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Background: In endometrial cancer (EC), preoperative pelvic MRI is recommended for local staging, while final tumor
stage and grade are established by surgery and pathology. MRI-based radiomic tumor profiling may aid in preoperative
risk-stratification and support clinical treatment decisions in EC.
Purpose: To develop MRI-based whole-volume tumor radiomic signatures for prediction of aggressive EC disease.
Study Type: Retrospective.
Population: A total of 138 women with histologically confirmed EC, divided into training (nT = 108) and validation
cohorts (nV = 30).
Field Strength/Sequence: Axial oblique T1-weighted gradient echo volumetric interpolated breath-hold examination
(VIBE) at 1.5T (71/138 patients) and DIXON VIBE at 3T (67/138 patients) at 2 minutes postcontrast injection.
Assessment: Primary tumors were manually segmented by two radiologists with 4 and 8 years’ of experience. Radiomic
tumor features were computed and used for prediction of surgicopathologically-verified deep (≥50%) myometrial invasion
(DMI), lymph node metastases (LNM), advanced stage (FIGO III + IV), nonendometrioid (NE) histology, and high-grade
endometrioid tumors (E3). Corresponding analyses were also conducted using radiomics extracted from the axial oblique
image slice depicting the largest tumor area.
Statistical Tests: Logistic least absolute shrinkage and selection operator (LASSO) was applied for radiomic modeling in
the training cohort. The diagnostic performances of the radiomic signatures were evaluated by area under the receiver
operating characteristic curve in the training (AUCT) and validation (AUCV) cohorts. Progression-free survival was assessed
using the Kaplan–Meier and Cox proportional hazard model.
Results: The whole-tumor radiomic signatures yielded AUCT/AUCV of 0.84/0.76 for predicting DMI, 0.73/0.72 for LNM,
0.71/0.68 for FIGO III + IV, 0.68/0.74 for NE histology, and 0.79/0.63 for high-grade (E3) tumor. Single-slice radiomics
yielded comparable AUCT but significantly lower AUCV for LNM and FIGO III + IV (both P < 0.05). Tumor volume yielded
comparable AUCT to the whole-tumor radiomic signatures for prediction of DMI, LNM, FIGO III + IV, and NE, but signifi-
cantly lower AUCT for E3 tumors (P < 0.05). All of the whole-tumor radiomic signatures significantly predicted poor
progression-free survival with hazard ratios of 4.6–9.8 (P < 0.05 for all).
Data Conclusion: MRI-based whole-tumor radiomic signatures yield medium-to-high diagnostic performance for
predicting aggressive EC disease. The signatures may aid in preoperative risk assessment and hence guide personalized
treatment strategies in EC.
Level of Evidence: 4
Technical Efficacy Stage: 2
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PRECISION MEDICINE is an evolving field in cancer
research that attempts to capitalize on the vast amounts

of patient-specific data derived from, eg, histological or
imaging-based tumor profiling, in order to develop more indi-
vidualized treatment strategies that optimize the therapeutic
benefit. Endometrial cancer (EC) is the most common gyne-
cological cancer in industrialized countries and the incidence
rate has been steadily increasing over the past decades.1 With a
5-year survival rate of 84%, the overall prognosis of EC is
good.2 However, a clinical dilemma faced in EC is over-
treatment in low-risk patients, leading to unnecessary side
effects. Oxymoronically, another problem is undertreatment
in undetected high-risk patients in whom a more aggressive
treatment strategy would improve survival.3 Thus, EC patients
would potentially benefit from refined tools with which to
guide precision medicine approaches as opposed to one-size-
fits-all treatment strategies.

