and one where
we use Dictionary Learning to represent the data sparsely. We use Dictionary Learning both on the complete
4D seismic dataset and also on a denoised version of the data. We perform the data assimilation in a slightly
different formulation of the Iterative Ensemble Smoother Regularized Levenberg–Marquardt together with
correlation-based adaptive localization. We apply these methods to the Brugge benchmark case. Experiment
results show that sparse representation methods lead to a final ensemble that is closer to the reference solution,
and denoising the seismic data before applying the sparse representation allows us to capture the 4D effect
better. Thus, using a sparse representation method in 4D-seismic history matching leads to improved results
compared to what we obtain when conditioning the models on the projected 4D seismic dataset.
. Introduction

Data assimilation, also known as history matching in reservoir
ngineering, denotes the process of conditioning reservoir models on
ynamical observations from a reservoir, e.g., well rates and 4D seismic
ata, to update uncertain reservoir model parameters, e.g., porosity
nd permeability. Historically, most of the data assimilation processes
ave been mainly using production data from the wells because of its
vailability and easiness of gather. There is a vast list in the literature
hat successfully performed history matching in various benchmark
nd real field cases. See, e.g., Emerick and Reynolds (2011), Oliver
nd Chen (2011), Chen and Oliver (2014), Goda and Sato (2014),
aschio and Schiozer (2016), and Soares et al. (2018), for some

istory-matching experiments.
Even though it might be possible to achieve a good representation

f the reservoir using only well data, the inclusion of different data,
uch as seismic, can help to understand the flow dynamics in the oil
eservoir better. Johnston (2013) mentioned several important points

∗ Corresponding author at: NORCE Norwegian Research Centre, Norway.

for practical applications of 4D seismic, including rock physics models,
seismic processing, data integration among others. Also, the author
pointed out that seismic data are much denser in space than in time.
Therefore, 4D seismic data will complement the information we have
from rate data in the history-matching process. Several authors have
proved the benefits of using 4D seismic data in history matching, both
in benchmark and real cases (Emerick, 2016; Roggero et al., 2012;
Fahimuddin et al., 2010; Obidegwu et al., 2017; Leeuwenburgh and
Arts, 2014; Helgerud et al., 2011; Almeida et al., 2020).

There are several challenges when considering 4D seismic data
in data assimilation. As commercial simulators usually provide only
well rate and pressure and saturation maps, one needs to bring sim-
ulator response and seismic into the same domain. In other words,
one has to transform acquired seismic data into pressure and sat-
uration maps or bring them into another domain, such as acous-
tic impedance or amplitude-versus-angle (AVA). Besides, seismic data
comprise huge datasets and, therefore, issues regarding computational
storage and CPU time may arise. To deal with the big-data issue,
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Fig. 1. Flowchart of the use of 4D seismic data in history matching. The area within the green dashed rectangle represents the forward simulation of seismic data, while the
area within the blue dashed rectangle represents the observed data from the field. The yellow boxes represent data, and the blue, green, and red boxes represent the required
processing steps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
authors such as Luo et al. (2017), Liu and Grana (2020) and Soares
et al. (2019) suggested different methodologies to represent the seismic
data sparsely.

Fig. 1 depicts a flowchart concerning the use of 4D seismic data
in history matching (Luo et al., 2018), where the authors consider
AVA as the seismic data. The area covered by the green dashed border
lines (referred to as the green part hereafter) represents the simulated
data (forward simulation of seismic), while the area enclosed by the
blue dashed border lines (named blue part hereafter) represents the
observed data from the field. The yellow boxes represent data, and the
blue, green, and red boxes represent the necessary steps to deal with
this kind of data.

The green part describes the forward seismic simulation workflow
that generates simulated seismic attributes (AVA in this case) from
an ensemble of reservoir models. The boxes in the blue part convert
seismic from raw waveforms to AVA data. This conversion procedure
involves seismic processing, which is outside the scope of the current
work. Thus, we assume that the observed AVA attributes in the blue
part are readily available. Note that one can also assimilate other
types of seismic attributes, such as Acoustic Impedance (AI) following
a similar workflow (Fahimuddin et al., 2010; Roggero et al., 2012;
Alfonzo and Oliver, 2019), or other parameters that can be inferred
from seismic, such as fluid fronts (Leeuwenburgh and Arts, 2014; Kretz
et al., 2004).

As mentioned previously, the 4D seismic dataset is very big. There-
fore, the flowchart considers a method capable of sparsely representing
the seismic signal while retaining the main characteristics of the data.
For this purpose, Luo et al. (2018) and Lorentzen et al. (2019) used the
Discrete Wavelet Transform (DWT) to represent the 4D seismic dataset
sparsely. Through DWT, they separated the data into low and high-
frequency sub-bands. Then, they estimated the noise of the wavelet
coefficients and applied a threshold value to retain only the leading
wavelet coefficients. Although they reduced the number of retained
coefficients substantially, it was necessary to define an empirical pa-
rameter to achieve a trade-off between the number of coefficients and
the retained characteristics, which we will illustrate below (cf. Fig. 10).

Liu and Grana (2020) proposed to learn a sparse representation of
4D seismic data through a deep convolutional autoencoder. The authors
performed experiments in a 2D and 3D model and concluded that the
method improved the data-assimilation performance. Nevertheless, one
might need a more powerful tool, such as GPU, to obtain the results in
a reasonable computational time. For the 3D model, for instance, they
reduced the original dataset to 0.20% of its original size, and it took
2

about 30 min to train the model with dimension 64 × 64 × 64 in two
different time surveys. Besides, Canchumuni et al. (2019) reported that
an extension of the deep learning method from 2D to 3D case studies
might incur substantially more computational costs.

Soares et al. (2019) investigated the use of a Dictionary Learning
(DL) method for sparse representation of seismic data in a 3D case
study with dimension 139 × 48 × 176. The method retained the main
characteristics of the 4D seismic by using a set of non-zero coefficients
whose number was only about 0.25% of the original data size, and the
related computational time was about 6.7 s.

The end products of the sparse representation procedure (applied
to observed seismic data) will be the obtained non-zero coefficients.
These non-zero coefficients will then be taken as the observations in
4D seismic history matching problems, as indicated in the blue part of
Fig. 1. By doing so, a practical benefit is that the effective data size can
be substantially smaller than the size of the original 4D seismic dataset,
which will then help to mitigate the issues of computational memory
and time during history matching.

Iterative ensemble-based methods are among state of the art for
history matching, as they are relatively easy to implement, and have
the capacity of dealing with large scale problems (Evensen, 2009a).
In ensemble-based methods, one can choose to project big 4D seismic
data onto a subspace which is related to the ensemble of reservoir
models, and whose dimension is no more than the ensemble size. These
projected data then serve as the effective observations (Lorentzen et al.,
2019; Luo et al., 2019; Chen and Oliver, 2017). This approach is an
alternative way to handle the issue of big data in history matching
problems, yet without using any sparse representation method.

Therefore, there are two possible ways to deal with the big data
issue: through sparse representations methods and through the pro-
jection of the observed data into a subspace related to the ensemble
models. Note that in both approaches, one faces information loss in the
dataset. However, the use of a sparse data representation introduces
additional computational time. Hence, compared to the projection-
based approach, is it still beneficial to use a sparse representation
method for data-size reduction? To answer this question, we will ex-
amine the data assimilation performance in two sets of experiments:
one employing the projection-based approach and the other adopting
a Dictionary Learning based sparse presentation method. Furthermore,
we also investigate an alternative way to apply the Dictionary Learning
based sparse representation to obtain further improved assimilation
performance. To perform history matching, we modify the Iterative
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Ensemble Smoother Regularized Levenberg–Marquardt (IES-RML) de-
veloped by Luo et al. (2015) in a way that there is no need to perform
the truncated singular value decomposition during data assimilation.

In the following, we start by explaining each component of the
flowchart shown in Fig. 1. We divide this part into three sections.
First, we explain the individual steps in the forward seismic simulation
workflow. Then, we discuss the history matching part, where we focus
on ensemble-based methods and we provide more details regarding
the need of sparse representation methods. Afterwards, we introduce
one of the Dictionary Learning methods, called the K-SVD algorithm,
which is responsible for sparsely representing the data. Subsequently,
we provide information about the case study (the Brugge benchmark
case), methodology, and application. Finally, we show and discuss the
results and draw conclusions.

As the different sections present unrelated topics, we prefer to
keep the traditional notation for each topic and we introduce a list of
symbols and variables at the beginning of each section.

2. Forward simulation of 4D seismic data

Nomenclature
𝜇 Shear modulus
𝜈 Poisson’s ratio
𝜙 Porosity
𝜌 Density
𝐶𝑝 Average number of contacts per sphere
𝐾 Bulk modulus
𝑛 Degree of root
𝑃 Pressure
𝑆 Saturation
𝑉 Wave velocity
Subscripts
𝑐 Critical
𝑑 Rock grain porosity values lower than 𝜙𝑐
eff Effective
𝑓 Saturation effect on the presence of oil and water
HM Hertz–Mindlin model — dry rock at critical

porosity
𝑚 Mineral
𝑜 Oil
𝑃 Compressional wave
𝑠 Rock grain
𝑆 Shear wave
sat Saturation effect
𝑤 Water

In this section, we provide information about the green boxes in
ig. 1, except the Sparse Representation, which will be given in Sec-
ion 4 (Observed Data — Sparse Representation: Dictionary Learning
hrough the K-SVD Algorithm).

Once one generates the initial ensemble containing the uncertain
odel variables, such as porosity, permeability, and fault multipliers,

he next step is to run the simulation models to obtain simulated pres-
ure and saturation profiles, which are among the important quantities
o calculate the simulated seismic data.

.1. Petro-elastic model (PEM)

Petro-elastic models convert pressure and saturation data into elas-
ic attributes, such as acoustic impedance (or equivalently, wave ve-
ocities and densities), for seismic interpretation or inversion. PEM is
ependent on the type of reservoir formation and fluids.

One of the most commonly used PEMs is the soft-sand model
3

Mavko et al., 2009), in which the first step is to calculate the dry
bulk modulus (𝐾HM) and the shear modulus (𝜇HM) through the Hertz–
Mindlin model (Mindlin, 1949) as in

𝐾HM = 𝑛

√

𝐶2
𝑝 (1 − 𝜙𝑐 )2𝜇2

𝑠

18𝜋2(1 − 𝜈𝑠)2
𝑃eff, (1)

and

𝜇HM =
5 − 4𝜈𝑠
5(2 − 𝜈𝑠)

𝑛

√

3𝐶2
𝑝 (1 − 𝜙𝑐 )2𝜇2

𝑠

2𝜋2(1 − 𝜈𝑠)2
𝑃eff. (2)

n Eqs. (1) and (2), 𝑛 is the degree of root, 𝐶𝑝 is the average number
f contacts per sphere, 𝜙𝑐 is the critical porosity, 𝜇𝑠 is the grain shear
odulus, 𝜈𝑠 is the Poisson’s ratio, and 𝑃eff is the effective stress, i.e., the

ithostatic pressure minus pore pressure. In this work, 𝑛 is set to 3, 𝐶𝑝
s set to 9 and 𝜙𝑐 to 36% (the maximum porosity value). Physically,
ne can interpret 𝐾HM and 𝜇HM as the dry rock resistance to normal
nd shear stress, respectively. In addition, one can calculate Poisson’s
atio as in

𝑠 =
3𝐾𝑠 − 𝜇𝑠
6𝐾𝑠 − 𝜇𝑠

. (3)

𝑠 and 𝜇𝑠 are bulk modulus and the shear modulus of the rock grain,
espectively.

