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Summary and Conclusions

Analytical solutions are developed for the distribution of pressure in the vicinity of an ellip-
soidal inclusion embedded in an otherwise homogeneous matrix of infinite dimensions. The
inclusion and the matrix may both have tensorial permeability. These solutions are needed
for the generalization of the self-consistent approximation - an averaging technique recently
applied to determine the effective properties (e.g. effective permeability) of heterogeneous
media(1, 2|.

Two inclusion models were studied. In the first one, the permeability tensors of the
ellipsoid and the matrix are both aligned with the principal axes of the ellipsoid. Then the -
model is generalized (chapter 3) by allowing arbitrary orientation of permeability tensors
relative to the principal axes of the ellipsoid and relative to each other. It is found that the
pressure fluctuations in the vicinity of the inclusion are described by a set of elliptic integrals.
Furthermore, it has been shown that particular analytical solutions reported in the literature
are special cases of the generalized solutions presented in this study.

The other model of the study (chapter 4) deals with inclusions made up from a composite
ellipsoid, consisting of an interior ellipsoid coated with a confocal ellipsoidal skin of finite thick-
ness. Here we determine the pressure flelds associated with an isolated composite inclusion of
tensorial permeability, submerged in an embedding matrix of tensorial permeability. In this
case, the permeability tensors are aligned with the principal axes of the composite ellipsoids.

The key parameters governing the analytical solutions are: (i) permeability tensors of the
inclusion and the surrounding medium, (i1) eccentricities i.e., the ratios of the shorter semiaxes
to the longer semiaxis (iii) relative orientation of permeability tensors, (iv) volume fraction
of the interior ellipsoid (for the composite model only), and (v) direction of the uniform field.

Using Mathematica, we present in this study contour plots depicting the effects of per-
meability anisotropy, contrast in permeabilities, geometry of the inclusion, and the relative
orientation of permeability tensors, on the distribution of pressure field. For instance, Fig.
[A] shows the effect of changing the direction of the inclusion permeability tensor. In this
example, the matrix permeability tensor is aligned with the axes of the ellipsoid.

The isobars in Fig. [A] depict the effect of the orientation of permeability tensors on the
distribution of potential. In the upper contour plot, both permeability tensors are aligned
with the principal axes of the ellipsoid

2 P 2
IQ'+?2'+';2"=1: ]I|§aaly|sbalzlsc' (A)
Hence k' = diag(kt, ki, k) and k™ = diag(kT, k', k7"). Then we vary the orientation of the

permeability tensor of the inclusion by making it diagonal in the coordinate system (e, 3,7)
i.e., k' = diag(ky., kj, k%), whose orientation relative to the principal axes of the ellipsoid and

relative to the permeability tensor k™ = diag(k7", k', k™) of the surrounding medium is fixed
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by the Euler angles (m/2,7/4,37/2). The coordinate systems are then related by the following
orthogonal transformation

B | =Qi(r/2,7/4,37/2)| ¥ |, (B)
¥ z
where
1/vV2 0 1/V2
Qi(n/2)ﬂ-/4v3ﬂ'/2)= 0 1 0 (C)

~1/V2 0 1/V2

The distribution of potential in the scaled (z,z)-plane (i.e., zp = z/a,2p = z/c) for both
cases are depicted in Fig. [A]. Note that inside the inclusion, the internal potential gradient
is constant. In the vicinity of the ellipsoidal surface, the external potential has continuous
and twice differentiable gradient. As distances from the inclusion increases, the uniform flow
is recovered and the pressure field obeys the prescribed boundary condition.

The main ways in which this study advances on previous work are: first, the permeability
tensors of the inclusion and the surrounding matrix are anisotropic, second, we allow arbitrary
orientation of permeability tensors relative to the principal axes of the ellipsoid and relative
to each other, and finally the utilization of the general ellipsoid provides flexible geometry
of the inclusion. Furthermore, the solutions developed here are thought to be very efficient
compared to the standard numerical solutions. Therefore, we have strongly generalized the
existing inclusion models serving as a basis for the self-consistent method. Hence, a further
work that presents itself is to accordingly extend the self-consistent approximation.

iv




Figure A: Isobars in the scaled (., z)-plane: (2) permeability tensors of the inclusion and
the surrounding matrix are aligned with the principal axes of the ellipsoid. (i%) permeability
tensor of the inclusion is diagonal in the coordinate system whose orientation relative to the
principal axes of the ellipsoid is fixed by a 3D counterclockwise rotation of the principal axes
of the ellipsoid by the Euler angles (7/2,7/4,37/2). Here, the permeability tensor of the
matrix is still aligned with the axes of the ellipsoid.