ECs are surgicopathologically staged according to the
International Federation of Gynecology and Obstetrics
(FIGO 2009) system, which incorporates information on
local tumor extent and metastatic spread.4,5 However,
contrast-enhanced (CE) pelvic magnetic resonance imaging
(MRI), being the imaging method of choice for preopera-
tive local staging, is widely performed and guides the choice
of primary surgical treatment.6,7 In addition to standard
MRI findings suggesting advanced stage (ie, deep myo-
metrial invasion, cervical stroma invasion, and enlarged pel-
vic lymph nodes), large tumor volume and large maximum
tumor diameter at MRI have also been shown to predict
poor prognosis in EC.8–10

Radiomic tumor profiling involves the extraction of
large amounts of quantitative imaging features that can be
utilized in multiparametric models for disease characterization
and prediction of clinical and biological outcomes.11–13 Spe-
cific radiomic tumor profiles predict the stage and clinical
phenotype in various cancers, thus presenting a promising
approach to enable accurate staging, prognostication, and
more tailored treatment strategies.14–18 A few recent studies
have also explored MRI-based radiomic tumor features in EC
and linked these to an aggressive phenotype.19–23 However,
some of these studies19,20 are based on single-slice radiomic
profiling. As single-slice images only cover a proportionally
small part of the tumor, they may not necessarily be represen-
tative of the entire tumor.

The purpose of the present study was to conduct
MRI-based whole-volume radiomic tumor profiling in a
population-based cohort of EC patients and link specific
whole-tumor radiomic signatures to surgicopathological
markers of aggressive EC disease. Furthermore, we aimed to
compare the diagnostic performance of whole-tumor radio-
mic signatures with that of single-slice radiomic signatures
for predicting high-risk disease in the same EC patient
cohort.

Materials and Methods
Patients, Treatment, and Surgicopathological
Staging
This retrospective study included 138 women with histologically
confirmed endometrial carcinoma who all underwent pelvic MRI
prior to surgicopathological staging between 2009 and 2019. The
patients were randomly selected from a larger prospective
population-based study cohort in Hordaland County (Norway),
which was conducted under Institutional Review Board (IRB)-
approved protocols (IRB approvals: 2015/2333; 2015/548; biobank
approval 2015/1907) with written informed consent from all
patients. Since 2009, preoperative pelvic MRI has been included as a
part of this prospective study, using standardized imaging protocols
(Table 2). From preoperative biopsy the patients were graded as
either low-risk (endometrioid grade 1–2 [E1-E2]) or high-risk (endo-
metrioid grade 3 [E3] or nonendometrioid [NE]) EC.

All of the 138 patients in the cohort underwent hysterectomy
with bilateral salpingo-oophorectomy; 52% (72/138) had pelvic
lymph node sampling, while 17% (23/138) had accompanying para-
aortic lymph node sampling. Surgical specimens were assessed by
pathologists using standard procedures24 and the presence of deep
(≥50%) myometrial invasion (DMI), lymph node metastases
(LNM), and tumor histologic subtyping and grading (E1, E2, E3, or
NE) were confirmed microscopically. The patients were surgically
staged according to the FIGO 2009 criteria.4,5 Adjuvant treatment
were given to 33% (46/138) of the patients, chemotherapy to 30%
(42/138), external radiation therapy to 2% (3/138), and brachyther-
apy to 1% (1/138) of the patients.

Patient and surgicopathological characteristics for the 138 EC
patients are given in Table 1. The mean (range) time span between
the MRI examination and surgical staging was 16 (1–84) days and
all patients were diagnosed and treated at the same university hospi-
tal. Patient follow-up data were collected from patient medical
records and from correspondence with the responsible physicians/
gynecologists, as previously described.25 Mean (range) follow-up
time was 40 (0, 102) months and date of last follow-up was
November 21st, 2019. Progression was defined as local recurrence/
progression in the pelvis or new metastases in the abdomen or at dis-
tant sites.

These patients were divided into a training cohort of
108 patients for radiomic feature selection and prediction model
generation, with the remaining 30 patients in a validation cohort for
testing of the proposed radiomic signatures. This division was con-
ducted in a supervised manner to assure similar frequencies for the
surgicopathological outcomes in the training and validation cohorts
(Table S1).