The modified Lower Hashin–Shtrikman (MLHS) (Hashin and Shtrik-
an, 1963; Mavko et al., 2009) calculates the effective dry bulk mod-
lus (𝐾𝑑) and the effective shear modulus (𝜇𝑑) for porosity values (𝜙)
ower than 𝜙𝑐

𝑑 =

( 𝜙
𝜙𝑐

𝐾HM + 4
3𝜇HM

+
1−𝜙
𝜙𝑐

𝐾𝑠 +
4
3𝜇HM

)−1

− 4
3
𝜇HM, (4)

and

𝜇𝑑 =

( 𝜙
𝜙𝑐

𝜇HM + 𝜇HM
6 𝑍

+
1−𝜙
𝜙𝑐

𝜇𝑠 +
𝜇HM
6 𝑍

)−1

−
𝜇HM
6

𝑍, (5)

with

𝑍 =
9𝐾HM + 8𝜇HM
𝐾HM + 2𝜇HM

. (6)

The next step is known as the Gassmann model (Hashin and Shtrik-
man, 1951), which generates the saturated bulk modulus and shear
modulus (𝐾𝑠𝑎𝑡 and 𝜇𝑠𝑎𝑡, respectively) by including the saturation effect
(Eqs. (7) and (8)).

𝐾𝑠𝑎𝑡 = 𝐾𝑑 +

(

1 − 𝐾𝑑
𝐾𝑠

)2

𝜙
𝐾𝑓

+ 1−𝜙
𝐾𝑠

− 𝐾𝑑
𝐾2
𝑠

, (7)

𝜇𝑠𝑎𝑡 = 𝜇𝑑 , (8)

nd 𝐾𝑓 takes into consideration the presence of both water and oil

𝑓 =

(

𝑆𝑤
𝐾𝑤

+
𝑆𝑜
𝐾𝑜

)−1

. (9)

Here 𝐾𝑜 and 𝐾𝑤 are the bulk modulus of the oil and water, respectively,
hile 𝑆𝑜 and 𝑆𝑤 are the oil and water saturation. Subsequently, one

alculates the saturated density (𝜌𝑠𝑎𝑡), P-wave and S-wave velocities (𝑉𝑃
nd 𝑉𝑆 ), as in Mavko et al. (2009)

𝜌𝑠𝑎𝑡 = (1 − 𝜙)𝜌𝑚 + 𝜙𝑆𝑤𝜌𝑤 + 𝜙𝑆𝑜𝜌𝑜, (10)

𝑉𝑝 =

√

√

√

√

𝐾𝑠𝑎𝑡 +
4
3𝜇𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
, (11)

and

𝑉𝑠 =
√

𝜇𝑠𝑎𝑡
𝜌𝑠𝑎𝑡

, (12)

where 𝜌𝑚, 𝜌𝑜, 𝜌𝑤 and, 𝜌𝑠𝑎𝑡 are mineral density, oil density, water
density, and saturated rock density, respectively. Note that one can
obtain wave impedance by multiplying 𝜌 by 𝑉 or 𝑉 .
𝑠𝑎𝑡 𝑝 𝑠
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2.2. AVA equation

To calculate the AVA, one first needs to define the reflection co-
efficients at each interface between two adjacent layers by using the
Zoeppritz equation (Avseth et al., 2010). Then, one should compute
the travel time using 𝑉𝑝 and the thickness of the gridblocks. Finally, the

VA data can be obtained by convolving the reflectivity series with a
icker wavelet. Here, a Ricker wavelet of 45 Hz is considered. Note that
ifferent incident angles can be considered while generating the AVA
ata. The readers are referred to Luo et al. (2017) for more information
bout how to generate the AVA data.

In seismic history-matching problems, acoustic impedance can also
e adopted, see, for example, Lorentzen et al. (2019), Emerick (2016),
nd Gosselin et al. (2003). However, AVA has the advantage of avoiding
he inclusion of biases or errors during the seismic inversion pro-
ess (Luo et al., 2018) and AVA can help to identify different situations
n the reservoir.

. History matching: Ensemble-based methods

Nomenclature
𝛼 Regularization/Weight term
𝛽 Scalar parameter responsible to increase/decrease 𝛼
𝜹 Measurement error
𝜀 Noise in the correlation calculated in the

localization
𝜌 Correlation between the model variables in the

ensemble and the simulated data
𝜎 Standard deviation
Σ Singular values matrix
Σ̂ Truncated singular values matrix
𝜃 Threshold value in the automatic and adaptive

correlation-based localization
𝜁 Average data mismatch
𝐀 Ensemble anomalies
𝑐 Entry of the localization matrix
𝐂 Localization matrix
𝐂d Measurement error covariance matrix
𝐂x Uncertain model parameter error covariance matrix
𝐝 Observed data
𝐝sim Simulated data
𝐃 Ensemble matrix of observation residual
�̃� Rotated 𝐃
𝐠 Reservoir simulator
𝐊 Kalman gain
𝑁d Total number of observed data
𝑁e Total number of realizations in the ensemble
𝑁i Total number of iterations
𝑁sv Total number of retained singular values
𝑁x Total number of uncertain variables
𝑝(·) Prior distribution
𝑝(·|·) Likelihood or posterior probability density function

given a parameter
𝐒 Simulated data anomalies
�̃� Rotated 𝐒
𝐔 Left singular vectors matrix
�̂� Truncated left singular vectors matrix
𝐕 Right singular vectors matrix
�̂� Truncated right singular vectors matrix
𝐱 Uncertain model parameter
𝐗 Ensemble matrix of uncertain model variables
𝑧 Dummy variable defined in the correlation-based

adaptive localization
4

a

Subscripts
𝑐 Common point
eff Effective
𝑗 Realization index
Superscripts
0 Prior
𝑖 Iteration index
true True
T Transpose

We will now introduce the ensemble method used for conditioning
the model on the observations (red box in Fig. 1). Model conditioning
or history matching is an essential component in the development and
management of petroleum reservoirs. By using the information about
the dynamical properties of the reservoir contained in observed data,
such as well rates (oil, water, and gas) and seismic, one can constrain
reservoir models and update the uncertain model parameters, such as
permeability and porosity fields. The Ensemble Kalman Filter (EnKF)
by Evensen (1994), initially developed for sequential data assimilation,
provides an efficient means for model conditioning. Nævdal et al.
(2002) introduced the EnKF for use in the petroleum industry, and since
then, ensemble-based methods have attracted a lot of attention within
the industry. Notably, the introduction of the Ensemble Smoother (van
Leeuwen and Evensen, 1996) (which is an EnKF that uses all data
simultaneously to update all parameters in one step) for petroleum
applications by Skjervheim et al. (2011) triggered further development
of effective iterative forms of the Ensemble Smoother.

3.1. History-matching problem

To formulate the history-matching problem, we denote the un-
certain model parameters as 𝐱, the (potentially imperfect) forward
operator which transforms the model variables into the simulated data
𝐝sim as 𝐠, such that

𝐝sim = 𝐠(𝐱). (13)

Besides, we have one set of observed data 𝐝, which are generated
through the following observation system

𝐝 = 𝐠true(𝐱true) + 𝜹. (14)

ere, 𝐱true stands for the ground-truth model, and 𝜹 represents mea-
urement errors that are normally distributed random errors with zero
ean and variance represented by the measurement error-covariance
atrix 𝐂d, e.g., 𝜹 ∼  (𝟎,𝐂d). The true (but unknown) forward simu-

ator 𝐠true may be different from the actual forward operator 𝐠 in use,
ence model errors can arise. In this work, however, we do not consider
odel errors as in Luo and Bhakta (2020), Chen and Oliver (2017),

nd Emerick (2016), for instance. More information on how to deal
ith model errors can be found in Evensen (2019) and Luo (2019).

Since 𝐱 is uncertain, history matching is an inverse problem where
ne solves for a 𝐱 that results in a model prediction 𝐠(𝐱) that is close
o the observed data 𝐝. Furthermore, the number of parameters is
ormally much larger than the independent degrees of freedom in the
bservations. In this case, estimating model variables 𝐱 based on the
bservations 𝐝 and the forward simulator 𝐠 defines a high-dimensional
nd under-determined inverse problem.

Through Bayes’ theorem, it is possible to define the posterior prob-
bility density function of 𝐱 given the observed data

(𝐱|𝐝) ∝ 𝑝(𝐝|𝐱)𝑝(𝐱), (15)

here 𝑝(𝐱) is the prior distribution of the model parameters and 𝑝(𝐝|𝐱)
s the likelihood. By assuming that both the prior and likelihood
re Gaussian distributed and considering an ensemble of multiple re-
lizations (Evensen, 2009a), it is possible to sample the posterior
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distribution 𝑝(𝐱|𝐝) by the minimization of an ensemble of cost functions
associated for each realization 𝑗

rgmin
{𝐱𝑗}

{

(

𝐠(𝐱𝑗 ) − 𝐝𝑗
)T𝐂−1

d
(

𝐠(𝐱𝑗 ) − 𝐝𝑗
)

+
(

𝐱𝑗 − 𝐱0𝑗
)T𝐂−1

x
(

𝐱𝑗 − 𝐱0𝑗
)

}

. (16)

ere, 𝐱0 is the prior estimate of the model parameters and 𝐂x is the
rror covariance matrix of the uncertain model parameters (or the prior
ovariance matrix for the model parameters). Note that one needs to
ample a prior ensemble of models 𝐱0𝑗 from  (𝐱0,𝐂x) and an ensemble
f measurements 𝐝𝑗 from  (𝐝,𝐂d).

For the case where 𝐠 is linear, the minimization of the Eq. (16)
ill sample the correct posterior distribution for an infinite ensemble

ize, 𝑁e, Evensen (2009a). However, if 𝐠 is non-linear, as in the
ase of reservoir applications, the minimization of the Eq. (16) is an
pproximation.

By minimizing Eq. (16), one can obtain the following formula to
pdate the uncertain model variables

𝑗 = 𝐱0𝑗 + 𝐀𝐒T
(

𝐒𝐒T + 𝐂d

)−1(
𝐝𝑗 − 𝐠

(

𝐱0𝑗
)

)

, (17)

here

= 1
√

𝑁e − 1

(

𝐱01 − 𝐱0𝑐 ,… , 𝐱0𝑁e
− 𝐱0𝑐

)

; 𝐱0𝑐 = 1
𝑁e

𝑁e
∑

𝑗=1
𝐱0𝑗 , (18)

𝐒 = 1
√

𝑁e − 1

(

𝐠
(

𝐱01
)

− �̄�,… , 𝐠
(

𝐱0𝑁e

)

− �̄�
)

; �̄� = 1
𝑁e

𝑁e
∑

𝑗=1
𝐠
(

𝐱0𝑗
)

, (19)

nd 𝑁e is the total number of realizations in the ensemble. Note that
x = 𝐀(𝐀)T. Eq. (17) is known as the analysis equation for the Ensemble
moother (van Leeuwen and Evensen, 1996). For more information
bout the minimization process and ensemble-based methods in gen-
ral, the readers are referred to Evensen (2009a) and Aanonsen et al.
2009).