Chapter 1

Introduction

The reservoir upscaling problem has been receiving increased attention in recent years. Over
the past decade or so, for instance, there has been increasing interest in development of com-
putationally efficient methods to determine effective properties (e.g. effective permeability).
Those properties were traditionally computed from detailed numerical simulations of the actual
reservoir realization. This is an indirect approach, in the terminology of Ekrann et al.|2], and
it requires substantial computer resources; particularly in 3D problems in which the number
of gridblocks often become impractically large. A contrasting strategy is the direct approach
in which the effective properties are computed directly from the statistical description of the

medium - without the aid of an actual reservoir realization. Such methods have the potential
to be much less resource intensive than indirect methods, and it will be particularly important
for multiphase problems.

Among the direct methods, a particularly promising one which motivated this study
is the self-comsistent approzimation. This method which was apparently first deviced by
Bruggeman|3] in the context of the determining the electric conductivity of heterogeneous
media was later extended to multiphase materials[4, 5|. The method (also termed as the effec-
tive medinm approximation) has been extended to determine effective hydraulic conductivity
of heterogeneous anisotropic formations|1]. In reservoir engineering context, the self-consistent
approximation has been recently applied to determine effective permeabilities|2|.

The self-consistent approximation needs analytical solutions for the fluctuation of pressure
created in an otherwise homogeneous matrix of infinite dimensions by the submersion of in-
clusions. The existing solutions are based on models which have limitations on the orientation
of permeability tensors and perhaps largely in the geometry of the inclusions. Therefore, we
develop here analytical solutions for the distribution of pressure by considering the following
models

1. Model 1: Single ellipsoidal inclusion embedded in an infinite matrix with (a)
permeability tensors aligned with the principal axes of the ellipsoid, and (b) perme-
ability tensors are arbitrarily oriented relative to the principal axes of the ellipsoid.

o

Model 2: Orientation of the permeability tensors as in (1a), but now the inclusion
is made up from a composite ellipsoids in which the ellipsoidal coat between the
surface of the interior and of the exterior ellipsoids has a finite thickness.

The above models strongly generalize the existing inclusion models serving as a basis for
the self-consistent approximation.
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1.1 Ellipsoidal Coordinates

The equation

$ e = 1 (1-1)

e+ o

S &

aZ+a bBta
where @ > b > ¢ are fixed and « is a parameter, represents a confocal system of surfaces. In
particular, if & = 0, the equation describes an ellipsoid. For |a| < oo, see Fig. [1-1], the above
equation describes

e an ellipsoid if —¢? < a < cc.

a hyperboloid of one sheet if —b* < a < —c%.

L]

e a hyperboloid of two sheets if ~a? < a < =b.
e an imaginary quadric if & < —a2,

e degenerate quadrics if & = —d?, .

\5 o

Figure 1-1: Graph of Q(a)q(a) =0 with the £ > 1 > ¢

Assuming the roots are such {272 ¢, the surfaces of the confocal quadrics § = const.,
n = const., { = const. are an ellipsoid, a hyperboloid of one sheet and a hyperboloid of two
sheets, respectively. These surfaces are described by the following equations

& y? 52 ,
+ = - < 0, 1-2)
SE a2+£ b2+£+c2—i-6 1 << ( )
2 2 2
S - - =1 - b —c°, 1-3
" a?+n b+n 4 <h< e (1-3)
2 2 .2
5¢ : s - 1 —a? < (< =b (1-4)

rJ,2+C—b2+C—Cz+C:
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Fig. [1-2] depicts surfaces of the ellipsoid § = 0 and the hyperboloids = 0, ¢ = 0.
Now. in order to derive the relation between the ellipsoidal and Cartesian coordinates, we
may define the functions

