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Predictions of ocean biogeochemistry, such as primary productivity and CO2 uptake,

would help to understand the changing marine environment and the global climate.

There is an emerging number of studies where initialization of ocean physics has

led to successful predictions of ocean biogeochemistry. It is, however, unclear how

much these predictions could be improved by also assimilating biogeochemical data

to reduce uncertainties of the initial conditions. Further, the mechanisms that lead to

biogeochemical predictability are poorly understood. Here we perform a suite of idealized

twin experiments with an Earth System Model (ESM) with the aim to (i) investigate the

role of biogeochemical tracers’ initial conditions on their predictability, and (ii) understand

the physical processes that give rise to, or limit, predictability of ocean carbon uptake

and export production. Our results suggest that initialization of the biogeochemical

state does not significantly improve interannual-to-decadal predictions, which we relate

to the strong control ocean physics exerts on the biogeochemical variability on these

time scales. The predictability of ocean carbon uptake generally agrees well with the

predictability of the mixed layer depth (MLD), suggesting that the predictable signal

comes from the exchange of dissolved inorganic carbon (DIC) with deep-waters. The

longest predictability is found in winter in at high latitudes, as for sea surface temperature

and salinity, but the predictability of the MLD and carbon exchange is lower as it is

more directly influenced by the atmospheric variability, e.g., the wind. The predictability

of the annual mean export production is, on the contrary, nearly non-existing at high

latitudes, despite the strong predictive skill for annual mean nutrient concentrations in

these regions. This is related to the low predictability of the physical state of the summer

surface ocean. Due to the shallow mixed layer it is decoupled from the ocean below and

therefore strongly influenced by the chaotic atmosphere. Our results show that future

studies need to target the predictability of the mixed layer to get a better understanding

of the real-world predictability of ocean biogeochemistry.

Keywords: biogeochemical, predictions, interannual, decadal, initial conditions, predictability, export production,
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1. INTRODUCTION

The climate system, and the ocean physical state in particular,
have been shown to be predictable several years in advance
(Boer, 2004; Pohlmann et al., 2004; Smith et al., 2007;
Keenlyside et al., 2008; Langehaug et al., 2017), especially
at high latitudes where deep mixed layers connect the deep
ocean with surface layers and the atmosphere (Boer, 2004). In
the wake of these advances in near-term climate prediction,
the predictability of ocean biogeochemistry is now being
explored. Predictions of interannual-to-decadal variations of the
ocean biogeochemical state would be useful for understanding
ongoing changes in marine ecology (Séférian et al., 2014; Payne
et al., 2017; Park et al., 2019), ocean pH and CO2 uptake
(Lovenduski et al., 2019), and in particular for delineating
natural variations from anthropogenically forced change related
to CO2 emissions, pollution, eutrophication etc. Experiments
where models’ capabilities to predict reanalyses have been
assessed suggest that there is potential for predicting air-sea
CO2 exchange up to several years in advance (Li et al., 2016;
Séférian et al., 2018; Lovenduski et al., 2019), in particular at
high latitudes where the variability of air-sea CO2 exchange
exhibits lower frequency fluctuations (Li et al., 2016; Séférian
et al., 2018). Successful attempts have also been made to retro-
perspectively predict observations of ocean carbon uptake and
primary productivity on interannual-to-decadal time scales by
only initializing physical fields (Séférian et al., 2014; Li et al., 2016,
2019; Park et al., 2019). For example, Li et al. (2016) were able
to predict the observed pCO2 in the North Atlantic Subpolar
Gyre (SPGNA) up to 3 years in advance by nudging the ocean and
atmospheric models to observations. Séférian et al. (2014) found
that tropical Pacific primary production could be predicted up to
three years in advance when starting from physical fields nudged
to the observed sea surface temperature (SST). Finally, Park
et al. (2019) found a predictability of chlorophyll concentrations
of up to 1 year in the tropics, and 2 years in many parts of
the subtropical gyres, when starting from ocean reanalyses. In
all these examples, no biogeochemical observations were used
to initialize the predictions. Both Li et al. (2016) and Séférian
et al. (2014) suggested that the predictability might be improved
by also assimilating biogeochemical data to optimize the initial
conditions, in line with e.g., Brasseur et al. (2008) and Park et al.
(2018).

Due to the many difficulties associated with integrating
biogeochemistry in ocean reanalyses (Park et al., 2019 and
references therein), initialization of forecasts and predictions
from biogeochemical observations is still under development. It
has been tested on shorter time scales (days to months) and has
been implemented in some operational forecast systems (Popova
et al., 2002; Ciavatta et al., 2011; Fontana et al., 2013; Teruzzi et al.,
2014, 2018; Gehlen et al., 2015; Simon et al., 2015; Rousseaux
and Gregg, 2017; Skákala et al., 2018). On interannual-to-decadal
time scales, however, the benefits that could be gained from
initialized biogeochemistry have yet to be explored.

The aim of the present study is to understand whether
initialization of biogeochemical state is needed for skillful
biogeochemical predictions, and the mechanisms behind the

predictability of ocean biogeochemistry on interannual-to-
decadal time scales, with focus on export production and air-sea
CO2 exchange. To this end, we perform a suite of experiments in
a perfect model framework, using the Norwegian Earth System
Model (NorESM, Bentsen et al., 2013). First, we investigate
the influence of errors in the biogeochemical initial state on
predictions, to understand to what extent such predictions can be
improved by initializing the biogeochemistry from observations.
Second, we analyze differences in perfect predictability of the
ocean physics vs. biogeochemistry to understand the factors that
underlie, and factors that limit, the predictability of air-sea CO2

exchange and export production.