To reduce the impact of the approximation, one can use iterative
orms of the ensemble smoother as they generate better approximate
olutions than the non-iterative form (Evensen, 2018). Among recent
terative ensemble-smoothers, the most popular are the EnRML method
y Chen and Oliver (2012, 2013) and the Ensemble Smoother with Mul-
iple Data Assimilation (ESMDA) by Emerick and Reynolds (2013). A
ecent reformulation of the EnRML by Evensen et al. (2019) and Raanes
t al. (2019) is a more efficient alternative than the original EnRML
ethod. In this work, we employ the Iterative Ensemble Smoother
egularized Levenberg–Marquardt (IES-RML) by Luo et al. (2015).
ven though the different iterative smoothers are similar to each other,
hey solve slightly different problems, and it is difficult to choose the
est one since the results may be case dependent (Evensen, 2018).
n the next section, we provide more information about the IES-RLM,
hich we use in this work.

.2. IES-RLM

Luo et al. (2015) were more interested in the average change in
ata mismatch between iterations. Hence, they proposed the following
equence of minimization problems for each realization

argmin
{

𝐱𝑖+1𝑗

}

1
𝑁e

𝑁e
∑

𝑗=1

{

(

𝐝𝑗 − 𝐠
(

𝐱𝑖+1𝑗
)

)T
𝐂−1
d

(

𝐝𝑗 − 𝐠
(

𝐱𝑖+1𝑗
)

)

+

𝛼𝑖
(

𝐱𝑖+1𝑗 − 𝐱𝑖𝑗
)T

𝐂−1
x

(

𝐱𝑖+1𝑗 − 𝐱𝑖𝑗
)

}

,

(20)

here 𝑖 is the iteration number (𝑖 = 0, 1,… , 𝑁i). The first term accounts
or the difference between the simulated and observed data as in
q. (16), while the second term penalizes the update increments in
ach iteration regarding the prior ensemble. In this formulation, 𝛼𝑖 is a
ositive scalar responsible for assigning a weight to the second term.
5

The minimization of the Eq. (20) gives us the following formula to
pdate the uncertain model variables for the IES-RML method

𝑖+1
𝑗 = 𝐱𝑖𝑗 + 𝐀𝑖(𝐒𝑖

)T
(

𝐒𝑖
(

𝐒𝑖
)T + 𝛼𝑖𝐂d

)−1(
𝐝𝑗 − 𝐠

(

𝐱𝑖𝑗
)

)

. (21)

ere, 𝐀𝑖 is similar as in Eq. (18), with the exception that now one
alculates them at each iteration, 𝛼𝑖 is the regularization coefficient
hich changes over the iteration steps, to be explained later, and 𝐒𝑖

is defined as

𝐒𝑖 = 1
√

𝑁e − 1

(

𝐠
(

𝐱𝑖1
)

− 𝐠
(

𝐱𝑖𝑐
)

,… , 𝐠
(

𝐱𝑖𝑁e

)

− 𝐠
(

𝐱𝑖𝑐
)

)

. (22)

In this algorithm, one needs to choose certain stopping criteria for
the number of iterations. According to Luo et al. (2015), such criteria
should be based on the following:

1. If the data mismatch becomes smaller than the number of ob-
served data points (𝑁d) times a factor (1 in this study).

2. A maximum number of iterations (20 in this study).
3. The relative change between data mismatch in two consecutive

iterations is small (less than 0.01% in this study).

The average data mismatch used in criterion 1 and 3 is defined as

𝜁 = 1
𝑁e

𝑁e
∑

𝑗=1

(

𝐝𝑗 − 𝐠
(

𝐱𝑗
)

)T
𝐂−1
d

(

𝐝𝑗 − 𝐠
(

𝐱𝑗
)

)

. (23)

We now define the ensemble matrix

𝑖 =
(

𝐱𝑖1, 𝐱
𝑖
2,… , 𝐱𝑖𝑁e

)

, (24)

and additionally one can define the ensemble matrix of observation
residuals as the observed data minus the simulated data as in

𝐃𝑖 =
(

𝐝1 − 𝐠
(

𝐱𝑖1
)

,… ,𝐝𝑁e
− 𝐠

(

𝐱𝑖𝑁e

)

)

. (25)

Besides,assuming that we have access to a symmetric square root 𝐂
1
2
d

of 𝐂d such that 𝐂d = 𝐂
1
2
d
(

𝐂
1
2
d
)T, and considering the following rotated

operators

�̃�𝑖 = 𝐂
− 1

2
d 𝐒𝑖, (26)

�̃�𝑖 = 𝐂
− 1

2
d 𝐃𝑖, (27)

one can write the analysis equation as

𝐗𝑖+1 = 𝐗𝑖 + 𝐀𝑖(�̃�𝑖
)T
(

�̃�𝑖
(

�̃�𝑖
)T + 𝛼𝑖𝐈

)−1
�̃�𝑖, (28)

Note that in many practical cases, 𝐂d is assumed to be diagonal (uncor-
related measurement errors). Hence, Eqs. (27) and (26) can be viewed
as a re-scaling.

Nevertheless, the matrix product to be inverted,
(

�̃�𝑖
(

�̃�𝑖
)T
)

, has
dimension 𝑁d × 𝑁d, which can be very big (especially when using
4D seismic data). Therefore, a common procedure in the literature
to obtain a more numerically stable algorithm is to apply the Trun-
cated Singular Value Decomposition (TSVD) to the matrix �̃�𝑖. In this
regard, Evensen (2009a) suggested to keep the leading singular values
that add up to between 90% and 99.9% of the total sum of squared
singular values. Suppose that, through the TSVD, one obtains

𝐒𝑖 ≈ �̂�𝑖Σ̂𝑖(�̂�𝑖)T, (29)

where the matrices with respect to singular vectors or values, �̂�𝑖, Σ̂𝑖,
and (�̂�𝑖)𝑇 , have the dimensions of 𝑁d ×𝑁sv, 𝑁sv ×𝑁sv, and 𝑁sv ×𝑁e,
respectively. 𝑁sv is the number of kept leading singular values.

Inserting Eq. (29) into Eq. (28) and applying some algebra, one has

𝐗𝑖+1 = 𝐗𝑖 + 𝐀𝑖�̂�𝑖(Σ̂𝑖)T
(

Σ̂𝑖(Σ̂𝑖)T + 𝛼𝑖𝐈
)−1

(�̂�𝑖)T�̃�𝑖. (30)
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Several authors, such as Luo et al. (2015), Luo and Bhakta (2020),
Lorentzen et al. (2019) and Chen and Oliver (2017), used this formu-
lation. Nevertheless, if we consider the Woodbury identity (see, e.g.,
Evensen et al., 2019)

𝐁T(𝐁𝐁T + 𝐑)−1 = (𝐈 + 𝐁T𝐑−1𝐁)−1𝐁T𝐑−1, (31)

it is possible to rearrange Eq. (28) into the following form

𝐗𝑖+1 = 𝐗𝑖 + 𝐀𝑖
(

(

�̃�𝑖
)T�̃�𝑖 + 𝛼𝑖𝐈

)−1
(

�̃�𝑖
)T�̃�𝑖. (32)

he nice property of the Eq. (32) is that the inversion is of a matrix of
imension the ensemble size 𝑁e ×𝑁e rather than the measurement di-
ension (𝑁d×𝑁d) in Eq. (28). Therefore, one can avoid the application

f the TSVD.
The final matrix product in Eq. (32)

(

(

�̃�𝑖
)T�̃�𝑖

)

is effectively a pro-
ection of the observation residuals onto the ensemble space spanned
y �̃�𝑖. Thus, by solving the update equation with Eq. (32), one can only
xploit information from the measurements that can be represented
y the ensemble. In addition, the matrix multiplication

(

(

�̃�𝑖
)T�̃�𝑖

)

elps to handle the big data assimilation problem, as it produces a
ower-dimensional representation of the observation residuals.

Given Eq. (32), the regularization parameter 𝛼𝑖 is determined fol-
owing the rule below (Luo et al., 2015, 2019)

𝑖 = 𝛽𝑖 × trace
(

(

�̃�𝑖
)T�̃�𝑖

)

∕𝑁e, (33)

here 𝛽𝑖 is a scalar that should decrease by a certain rate if the
verage data mismatch is reduced while increasing by a certain rate
nstead if the average data mismatch increases, and trace is an operator
hat calculates the trace of a matrix. Note that depending on the
ormulation, the calculation of 𝛼𝑖 will change, as it depends on the
atrix that is being summed

(

(

�̃�𝑖
)T�̃�𝑖

)

, in this case.

Nevertheless, the limited number of realizations in the ensemble and
possible big dataset in the observed data can make the problem over-
etermined, which would cause a strong reduction of the ensemble
ariability. An approach much used to deal with this issue is the
pplication of a localization technique.

.3. Localization

The traditional view is that localization is required to mitigate the
ffect of spurious correlation from remote observations, which leads
o variance reduction in the ensemble (Aanonsen et al., 2009; Emerick
nd Reynolds, 2011; Chen and Oliver, 2017; Sakov and Bertino, 2011;
evegowda et al., 2007; Luo and Bhakta, 2020; Soares et al., 2018).
ocalization is described by the matrix 𝐂, which represents the relation-
hip between each observed data and the uncertain model variables.
ence, one can use the localization matrix 𝐂 to specify which data

hould be used to update which set of uncertain parameters.
To conduct localization, it is better to rearrange Eq. (32) as in

𝑖+1 = 𝐗𝑖 +𝐊𝑖�̃�𝑖, (34)

here we have introduced the so-called Kalman gain matrix 𝐊𝑖 ∈
𝑁x×𝑁d that can take different forms using either one of the Eqs. (28)

r (32), e.g.,

𝑖 = 𝐀𝑖
(

(

�̃�𝑖
)T�̃�𝑖 + 𝛼𝑖𝐈

)−1
(

�̃�𝑖
)T. (35)

omputationally, it is better not to compute the Kalman gain matrix,
ince it has a big dimension 𝑁x × 𝑁d. However, for using localization
ased on tapering of the Kalman gain, the Kalman gain matrix needs
o be computed.

Localization is implemented as a tapering of the values contained
n the Kalman Gain matrix. For instance, one can define a tapering
unction that equals one at the measurement location and zero far from
6

he measurement location where there should be no significant impact w
f the measurement. A common way of implementing localization is to
ompute the update from the following equation
𝑖+1 = 𝐗𝑖 + 𝐂◦𝐊𝑖�̃�𝑖. (36)

Here the Schur or Hadamard product 𝐂◦𝐊𝑖 defines an element-wise
multiplication and results in a new matrix of the same dimension as
the original Kalman Gain matrix 𝐊𝑖 ∈ ℜ𝑁x×𝑁d . Therefore, it is possible
to use different linear combinations to update the uncertain model
variables (Chen and Oliver, 2017).

One alternative to deal with the big dimension of the Kalman gain is
to use Eq. (36) and sparsely represent the observed data, so it is possible
to achieve a much lower number of observed data (𝑁d) and, then, one
can deal with the Kalman gain matrix.