Gt = e - A 1-5
YT @2ta P+ta "t a ’ (1-5)
glar) = (a® + a)(b? 4 a)(et + ), (1-6)

and observe that the cubic equation

Qla)q(a) = 22(b% + a)(c? + a) 4 yi(e? a)(a® + a)
2(a® + a)(b* +a)—qla) = 0, (1-7)

gives the values a = &, 1, ¢ which correspond to the members of the confocal family of surfaces,
see Fig. [1-1]. Therefore, since the roots of (1-1) are the zeros of (1-7), we define the identity

Q(a)q(a) = (€ — a)(n — @)(C — a), (1-8)

and find that, by setting o = —a?. —b?, —c? successively, the following formulae provide the
required coordinate transformation

5 (a2 + &)(a® 4 n)a+ )
(a? — b?)(a? — ¢?)
N R GRR ) RS
(b2 — c2)(b? — a?) '
)

(1-9)

N R G) GRS,
(a? — ¢2)(b* — ¢*

-

It may be observed that the above relations fix the location of, not one, but the eight
points (4, +y,+=) which are symmetrically positioned with respect to the (z,y, z)-planes.
However, since we will primarily deal with ellipsoidal surfaces only, the problem is symmetric
in the (x,y, z)-planes. Hence we will not need to distinguish between the symmetric points.
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Figure 1-2: Surfaces of the quadrics: (A) The ellipsoid & — 0, (B) The hyperboloid of one-sheet
n = 0, and (C) The hyperboloid of two-sheets { = 0.
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1.1.1 Description of Inclusion Geometry

Suppose that the axes of an ellipsoidal inclusion are aligned with the principal axes of a
coordinate system in which 2 and y are in the horizontal plane and z is in the vertical plane.
Since (1-2) describes the ellipsoidal surfaces, let £ = 0 i.e.,

E I T
Tt tg = L || < a,ly| < b,|z] < ¢, (1-10)
describe the surface of the inclusion. Now, to describe the space interior to Sy in terms of

surfaces we may let \? = a* + £ for —¢? < £ €0 such that

S(] .

a? Y 22 2 2 2 2 2 2
S,\: ,\2 ; 1)2 { ’\2 i q2 | 'A_z = 1‘ P a — q b -, (1_11)

exclusively describes the ellipsoids A =const. inside Sy. Note that at the limit A = 0, the
ellipsoids described by the above equation flatten down to the disc

x? y? .
z ; . T 1, 1-12
0 22 P2 (1-12)

while for A2 — ¢2, the surface equation in (1-10) is recovered. Accordingly, the ellipsoids exte-
rior to So will be described by (1-2) for the interval 0 < £ < oo, and the ellipsoids approximate
the spheres a? 4 y* + 2* ~ & as £ = o0,

Now, let ¢g and Ey denote by the eccentricities (i.e., the ratios of the shorter semiaxes to
the longer semiaxis) of, in a planetary sense, the meridian and equatorial ellipses in Sp

Co = —, Ey - ((l.)b>(‘). (1-13)
(1 a

It is thus obvious that only two parameters are needed to describe the geometry of the ellip-
soidal inclusion. For instance, when eq — Eg ~ 1, the ellipsoid takes on the form of a slightly
perturbed sphere. If, for example, By = 1land 0 < ey <1 then @ — b > ¢ and ( 1-10) describes
an oblate spheroid; that is the surface of revolution generated by the rotation of an ellipsis
about its minor axis. On the other hand, if Ey = €o, then b= ¢ < a and (1-10) describes a
prolate spheroid i.e, the surface of revolution generated by the rotation of an ellipsis about its
major semiaxis. Furthermore, when either e — 0 or Ey — 0, then the ellipsoid takes on the
form an elliptic cylinder with the z- or y-axis as the symmetry axis, respectively. Finally, if
one of the eccentricities is zero while the other one approaches unity, we have a cylinder.