2. METHODS

2.1. Model and Simulations
The NorESM model (Bentsen et al., 2013) is a fully coupled
system representing ocean dynamics (MICOM), ocean sea
ice (CICE), ocean biogeochemistry (HAMOCC), atmospheric
dynamics (CAM4-OSLO) including atmospheric chemistry, and
land processes (CLM4) including land ice sheets and river
runoff. It has been shown to reproduce the major modes of
climatic variability (Bentsen et al., 2013), and has an especially
good representation of ENSO variability and its teleconnections
(Sperber et al., 2013; Bellenger et al., 2014;Wang et al., 2019). The
ocean biogeochemical compartment in NorESM, HAMOCC, is
an NPZD model with one generic class of phytoplankton, one
generic class of zooplankton, dissolved and particulate organic
matter, the nutrients phosphate, nitrate, silicate, dissolved iron,
as well as dissolved inorganic carbon, alkalinity and oxygen. The
primary production is prognostically computed as a function
of phytoplankton growth rate, which is limited by incoming
shortwave radiation, temperature, and availability of nutrients
(phosphate, nitrate, and dissolved iron). A fixed fraction of
phytoplankton and zooplankton biomass are converted into
particulate organic matter, through mortality and grazing, and
exported below the euphotic layer (100 m). The particulate
organic matter has a constant sinking speed and remineralization
rate in the ocean interior. The air-sea CO2 fluxes are determined
as the product of the air-sea CO2 partial pressure difference, the
CO2 solubility, and the gas transfer rate, which is determined
from wind speed using the parameterization by Wanninkhof
(1992). The performance of the mean state of HAMOCC within
NorESM was evaluated by Tjiputra et al. (2013). Perhaps more
important for the present application, the variability is more
difficult to evaluate due to the lack of long-term observations of
ocean carbon data. But the model has been shown to perform
reasonably well for ENSO-driven variability of air-sea CO2 fluxes
in the Tropical Pacific (Jin et al., 2019). The representation of the
interannual variability in primary production in the Tropics has
been demonstrated to be in the top three among 18 ESM’s (Anav
et al., 2013). Away from the Tropics, the variability of the CO2

fluxes simulated by HAMOCC in a forced ocean configuration
has been shown to compare reasonable well with observations
from the Surface Ocean CO2 Atlas in the North Atlantic (Tjiputra
et al., 2012). Further, an earlier version of NorESM has been
shown to be comparable to other ESM’s in the representation
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of the effect of the North Atlantic Oscillation on carbon fluxes
(Keller et al., 2012).

The present work is a first step to use HAMOCC within the
framework of Norwegian Climate Prediction Model (NorCPM
Counillon et al., 2014, 2016), which merges NorESM with
an Ensemble Kalman Filter data-assimilation scheme, to study
ocean biogeochemical predictability. The aim is to understand
the benefits that could be gained from initialization of
the biogeochemical state, and the mechanisms underlying
biogeochemical predictability by the use of perfect model
experiments. To this end, we have performed two sets of
prediction experiments with ten members each, where member
one is theTruth andmembers 2–10 are the predictions (Table 1).
These experiments are initialized from a 10 member ensemble
(Hist-REF), which has been integrated from 1850 to 2005 with
historical forcing following the Coupled Model Intercomparison
Project Phase 5 (CMIP5) protocol (Taylor et al., 2012). Each
member of Hist-REF was started from different initial conditions
sampled from a stable pre-industrial control run, and was
run with interactive atmospheric CO2. In our first prediction
experiment, referred to as BGCpert , we investigate the influence
of perturbations in the ocean biogeochemical initial state on
interannual-to-decadal predictions. The purpose is to understand
the extent to which assimilation of biogeochemical observations
can improve the interannual-to decadal predictability of ocean
biogeochemistry. It consists of 22 10-year long simulations,
starting on the first of January every fifth year between 1890 and
1995 (Figure 1). The ocean biogeochemical initial conditions for
each member 1–10 in BGCpert are taken from restarts of the
corresponding member in Hist-REF, while the physical initial
conditions, including also the land carbon compartment, of all
members are taken from the restarts of member 1 in Hist-
REF for each starting year in question. Thus, all members are
starting with identical physical initial conditions of the ocean,
atmosphere, land, and sea ice, while the ocean biogeochemical
initial conditions differ. By using restarts from different members
of the historical run for perturbing the initial conditions, we
ensure that the perturbation is of the same order of magnitude
as the internal (natural) variability of the model (see Figures S1,
S2). Note that MICOM is an isopycnal coordinate model that
uses potential density as vertical coordinates. For each isopycnal
layer the mass of a biogeochemical tracer is the product of the
layer thickness with the tracer concentration. In this experiment,
only the concentration is perturbed while the layer thickness is
the same in all members. A mismatch in the vertical grid size
between the physical and biogeochemical restarts could therefore
introduce an additional small perturbation in the total tracer
mass. To prevent any feedback from the ocean biogeochemistry
on the physical state, and to ensure that all members in BGCpert

have the same physical variability, the simulations are carried
out with a prescribed atmospheric CO2 that follows a similar
evolution as the one in Hist-REF.