Another alternative is to define the effective Kalman gain matrix
(𝐊𝑖

eff ) (Lorentzen et al., 2019; Luo and Bhakta, 2020; Chen and Oliver,
2017). For that purpose, if one considers Eq. (32) and compute the
exact Singular Value Decomposition of �̃�𝑖 as in

𝐒𝑖 = 𝐔𝑖Σ𝑖(𝐕𝑖)T, (37)

one will obtain the following equation

𝐗𝑖+1 = 𝐗𝑖 + 𝐀𝑖𝐕𝑖
(

(Σ𝑖)TΣ𝑖 + 𝛼𝑖𝐈
)−1

(Σ𝑖)T(𝐔𝑖)T�̃�𝑖. (38)

herefore, one can define 𝐊𝑖
eff as

𝑖
eff = 𝐀𝑖𝐕𝑖

(

(Σ𝑖)TΣ + 𝛼𝑖𝐈
)−1

(39)

nd apply localization
𝑖+1 = 𝐗𝑖 + 𝐂𝑖

eff◦𝐊
𝑖
eff (𝐔

𝑖Σ𝑖)T�̃�𝑖, (40)

here 𝐂eff has dimension of 𝑁x ×𝑁e (same as the 𝐊eff). The advantage
f using this formulation is that by first multiplying the last three
atrices

(

(𝐔𝑖Σ𝑖)T�̃�𝑖
)

, the effective Kalman gain matrix
(

𝐊𝑖
eff

)

will
ave dimension of 𝑁x×𝑁e, which is numerically more efficient to store
nd manipulate as 𝑁e ≪ 𝑁d. Furthermore, as mentioned previously,
his multiplication can be viewed as a projection of the observation
esiduals into a smaller subspace. However, there is some information
oss, as we will show later (cf. Fig. 9).

There are different ways of computing 𝐂. One of the most com-
on approaches appears to be distance-dependent localization (Hamill

t al., 2001; Emerick, 2016; Sakov and Bertino, 2011), in which all
ata points and model variables are assumed to be associated with
ertain physical locations. Besides, one needs to define a critical length
o specify the regions in which each data should influence the model
ariables.

Nevertheless, Luo and Bhakta (2020) pointed out that the definition
f the critical length might be difficult and case-dependent. Moreover,
ome types of observations used in data assimilation, like seismic
ata represented in a different transform domain, may not have any
ssociated physical locations, in contrast to the more conventional
roduction data from wells. To overcome these (and a few other)
oticed issues, Luo and Bhakta (2020) proposed an automatic and
daptive correlation-based localization scheme.

.3.1. Automatic and adaptive correlation-based localization
Luo and Bhakta (2020) calculated the correlation (𝜌) between un-

ertain model variables in the initial ensemble (𝐗0) and the initial
imulated data

(

𝐠(𝐗0)
)

. Then, they defined threshold values to deter-
ine which observed data should be used to update which uncertain
odel variables. Since in practical implementations of ensemble-based
ethods, the ensemble size is limited (usually around 100), the es-

imated correlation from a limited sample between two uncorrelated
ariables might be different from zero. Therefore, the main idea in Luo
nd Bhakta (2020) is to obtain the spurious correlations (or noise) of
hese uncorrelated data, and use them to calculate the threshold values

hich are needed for the computation of 𝐂.
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To estimate the noise level, one can calculate the correlation fields
between an ensemble of reservoir models (independent and identically
distributed) and an ensemble of simulated data that are produced
independently of the previous ensemble. Due to the independence
between them, one can take the resulting correlation fields as the
desired noise fields 𝜀, which can be approximated by some Gaussian
istributions with zero mean and unknown standard deviations denoted
y 𝜎 hereafter. To calculate 𝜎, Luo and Bhakta (2020) proposed to
se the median absolute deviation estimator (Donoho and Johnstone,
995), as in

=
median(abs(𝜀))

0.6745
. (41)

After that, one can compute the threshold (𝜃) by

𝜃 = 𝜎
√

2ln(#𝜌) , (42)

here #𝜌 is the number of elements in 𝜌.
Note that one should perform this procedure for each group type

f uncertain variables. In other words, one must calculate the noise,
tandard deviation, and threshold for each group, such as porosity,
orizontal permeability, and vertical permeability, for instance.

Finally, to generate a smooth tapering function, Luo and Bhakta
2020) defined a dummy variable

=
1 − abs(𝜌)

1 − 𝜃
, (43)

where 𝜌 is the sample correlation between a model variable and a
data point, and 𝜃 is the corresponding threshold value obtained from
Eq. (42). The variable 𝑧 is then used in the Gaspari and Cohn for-
mula (Gaspari and Cohn, 1999)

𝑐(𝑧) =

⎧

⎪

⎨

⎪

⎩

− 1
4 𝑧

5 + 1
2 𝑧

3 + 5
8 𝑧

3 − 5
3 𝑧

2 + 1, if 0 ≤ 𝑧 ≤ 1

− 1
12 𝑧

5 − 1
2 𝑧

4 + 5
8 𝑧

3 + 5
3 𝑧

2 − 5𝑧 + 4 − 2
3 𝑧

−1, if 1 < 𝑧 ≤ 2
0, if 𝑧 > 2.

(44)

Here, 𝑐 are the entry values of the localization matrix 𝐂.
Note that if one uses Eq. (36), one should calculate the correlation

between the initial uncertain model variables (𝐗0) and the simulated
data

(

𝐠(𝐗0)
)

. However if one uses Eq. (40), the correlation should
be computed between the initial uncertain model variables and the
projected data

(

(𝐔𝑖Σ𝑖)T
(

𝐠(𝐗0)
)

)

. For that reason, it is necessary to
compute 𝐂𝑖

eff at each iteration, according to (𝐔𝑖Σ𝑖)T.
It is important to highlight that when we use Eq. (36) and the

sparsely observed data, we might still achieve a large 𝑁d and, con-
sequently, 𝐊𝑖 might still be difficult to store and manipulate. Hence,
one can compute each row or group of rows separately, or apply local
analysis to deal better with the size of 𝐊𝑖 (Sakov and Bertino, 2011;
Chen and Oliver, 2017; Evensen et al., 2019; Brusdal et al., 2003).
Nevertheless, we do not conduct local analysis in this work, but we
will consider it in the future.

4. Observed data — sparse representation: Dictionary learning
through the K-SVD algorithm

Nomenclature
𝛥𝑥 Step size in the 𝑥-direction
𝛥𝑦 Step size in the 𝑦-direction
𝛾 Column vector of the Sparse matrix — sparse

vector
Γ Sparse matrix
𝜖 Error tolerance
𝜆 Penalty for image reconstruction
𝜎 Noise standard deviation
7

𝑐 Inner product coefficient between the atoms of the
Dictionary and the residual

𝐶 Constant in the calculation of the error tolerance
𝐝 Atom in the dictionary
𝐃 Dictionary
𝐄 Residual matrix
𝐠 Row vector of the Sparse matrix
𝐥 Data
𝐿 Information loss
max Maximum value
𝑛 Patch size
𝑁it Total number of iterations
𝑁k Total number of atoms in the Dictionary
𝑁nz Total number of nonzero coefficients
𝑁ts Total number of patches (training dataset size)
𝐫 Residual vector
𝐱 Patches in the original seismic dataset
𝐗 Seismic dataset
Subscripts
𝐹 Frobenius
𝑖 Patch index
𝐼 Indexes of the locations of nonzero coefficients in

𝐠T
𝑗 Dictionary index
𝐽 Collection of indexes of the atoms in the

dictionaries used to calculate the sparse vector
Superscripts
+ Pseudo-inverse
𝑚 Iteration index for the sparse vector calculation
rec Reconstructed
true True
T Transpose

As mentioned in the previous section, one alternative to deal with
the big data from 4D seismic in history matching is through the appli-
cation of sparse representation methods. Therefore, this part focuses on
the Dictionary Learning method through the K-SVD algorithm (Aharon
et al., 2006), which is responsible for sparsely represent the 4D seismic
data to be used in history matching.

In the sparse representation problem, let us denote by 𝐗 a matrix
hat is derived from the original seismic dataset (more information on
ow to form 𝐗 is given in the next paragraphs). Besides, we assume
hat we have an initial guess of a matrix 𝐃 (called dictionary) whose

columns are filled with a set of predefined redundant basis elements
(called atoms), and a separate matrix Γ associated with 𝐃. Hence, our
purpose here is to approximate 𝐗 as

𝐗 ≈ 𝐃Γ. (45)

Given the dictionary 𝐃, the matrix 𝐗 is (approximately) represented
by the non-zero elements of the matrix Γ. Therefore, if Γ is a sparse
matrix, then one can achieve the purpose of sparse representation.

For numerical efficiency in handling big datasets, Aharon et al.
(2006) suggested that a big dataset be first divided into a number
of (possibly overlapping) subsets (called patches), so one can form 𝐗.
Note that in general, each patch can be a multidimensional (e.g., 2D or
3D) array extracted from the original seismic data (represented by the
yellow box named ‘‘Observed data’’ on the right-hand side of Fig. 1).
Here, we first consider 2D arrays each with dimension 𝑛 × 𝑛 where 𝑛
denotes the patch size. We then reshape these 2D arrays into column
vectors 𝐱𝑖 ∈ R𝑛2 for 𝑖 = 1, 2,… , 𝑁ts, such that

𝐗 = [𝐱1, 𝐱2,… , 𝐱𝑁ts ] ∈ R𝑛2×𝑁ts , (46)

where 𝑁ts is the number of patches (also called the training dataset
size).
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Fig. 2. Dictionary learning scheme.

Accordingly, let 𝐃 ∈ R𝑛2×𝑁k , where 𝑁k denotes the number of atoms
(columns) in the dictionary (called dictionary size), then one has the
associated matrix Γ defined as

Γ = [𝛾1, 𝛾2,… , 𝛾𝑁ts ] ∈ R𝑁k×𝑁ts , (47)

where 𝛾𝑖 (𝑖 = 1, 2,… , 𝑁ts) are columns vectors that contain the repre-
sentation coefficients associated with individual atoms. In other words,
each 𝐱𝑖 are approximated by a linear combination of the atoms in 𝐃, in
terms of

𝐱𝑖 ≈ 𝐃𝛾𝑖. (48)

In the current work, we adopt the K-SVD algorithm (Aharon et al.,
2006) to tackle the sparse representation problem. Aharon et al. (2006)
originally proposed K-SVD as a Dictionary Learning method for image
denoising. Later on, this algorithm has also been applied to different
areas, for instance, face recognition problems (Zhang and Li, 2010),
magnetic resonance image reconstruction (Ravishankar and Bresler,
2011), and representation of geological facies in oil reservoirs (Liu and
Jafarpour, 2013).

K-SVD is an iterative algorithm and can be divided into two main
parts: (1) calculation of the sparse representation matrix; and (2) dictio-
nary update. As such, one needs to pre-choose a dictionary to initialize
the algorithm. Elad and Aharon (2006) and Soares et al. (2019) used a
Discrete Cosine Transform (DCT) function as the initial dictionary and
reported it as a good choice. Note that the initial dictionary can also
be in other forms, such as wavelet or curvelet basis functions, or some
random parts of the original image. Through the learning process, the
dictionary will be updated to better adapt to each specific problem on
hand, and consequently, to achieve a better representation with fewer
non-zero coefficients (Turquais, 2018). Fig. 2 depicts the scheme for the
Dictionary Learning method, and as an iterative method, one should
define the total number of iterations 𝑁it.