Consider now an arbitrary ellipsoid exterior to & = 0. Denoting by ¢ and E the meridian
and equatorial eccentricities, we have

€= E 0< €< oo (1-14)
Noting that
at— b (0 +&) - (b + &)
: for §20, 1-15
AFoE (@29 T (1-15)
define ;o2
as — 0 2
e (1-16)

o




Using the definition of eccentricities, we obtain

1-E} 1-E* , _
- 1-e& " (1-17)

Hence, by the relation
E?+k¥(1-¢*)=1  (for fixed &) (1-18)

we may operate with cither one of the eccentricities. Fig. [1-3] shows the relation between the
eccentricities of a general ellipsoid

! T
0.9 .
(L8[ .
07
&
goof
é ST ? &
g 025
é;.n.—a 3 o R
3 :
ir 075 -
1
02
il B
0“ H.Ii rJ,l 2 rtl.i nL-J 0.5 r;lﬁ rt_‘ 7 n“ 8 u.l') 1
Meridian Eccentricizy
Figure 1-3: Relatioship between the meridian & equatorial eccentricities of general ellipsoids
at various values of k2.
1.2 Brief Theory of Ellipsoidal Harmonics
Consider the function ®(x.y, z) satisfied by the Laplace equation
0*¢ 0% 0¥
= ), (1-19)

9 o T 8z
and assume that ®(z, y, z)is distributed inside and outside the surface of the ellipsoid § —const.,
in the presence of a certain boundary condition. This type of problem is mainly treated in the
classical works on applied mathematics[8, 9], potential theory[11] and hydrodynamics|12, 13].

A straightforward procedure of solving (1-19) may read as follows: let ®; and &, be the
basis of a solution of ( 1-19), where @, is obtained by guessing (or by some other method).
Provided the boundary condition satisfied by @, derive a second linearly independent basis of

the form

B(z,y,z) = D(z,y,2)Pi(2,y, 2), (1-20)

by determining the function I'(z, y, z) such that a possible solution of (1-19) is constructed by
superposition



Bz, y,2)= 1P (x,y,2) + c2Pa(2,y, 2) 1. ¢y arbitrary constants, (1-21)

Since the position of a point P(z,y,z) can be fixed by a set a values for the ellipsoidal
coordinates (&, 1, (), it may henceforth be convenient to consider solving the Laplace equation
in ellipsoidal coordinates (see Appendix A)

e OB [p 9RY [ 08
(n-0(©) % [P 5] +(c-0Dt - [P e + € =mD©) 5z PO 3e] =0 (1-22)
where
D(a) = \/((712 Fa)(b? + a)(c? + a), o =&, C. (1-23)

Solutions of (1-22) are known as the ellipsoidal harmonics.

1.2.1 Internal Ellipsoidal Harmonics

By certain choice of the constants required for the separation of variables in (1-22), of the

form
®(&,1,¢) = LIE)M(n)N(C), (1-24)

we obtain a set of normal equations known as Lamé’s differential equations. Solutions of
such equations which are known as Lamé’s functions may form the basis for the ellipsoidal
harmonics. Now, an extensive analysis of the possible solutions for Lamé’s equation is beyond
the scope of this study (see [8, 9, 10] for detailed discussion) and we do not pursue it here.
There are, however, three points of particular relevance for the construction of ellipsoidal
harmonics:

1. Lamd’s functions of degree can be represented by a terminating series of Legendre
polynomial. Hence the internal ellipsoidal harmonics of degree n can be represented
by a sum of 2n + 1 spherical harmonics.

2. The choice of L(€) depends on the type of ellipsoidal harmonics under considera tion[10).
For an internal ellipsoidal harmonics (Lamé’s first solution), the product in LMN

is required to be regular inside the space bounded by the ellipsoid £ = const., while
for the external harmonics (Lamé’s second solution), an additional requirement is
solutions which vanish at infinity i.e, as & = oo. For the case of an ellipsoidal har-
monic regular between two ellipsoids of a confocal family, we may take a linear
combination of the internal and external ellipsoidal harmonines.

3. To every internal ellipsoidal harmonic there corresponds an external ellipsoidal
harmonic which satisfy the infinity condition mentioned in (2).