In BGCpert we have a perfect knowledge of the initial state of
the physics, leading to perfect predictions of the physical state
when using a perfect model without biogeochemical feedbacks.
This is never the case when doing real predictions because
only a part of the ocean is observed and observations are

imperfect. To investigate the extent to which the predictability
of ocean biogeochemistry is limited by the predictability of
physical drivers, we perform a second prediction experiment,
PHYpert . Here, both the physical and biogeochemical initial
conditions for the Truth and the predictions are taken from
member one in Hist-REF, but for each of the prediction members
a random perturbation on the order of 10−10◦C is added to
the SST. Consequently, all members in the PHYpert experiment
have identical biogeochemical initial conditions, but physical
initial conditions that are slightly different. This nanoscopic
perturbation will grow rapidly with the chaotic mode of the
Earth system, causing the physical state of the predictions to
diverge from that of theTruth. A wide range of SST perturbations
have been applied in previous perfect model experiments; from
10−14◦C (Lovenduski et al., 2019) to 10−2◦C (Koenigk et al.,
2012). However, the system is insensitive to the exact size of the
initial perturbations as they grow rapidly in the chaotic system
(e.g., Lorenz, 1963, 1969). This is illustrated in Figure S3 showing
the evolution of the global mean ensemble spread of SST during
one of our hindcasts in the PHYpert experiment. One month after
the initialization the ensemble spread is already O(0.01◦C), and
after two months it is O(0.1◦C). This shows that the size of the
initial perturbation does not matter (as long as it smaller than
the typical internal variability) for the timescales we consider in
this study.

We also performed a third experiment, PHY-BGCpert , where
both the physical and biogeochemical initial conditions were
perturbed. The aim of that experiment was to investigate if
non-linear interactions between the physical and biogeochemical
perturbations can influence the predictability. The perturbations
of the biogeochemical tracers were created as in the BGCpert

experiment, while the physical conditions were perturbed
indirectly by running the experiments with an interactive
atmospheric CO2. When doing so, the perturbations in the
biogeochemical initial conditions translate into the atmospheric
CO2, which affects the radiation balance and consequently the
SST. This way of perturbing the initial physical conditions gave
similar results for the predictability as in the PHYpert experiment,
where the SST was directly perturbed (not shown). This suggests
that running with an interactive CO2 has little implication for
interannual-to-decadal prediction.

2.2. Data Analysis
For the analysis we focus on the predictability of air-sea
CO2 exchange and export production, and its relations to the
predictability of the ocean physics. Export production is defined
as the flux of particulate organic carbon (POC) across 100 m
depth. The predictive skill is quantified with anomaly correlation
coefficients, (ACC, Becker et al., 2014) between the Truth and
the ensemble mean of the 9 member predictions. Before the ACC
was calculated, the data from the predictions were detrended in
each grid cell in order to remove the main signal of the external
forcing (the increase in atmospheric CO2 due to anthropogenic
emissions). This was carried out by first, in each grid cell,
fitting a second-order polynomial to the time series of each
variable from the ensemble mean of Hist-REF (this is illustrated
for SST in Figure S4). We chose a second-order polynomial
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TABLE 1 | Experimental setup.

Experiment Description Nr. members Length (years) Nr. of realizations Period of coverage

Hist-REF Historical run 10 155 1 1850–2005

BGCpert Truth and predictions with perturbed BGC i. cond. 1+9 10 22 1890–2005

PHYpert Truth and predictions with perturbed SST i. cond. 1+9 10 22 1890–2005

FIGURE 1 | Experimental setup. The black, red, and blue horizontal lines show the time periods that the historical run (Hist-REF), and the prediction experiments

BGCpert and PHYpert experiments cover. Each experiment consists of 10 ensemble members. The vertical lines illustrate that the prediction-experiments are initialized

from Hist-REF. As visualized, the prediction experiments consists of 22 10-year long predictions, starting every fifth year between 1890 and 1995.

because the increase in atmospheric CO2 concentration in the
simulations follows a 2nd-order trend. Thereafter, to remove the
anthropogenic signal from the 10-year long predictions and the
Truth, the corresponding 10-year period of the 2nd-order trend
was subtracted. After this detrending, the ACC was calculated for
each lead year (τ ) and grid cell (s) in the model, according to
(Equation 1):

ACC(s, τ ) =

P
∑

p=1
V ′(s, τ , p)O′(s, τ , p)

√

P
∑

p=1
V ′(s, τ , p)2

P
∑

p=1
O′(s, τ , p)2

(1)

Where p is the prediction number and P(=22) is the total number
of predictions (Figure 1),V’ is the predicted value (anomaly), and
O’ is the truth (anomaly). We also calculated spatially averaged
ACC’s following (Becker et al., 2014):

ACC(τ ) =

P
∑

p=1

S
∑

s=1
w(s)V ′(s,τ ,p)O′(s,τ ,p)

W
√

√

√

√

P
∑

p=1

S
∑

s=1
w(s)V ′(s,τ ,p)2

P
∑

p=1

S
∑

s=1
w(s)O′(s,τ ,p)2

W2

(2)

wherew(s) is a local area weight (the area of the grid cell s) andW
is the global sum of the area weights. When calculating the global
ACC,W is the global ocean surface area.

We used a bootstrapping approach with random sampling
over the starting years to compute 95% confidence intervals for
the ACC’s. For the spatially averaged ACCs (Equation 2) we used
1,000 bootstraps, and for the ACCs in each grid cell (Equation
1) we used 500 bootstraps due to the higher computational cost.
We consider any correlation below 0.2 as no skill, i.e., having no
practical value, as it only explains 4% of the variance.

The skill of the predictions is benchmarked against the skill
of a persistence forecast and an uninitialized forecast. The latter
quantifies the prediction skill of the remaining external forcing
that is not removed with the second-order trend (e.g., volcanic
forcing), and is calculated as the ACC between member one
and the ensemble mean of members 2–10 in Hist-REF for the
same 10-year intervals as used in the predictions (Figure 1).
The persistence forecast is calculated by using the last available
observation as a forecast. In our case, this is done by using
output from member 1 in the historical run. For each 10-year
forecast the annual mean of the year before the initialization is
used as a forecast for the next 10 years; this corresponds to the
autocorrelation of the quantity.