4.1. Calculation of the sparse representation matrix

After the initial dictionary is chosen, one can move to calculate the
sparse matrix Γ. As suggested by Aharon et al. (2006), it is necessary
to divide the original dataset into smaller patches and transform them
into column vectors (𝐱1, 𝐱2,… , 𝐱𝑁ts ). Subsequently, one can calculate
the sparse vector for each patch (𝛾1, 𝛾2,… , 𝛾𝑁ts ).

One way of solving the sparse representation problem is to add an
error constraint (Rubinstein et al., 2008) as in

𝛾𝑖 = Argmin
𝛾𝑖

‖

‖

𝛾𝑖‖‖0 subject to ‖

‖

𝐱𝑖 − 𝐃𝛾𝑖‖‖
2
2 ≤ 𝜖 . (49)

Here 𝜖 specifies the error tolerance, and is calculated as

𝜖 =
(

𝐶𝜎
√

𝑛2
)2

, (50)

where 𝐶 is a constant determined as 1.15 by Elad and Aharon (2006),
and 𝜎 is the noise standard deviation, which needs to be defined
beforehand.

The approach proposed by Elad and Aharon (2006) is to use the
Orthogonal Matching Pursuit (OMP) to iteratively fill the sparse vec-
tor 𝛾𝑖 with one non-zero coefficient each time, until the constraint
(‖𝐱 − 𝐃𝛾 ‖2 ≤ 𝜖) is satisfied.
8

‖ 𝑖 𝑖‖2
In the OMP algorithm, the first step is to calculate the inner product
coefficient between the columns (or atoms) 𝐝𝑗 (𝑗 = 1, 2,… , 𝑁k) of the
dictionary 𝐃 and the residual 𝐫𝑚𝑖 (𝑖 = 1, 2,… , 𝑁ts)

𝑐𝑚𝑖 = (𝐫𝑚𝑖 )
T𝐝𝑗 , (51)

where 𝑚 is the iteration index for the sparse vector calculation, and the
residual 𝐫𝑚𝑖 is defined as

𝐫𝑚𝑖 = 𝐱𝑖 − 𝐃𝛾𝑚𝑖 . (52)

Note that for the first iteration 𝛾0𝑖 = 0, then 𝐫𝑚𝑖 = 𝐱𝑖.
Next, one selects the atom with the highest inner product coefficient

with 𝐫𝑚𝑖 and stores its index in 𝐽 . In other words, one selects the atom
with the largest correlation with the residual. Finally, it is necessary to
orthogonalize the original data (𝐱𝑖) in the space spanned by the atoms
in 𝐽 (denote by 𝐃𝐽 ), in terms of

𝛾𝑚𝑖 = (𝐃𝐽 )+𝐱𝑖 = (𝐃T
𝐽𝐃𝐽 )−1𝐃T

𝐽 𝐱𝑖. (53)

One should do these steps multiple times until reaching the stopping
criterion. It is important to highlight that at every iteration step (𝑚),
one adds one index to 𝐽 and one non-zero coefficient to 𝛾𝑖, and these
iterations are related only to the calculation of the sparse matrix.

4.2. Dictionary update

After calculating the sparse matrix Γ, one needs to update the
dictionary 𝐃. In this regard, Elad and Aharon (2006) proposed to do
the update column by column. Hence, one should only consider the
signals in 𝐗 that uses the atom being updated. In addition, Elad and
Aharon (2006) also proposed to update only the non-zero coefficients
in Γ.

If one thinks of Γ as a matrix composed of the row vectors 𝐠𝑇𝑗
and considers updating the 𝑗th atom 𝐝𝑗 of the Dictionary 𝐃, one can
calculate the residual

𝐄𝑗 = 𝐗𝐼𝑗 −
∑

𝑎≠𝑗
𝐝𝑎𝐠𝑇𝑎,𝐼𝑗 , (54)

when the 𝐝𝑗 atom is excluded for sparse representation. The list 𝐼𝑗
indexes the locations of non-zero coefficients in 𝐠𝑇𝑗 . For instance, if

𝐠𝑇𝑗 = (0, 𝛾𝑗,2, 0,… , 0, 𝛾𝑗,10, 0,… , 0, 𝛾𝑗,22, 0,… , 0),

then 𝐠𝑇𝑗,𝐼𝑗 = (𝛾𝑗,2, 𝛾𝑗,10, 𝛾𝑗,22). Therefore, one can expect that

𝐄𝑗 = 𝐗𝐼𝑗 −
∑

𝑎≠𝑗
𝐝𝑎𝐠𝑇𝑎,𝐼𝑗 ≈ 𝐝𝑗𝐠𝑇𝑗,𝐼𝑗 . (55)

Consequently, one can update 𝐝𝑗 and 𝐠𝑇𝑗,𝐼𝑗 by solving the following
minimization problem

Armin𝐝𝑗 ,𝐠𝑇𝑗,𝐼𝑗

‖

‖

‖

‖

𝐄𝑗 − 𝐝𝑗𝐠𝑇𝑗,𝐼𝑗
‖

‖

‖

‖

2

𝐹
subject to ‖

‖

‖

𝐝𝑗
‖

‖

‖2
= 1 , (56)

where ‖·‖𝐹 denotes the Frobenius norm.
This problem can be solved by Singular Value Decomposition (SVD)

or by an approximate solution proposed by Rubinstein et al. (2008),
where they accelerate the optimization process by seeking a sub-
optimal solution instead through the following equations

𝐝𝑗 = 𝐗𝐼𝑗 𝐠𝑗,𝐼𝑗 −
(

∑

𝑎≠𝑗
𝐝𝑎𝐠𝑇𝑎,𝐼𝑗

)

𝐠𝑗,𝐼𝑗 . (57)

𝐝𝑗 = 𝐝𝑗∕‖𝐝𝑗‖2 . (58)

𝐠T𝑗,𝐼𝑗 = 𝐝T𝑗 𝐗𝐼𝑗 − 𝐝T𝑗
(

∑

𝑎≠𝑗
𝐝𝑎𝐠𝑇𝑎,𝐼𝑗

)

. (59)

More information about the method can be found in Rubinstein et al.
(2008) and Soares et al. (2019).

To check if the sparse representation matrix is able to capture the
main characteristics of the data, one can calculate the reconstructed
dataset by

𝐗rec = 𝐃Γ, (60)
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and compare if 𝐗rec and 𝐗 are similar. Luo et al. (2018) used the
following measure of information loss (𝐿)

𝐿 =
‖𝐥true − 𝐥rec

‖2
‖𝐥true

‖2
× 100, (61)

where 𝐥true is the quantity containing the true or reference data (after
excluding noise, if any) and 𝐥rec the quantity with respect to the
reconstructed data.

If one uses the 4D AVA dataset in seismic history matching, most of
the data may just stem from 4D noise. Hence, the non-zero coefficients
of the sparse matrix Γ may be concentrated on some specific parts of
the matrix. Consequently, the reconstructed image may contain certain
discontinuities. In order to reconstruct a smoother image, instead of
using Eq. (60), Elad and Aharon (2006) proposed the following formula

𝐗rec = (𝜆𝐈)−1(𝜆𝐗 + 𝐃Γ), (62)

which represents a weighted average between the reconstructed dataset
(𝐃Γ) and the original one. In Eq. (62), 𝜆 is a penalty (or weight)
parameter, which in this work is chosen as

𝜆 =
max(𝐗)
10𝜎

, (63)

following the suggestion of Rubinstein et al. (2008), where max is the
maximum value of a property.

4.3. Parameters in the K-SVD method

From the previous introduction, one can see that there are several
parameters involved in the K-SVD method, such as dictionary size (𝑁k),
training dataset size (𝑁ts), patch size (𝑛), and number of iterations
(𝑁it). Depending on the objective and the dataset in the case study,
the optimal values of these parameters may differ.

Relevant to the current study, Soares et al. (2019) evaluated how
each of these parameters affects the number of non-zero coefficients
retained in the sparse matrix (𝑁nz) and the quality of the reconstructed
image using a 4D seismic dataset. According to the authors, the most
influential parameter on the number of non-zero coefficients is the
training dataset size. The lower 𝑁ts is, the smaller 𝑁nz becomes. Hence,
to make 𝑁nz as small as possible, it is better to collect patches in the
dataset without any overlapping between them. If one uses a higher
𝑁ts, the quality of the reconstructed image tends to be better. However,
one will end up with a larger number of non-zero coefficients.

To demonstrate how to select the training dataset according to the
patch size, Fig. 3 shows a case with regular patches in the size of 4 × 4
(denoted by 4 hereafter). In the figure, the green color corresponds to
the case in which one generates patches without any overlapping in-
between, and thus achieves the minimum training dataset size 𝑁ts. In
this case, the step size 𝛥𝑥 × 𝛥𝑦, which is determined by the distances
of a moving patch that travels along horizontal (x) and vertical (y)
directions, is equal to the patch size (e.g., 4 × 4 in the current example).
It is important to highlight that one should travel along each axis at
a time to be able to encompass the whole grid. Meanwhile, in the
same figure, we also use the red color to indicate the case with the
maximum training dataset size 𝑁ts, where the step size corresponds to
1 × 1 (denoted by 1 hereafter). Note that for image reconstruction, one
should average the values from the overlapped patches.

Another important parameter is the dictionary size 𝑁k , i.e., the
number of atoms in the dictionary. Soares et al. (2019) showed that the
higher 𝑁k is, the smaller 𝑁nz one can achieve. However, the maximum
number of 𝑁k cannot be larger than the training dataset size 𝑁ts.

In addition, there is a big trade-off concerning the number of
iterations (𝑁it), since a larger 𝑁it can indeed reduce the number 𝑁nz
of non-zero coefficients, but at the cost of an increased computational
time. Finally, as discussed in Aharon et al. (2006), larger image patches
do not tend to work well with the K-SVD algorithm, and Soares et al.
(2019) reported that lower values of 𝑛 can help to achieve lower 𝑁 .
9

nz
Fig. 3. Example of training dataset and image patches. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

The end products of the K-SVD algorithm are the values of the non-
zero coefficients, their locations in Γ and the learned dictionary 𝐃,
which will be utilized in the subsequent 4D seismic history matching
problem.

4.4. Sparse representation — forward simulation

Sparse representation of the simulated data follows a similar proce-
dure as that for the observed data. After obtaining sparse representation
for the observed data, one should save the Dictionary 𝐃 of the iteration
𝑁it − 1 and the location of the non-zero coefficients in the final Γ.1
Hence, one can use the same procedure detailed in the sub Section 4.1
‘‘Sparse Matrix Definition’’ and select the coefficients in the simulated
Γ at the same position of the non-zero coefficients in the observed Γ.
Note that even if there are other non-zero coefficients in the simulated
Γ, they will not be considered.

5. Case study: Brugge field

The case study used in this work is the Brugge benchmark (Peters
et al., 2010), which consists of a reservoir with four production zones,
two high and two low permeable zones. The two high permeable zones
are in layers 1–2 and 6–8, with the averaged permeability values being
810 mD and 1105 mD, respectively. The two low permeable zones
are in layers 3–5 and 9, with the averaged permeability values being
90 and 36 mD, respectively. Fig. 4 shows the distributions of the
permeability (along the 𝑥-direction) on each layer, with respect to one
of the reservoir models from the initial ensemble. In addition, this
benchmark is an isotropic case, i.e., the permeability in the 𝑦-direction
is the same as in the 𝑥-direction. Note that we did not show the initial
porosity maps for succinctness.