Switching to the Cartesian coordinates, it follows from (1) that 1, z, xy, xyz and in fact
any other spherical harmonic may form the basis for a possible internal ellipsoidal harmonic.
Here 1 is an ellipsoidal harmonic of the first species, x,y, z give an ellipsoidal harmonic of
the second species, vy, vz, yz give an ellipsoidal harmonic of the third species and axyz is an
ellipsoidal harmonic of the fourth species. Thus, by choosing any particular internal ellipsoidal
harmonic, we may accordingly derive the basis for the corresponding external harmonic by
employing the conventional methods of determining a second basis when the first is "known’.
This is the strategy we will utilize.

|



1.2.2 External Ellipsoidal Harmonics

For the distribution of ® in the space exterior to surface of a certain ellipsoid, each member
of the family of the confocal ellipsoids & =const., would be equipotential|11]. Therefore, we
make T' dependent on the ellipsoidal surface parameter only, such that, by the trial basis in
(1-20)

(&, 1,¢) = T(&)P1(E, 1, C)- | (1-25)
Differentiation of the above gives
d d J a0, 0%, 9T 0 or
Flil 2 r-~|D(€ LD o S pog ket
2 [p@gmen] = raEIP©F DO 5 + D@5
o [pengran] = rapmFH, (1-20)
Jd | J ] d 0Py
ac | (€) C( 1) 0(,1 (C,)dC
Substitution into (1-22) leads to
. . J L Or 0%, oT
2 ; G — | b b ol Nevionll . L _2
rvis, 1 (- 0O { o [#10(© 5] + PG5} =0 (1-27)
Since ®, is a solution of (1-22), the first term in the above equation vanishes and we obtain
ad ar 2 0‘1’1
— —| = - ; -2
e [POge] 5 228

Furthermore, since the left side of this equation is a function of £ only, ®; must be separable
in the form

P1(&,1,C) = X(E)(n,C). (1-29)

Hence (1-28) is reduced to the ordinary differential equation

d dl’ d 1
ey - : i
T In [D(%)rlf] P In vk (1-30)

which, on integration, gives

du

F(f[\) - (-U,/; \__2(,“’)\/(“2 3 U)(f).‘! : -u)(r2 1 'II)'

(1-31)

where ¢ is an integration constant and the additive term is chosen so as to make I" vanish at
infinity. We call the above integral the associated exterior harmonics, and

©0 du
Py — P / , 1-32
4 L e Y2(u)/(a? + u)(b* + u)(e? + u) ; )

the basis for an ezternal harmonie. Accordingly, a possible solution of (1-19) is given by the

ellipsoidal harmonic
du

(u)y/(a® + ) (0% + u)(c? u) (1-33)

6
P = ('1‘1)1 + (‘g‘bl / >
J€ X

8




Obviously, the behaviour (e.g. singularity, convergence, analyticity) of the second basis

in the above solution is too much reliant upon the choice of ®;; largely by means of y. The

following table shows y for the spherical harmonics'.

P, | x(€)

1 1

v (a® + &)

y (0% +€)

2 (¢ +€)

zy | (a® + &)(b* + &)
zz | (a® + &) + &)
yz | (B2 4+ 8(+8)

Table 1.1: \? for the ellipsoidal harmonics of first, second and third species

Fig.|1-4| depicts plots of associated exterior harmonics which are derived from the ellip-

soidal harmonics of 2nd and 3rd species.

Finally, we consider the computational aspects of the integral in (1-33). Obviously, we
will need change of variables to transform the integration interval in (1-31) into a finite one.
Therefore, we use the transformation

£
— (1-34)

cos’ 1) =

such that the integral in (1-31) becomes

?.('[) ¥ do

L(elw) = =5—= :
‘e — ¢ Jo Ao/ 1 — Kk2sin® ¢

where # is defined? in (1-16). For the ellipsoidal harmonics of first and second species, \* has

the forms given by the tabel

(1-35)

Py | x“()
1 1
x (a? — 2)(1 - k) esc® @

y | (a® = )1 — K?sin | esc? p

: | (a* = )1 —sinfp)esct o

Table 1.2: \? for ellipsoidal harmonics of first and second species

It may be observed that if ®; is chosen such that y = 1, then

0= [ —— (1-36)
4]

¥
1 — k?sin? ¢

D
T(plk) = —a\/-;%——?f*(«plx); Fly

'For convenience, we put ¢g = ¢y = 0in (?7)
2In the terminology of pendulum mechanics, 0 denotes by the amplitude, & the modulus.