To understand the physical mechanisms behind
biogeochemical predictability, we compare it to that of some key
physical variables in the model. These are SST, MLD (mixed layer
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depth) and sea ice concentration, all of which all are important
for air-sea CO2 exchange and export (primary) production.
We also compare with the predictability of sea surface height
(SSH), which is a good indicator of ocean dynamics (e.g.,
gyre strength) and advective fluxes. Finally, we compare to
the predictability of an atmospheric variable, down-welling
shortwave radiation (DSW), which is important for export
production and highly dependent on cloud cover. In HAMOCC
the photosynthetic available radiation is assumed to be 40% of
the DSW, and would therefore show the same predictability
as the DSW.

For the comparison of biogeochemical vs. physical
predictability, we analyse the ACC for annual and seasonal
means (JFM, AMJ, JAS, OND). The seasonal means were
calculated from monthly mean outputs. Unfortunately, outputs
of monthly means were not saved for DSW and nutrients in
Hist-REF nor in the prediction experiments, prohibiting analyses
of the seasonal predictability of these variables. For the analyses
we divide the ocean into three areas with different physical
characteristics broadly following the biome definitions suggested
by Sarmiento et al. (2004); the low latitudes oceans (LL) that are
permanently stratified, 35◦ S to 35◦ N, the temperate oceans that
are seasonally stratified, including temperate North Pacific (tNP:
35◦ N- Bering Strait), temperate North Atlantic (tNA: 35–62◦ N),
and temperate Southern Ocean (tSO: 35–57◦ S), and ice covered
oceans, including the Arctic Ocean (AO) and ice-covered
Southern Ocean (iSO). Using this definition, there are still areas
in the temperate oceans that were temporary ice-covered during
the early period of study. To ensure that we do not include
any effect of the sea ice on the predictability in the temperate
oceans, we have masked out areas that at any year during the
historical period had an annual mean ice concentration of more
than 10%.

3. RESULTS AND DISCUSSION

3.1. Impact of Perturbed BGC Initial
Conditions
We start by investigating the influence of errors in the
biogeochemical initial conditions on the predictability of CO2

flux and export production. The red dots in Figure 2 show the
area-weighted global mean ACC between the Truth and the
predictions in the BGCpert experiment. Lead year one is shown
separately, while the longer lead times have been binned into
3-year intervals to reduce noise (this only made a difference
in the PHYpert experiment). The correlation is close to one
for both export production and air sea CO2 flux across all
lead years, but somewhat lower for lead year one, showing
that the evolution of the Truth and the predictions from the
initial state is nearly identical. Since the predictions and the
Truth were initialized with identical physical states, but different
biogeochemical ones, these results show that the variability of
the different members are dominated by the physics. Figure 3
shows that there is also a very strong correlation regionally,
and that the effect of the perturbations in the biogeochemical
initial conditions disappear after lead year one. For the air-
sea CO2 flux, the lower correlation in lead year one is mainly
associated with areas of high interannual variability (Figure 3),
such as the subpolar North Atlantic, the Southern Ocean
and the Tropical Pacific. For export production, the areas of
low correlation in the first lead year are related to the low-
productive subtropical gyres, where phytoplankton growth is
strongly nutrient limited due to the permanent stratification. The
impact of perturbations in the biogeochemical initial conditions
on the predictability of other biogeochemical quantities (e.g.,
nutrients and primary production) show a similar behavior
(not shown).

FIGURE 2 | Globally averaged Anomaly Correlation Coefficients (ACC), for (A) export production and (B) air-sea CO2 exchange. Black, red, and blue dots show the

ACC for the export production/air-sea CO2 exchange in the uninitialized Hist-REF run, the BGCpert and the PHYpert experiment, respectively, where the vertical bars

show the 95% confidence intervals. The solid lines show the ACC for Sea Surface Temperature (SST), Mixed Layer Depth (MLD), Sea Surface Height (SSH), and

Downwelling Shortwave Radiation (DSW) in the PHYpert experiment. The gray solid line shows the ACC for the persistence forecast of the export production/air-sea

CO2 exchange.
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FIGURE 3 | Anomaly correlation for the annual mean export production (A,B) and air-sea CO2 exchange (C,D) between the Truth and the predictions, for lead years

1 and 2–4 in the BGCpert experiment (maps for longer lead years are shown in Figures S16, S17). Only correlations that are significantly greater than (95% confidence

with 500 bootstraps) the uninitialized run and persistence forecast are shown. The violet line show the maximum extent of the annual mean sea ice cover (with a

minimum concentration of 10%) during the period 1890–2005.

The approach we adopted for perturbing the biogeochemistry
gives perturbations that are of similar size as the natural
variability of the system. This means that the perturbations
are larger in areas with large interannual variability, such as
the surface North Atlantic and the Southern Ocean, than
in areas with lower interannual variability, such as the deep
ocean and the subtropical gyres. The idea behind this strategy
is to mimic the uncertainty that arise when a model is
not nudged to observations, i.e., that the model state might
be out of phase of the actual state of the natural system.
Our results clearly show that these uncertainties in the
biogeochemical initial conditions become negligible beyond
the first lead year, and that the physically-driven variability
dominates in the subsequent years. This suggests that a good
knowledge of the physical conditions is sufficient for robust
ocean biogeochemical predictions, and that assimilation of
biogeochemical observations for creation of initial conditions
only have the potential to add marginal skill on interannual-
to-decadal predictions, at least as long as the biogeochemical
fields are initialized with a reasonable climatology. It is, however,
important to note that biogeochemical models are highly
simplified representations of the real world, especially the ones
currently used in Earth system and climate prediction models
where the structure and number of tracers have to be kept
relatively simple to reduce the computational cost. If increasing
the complexity by for instance including more processes,
interactions, functional groups and higher trophic levels that
could give effects spanning over several years, or including

regionally varying parameters as in Tjiputra et al. (2007) and
Gharamti et al. (2017), the role of the biogeochemical initial
conditions for interannual-to-decadal predictions might be of
higher importance. Further, it is possible that biogeochemical
models systematically underestimate biogeochemical variability
(DeVries et al., 2019), meaning that the perturbations imposed
here, might be lower than in the real world.