The numerical reservoir model of the Brugge Field has 139 × 48 × 9
cells, summing up to 60 048 gridblocks in total, among which 44 550
are active. The model contains 20 producer and 10 injector wells,
with water being the only injected fluid. Fig. 5 shows the distribution
of the wells, where the injectors are located in the border and the
producers are more centralized. The benchmark case has 10 years
of production data, and we use a black oil simulator (ECLIPSE) for
reservoir simulation.

There are 104 different realizations of reservoir models provided in
the benchmark case. In this work, we randomly pick one of the models

1 The reason for us to use the dictionary 𝐃 at the iteration step 𝑁it − 1,
instead of 𝑁it, is that in our code implementation, the sparse matrix Γ at the
final iteration step 𝑁it is obtained by solving the sparse representation problem
Eq. (49), using 𝐃 at the iteration step 𝑁 − 1.
𝑖𝑡
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Fig. 4. Horizontal permeability (𝑘𝑥) from realization number 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 5. Distribution of the wells. The grid indicates the initial oil saturation. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
as the reference case to generate the ‘‘observed’’ seismic data, and let
the rest compose the initial ensemble of 103 models. In each reservoir
model from the initial ensemble, the uncertain parameters include the
porosity and permeability in the x-, y-, and 𝑧-directions.

The seismic attributes in our experiments are the amplitude-versus-
angle (AVA) data with two different offset angles, near (10◦) and far
(20◦), from 3 different surveys: base (day 1), monitor #1 (day 991),
and monitor #2 (day 2999) (Luo et al., 2018). The AVA dataset is on a
seismic scale, so it has a different dimension compared to the reservoir
model. In our experiments, the dimension of the AVA dataset at each
offset angle and at each survey time is 139 × 48 × 176, summing up
to a total of 1 174 272 data points. Therefore, the total number of data
points in our 4D seismic dataset is 7 045 632 (6 × 1 174 272).

To generate the AVA data, we require over- and under-burden layers
and properties in addition to the reservoir model. Furthermore, the
seismic trace/signal is recorded in some specific sampling rate in the
time domain (z-axis in Fig. 6), which makes the dimension of the
seismic traces (in time-domain) larger. In this work, we consider the
whole cube of the AVA data as observed data (Fig. 6), however, most of
the parts of the cubes are coming from over-burden and under-burden
areas (non-reservoir parts). Therefore, the AVA dataset has a larger
dimension if we compare it to the simulation model. Note that in ap-
plications with acoustic impedance datasets, the data is upscaled to the
same dimension of the simulation model or even in a lower dimension,
in which one can use fewer seismic horizons that are correlated with
more than one layer in the simulation model, for instance.

Table 1 summarizes the main characteristics of the Brugge bench-
mark case, together with some of the experimental settings in the
current work.

6. Methodology and application

In the current work, we directly use the seismic attributes at three
surveys as the observations in data assimilation. In principle, one
10
Fig. 6. 3D AVA data (observed data): far trace in the base survey (day 1). The color
bar in the right indicates the values of AVA data points. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

may also try using the differences between different surveys as the
observations. This would help to reduce the data size of 4D seismic,
on the other hand, though, the signal-to-noise ratios in these difference
datasets may become much lower, as is observed in our experiments
(cf. upper left plot in Fig. 22).
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Table 1
Information summary about the Brugge benchmark case study.

Model dimension 139 × 48 × 9 (60 048 cells)
Active cells 44 550
Average gridblock size 93m × 91m × 5m
Wells 20 producers and 10 injectors
Production data 10 years (3 647.5 days)
4D seismic data Near (10◦) and far (20◦) offsets amplitude-versus-angle (AVA) data
Seismic survey time Base (day 1), Monitor #1 (day 991), Monitor #2 (day 2 999)
Seismic dimension 7 045 632 coefficients (6 × 139 × 48 × 176)
Model variables Porosity + Permeability along the x-,y- and z-directions. Total number: 178 200
w
t
s
d

As indicated in Fig. 7, we divide our investigations into two main
arts. In the first part, we evaluate the necessity of using sparse
epresentation in a 4D seismic data assimilation problem by comparing
he assimilation performance resulting from using the Projected Seismic
ataset (PSD) and a Sparse Seismic Dataset (SSD) obtained from using

he K-SVD algorithm. While in the second one, we aim to improve
he data assimilation performance by using the K-SVD algorithm dif-
erently, where we first use the K-SVD algorithm to suppress the noise
n the 4D seismic dataset and then use the same algorithm again for
parse data representation. For distinction, we call the end product of
his procedure (using K-SVD twice) Denoised Sparse Seismic Dataset
DSSD).

For history matching, we use the IES-RML with the formulation
hown by the Eq. (32). Note that with this formulation, we do not
eed to compute the truncated singular value decomposition, as most
f the previous works did. In addition, we use the aforementioned three
topping criteria, where the maximum number of iterations is set to 20.
inally, we start with 𝛽0 = 1, with the reduction and increment factor
eing 0.9 and 2, respectively.

Through the experiments in the three cases (PSD, SSD, and DSSD),
e first evaluate if sparse representation can improve the performance
f data assimilation at the expense of increased computational time and
nformation loss. Additionally, we also inspect if denoising 4D seismic
atasets before sparse representation can help to further improve the
erformance of data assimilation.

In the following, we explain in more detail how we perform data
ssimilation with respect to each approach (PSD, SSD, and DSSD).

.1. Projected seismic dataset (PSD)

In this case, we use the full seismic dataset, i.e., the near and far
ffset of the three surveys, and project them onto the subspace, in the
orm of

(

𝐔𝑖Σ𝑖)T�̃�𝑖, as Eq. (40) suggests, for data-size reduction. In this
way, we can use the whole dataset without incurring any computer-
memory-related issue in the course of updating uncertain parameters,
since we need to store the 𝐊eff , which has a dimension of only 𝑁x×𝑁e.
Note that in this case, we adopt the automatic and adaptive correlation-
based scheme (Luo and Bhakta, 2020) for localization, in which the
tapering matrix is constructed based on the correlations between model
variables and projected data.

To estimate the measurement errors involved in data assimilation,
we use the k-means clustering method (Soares et al., 2019), in which
the seismic data are grouped into 3 clusters, one representing the
noise and the other two containing positive and negative values that
are more likely to be informative signals than noise. We can then
calculate the standard deviation of the noise cluster, and use it in
Eq. (50) and to construct the observation error covariance matrix (𝐂d)
for data assimilation. Note that Obidegwu et al. (2017) and Davolio and
Schiozer (2018) also used k-means, but to cluster acoustic impedance
data in softening and hardening effects, and Coleou et al. (2012)
pointed out other works that used k-means to cluster seismic waveforms
for facies classification. Since the noise added consists of white noise,
we assume 𝐂d to be diagonal, i.e., there is no correlation between the
observation error. However, if one faces colored noises, it is possible
to use the wavelet formulation to determine the noise as in Lorentzen
11
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Table 2
K-SVD parameters in SSD.

Parameter Value

Patch size (𝑛) 8
Step size 8
Iterations (𝑁it) 20
Dictionary size (𝑁k ) 750
Dictionary type DCT

et al. (2020). We chose here to use k-means because of its simplicity
and good results reported previously.

Therefore, by projecting the whole 4D seismic dataset onto a sub-
space, it is possible to avoid the use of sparse representation while
also achieving a significant data-size reduction. Note that in this case,
the whole 4D seismic data, including the noise itself that does not
contain information of the reservoir conditions, will be assimilated into
reservoir models. This may downgrade the assimilation performance, as
will be shown later.

6.2. Sparse seismic dataset (SSD)

To sparsely represent the 4D seismic dataset, we use the K-SVD
method introduced before to find a representation with as few coef-
ficients as possible while preserving the main characteristics of the
data. In the experiments, we adapted the Matlab toolbox developed
by Rubinstein et al. (2008) to use the K-SVD algorithm. The origi-
nal toolbox can be found at http://www.cs.technion.ac.il/~ronrubin/
software.html. Based on the analysis of Soares et al. (2019), we select
the parameters involved in the calculation of the sparse matrix, as
shown in Table 2. Note that the patch size and step size are equal in
all three dimensions, i.e., 8 × 8 × 8.

As we only use the non-zero coefficients during the data assimilation
and, consequently, compress the data, it is possible to handle the
Kalman gain without projecting them into the subspace of

(

𝐔𝑖Σ𝑖)T as
in the previous approach. Therefore, we use the formulation in Eq. (36)
in this step.

For the calculation of the 𝐂d, we use the same procedure as before.
Note that this is an approximation since we find the error in the original
observed data and not in the sparsely represented data. The readers are
referred to Raanes et al. (2019) for more information about the error
statistics and problems with correlated errors.

6.3. Denoised sparse seismic dataset (DSSD)

Elad and Aharon (2006) originally developed the K-SVD as a de-
noising tool. In line with this initiative, we apply the K-SVD algorithm
in two steps: the first one (denoising) involves using the algorithm to
achieve the best-reconstructed image without considering the number
of non-zero coefficients 𝑁nz retained. In the second step (compression),

e apply the algorithm one more time but now focus on getting
he best-reconstructed image with as few coefficients as possible. By
uppressing noise in the original dataset, we expect to have seismic
atasets with better quality, which in turn may help achieve improved

ssimilation performance.

http://www.cs.technion.ac.il/~ronrubin/software.html
http://www.cs.technion.ac.il/~ronrubin/software.html
http://www.cs.technion.ac.il/~ronrubin/software.html
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Fig. 7. The two main parts in our investigations.
Table 3
K-SVD configuration in the DSSD case.

Parameter Denoising Compression

Patch size (𝑛) 8 8
Dimension 2D 3D
Step size 1 8
Iterations (𝑁it) 10 50
Dictionary size (𝑁k ) 256 750
Dictionary type Data Data

Table 4
Seismic noise.

Seismic data Calculated 𝜎 True 𝜎 Noise level (%)

Far trace — base 0.0077 0.0074 32.92
Near trace — base 0.0154 0.0146 33.25
Far trace — monitor 1 0.0076 0.0073 32.89
Near trace — monitor 1 0.0156 0.0149 33.14
Far trace — monitor 2 0.0076 0.0072 32.85
Near trace — monitor 2 0.0156 0.0148 33.08

Due to the different objectives, the way we apply the K-SVD al-
gorithm differs. Table 3 summarizes the configurations of the K-SVD
algorithm in these two steps.

For the purpose of denoising, we treat each set of seismic attributes
as a collection of 2D images and sequentially apply the K-SVD algo-
rithm to denoise one 2D image at each time. Since the patch dimension
for a 2D image is smaller, we believe that handling a 2D image each
time helps to accelerate the process, as shown by Soares et al. (2019).
Furthermore, as in this step we are not concerned about the number of
non-zero coefficients, using a smaller patch size would not affect the
efficiency of sparse representation. On the other hand, for the purpose
of compression, we directly apply the K-SVD algorithm to 3D seismic
datasets.