MRI Scanning
Preoperative pelvic MRI was acquired with a 1.5T Avanto scanner
for 71/138 patients and with a 3T Skyra scanner for the remaining
67/138 (Siemens, Erlangen, Germany). Patient and
surgicopathological characteristics for patients according to scanner/
protocol are given in Table S2. To reduce bowel peristalsis, 20 mg
butylscopoalmine bromide (Buscopan, Boehringer Ingelheim, Ger-
many) was administered intramuscularly/intravenously to all patients
prior to imaging. The MRI protocols included sagittal and axial
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oblique T2-weighted turbo spin echo imaging, axial oblique T1-
weighted gradient echo volumetric interpolated breath-hold exami-
nation (VIBE) (1.5T), and VIBE DIXON (3T) imaging before and
2 minutes after administration of contrast agent (0.1 mmol gadolin-
ium/kg body weight, Dotarem, Guerbet, France) and axial oblique
diffusion-weighted imaging (DWI) with b-values of 0 and 1000 s/
mm2 (1.5T) or 0. 500 and 1000 s/mm2 (3T). Protocols at both field
strengths (Table 2) are in line with the recommended guidelines of
the European Society of Urogenital Imaging.26

Tumor Segmentation and Radiomic Feature
Extraction
For the purpose of tumor segmentation, the T1-weighted axial
oblique images acquired at 2 minutes postcontrast injection were
used, since this sequence and contrast delay provides the best dis-
crimination between tumor tissue and normal surrounding myo-
metrial tissue.6,27 The endometrial primary tumors were manually
delineated using the free, open-source software application ITK-
SNAP (www.itksnap.org, v. 3.6.0) (Fig. 1). The segmentations were
conducted by one of two radiologists, (J.A.D. and K.W.L., having
4 and 8 years’ experience, respectively, in pelvic MRI reading) who
were blinded to clinical and pathological patient information.
Although not used for segmentation, the DWI and T2-weighted
series were available to the readers for visual inspection to verify
tumor borders.

In total, 15 radiomic tumor features were extracted from the
tumor masks: tumor volume, tumor volume-to-surface ratio (sur-
fvolratio), gray-level (GL) histogram features (kurtosis, skewness,
entropy), GL cluster features (cluster-size and -index), gray-level co-
occurrence matrix (GLCM) features (energy, homogeneity, contrast,
correlation), and gray-level run length matrix (GLRLM) features
(short- and long-run emphasis [SRE, LRE] and low- and high gray-
level run emphasis [LGRE, HGRE]) (Fig. 1). The radiomic features
were computed by algorithms implemented in Python (www.
python.org), following the IBSI standards,28 and normalized for each
scanner/protocol using standard z-scores.

In order to investigate the stability of the derived radiomic fea-
tures when extracted from tumor masks delineated by different readers,
35 randomly chosen patients were selected for tumor segmentation by
both readers. For comparison of whole-tumor radiomic profiling with
single-slice radiomic profiling, the axial oblique image planes depicting
the largest tumor mask area were identified and all the radiomics fea-
tures were also extracted from these single-slice masks.

TABLE 1. Characteristics for the Endometrial Cancer
Patients (n = 138)

Age, median (range) 67 (39–90)

BMI, median (range) 26 (16–53)

Postmenopausal, n (%), n = 137 125 (91%)

Risk statusa from preoperative
biopsy/curettage, n (%)

Low-risk 91 (66%)

High-risk 35 (25%)

Missing 12 (9%)

Myometrial invasion, n (%)

< 50% 77 (56%)

≥ 50% 61 (44%)

Lymphadenectomy, n (%)

Pelvic 72 (52%)

Pelvic+para-aortic 23 17%)

No 43 (31%)

Lymph node metastases, n (%)

Pelvic only 11 (8%)

Para-aortic +/− pelvic 3 (2%)

Confirmed negative 81 (59%)

Not investigated 43 (31%)

FIGO stage, n (%)

I 109 (79%)

II 10 (7)

III 17 (12%)

IV 2 (2%)

Histologic subtype, n (%)

Endometrioid 113 (82%)

Clear cell 6 (4%)

Serous papillary 11 (8%)

Carcinosarcoma 5 (4%)

Undifferentiated/other 3 (2%)