The drop in correlation in the first lead year indicates that
initialization of biogeochemistry likely enhances the predictive
skill on seasonal timescales.

3.2. Impact of Perturbed Physical Initial
Conditions
Before investigating the physical mechanisms behind
biogeochemical predictability, we will compare the predictability
achieved with our experiments with the predictability presented
in previously published works as an evaluation of the predictive
skill in our model system.

The blue dots in Figure 2 show the global ACC between the
Truth and the predictions for export production and air-sea
exchange in the PHYpert experiment, indicating the predictability
when having perfect knowledge of the biogeochemical initial
conditions, and starting from a slightly perturbed physical state.
For export production, the correlation for lead year one is lower
than that of BGCpert suggesting that even on seasonal time scales
the importance of the physical processes is larger than that of
biogeochemical processes for skillfull prediction. PHYpert show
significant skill for the physics as its state is initialized with
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near perfect ocean and atmospheric initial condition. While the
prediction skill of the atmosphere decays relatively quickly, the
skill of the ocean is larger. Until lead year 2–4, the correlation
exceeds the >0.2 threshold and is significantly different from the
uninitialized run, indicating a predictability of a few years for
both export production and air-sea CO2 exchange. For global
air-sea CO2 exchange, the perfect predictability lies within the
predictability range of 2 years presented by Lovenduski et al.
(2019) and 4–6 years (computed with two different methods) by
Séférian et al. (2018). The latter calculated the predictability of
both the land and ocean carbon uptake, but showed that most of
the long-term predictability resides in the ocean.

Figures 4, 5 show ACC maps of the annual mean export
production and air-sea CO2 exchange between the Truth

and the mean of the predictions in the PHYpert experiment.
Similar maps for seasonal means and other biogeochemical
fields, are shown in Figures S18–S26. In lead year one there
is a strong (> 0.5) correlation, indicating predictability almost
everywhere in the global ocean for the air-sea CO2 exchange.
Exceptions are the poleward halves of the subtropical gyres
and the ice-covered Arctic Ocean. The pattern looks similar
for the export production, with the exception of a low
predictability in the Northern Hemisphere subpolar oceans.
As the predictions are initialized on the first of January,
the better predictability of the Southern Hemisphere export
production in lead year one is expected. The reason for
why there is essentially no predictability of export production
at northern latitudes in lead year 1 will be explored in
section 3.3.

For longer lead times, the predictability of the CO2 exchange
quickly degrades, except for in a few areas. In the tropical
and subtropical oceans, in particular in the Pacific, there is
predictability until lead years 2–4 for air-sea CO2 exchange. The
longest predictability is observed in the SPGNA, where there is
a relatively strong correlation until lead year 5–7. This agrees
well with Li et al. (2016), who found potential predictability
of the winter CO2 exchange of up to 4–7 years in the western
SPGNA. Apart from the SPGNA, the predictability of air-sea CO2

exchange quickly degrades in the high latitude oceans, including
the Southern Ocean. Here, a coherent pattern of predictability
can only be seen until lead year 2–4. The spatially averaged
ACC over the Southern Ocean indicates a predictability of 1
year (Table 2). This short predictability agrees fairly well with
Lovenduski et al. (2019) who found a significant predictability
of up to two years in the Southern Ocean, but is lower than
Séférian et al. (2018) who found a predictability of 4–6 years.
The difference in predictability found here and by Lovenduski
et al. (2019) compared to Séférian et al. (2018) could be related
to the differences in the model and simulation setup. It should
be noted that while Séférian et al. (2018) made their predictions
under pre-industrial forcing, the predictions in the current
study and in Lovenduski et al. (2019) were carried out using
historical forcing. It is possible that the biogeochemistry becomes
less predictable under present forcing. Another reason could
be differences in the implementation and parameterization of
primary production, which has been shown to be important

for regulating the air-sea CO2 fluxes in the Southern Ocean
(Kessler and Tjiputra, 2016). This will be further discussed in the
following sections.

For export production (Figure 4), the predictability stays
significant in the low latitudes until lead year 2–4, in agreement
with Séférian et al. (2014), who found a predictability of NPP (Net
Primary Production) of up to 3 years in the tropical Pacific. Due
to their strong linkage, the predictability of primary production
and phytoplankton concentration is similar to that of export
production in our model (Figures S22, S23). As with the air-sea
CO2 exchange, the predictability of the export production quickly
degrades in high latitudes in PHYpert , but in contrast, almost no
predictability is evident in the SPGNA.

The good agreement of the predictability achieved in
our perfect model experiment with perturbed SST with the
predictability found in other studies with different models,
suggest that our model system has a reasonable representation
of the mechanisms giving rise to predictability.

The relatively short predictability of air-sea CO2 exchange
(except in the SPGNA) and especially export production in the
high latitudes, as shown in Figures 4, 5, is rather unexpected.
Due to the strong control that ocean physics exerts on
ocean biogeochemistry, it has been hypothesized that the long
predictability that has been shown to reside in the ocean, in
particular for SST and sea surface salinity (SSS) in the Southern
Ocean and the North Atlantic (Pohlmann et al., 2004; Zhang
et al., 2017; Buckley et al., 2019 and Figures S27–S29, S33),
should result in a long predictability for ocean biogeochemistry
(e.g., Li et al., 2016; Séférian et al., 2018; Lovenduski et al., 2019).
The reason for this lack of predictability will be explored in
section 3.3.