In the denoising step, we choose to use the maximum training
dataset size 𝑁ts, as this helps to generate better-reconstructed images.
In contrast, in the compression step, we use the minimum 𝑁ts instead to
obtain fewer non-zero coefficients. For the same reason, the number of
iterations is higher in the compression step, as this also helps to reduce
the number of non-zero coefficients. In addition, we choose to increase
the dictionary size to obtain less 𝑁nz.

Instead of using DCT as the initial dictionary, we select random
patches from the training dataset to construct our initial dictionary.
Note that DCT is a more general approach, while the random patches is
more specific for each case, which can help to generate fewer non-zero
coefficients in the sparse matrix, as we will show later.

We use the same formulation for the history matching as before,
Eq. (36), and to define the 𝐂d, we use the denoised version of the
observed data.

7. Results and discussions

7.1. Results comparison between the PSD and SSD cases

The upper plot in Fig. 8 shows a sample inline seismic attribute,
e.g., a vertical cross-section in the y–z plane from the far offset 3D AVA
data at the base survey (day 1) (Fig. 6) and with the index number of x
12
Fig. 8. Far trace AVA data — base survey: Noisy image (upper); Clustered image
(lower). The horizontal axis represents the y-dimension as in Fig. 6 and the vertical
axis represents the z-dimension as in Fig. 6. The color bar in the right indicates the
AVA values. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

being 80. The first step is to define the noise in the seismic dataset and
to estimate it, we use the k-means algorithm to cluster the seismic data
into three regions (noise, positive, and negative values), as the lower
plot in Fig. 8 illustrates. Then, we calculate the standard deviation
(𝜎) of Cluster 1, which represents the noise. Table 4 shows the values
of 𝜎 for each seismic data and the associated noise levels, which we
calculate as in

Noise level = noise variance
pure signal variance × 100%. (64)

Luo et al. (2018) stated that the noise level in the reference case
is 30%. Hence, we observe that with k-means clustering, we achieved
noise levels around 33%, which are close to that in the reference
case.

In the PSD case, we select the full seismic dataset and project it into
the smaller subspace

(

𝐔𝑖Σ𝑖)T as mentioned previously. Therefore, if we
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Fig. 9. Reconstructed far trace AVA data — base survey: PSD (upper); SSD (lower). The
horizontal axis represents the y-dimension as in Fig. 6 and the vertical axis represents
the z-dimension as in Fig. 6. The color bar in the right indicates the AVA values. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

consider a random observed data (𝐝𝑗) and project it onto
(

𝐔0Σ0)T, we
would achieve the following projected data

𝐝proj
𝑗 =

(

𝐔0Σ0)T𝐝𝑗 . (65)

Hence, it is possible to reconstruct the signal (𝐝rec
𝑗 ) and check how much

information we loose as in

𝐝rec
𝑗 =

(

(

𝐔0Σ0)T
)+

𝐝proj
𝑗 . (66)

The upper plot in Fig. 9 depicts the reconstructed image after the
projection and the information loss 𝐿 is calculated through Eq. (61).

For the SSD approach, we use the characteristics described in Ta-
ble 2 and calculate the error (Eq. (50)) using 𝜎 defined by the k-means.
The lower plot in Fig. 9 shows the reconstructed image after applying
the K-SVD algorithm in the SSD approach, where we calculate 𝐗rec

through Eq. (60). Note that we use Eq. (60) once we want to show
only the characteristics retained by the method.

If we compare the two plots in Fig. 9 with the original AVA dataset
(Fig. 8), we notice that they both preserved the structure of the signal.
However, we achieve a better-reconstructed image for the SSD case.
The explanation for that lies in the fact that the projection can be
interpreted as a smooth function. It is possible to see this if one looks at
the region with values very close to zero in the original image (upper
plot in Fig. 8), and this region has values of zero in the reconstructed
image (upper plot in Fig. 9). Hence, this smooth property will also
happen in the whole dataset, including the part that we have values
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Fig. 10. Reconstructed far trace AVA data — base survey — Wavelet based: 𝑡 = 1
(upper); 𝑡 = 5 (lower). The horizontal axis represents the y-dimension as in Fig. 6 and
the vertical axis represents the z-dimension as in Fig. 6. The color bar in the right
indicates the AVA values. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

that are not too close to zero. In addition, the ensemble may not be
able to accommodate all the information contained in the observed
data, and the iterative learning process in the SSD helped to generate a
better-reconstructed image. Consequently, the projection downgraded
the image reconstruction compared to the SSD case.

After the application of the K-SVD algorithm for the entire dataset
(far and near offset traces at base, first monitor and second monitor),
we achieved a total of 19 055 coefficients, which represents only 0.27%
of the entire dataset.

Even though the scope of this work is not to compare different
methodologies for sparse representation, we show some differences
between the wavelet-based sparse representation (Luo et al., 2018) and
the K-SVD based one. In the methodology developed by Luo et al.
(2018), there is a need for defining a threshold value (𝑡) that is used
to select the non-zero coefficients for sparse representation. Fig. 10
depicts the case for 𝑡 = 1 (upper plot) and for 𝑡 = 5 (lower plot).
The focus here is on the trade-off between the value of 𝑡 and the
quality of the reconstructed image. When 𝑡 equals 5, the image does
not retain the main features of the original seismic data. However, the
number of non-zero coefficients retained was only 3 293 (0.047% of
the original seismic dataset). For the case where 𝑡 is equal to 1, the
final reconstructed image is very similar to the original data, but the
amount of non-zero coefficients is much larger, up to 178 332 (2.53%
of the original dataset).
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Fig. 11. Data mismatch: Projected Seismic Dataset — PSD (upper); and Sparse Seismic
Dataset — SSD (lower).

Therefore, in this case, the K-SVD algorithm tends to generate
better-reconstructed images with fewer non-zero coefficients, while for
the wavelet-based sparse representation it remains to be a challenge
to find a suitable trade-off between the retained characteristics in the
reconstructed data and the number of non-zero coefficients.

The analysis of data assimilation performance starts with the calcu-
lation of the data mismatch through Eq. (23) without the sum, i.e., we
calculate the data mismatch for each ensemble member and plot in a
boxplot for every iteration as Fig. 11 depicts. We observe that both
approaches tend to reduce the mismatch between the simulated and
observed data. In the PSD case (Fig. 11 - upper plot), it is possible to
see that the rate of mismatch reduction tends to be slower than that in
the SSD case (Fig. 11 - lower plot). Nevertheless, it is difficult to directly
compare the data mismatch from both cases as we use different sets of
observed data. Note that we could normalize the mismatch, but in the
PSD case, most of the observed data concerns the non-reservoir part.
Hence, during the forward simulation, we set these values to zero, and
consequently, as the observed data in these parts are also very close
to zero, the normalized mismatch tends to be much lower for the PSD
case. Therefore, it is better to show how the estimated model variables
look like in the final ensemble.

We use the Root Mean Square Error (RMSE), as in Luo et al. (2018),
to measure the distances between the estimated model variables and
the reference (true) model.

Fig. 12 shows the RMSE of porosity values for PSD (upper) and SSD
(lower). In both cases, RMSE values tend to decrease as the iterations
proceed. One can see that using SSD leads to lower RMSE values at the
end, i.e., models closer to the reference one.

By inspecting the ensemble mean for the PSD and SSD cases (third
and fourth plots in Fig. 13, respectively), one can see that there is a
14
Fig. 12. RMSE — Porosity: Projected Seismic Dataset — PSD (upper); and Sparse
Seismic Dataset — SSD (lower).

stronger update of the porosity values in the latter case. The ensemble
mean obtained in the PSD case remains closer to the mean of the initial
ensemble (first plot in Fig. 13), while the one from the SSD case is closer
to the reference model (second plot in Fig. 13).

More insights can be gained by inspecting the tapering matrix
produced by the localization scheme. Note that the tapering matrix is
in the same dimension as the Kalman Gain matrix. Hence, in the PSD
case, it is a matrix in the dimension of 𝑁x × 𝑁e. In contrast, in the
SSD case, it has the dimension of 𝑁x × 𝑁d, where 𝑁d is the number
of observations (in this case, the number of non-zero coefficients).
Following this perspective, each column of a tapering matrix indicates
how an observation element is correlated with the model variables.
Since in our experimental settings, the PSD and SSD cases have different
amounts of observations, we check the mean of columns and plot the
tapering coefficient values 𝑐(𝑧) (Eq. (44)) onto the reservoir model
gridblocks.

Fig. 14 shows the tapering coefficient values using correlations
between porosity and the selected observation element, distributed on
the reservoir model gridblocks at Layer 2, in cases of PSD (upper) and
SSD (lower). In the PSD case (Fig. 14 - upper), the tapering coefficient
values are relatively low. In contrast, in the SSD case (Fig. 14 - lower),
the tapering coefficient values tend to be higher. Therefore, the final
ensemble of the PSD case tends to remain closer to the initial one, while
the one from the SSD case experiences stronger updates and moves
closer to the reference model.

We also examine RMSEs concerning the permeability. Fig. 15 shows
that the RMSE of permeability (along the 𝑥-direction) does not change
as much as porosity since seismic data tend to be less sensitive to
permeability in this benchmark case (Luo et al., 2018). Similar results
are observed for the estimated permeability values along the y- and
𝑧-directions. We do not show the permeability maps for succinctness.
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Fig. 13. Porosity maps at Layer 2 of the reservoir. From top to bottom: initial ensemble mean; reference map; final ensemble mean from the PSD case; final ensemble mean from
the SSD case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In conclusion, projecting observations onto an ensemble subspace
and sparse data representation (through K-SVD) may serve as two
viable ways to handle big data assimilation problems in practice. In this
benchmark case study, it shows that sparse data representation tends to
result in better assimilation performance than the subspace-projection
based method.

7.2. Results comparison between the SSD and DSSD cases

The results from the SSD case are the same as in the preceding
subsection. We choose to show some of the results again here for
comparison.

In the DSSD case, we first denoise the original dataset using the K-
SVD algorithm, whose configuration is indicated in the middle column
of Table 3. We use the same estimated noise standard deviations 𝜎 as
before and apply the K-SVD algorithm to 2D images (slices in the 𝑥-
direction) 139 times. The upper plot in Fig. 16 illustrates the image
15
obtained by applying the K-SVD algorithm for the purpose of denoising.
One can see that information loss (𝐿 = 13.61) is smaller than that in the
SSD case (𝐿 = 36.04). Note that we use Eq. (62) to promote continuity
in the reconstructed image.

Denoising of seismic data is a very important topic within the
geoscience community. Consequently, there are many works focused
on this particular matter. For instance, Baddari et al. (2011) developed
a non-linear diffusion filter capable of reducing random and Gaussian
noise, Xiong et al. (2014) proposed a random noise attenuation in the
time–frequency domain, and Hennenfent and Herrmann (2006) pre-
sented the non-uniformly sampled curvelets to denoised seismic images.
There is a vast list in the literature with different methodologies, and
since it is not the scope of this work to compare different denoising
methods, we can refer the readers more works about this topic (Latif
and Mousa, 2017; Shan et al., 2009; Han and van der Baan, 2015; Bonar
and Sacchi, 2012; Zhu et al., 2019).
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Fig. 14. Tapering coefficient values (for porosity) distributed at Layer 2 of the reservoir model gridblocks: Projected Seismic Dataset — PSD (upper); and Sparse Seismic Dataset
— SSD (lower). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. RMSE — Permeability x: Projected Seismic Dataset — PSD (upper); and Sparse
Seismic Dataset — SSD (lower).