Histologic grade, n (%)

E1 54 (39%)

E2 34 (25%)

E3 22 (16%)

NE 23 (17%)

TABLE 1. Continued

Missing 5 (4%)

BMI: body mass index; FIGO: the International Federation Of
Gynecology And Obstetrics system; E1: endometrioid grade 1;
E2: endometrioid grade 2; E3: endometrioid grade 3; NE:
nonendometrioid.
aRisk status based on preoperative biopsy (low-risk: E1 + E2;
high-risk: E3 + NE).
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Statistical Analyses
The stability of the radiomic features extracted from different tumor
masks (delineated by the two readers) and different scanners
(Table 2) were assessed by intraclass correlation coefficients (ICCs)
and Mann–Whitney U-tests, respectively. The radiomic features hav-
ing ICC > 0.75 between readers/segmentations and with P > 0.05 in
the Mann–Whitney U-test between scanners were considered stable
and retained for further analyses (Table S3). This resulted in a
whole-tumor radiomic dataset consisting of 14 features (kurtosis
excluded) and a single-slice dataset consisting of 12 features (sur-
fvolratio, cluster-size, and entropy excluded).

Logistic radiomic models for prediction of surgicopathological
outcomes were derived in the training cohort by the use of least
absolute shrinkage and selection operator (LASSO) and Elastic net
(Enet) regression (Fig. 1). The penalty parameters (λ and α) were
selected by 10-fold cross-validation and minimization of the cross-
validation function. For a complete list of the whole-tumor radio-
mic features selected by LASSO and Enet regression, please refer to
Table S4. The derived radiomic signatures were evaluated in both
the training and validation sets by deviance from goodness-of-fit
analyses (devianceT, devianceV), and by area under the receiver
operating characteristic (ROC) curves (AUCT and AUCV in the
training and validation cohorts, respectively). All analyses were con-
ducted using both the whole-tumor- and single-slice-derived radio-
mic features, separately. The resulting AUCs were compared using
DeLong’s test of equality.

For the LASSO radiomic signatures derived in the training
cohort, optimal cutoffs were identified from the ROC curves using
the Youden Index. The prognostic value of the categorized radiomic
signatures was explored using the Kaplan–Meier estimator with log-
rank test and the Cox proportional hazard model for prediction of
progression-free survival.

All statistical analyses were performed with STATA 16.1
(StataCorp, College Station, TX), and the reported P values were

generated by two-sided tests and considered significant when less
than 0.05.

Results
Enet, which linearly combines LASSO and ridge regression,
selected more of the features compared to LASSO alone, but
this did not improve the goodness of fit (devianceT,V, Table
S4) nor the areas under the predicted ROC curves (AUCT,V)
(Table S5). Hence, the LASSO model was used for further
analyses.

Whole Tumor vs. Single-Slice Radiomic LASSO
Signature Modeling
The whole-tumor LASSO radiomic signatures yielded AUCT/
AUCV of 0.84/0.76 for predicting DMI, 0.73/0.72 for LNM,
0.71/0.68 for FIGO III + IV, 0.68/0.74 for NE histology,
and 0.79/0.63 for high grade (Table 3). Corresponding met-
rics for single-slice-derived LASSO radiomic signatures (Table
S6) were AUCT/AUCV of 0.85/0.77 for DMI, 0.83/0.56 for
LNM, 0.72/0.56 for FIGO III + IV, 0.68/0.73 for NE histol-
ogy, and 0.75/0.63 for high grade. In the training cohort no
significant differences in the AUCT for the whole-tumor and
single-slice signatures were observed, whereas in the validation
cohort the whole-tumor signature yielded significantly higher
AUCV than the single-slice signature for prediction of LNM
(0.72 vs. 0.56; P < 0.05) and tended to the same for advanced
FIGO stage (0.68 vs. 0.56; P = 0.05) (Table 3).