3.3. Sources and Limits of Predictability
To understand the physical factors that give rise to or
limit the predictability of export production and air-sea
CO2 exchange, we will compare it to the predictability
of various physical variables. The idea behind this is that
the least predictable physical variable (among those known
for having a considerable direct, or indirect, impact on
biogeochemical variability) should set the predictability horizon
of the ocean biogeochemistry. In Figures 2, 6–8 we have
therefore plotted the regionally averaged ACC for SSH, SST,
MLD, sea ice, and DSW, together with the ACC for air-
sea CO2 exchange, for annual and seasonal means. The
predictability of export production aligns closely with that of
the summer air-sea CO2 exchange and is therefore shown
in the supplementary material (Figures S7–S9). Correlation
maps showing the skill for physical properties are shown in
Figures S27–S39.

For the global annual means (Figure 2), we note that SSH
has the overall highest predictability, followed by SST, MLD
and sea ice, while DSW has the lowest. This is expected
since the atmosphere has a shorter memory than the ocean
(Koenigk et al., 2012; Roberts et al., 2016) and the DSW is
influenced by the cloud cover, which is highly unpredictable.
Variations in SSH are, on interannual timescales, a measure of
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FIGURE 4 | Anomaly correlation for the annual export production between the Truth and the predictions, for different lead years (A–H) in the PHYpert experiment.

Only correlations that are significantly greater than (95% confidence with 500 bootstraps) the uninitialized run and persistence forecast are shown. The violet line show

the maximum extent of the annual mean sea ice cover (with a minimum concentration of 10%) during the period 1890–2005.
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FIGURE 5 | Anomaly correlation for the annual mean air-sea exchange between the Truth and the predictions, for different lead years (A–H) in the PHYpert

experiment. Only correlations that are significantly greater than (95% confidence with 500 bootstraps) the uninitialized run and persistence forecast are shown. The

violet line show the maximum extent of the annual mean sea ice cover (with a minimum concentration of 10%) during the period 1890–2005.
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dynamically induced density and ocean circulation changes. In
regions that are less stratified SSH represents a column-integrated
signal, while in regions where the 1.5 layer approximation
holds (i.e., an active less dense layer over a much thicker and
denser inactive layer) SSH variations closely relate to upper
ocean (density) changes (Wyrtki and Kendall, 1967; Rebert
et al., 1985). This relation is strongest in the tropics where
the density contrast between the two layers is the greatest.
SST and MLD by definition represent surface processes, which
away from the tropics are more sensitive to the atmospheric
variability than SSH, and therefore are less predictable. The
MLD is in general less predictable than the SST (also seen in
Figures S27, S30), with the largest difference in the Southern
Ocean.

TABLE 2 | Predictability horizon in years for annual mean air-sea CO2 exchange,

export production, nitrate, phosphate, sea surface height, sea surface salinity, sea

surface temperature, mixed layer depth, downwelling shortwave radiation and sea

ice concentration in Low latitudes (LL), temperate North Atlantic (tNA), temperate

North Pacific (tNP), temperate Southern Ocean (tSO), Arctic Ocean (AO), and

ice-covered Southern Ocean (iSO).

Area CO2 exch. Exp. prod. N P SSH SSS SST MLD DSW Ice

LL 3 2 3 4 4 4 4 3 3 –

tNA 5 1 3 3 8 6 6 5 0 –

tNP 3 1 4 4 6 6 4 4 0 –

tSO 1 1 3 5 >10 >10 7 5 1 –

AO 3 1 7 7 6 5 4 4 1 3

iSO 1 1 1 1 >10 6 4 3 1 3

Predictability horizon is defined as the last lead year that the anomaly correlation is

significantly (95% limit) larger than 0.2, than the uninitialized run and the persistence. The

significance was calculated with 1,000 bootstraps.

3.3.1. Low Latitude Oceans

In the low latitude oceans (Figure 6), the predictability is similar
across the physical variables, and there is an overall perfect-model
predictability of 3–5 years, even for DSW (Table 2). This is a
result of the strong coupling between ocean and atmospheric
variability through atmospheric convection in this region that
influences the cloud cover and consequently the DSW (Yan, 2005;
Sun et al., 2017). The predictability of air-sea CO2 exchange and
export production is similar to that of the physical properties.
Because of the small seasonal variations, the predictability of the
annual and seasonal means are similar (Figure 6 andTables 2–4).

Séférian et al. (2014) suggested that the predictability of
primary production in the low latitude Pacific is tied to the
poleward advection of nutrients anomalies that are initially
induced by the ENSO-driven variations in upwelling of nutrients
at the Equator. Another, slightly different explanation of the
predictability in this region is found in Polkova et al. (2015)
and Roberts et al. (2016). They suggested that the predictability
of the SSH (up to 2–5 years lead time) in the subtropics is
a result of baroclinic Rossby-waves, carrying the signal of the
initial conditions westward. This would also apply to ocean
biogeochemistry, as Rossby waves modify horizontal velocities
and the vertical displacement of the thermocline, which affects
the horizontal advection and exchange of nutrients and carbon
with deep waters (e.g., Uz et al., 2001; Sakamoto et al., 2004;
Charria et al., 2008). Indeed, the spatial pattern of predictability
in the low latitude Pacific shown in Figures 4, 5 resembles the
spatial pattern of the Rossby-wave front presented in Figure 4 of
Chelton and Schlax (1996). The links between the predictability
and ENSO as suggested by Séférian et al. (2014), and to off-
equatorial baroclinic Rossby-waves as suggested by Polkova et al.
(2015) and Roberts et al. (2016), are however not incompatible,
as these waves have been shown to be triggered by ENSO events
(Battisti, 1989; Kessler, 1991).