9



where F denotes the Jacobian form of the incomplete elliptic integral of the first kind[16].
Since any elliptic integral can be expressed in terms of the three Legendre-Jacobi elliptic
integrals[16, 17], we will show in Chapter 2 that the associated exterior harmonics can be
made dependent upon the first and second kinds of those standard elliptic integrals, and does
not involve those of the third kind. The standard elliptic integral of the second is defined

E(cp]rc)z];\/ldﬁzsiu”(,frdq‘). (1-37)

10
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Figure 1-4: Plots of Associated Erternal Harmonics as a function of ellipsoidal surface pa-
rameter. (A) &, is constructed from internal harmonics of second species, (i.e.. x.y.z). (B)
&, is constructed from internal ellipsoidal harmonics of third species (i.e., Ty, rz.yz)




Chapter 2

Single Ellipsoidal Inclusions

In this chapter, we consider single-phase incompressible steady flow in a heterogeneous medium
made up from the submersion of an isolated single! ellipsoidal inclusion in a homogeneous
matrix of infinite dimensions. The permeability tensors of the inclusion and the surrounding
matrix are aligned with the principal axes of the ellipsoid, see Fig. [2-1].

; 3™ = oy

@m

km

Figure 2-1: Ellipsoidal inclusion of permeability k' submerged in a uniform matriz of perme-
ability k™. Permeability tensors are aligned with the ellipsoid.

2.1 Formulation of the Problem

Let Q C R® be a flow domain of infinite dimensions. Denoting by So the surface of the
ellipsoidal inclusion, let Qo and €2 be a partition of 2 that excludes the surface of the ellipsoid

Sp. of equation

IWe shall use the terms single and composite ellipsoidal inclusion to geometrically distinguish the two
models studied here.

12




T &
So: y| D|y | =1 D - diag(1/a®, 1/b% 1/c%), (2-1)

z z
z z

where @ > b > ¢ are the semi-axes of the ellipsoid.

Go erning Equations
The fundamental equation governing the flow of fluid in each region in © may be derived from
the equation of continuity and Darcy’s law
Veu” =0, pu” — —k7VeT (o: inclusion, matrix). (2-2)
Here g is the fluid viscosity, u is the fluid velocity and @ is the potential. By the above
equations, we obtain the following second-order elliptic partial differential equation
V- (kVE7) =0 (o: inclusion, matrix). (2-3)

Assuming local homogeneity of the inclusion and the surrounding medium, the field potentials
satisfy the equations

KV = 0 (inside Sp), (2-4)

k" V™ 0 (outside Sg). (2-5)

Furthermore, here we consider a case in which the permeability tensors are aligned with the
principal axes of the ellipsoid i.e,

k' — diag( Afi, LrL, kLY k™ diag(k), k

Therefore, signifying by o = i,m the inclusion and the matrix parameters, the internal and

sy, (2-6)

y?
external potentials satisfy read

) a'z(I)i ) 0'2.@1' _024,:' ) _
‘r-—(-??- 4 ‘;! a£j2 } RLF 0 in €y, (2-7)
02(I,m 32‘1,31.1 0'2(1)171.
kT 5.2 5§ 97 R 522
T ¥ 1 2z

k

0 in Q. (2-8)

Surface Conditions

Assuming Sy is sharp, two flow conditions have to be obeyed at every surface point. First,
the continuity of potential requires

o = P, (2-9)
where P € Sy is an arbitrary surface point. Similarly, the normal component of the flux is
required to be continuous across So

-8(1)‘ oPpm
Ll : pm Y 9.
(k (?n )1’ (L On )p (H 10)

across the surface So. Here n denotes the outward normal to P € So.
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Boundary Condition

Finally, we conclude the formulation of the problem by assuming uniform flow at infinity.
Thus, denoting by ®., the far-field potential, condition

¥
"z, y,2) = Pl y,2) = “JT |y as ||(z,y, z)|| = o0, (2-11)
where )
I =il dexdy &) (2-12)

2.2 Solution of the Potential Problems

2.2.1 Fundamental Assumptions

Utilizing appropriate coordinate transformations, we shall solve the isotropic equivalents of
the potential problems in (2-7) and (2-8) by applying the solution methodology developed in
Section 1.2, by making the following fundamental assumptions:

o Ellipsoidal harmonics of second species constitute the basis for a possible solution.
o Distribution of potential is linear in J.

The above assumptions imply that (i) the distribution of potential inside the inclusion is linear,
and (i7) possible solution of the problems can be determined by superposition of separate
solutions in J.