Whole-Tumor Radiomic LASSO Signature vs. Biopsy
Risk Status and MRI Tumor Volume
The derived whole-tumor radiomic signatures had signifi-
cantly higher AUCT compared to preoperative biopsy assessed

TABLE 2. MRI Scanning Protocols

MR scanner Sequence Dim Plane
TR/TE1/
TE2 (ms)

FA
(deg)

Slice/
Incr (mm) Matrix

FOV
(mm)

Pixel
(mm)

1.5T Siemens
Avanto

T2 TSE 2D AO 6310/95 150 3.0/3.3 256 × 256 180 × 180 0.9 × 0.7

T2 TSE 2D SAG 4920/95 150 3.0/3.3 256 × 256 180 × 180 0.9 × 0.7

DWI 2D AO 3100/79 90 5.0/6.0 128 × 128 300 × 300 2.3 × 2.3

T1 VIBE 3D AO 7.2/2.6 20 2.0/2.0 192 × 154 250 × 250 1.6 × 1.3

3T Siemens
Skyra

T2 TSE 2D AO 4330/94 150 3.0/3.3 326 × 384 200 × 200 0.5 × 0.5

T2 TSE 2D SAG 7360/101 160 3.0/3.3 310 × 320 200 × 200 0.6 × 0.6

DWI
RESOLVE

2D AO 6010/74/126 180 3.0/3.3 144 × 144 200 × 200 1.4 × 1.4

T1 DIXON 3D AO 5.9/2.5/3.7 9 1.2/1.2 139 × 256 250 × 250 1.0 × 1.0

AO: axial oblique slice orientation; Deg: degrees; Dim: dimension; DWI: diffusion weighted imaging; FA: flip angle; FOV: field of view;
Incr: increment between slices; RESOLVE: Readout Segmentation Of Long Variable Echo trains; TE: time echo; TR: repetition time;
TSE: turbo spin echo; VIBE: volumetric interpolated breath-hold examination.
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high-risk (E3 + NE) histology for prediction of surgico-
pathological DMI (AUCT: 0.84 vs. 0.55, P < 0.05) and
LNM (AUCT: 0.73 vs. 0.58, P < 0.05), while significantly
lower AUCT for prediction of NE histology (AUCT: 0.68
vs. 0.90, P < 0.05). For prediction of advanced FIGO stage
and high-grade tumor, AUCs for whole-tumor signatures and
preoperative high-risk histology were similar (P = 0.61 and
0.99, respectively) (Fig. 2). When comparing the whole-
tumor radiomic signatures with tumor volume as an individ-
ual predictor, only the signature for prediction of high-grade
tumor yielded significantly higher AUCT (AUCT: 0.79
vs. 0.68, P < 0.05), whereas the AUCs for prediction of
DMI, LNM, FIGO III + IV, and NE histology were similar
(P = 0.39, 0.80, 1.00 and 0.71, respectively) (Fig. 2).

Whole-Tumor Radiomic LASSO Signature for
Prediction of Progression-Free Survival
Based on the whole-tumor radiomic signature ROC curves in
the training cohort (Fig. 2), we established the optimal cutoffs
for prediction of each outcome (DMI, LNM, advanced
FIGO stage, NE histology, and high-grade tumor) and
dichotomized the whole-tumor signatures for the complete
cohort (n = 138) accordingly. The dichotomized whole-

tumor radiomic signatures were all significantly associated
with reduced survival (P < 0.05 for all, Fig. 3), both in uni-
variate analyses with hazard ratios (HRs) in the range of
4.6–9.8 (P < 0.05 for all, Table 4) and after adjusting for
high-risk histology in preoperative biopsy (HR: 3.2–8.0,
P < 0.05 for all, Table 4).