FIGURE 6 | Spatially averaged Anomaly Correlation Coefficients (ACC) for low latitude oceans, for (A) annual means, (B) January–March means, and (C)

July-September means. Black and blue dots show the ACC for the air-sea CO2 exchange in the uninitialized run (Hist-REF) and the PHYpert run, respectively, where

the vertical bars show the 95% confidence intervals. The solid lines show the ACC for Sea Surface Temperature (SST), Mixed Layer Depth (MLD), Sea Surface Height

(SSH), and Downwelling Shortwave Radiation (DSW) in the PHYpert experiment. The gray solid line shows the ACC for the persistence forecast of air-sea CO2

exchange.
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FIGURE 7 | Spatially averaged Anomaly Correlation Coefficients (ACC) for temperate oceans including Southern Ocean (A–C), North Atlantic (D–F) and North Pacific

(G–I), for annual means (left column), January-March means (middle column), and July-September means (right column). Black and blue dots show the ACC for the

air-sea CO2 exchange in the uninitialized run (Hist-REF) and the PHYpert run, respectively, where the vertical bars show the 95% confidence intervals. The solid lines

show the ACC for Sea Surface Temperature (SST), Mixed Layer Depth (MLD), Sea Surface Height (SSH), and Downwelling Shortwave Radiation (DSW) in the PHYpert
experiment. The gray solid line shows the ACC for the persistence forecast of air-sea CO2 exchange.

3.3.2. Temperate Oceans

In the temperate oceans there is a large spread in the
predictability of the various physical variables (Figure 7 and
Table 2), in contrast to what was shown for the low latitudes in
the previous section. It ranges from 0 to 1 year for the annual
mean DSW, via 4–7 years for the SST and MLD, and up to 6-
>10 years for the SSH. The variability of DSW in these regions
is influenced by the synoptic scale variability and mid-latitude
depressions, which are highly unpredictable beyond timescales of
a few days. The higher predictability of SSH, SST, and MLD than
in the low latitudes is related to the stronger coupling between the
surface and deep oceans through winter convection and mixing
(e.g., Boer, 2004). The predictability of the annual mean CO2

exchange is 1 and 3 years in the tSO and tNP, respectively, and
5 years in the tNA. Due the strong seasonality of air-sea CO2

exchange, an analysis of its seasonal predictability is needed to
understand the underlying physical mechanisms.

From the seasonal decomposition (Figure 7 and Tables 3,
4, decomposition into OND and AMJ means are shown in
Figures S10-S15), it is clear that the predictability of the summer
CO2 exchange is poor, and that the predictability of the annual
mean CO2 exchange originates from a predictable winter state.
The ACC of the winter CO2 exchange is similar to the ACC
of the winter MLD (both in amplitude and in duration), which
suggests that the predictable signal originates from the winter
vertical mixing and the upwelling of DIC-rich deep waters to
the surface. This is consistent with Fröb et al. (2019), who
observed a strong relation between interannual variations in DIC,
pCO2, and MLD in in situ measurements from the subpolar
North Atlantic.

It is interesting to note that the predictability of MLD in
the North Atlantic is aligned with the predictability of SST,
while this relationship is much weaker in the North Pacific
and in the Southern Ocean. The depth of the mixed layer is
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FIGURE 8 | Spatially averaged Anomaly Correlation Coefficients (ACC) for ice-covered oceans including Southern Ocean (A–C), and Arctic Ocean (D–F), for annual

means (left column), January-March means (middle column), and July-September means (right column). Black and blue dots show the ACC for the air-sea CO2

exchange in the uninitialized run (Hist-REF) and the PHYpert run, respectively, where the vertical bars show the 95% confidence intervals. The solid lines show the ACC

for Sea Surface Temperature (SST), Mixed Layer Depth (MLD), Sea Surface Height (SSH), and Downwelling Shortwave Radiation (DSW) in the PHYpert experiment.

The gray solid line shows the ACC for the persistence forecast of air-sea CO2 exchange.

dependent on both mechanical (wind) forcing and buoyancy
forcing. In parts of the ocean where there is a large heat
release to the atmosphere, the oceanic memory in form of
heat content has a relatively larger impact on the mixed layer
than the atmospheric forcing. This could explain the better
predictability of MLD, and consequently the CO2 exchange, in
the tNA in comparison to the tSO and tNP, as the heat loss to the
atmosphere is larger in the North Atlantic (e.g., Talley et al., 2011
and Figure S5).

From Figure 7 it becomes clear that the low predictability
of the summer CO2 exchange (and export production) can be
related to an overall low predictability of the ocean physical
state; which comes as a result of the stronger control that the
unpredictable atmosphere exerts on the upper ocean during
this season when the mixed layer depth is shallow and the
exchanges between upper and deep ocean water masses are
limited. Interestingly, the predictability of the annual mean
nutrient concentrations is better than that of export production
(Table 2), suggesting that predictability of annual mean nutrient
concentrations does not necessarily lead to predictability of
annual mean export production in temperate oceans, i.e., the
unpredictable dynamics of the summer mixed layer (including
light availability and exchange of nutrients with the deep waters)
is more important.

3.3.3. Ice-Covered Oceans

As one of the regulators of gas exchange and the amount of
light and momentum reaching the upper ocean, sea ice has
a considerable impact on air-sea CO2 exchange and export
production. There is also an indirect control of the sea ice
on these processes as its melting and formation influences the
buoyancy and thus the mixed layer depth. The predictability of
sea ice should therefore have an impact on the predictability of
CO2 exchange and export production.

Figure 8 and Table 2 show that there is a mean predictability
of sea-ice concentration of 3 years in the Arctic Ocean and in
the Southern Ocean, which is in agreement with other studies
for the annual mean ice cover (Guemas et al., 2016) and with a
conceptual model for the Barents Sea (Onarheim et al., 2015).
As expectedly shown in Figure 8, the predictability of the annual
mean CO2 exchange agrees well with that of the sea ice in the
Arctic Ocean. This is however not the case in the SouthernOcean,
where the CO2 is only predictable on a time horizon of one year
compared to three years for sea ice.