2.2.2 Solution of the Internal Problem

Introducing the following coordinate transformation,

N ; ; :
kl o k:
\ 4 fi' ) V - diag ”ﬁ' :_:‘,"E) (2-13)

where &' may be chosen arbitrarily?, the isotropic equivalent of (2-7) reads

by S =

02(1,:' 02(1,: O'Z(I,i

— =t =

oi? aiy? 072

where € is the transform of €y described here by the surface parameter A (see equation
(1-11)) for 0 < A? < é*, such that for every internal point

0 in Q . (2-14)

. i i z o N . .
Sy : — b= + = =1; p=a? - ¢ G =b* - ¢, (2-15)

2By requiring that the volume of the ellipsoid is preserved in transformations, we put k' - (kikykl)s and

k?” (;\-:xk;lk?l}l{
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where

a a
b -V Ib|. such that D = VD, (2-16)
E, 3

We now refer to our discussion on the internal ellipsoidal harmonics (see §1.2). Since we
assume that the ellipsoidal harmonics of the second species constitute the hasis for a possible
solution to the problem in (2-14), a possible solution of the distribution of pressure inside the
inclusion is

(#,3,%) € Qo (2-17)

—~~
==t
=1
et
c
~
T 2 B

where v is a constant vector to be determined by the continuity conditions in (2-9) and (2-10).
Switching to the (z,y, z) coordinate system, the distribution of pressure in the space bounded
by the surface Sy is

&£
(x,y,z)=v'V |y (z,y,2) € Qo (2-18)

-

where V is the diagonal matrix defined in (2-13).

2.2.3 Solution of the External Problem

In a similar procedure, we make use of the coordinate transformation

r
* Jomn fm Jomn

wlyl: W diag(y [\ [s )s 3
-:j 1 dl lk( A:n L ;.:;l A‘;n ) ( 19)

such that the isotropic equivalents of (2-8) and (2-11) read

by S =.

02<I,m 02(1)111 a‘).(I,m

‘ in 6 2.9
972 f a2 | o 0 in €2 , (2-20)
B, §, %) = Dol g, 2) — ~d | 4 as |45, )| » 00, (2:21)

where € is the transform of the exterior flow domain, and

J-wJ. (2-22)

Accordingly, denoting by Sy the transform of Sy, the equation of the ellipsoid in the new
coordinates is

So : D — diag(1/a%,1/6%,1/¢%), (2-23)

(SRR
by S, =
—



where

a a
b | =w|b D - W™D. (2-24)
, .

Based on the preceding assumptions on the linearity of potential and the possible basis
for the distribution of pressure, it is immediately seen that the exterior problem in (2-20)
admits the following formulation: assuming that the ellipsoidal harmonics of second species
(see 1.2.2) constitute the basis of a possible solution to (2-20), let

i
ST (&, 9, 2) = P ¢ arbitrary constant vector (inside Sp). (2-25)
determine the function I'(i#, ¢, 2) such that

O™ (&, 17, %) = 1 ®V(#, 4, 2) + el(2, 9, £)PV' (&, 9, 2) (€1, €2 arbitrary constants), (2-26)

which obeys the far-field condition in (2-21), is a possible solution to (2-20).

To solve the above problem by straightforward reference to the solution methodology
dovokupod in §1.2.2, we proceed as follows. First, in virtue of the transformation in (2-19), let
g, 7, ¢ be the transforms of &, 17,  which are accordingly related to their Cartesian counterparts,
£, 4, # through the transformations (see Section 1.1)

o (@9 Q)

. (a* — h2)(4? - ¢2)

. (B O+ )+ )
(b2 — é2)(b? — a2)

2 _ (EOELNELD

(42 — é2)(b2 — ¢2)

3

=

Next, by utilizing the above coordinate transformation, the problem in (2-20) in terms of
ellipsoidal coordinates reads (see Appendix A)

. N E 0 O(I)"' - by g- JPpm £ . i , :O(I,m B
(n-ﬁ)D(u.)O—E- [D( ) ¢ ] (Q“g)D(?;)a’?[ (7)) ——— o ] (€ I)D(C)()(f [D(q) o ] 0.
(2-28)
Here |
D(d) = \ﬂ Q)b+ @)+ d) & = &,14,C. (2-29)

Furthermore, by the expressions in (2-27), we have

i= fiEnar+ € g=gin i tE, £=h(OVE+E (2-30)