Discussion
This study supports the promising role of whole-tumor radiomic
tumor profiling for accurate preoperative staging and prognosti-
cation in EC. The derived MRI-based whole-tumor radiomic
tumor signatures yielded medium-to-high diagnostic perfor-
mance metrics for prediction of high-risk surgicopathological fea-
tures and poor outcome in EC. When comparing the diagnostic
performance of single-slice- vs. whole-tumor-derived radiomic
signatures, single-slice and whole-tumor signatures yielded simi-
lar performance metrics in the training cohort, but interestingly,
the whole-tumor signatures outperformed single-slice signatures
for prediction of LNM and advanced FIGO stage in the valida-
tion cohort. These findings suggest a possible advantage of
whole-tumor over single-slice radiomic profiling in EC, incorpo-
rating information from the entire tumor and not only from a
central part of the tumor. Importantly, the radiomic signatures

FIGURE 1: Outline of the project workflow consisting of whole-volume (whole-tumor) manual tumor segmentation on axial oblique
contrast-enhanced T1-weighed images, radiomic tumor feature extraction, and construction of radiomic signatures for prediction of
high-risk surgicopathological features in 138 EC patients. Radiomic signatures were derived based on the whole-tumor masks
(whole-tumor radiomics) and separately based on single-slice masks (single-slice radiomics) using only the single image slice
depicting the largest tumor area. Least absolute shrinkage and selection operator (LASSO) and elastic net (Enet) were applied for
prediction modeling.
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also yielded comparable (for predicting DMI, LNM, advanced
FIGO stage, and NE histology) or slightly better (for high-grade
histology) diagnostic performance to that of MRI-based tumor
volume (analyzed individually), confirming the well-known role
of tumor volume as a predictor of high-risk surgicopathological
features and poor outcome in EC.8–10,29,30

Only a few studies, to our knowledge, have explored
MRI radiomics in EC. Ueno et al19 and Ytre-Hauge et al20 (n
= 137 and n = 180 EC patients, respectively) both reported
that radiomic features extracted from primary tumor segmen-
tations in a single image plane (single-slice radiomics) were
associated with markers of aggressive disease (ie, DMI and
high-risk histology). Ytre-Hauge et al,20 however, did not
report on radiomic modeling and neither Ueno et al19 nor
Ytre-Hauge et al20 validated their findings in a separate valida-
tion cohort. In a recent study of 54 EC patients, using full
tumor segmentations on T2-weighted images, Stanzione et al
found that their random forest-based radiomic model was able
to predict DMI with an AUC of 0.92 and 0.94 in the training
and validation/test sets, respectively.23 In our larger study
cohort (n = 138), with tumor segmentations on CE T1-
weighted images that reportedly discriminates better between
EC tissue and the surrounding normal myometrium,6,27 we,
however, found a somewhat lower AUC for predicting DMI,
both in the training and the validation sets (AUCT = 0.84,
AUCV = 0.74). Given the differences between the two studies,
both with respect to cohort sizes (54 vs. 108 patients), imaging
sequence (T2 vs. CE T1), and statistical method (random for-
est vs. LASSO/Enet), it is difficult to draw any firm conclu-
sions regarding the reason for the observed difference in
diagnostic performance of the radiomic models. Importantly,

both models would need to be validated in independent EC
cohorts prior to potential implementation in the clinic. For
preoperative prediction of LNM in EC, Xu et al recently
explored several prediction models incorporating MRI radio-
mics.21 The model based on multiplanar whole-tumor CE
MRI radiomics alone yielded AUCs of 0.79/0.75 (training
cohort (n = 140) / test cohort (n = 60)), which is somewhat
higher compared to our performance metrics for prediction of
LNM (AUCT = 0.73, AUCV = 0.72). The prevalence of
LNM, however, is substantially higher in the study by Xu et al
(37% and 25% in the training and test cohorts, respectively)
compared to our study (15% and 14% in the training and val-
idation cohorts, respectively), which may have influenced the
prediction models and hence makes direct comparisons of the
performance metrics difficult. The prevalence of LNM in our
study is, nonetheless, representative of that reported in other
population-based cohorts31 and the diagnostic performance
metrics of the radiomic models presented here are thus likely
to be transferable to other population-based EC patient
cohorts. Xu et al also found that a model incorporating both
radiomic features and clinical parameters (CA 125 and MRI-
assessed LN size) yielded higher AUCs of 0.89/0.88 for
predicting LNM than the model incorporating radiomics
alone.21 Since the scope of our study went beyond predicting
LNM (by also including DMI, advanced FIGO stage, NE his-
tology, and high tumor grade), we chose not to incorporate
other clinical (preoperative) parameters (such as MRI-assessed
LN size) in the present study.