From the seasonal decomposition of the predictability in
iSO and AO, we note that the predictable signal of the
CO2 exchange also in these regions comes from the winter
state, and that it closely follows the predictability of sea ice
concentration and MLD (Figure 8 and Tables 3, 4). As for

Frontiers in Marine Science | www.frontiersin.org 12 June 2020 | Volume 7 | Article 386

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Fransner et al. Biogeochemical Predictions

TABLE 3 | Same as Table 2 but for January–March means.

Area CO2 exch. Exp. prod. SSH SSS SST MLD Ice

LL 3 3 3 4 3 3 –

tNA 5 – 7 6 6 4 –

tNP 3 – 6 5 5 3 –

tSO 1 1 >10 >10 1 1 –

AO 3 – 4 4 5 4 3

iSO 1 1 >10 3 3 1 1

TABLE 4 | Same as Table 2 but for July–September means.

Area CO2 exch. Exp. prod. SSH SSS SST MLD Ice

LL 1 1 3 3 1 1 –

tNA 0 0 8 5 3 1 –

tNP 0 0 5 4 4 0 –

tSO 3 – >10 >10 6 3 –

AO 1 0 5 1 1 1 1

iSO 3 – 5 6 3 1 3

the temperate oceans, the predictability of the summer CO2

exchange, MLD and sea ice concentration is practically absent,
indicating a large influence of the atmospheric forcing during
this season.

The relative importance of the seasons for the annual mean
predictability depends on how much the interannual variations
of the summer and winter means contribute to the interannual
variations in annual means, and how predictable they are. For
example, in regions where the interannual variability in CO2

exchange during summer dominates over that in winter, the
predictability of the annual mean CO2 exchange will be lower
than that of the winter. If, however, the winter variability
contributes to a large part of the interannual variability (as
would be the case for MLD), the predictability of the annual
mean will approach that of the winter state. This could explain
the differences in predictability of air-sea CO2 exchange in the
Southern Ocean between the present study and Séférian et al.
(2018). It could also explain why the predictability of the annual
mean CO2 exchange is lower than the predictability of the annual
mean sea ice cover in iSO, even though they compare well in
summer and winter, i.e., interannual sea ice variability is driven
by winter variations, while that of CO2 exchange is driven by
summer variations.

4. CONCLUSIONS

In this study we have performed two perfect model experiments
with the aim to investigate (i) to what extent perturbations in
the initial state of biogeochemical tracers influence inter-annual
to decadal predictions of ocean biogeochemistry and (ii) to
understand the physical mechanisms that gives rise to, or limit,
predictability of biogeochemical processes such as air-sea CO2

exchange and export production.

Perturbations in biogeochemical initial conditions only
degrade predictions in the first lead year. In the following lead
years the ocean biogeochemistry re-adjusts to the physics, and
the influence of perturbations in the initial conditions becomes
negligible. This suggests that initialization of biogeochemistry
through e.g., assimilation of biogeochemical observations
only brings marginal improvements to interannual-to-decadal
biogeochemical predictions, while the initialization of the physics
is of high importance, at least in climate prediction models with
a similar complexity as the one used in the current study. The
results may change if amore complex biogeochemical model, e.g.,
one that includes higher trophic levels, is used. To further assess
the robustness of our findings, similar experiments should be
conducted with other models, in particular those with enhanced
complexity. Further, assimilation of biogeochemical observations
would be useful for example for parameter estimation, and could
be used to improve the initial physical fields (Yu et al., 2018),
especially in remote parts of the oceans that are poorly sampled.
Despite our results, it is therefore still important to develop
this technique.

The predictability horizon that we achieve in our perfect
model experiment with perturbed SST agrees overall with other
studies using different models, suggesting that our model setup
has a reasonable representation of the mechanisms giving rise
to predictability. For export production, we found the longest
predictability in low latitude oceans, with a similar time scale of
predictability as baroclinic Rossby waves (Polkova et al., 2015).
In seasonally stratified oceans, there is almost no predictability of
export production, even in areas that show strong predictability
of annual mean ocean physics and nutrients. This is related to
the low predictability of the summer mixed layer that is under
strong influence by the unpredictable atmosphere. As a result, the
summer air-sea CO2 exchange, which is predominantly driven by
biological productivity in temperate seasonally stratified oceans
(Tjiputra and Winguth, 2008; Tjiputra et al., 2014), also shows
weak predictability. The predictability of the winter air-sea CO2

exchange shows a strong relation to the winter mixed layer depth
in temperate oceans. In the SouthernOcean and the North Pacific
the predictability of the winter mixed layer is weaker than that of
the sea surface temperature, which we suggest to be because of
its higher sensitivity to the wind (Figure S6). The relatively long
predictability of air-sea CO2 exchange (and mixed layer depth)
in the temperate North Atlantic is explained by the strong impact
the ocean thermal memory has on the heat release and on the
buoyancy forcing in this area.

To conclude, our results call into question the utility of
biogeochemical observations for initialization of biogeochemical
predictions. It is however important to note that this is based
on results from perfect model experiments with one model
system only. Similar experiments should be performed using
models with more complex, and potentially more correct
representation of marine biology and biogeochemistry.
Further, we have shown that the predictability of the
mixed layer depth is overall less than that of ocean
temperature and salinity and therefore puts an important
constraint on the predictability of export production and
air-sea CO2 fluxes. A more throughout investigation of
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the predictability of the mixed layer depths (in particular
during summer) in the real world, which is not very well-
explored, is therefore needed to better understand real world
biogeochemical predictability.
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