Subsequently, we use the k-means clustering method one more time
to obtain new values of estimated noise standard deviations 𝜎, which
are reported in Table 5. Comparing the results there with those in
16
Fig. 16. Far trace AVA data - base survey: Denoised data (upper); and Reconstructed
data from a sparse representation of the denoised data (lower). The horizontal axis
represents the y-dimension as in Fig. 6 and the vertical axis represents the z-dimension
as in Fig. 6. The color bar in the right indicates the AVA values. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 17. Normalized data mismatch: Sparse Seismic Dataset — SSD (upper); and
Denoised Sparse Seismic Dataset — DSSD (lower).

Fig. 18. RMSE — Porosity: Sparse Seismic Dataset — SSD (upper); and Denoised Sparse
Seismic Dataset — DSSD (lower).
17
Fig. 19. RMSE — Permeability X: Sparse Seismic Dataset — SSD (upper); and Denoised
Sparse Seismic Dataset — DSSD (lower).

Table 5
Seismic noise after denoising.

Seismic data Calculated 𝜎

Far trace — base 0.0034
Near trace — base 0.0070
Far trace — monitor 1 0.0033
Near trace — monitor 1 0.0071
Far trace — monitor 2 0.0033
Near trace — monitor 2 0.0070

Table 4, one can see that the new 𝜎 values are lower, indicating the
impact from the preceding denoising procedure.

Note that we do not use DCT as the initial dictionary in the DSSD
case. This is because during the second step (compression), we achieve
a relatively large number of non-zero coefficients by using DCT (due
to the lower error). However, when we use random patches from our
original dataset to construct the initial dictionary (called data dictio-
nary hereafter), we can reduce the number of non-zero coefficients.
Therefore, to maintain the consistency between the denoising and
compression procedures, we prefer to use the data dictionary in both
steps. The information loss (𝐿) of the reconstructed image from a sparse
representation of the denoised data is slightly higher than that of the
denoised data itself (cf. lower plot in Fig. 16). In this sense, we achieve
minimal information loss within our experiment settings in the DSSD
case.

After the denoising and compression procedures, we obtain a total
amount of 38 876 non-zero coefficients, which represents 0.55% of
the original dataset. Note that here we end up with about twice the
number of non-zero coefficients in the SSD case. However, in terms
of information loss, we obtain better-reconstructed images from sparse
representations of the original dataset in the DSSD case (cf. the lower
plot in Fig. 16).

The upper and lower plots of Fig. 17 illustrate the box plots of
data mismatch at different iterations steps in the SSD and DSSD cases,



Journal of Petroleum Science and Engineering 195 (2020) 107763R.V. Soares et al.
Fig. 20. Porosity maps at Layer 2 of the reservoir. From top to bottom: initial ensemble mean; reference map; final ensemble mean from the SSD case; final ensemble mean from
the DSSD case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
respectively. Since both cases now have observed data concerning only
the reservoir part, it is possible to normalize the mismatch and directly
compare them. As one can notice, SSD presented lower values for
the mismatch. However, the difference between the two cases is not
very big. Furthermore, even though the uncertainty in the mismatch is
lower in the SSD, this does not reflect in the uncertain model variables
(porosity and permeabilities) as the spread (standard deviation) of
the final ensemble is very similar for both cases. To complement the
analysis, we also compare the estimated reservoir models with the
reference one.

Fig. 18 shows the boxplots of RMSE (for porosity) at different
iterations steps in the SSD (upper) and DSSD (lower) cases. As one can
see, the final RMSE values tend to be close in both cases, with those
from the DSSD case tending to be lower. In addition, one can observe
that in the SSD case, the RMSE values seem to enter a plateau from the
10th iteration step on, while (although not verified) those in the DSSD
18
case appear to have room for further reduction, following the exhibited
trend therein. For RMSEs with respect to the permeabilities, we obtain
similar results to those in the SSD case, possibly due to the weak
correlations between seismic data and permeabilities, as mentioned
before (Fig. 19).

The third and fourth panels of Fig. 20 show the mean porosity maps
(of the final ensembles) at Layer 2 of the reservoir in the SSD and DSSD
cases, respectively. One can see that both porosity maps capture some
of the prominent geological structures in the reference one (second
panel of the same figure). Visually, these two estimated porosity maps
are similar, although the RMSE metric (cf. Fig. 18) indicates that the
one from the DSSD case tends to be better. Similar results are also found
in the permeability (along the 𝑥-direction) maps, as demonstrated in
Fig. 21.

After showing the relative superiority (in terms of RMSE) in using
DSSD, we also consider some of the differences between the SSD and
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Fig. 21. Log of permeability x maps at Layer 2 of the reservoir. From top to bottom: initial ensemble mean; reference map; final ensemble mean from the SSD case; final ensemble
mean from the DSSD case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
DSSD cases from the perspective of computational resources. In the
Brugge benchmark case, from the model side, one reservoir model
contains 44 550 active gridblocks, and each gridblock has 4 uncertain
model variables (porosity and permeabilities along three directions) to
estimate. Hence, we have a total of 178 200 uncertain model variables
(𝑁x) in data assimilation. In addition, from the observation side, we
have 38 876 data points (𝑁d) in the DSSD case, resulting in a Kalman
gain matrix (𝐊) in the dimension of 178 200 × 38 876. In contrast, in
the SSD case, the Kalman gain matrix (𝐊) is in the dimension of
178 200 × 19 055 instead, which is somewhat easier to handle in terms
of computational time and memory.

Regarding the computational time dedicated to sparse data repre-
sentation, in the DSSD case, it takes about 40 min to go through both
procedures of denoising and sparse representation. On the other hand,
it takes only around 50 s in the SSD case. This substantial gap between
the computational time is largely due to the time-consuming denoising
19
procedure adopted in the DSSD case, where a minimum step size (1 × 1)
is adopted so that it creates a much larger number of overlapping
patches to achieve high-quality denoised images. Furthermore, one
would need a relatively large RAM memory to handle all the matrices
during history matching. For instance, to calculate the Kalman gain 𝐊
for the SSD and DSSD cases, one would need about 25 and 50 GB,
respectively. This number seems to be very big, but it can be avoided by
computing the Kalman gain several times considering different lines of
the matrix at each time (Emerick, 2016), and one can also use local
analysis to avoid these big matrices (Brusdal et al., 2003; Evensen,
2009a; Chen and Oliver, 2017; Sakov and Bertino, 2011).

Finally, to demonstrate the benefits of using DSSD in the Brugge
benchmark, we examine the 4D changes of seismic data reconstructed
from the original dataset and their sparse representations. Fig. 22 shows
the differences between a slice of far offset trace at the monitor survey
#1 and the same slice of trace data at the base survey. In other words,
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Fig. 22. Differences of a slice of far AVA trace data between monitor #1 and base surveys: original dataset (upper left); SSD (upper right); DSSD (lower left); reference case
(lower right). The horizontal axis represents the y-dimension as in Fig. 6 and the vertical axis represents the z-dimension as in Fig. 6. The color bar in the right indicates the AVA
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
we subtract 𝐗rec at monitor #1 from 𝐗rec at the base survey in the SSD
and DSSD cases. One can see that in the upper left panel, the difference
between the two surveys in the original dataset is very noisy and very
different from the reference case (lower right panel). In the SSD case
(upper right panel), the difference is still big from the reference case,
while the differences in the DSSD case (lower left panel) appear to be
more similar.

When we inspect the 4D differences in the SSD case (upper right
panel of Fig. 22) without the denoising procedure, the noise kept in
the reconstructed data may sum up and downgrade the quality of
the 4D seismic data. In turn, this may deteriorate the performance
of data assimilation, if one wishes to use the 4D differences as the
observations.2

In contrast, in the DSSD case (lower left panel of Fig. 22), by denois-
ing the original seismic data first, we obtain reconstructed images with
improved qualities (cf. Fig. 16). Consequently, the difference between
the survey is more physically consistent, as we can see the 4D effect
better, and the resulting 4D differences may resemble the reference case
(lower right panel) better, which is also reflected by the lower RMSE
values.

Therefore, despite higher computational time and memory required,
adopting DSSD tends to capture the 4D effect better in the Brugge
benchmark, resulting in a final ensemble closer to the reference case

2 We note that an alternative way is to first calculate the 4D differences,
apply the K-SVD algorithm, and then reconstruct the 4D differences from their
sparse representations. However, as aforementioned, in this case, the signal-to-
noise ratios in 4D difference data become very low such that it becomes very
difficult to extract true seismic signals from the noisy data (upper left plot in
Fig. 22).
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than using SSD. It is important to mention that for the Brugge bench-
mark, the original AVA data has a relatively low signal-to-noise ratio.
Hence, the denoising process helped to achieve better-reconstructed
images and better preservation of the 4D effect. However, some other
cases may present a higher signal-to-noise ratio and a good visualiza-
tion of the 4D effect without denoising the signal. In such cases, since
the SSD case is faster, we suggest using SSD instead of DSSD. In other
words, one can use different criteria to decide which case to use, one
can either have a larger ‘‘weight’’ on the computational resources or on
a better final model.

Besides, if we compare the results of the SSD and DSSD cases with
that from the previous work (Luo et al., 2018; Luo and Bhakta, 2020),
in which the authors used the wavelet-based sparse representation, the
cases presented here tend to be more convenient in achieving a suitable
trade-off between sparse data representation and preservation of data
information.

8. Conclusions

We present a 4D seismic data assimilation framework in which
a dictionary learning algorithm (K-SVD) is adopted for sparse data
representation, instead of using a wavelet-based sparse representation
procedure or deep learning as in previous works. Through numerical
experiments in the Brugge benchmark case, we show that dictionary-
learning based sparse representation can serve as an efficient way to
handle big data assimilation problems.

We also consider an alternative way to handle big seismic data by
projecting them onto an ensemble subspace. In the investigated bench-
mark case, it turns out that the projected data tend to exhibit relatively
weak correlations with the model variables under estimation. As a
result, within our experimental settings, the resulting final ensemble
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t
d

of updated reservoir models remains close to the initial ensemble and
thus leads to relatively inferior assimilation performance. In contrast,
through dictionary-learning based sparse representation, the corre-
sponding representation coefficients tend to have stronger correlations
with the model variables under estimation. This makes it possible for
the updated reservoir models to experience more substantial changes
and move closer to the reference model.

In an additional investigation, we introduce a denoising proce-
dure before applying dictionary-learning based sparse representation
to the 4D seismic. Although incurring higher computational time and
memory, our experiments in the Brugge benchmark indicate that this
additional procedure helps to improve the performance of data assimi-
lation in terms of the RMSE metric, in cases where the original seismic
signal is noisy. However, if the original signal has a high signal-to-noise
ratio (low noise), the denoising process might be less useful, since it
incurs a higher computational time. Hence, in cases where the original
signal is not very noisy and the computational resources are limited,
the SSD case may be preferred.

Finally, even though we reduced the AVA dataset to only 0.55%
of the original dataset in the DSSD case, this number still appears too
big. Therefore, as our future work, we will consider applying local
analysis (Evensen, 2009a; Sakov and Bertino, 2011; Chen and Oliver,
2017) to handle big datasets more efficiently. In addition, we also plan
to test the approaches developed here in a different dataset for further
performance validation.
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