Deriving whole-tumor radiomics signatures is a time-
consuming process, since it requires manual delineation of
the tumor borders on several image slices by highly

TABLE 3. Receiver Operating Characteristics (ROC) Analyses for Prediction of Deep (≥50%) Myometrial Invasion
(DMI), Lymph Node Metastases (LNM), FIGO Stage III + IV, Nonendometrioid (NE) Histology, and High Grade (E3)
based on LASSO Radiomic Single-Slice and Whole-Tumor Volume Signatures

Predicted ROC training Predicted ROC validation

Radiomic signatures nT
a tumor AUCT slice AUCT Pb nV

a tumor AUCV slice AUCV Pb

DMI 51/108 0.84 0.85 0.71 10/30 0.76 0.77 0.72

LNM 11/74c 0.73 0.83 0.16 3/21c 0.72 0.56 0.01

FIGO III + IV 15/108 0.71 0.72 0.75 4/30 0.68 0.56 0.05

NE histology 21/108 0.68 0.68 0.91 4/30 0.74 0.73 0.87

High grade (E3) 16/86d 0.79 0.75 0.28 5/24d 0.63 0.63 1.00

Area under the curves (AUC) are given for both the training (AUCT) and the validation (AUCT) cohorts.
LASSO: least absolute shrinkage and selection operator; FIGO: the International Federation Of Gynecology And Obstetrics system;
NE: nonendometrioid; E3: endometrioid grade 3.
aNumber of patients with outcome of interest/total number of patients in cohort.
bP values refer to DeLong test of equality of ROC areas. Significant P values are given in italics.
cNumber of patients with lymphadenectomy.
dNumber of patients with endometrioid subtype.
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specialized radiologists. Although the findings in this study
suggest that whole-tumor radiomics may prove superior to
single-slice radiomics for capturing the radiomic markers rele-
vant for clinical phenotyping in EC, they need to be validated
in independent and larger EC cohorts before any firm conclu-
sions can be drawn. Fortunately, machine-/deep-learning-
based imaging tools that will allow automated whole-volume
tumor segmentations are likely to be developed in the near
future, reducing the time-consuming manual steps presently
needed to generate whole-tumor radiomic profiles.

The whole-tumor prediction models in this study were
all developed using datasets consisting of both radiomic fea-
tures (GL histogram, GL clusters, GLCM, GLRLM) and
MRI-based tumor size (whole-tumor volume / single-slice
tumor area). Tumor volume/area was selected by LASSO
(and Enet) for all of the surgicopathological outcomes except
DMI, and hence was incorporated in the resulting radiomics
signatures. Interestingly, when comparing the whole-tumor
radiomic signatures to tumor volume alone, we found no sig-
nificant differences in their diagnostic performance metrics

except for prediction of high-grade tumors (E3), for which
the whole-tumor radiomic signature yielded significantly
higher AUCT than that of tumor volume alone. These find-
ings reaffirm the well-established predictive- and prognostic
role of tumor size/volume in EC, with a vast literature consis-
tently linking large tumor size to advanced stage and poor
survival.8–10,29,30

Limitations
First, several of the high-risk surgicopathological features that we
aimed to predict preoperatively by using MRI radiomics were
relatively rare. Particularly, information on surgicopathological
LNM status, which is a strong prognostic factor in EC, will in
most population-based cohorts be incomplete, due to interna-
tional guidelines recommending lymphadenectomy/lymph node
dissection only in high-to-intermediate risk patients.32 This is
challenging, both when building the prediction modeling in the
test cohort and for validation in the smaller validation cohort.
Second, we did not include all of the available image sequences
in the radiomics analyses, resulting in a relatively small number

FIGURE 2: Receiver operating characteristic (ROC) curves in the training cohort (nT = 108) for prediction of deep (≥50%) myometrial
invasion (DMI), lymph node metastases (LNM), FIGO stage III + IV, nonendometrioid (NE) histology, and high-grade tumor (E3),
based on the whole-tumor LASSO radiomic signatures, tumor mask volume, and preoperative high-risk histology (from biopsy).
Equality of areas under the ROC curves (AUCs) were assessed by the DeLong test, with significant P values given in italics.
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FIGURE 3: Kaplan–Meier survival curves depicting progression-free survival in the endometrial cancer cohort (n = 138), using the
LASSO whole-tumor signatures derived in the training set (nT = 108) for prediction of deep (≥50%) myometrial invasion (DMI), lymph
node metastases (LNM), FIGO stage III + IV, nonendometrioid (NE) histology, and high-grade tumor (E3). The green and red curves
represent patients with whole-tumor radiomic signatures above and below each signature’s cutoff, respectively. The cutoffs are
identified from receiver operating characteristics curves in the training cohort using the Youden Index.

TABLE 4. Cox Regression Analyses for Prediction of Progression-Free Survival in Endometrial Cancer (n = 138
Patients), Using the LASSO Whole Tumor Radiomic Signatures for Prediction of Deep (≥50%) Myometrial Invasion
(DMI), Lymph Node Metastases (LNM), FIGO stage III + IV, Nonendometrioid (NE) Histology, and High Grade (E3)

Whole tumor radiomic signature cutoff Univariate HR (95% CI) Pa Adjustedb HR (95% CI) Pa

DMI 9.8 (2.3–41.7) 0.002 8.0 (1.9–34.3) 0.005

LNM 7.7 (3.5–17.2) <0.001 5.5 (2.3–13.0) <0.001

FIGO III + IV 4.9 (2.1–11.4) <0.001 3.8 (1.6–9.1) 0.003

NE histology 5.0 (2.0–12.8) 0.001 3.2 (1.1–9.1) 0.03

High grade (E3) 4.6 (1.9–11.0) <0.001 3.7 (1.5–9.0) 0.004

The signatures are dichotomized with cutoffs based on the Youden Index (YI) for the ROC curves in the training cohort for each of the
surgicopathological outcomes.
HR: hazard ratio; CI: confidence interval; DMI: deep myometrial invasion; LNM: lymph node metastases; LASSO: least absolute
shrinkage and selection operator; FIGO: the International Federation Of Gynecology And Obstetrics system; NE: nonendometrioid;
E3: endometrioid grade 3; YI: Youden Index.
aSignificant P values are given in italics.
bAdjusted for high-risk histology (endometrioid grade 3 or nonendometrioid histology) based on preoperative biopsy.
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of radiomics features extracted (15 in total). We might, thereby,
have missed radiomic features from other MRI sequences that
potentially could have improved the predictive power of the
radiomic signatures. Automated tumor mask registrations
across series were, however, not feasible due to large organ
movement during scanning. Manual segmentation of the
tumors on all the different image series are possible, but were
regarded as too time-consuming for the radiologists involved
in the project. Finally, the use of two different protocols/scan-
ners might have influenced image quality, and hence tumor
segmentation accuracy and radiomic feature extraction. Never-
theless, the included CE T1-based radiomic features exhibited
a high level of stability (with only a few features excluded
from the analyses), both across scanners and across observers/
segmentations, which we consider a strength of the study.

Conclusion
The developed MRI-based whole-tumor radiomic signatures
yielded medium-to-high AUCs for prediction of DMI, LNM,
and advanced FIGO stage, both in the training and validation
sets and predicted poor outcome. However, the whole-tumor
radiomic signatures did not outperform tumor volume (ana-
lyzed individually) except for the prediction of high-grade his-
tology. Whole-tumor- and single-slice-derived radiomic
signatures yielded similar AUCs for predicting aggressive EC
disease in the training cohort, whereas the whole-tumor
radiomics signatures outperformed single-slice signatures in
the validation cohort. This study supports the promising role
of whole-tumor radiomic tumor profiling for refined preoper-
ative clinical phenotyping guiding personalized treatment
strategies in EC.
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