Hence ®7" satisfies the separation condition (see equation (1-29))
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B (€,%,) = X(E)(.C), (2:31)
Finally, since each family of the confocal ellipsoids € = const. would be equipotential[11], a
second basis of the form
™ (€,1,¢) = DEPT(E,1.€). (2-32)
leads to the following elliptic integral, (refer to §1.2.2)
di
(a2 + a)(B? )+ i)

where ¢y is an arbitrary constant, and, as exhibited by the equations in (2-30)

Il - m‘[:ﬁ

a?+ & for #,
for 4, (2-34)

é2 4+ & for 2.

P
I
N
o
.

Thus, by defining?

(€)= T(&d* + ). (2-35)
TY(€) T(E|D* + €), (2-36)
r*(€) = T(£|+¢§), (2-37)

the associated external harmonics which correspond to &, y and Z are given by the following

integrals
- %0 1
I(£) = f'u/fi, m
rv(€) = f‘ufé erﬁ (2-38)
s oo 11l
NGRS TR
where

D) = /(2 + @) (52 + 6)(é + ). (2-39)
It may be observed that the lower integration limit in (2-38) is greater than the zeros of the
polynomial in D, hence there is no singularity within the integration interval.
As we shall immediately see, the constant ¢ in the above integrals can be chosen arbitrarily.
We may therefore put

1 .
cQ 3'35(". (2-40)

where the factor 1/2 is chosen so as to make?

*The superseripts on I' are purely notational.

By logarithmic derivation of the equations in (2-27), A € = -l,‘;.ir/((}2 + &), dujoE = ;-g./(é"’ +€) and
r').‘f/(').f — ;—5/((‘2 f é). These expressions involve in the relations given by 2-41. Hence we unse the factor
1/2 to obtain the unit value.
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= (;1’:—-0F(;_££)) = — (g}ar‘;gf)) - — (50F‘;££)) =1, (2-41)
o £=0 Yy -0 = £-0

such that the dimensionless form of the associated external harmonics read

” ’ r“\' "
r(€) éabé / L ,
<8 (a? 'ti.)\/(r"‘! Fa)(b? +ow)(é® o+ a)
, . oo 111
PUé) - i [ , @ , (2-42)
S I ,”\/('(12 Fan)(b? + u)(é2 + )
3 3 oo 11
r*(€) %abc'f, 2l :
200 (@@ - a2 +u)@ )

The above choice of ¢q is primarily computational in that I‘[é) is scaled and relation in (2-41)
simplifies the algebraic operations to satisfy the continuity conditions. However, a geometrical
interpretation of (2-41) will be given in Chapter 4 when the problem of the composite inclusion
is studied.

Finally, by satisfying the boundary condition in (2-21), it follows from (2-26) that

i T
(b, g, 4= —d | g | +w'TE) | § (,1, %) € Q, (2-43)

where w is constant vector to be determined by the continuity conditions in (2-9) and (2-10),
and

I(€) = diag(D*(£),TY(€), T (£)). (2-44)

Switching to the (z,y, z) coordinate system, a possible analytical solution for distribution of
external pressure in Qy in the presence of the boundary condition in (2-11) reads

&I

" (x,y,z) = w TEW | y | + Puc(r,y,2) (2,4,2) €, (2-45)

where W is the diagonal matrix defined in (2-19).
In the above solution, the term

x
w' T(EW | y
describes the fluctuation of pressure in the vicinity of the inclusion. This behaviour is largely
due to the integrals in T'(€). Furthermore, since the associated external harmonics vanish at
large distances from the surface of the inclusion, the uniform flow at infinity is recovered as
the above term approach zero.
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2.2.4 Associated External Harmonics in Terms of Eccentricities

To make the integration intervals in the associated external harmonics finite, consider the
meridian and equatorial eccentricities of an arbitrary ellipsis in

, 42 3}2 £2 ,
Sé: - ; F m—— e —— '] 0<&<o0. (2-46)
a2+€ b4+ E 24€

Since by definition, the meridian and equatorial eccentricities are the axis ratios of the ellipsoid
& —cosnt.,

2 £\ 2 W]
. Lo o . b* [
éE= | = ; : E=|-= =]
a2 + & a% + €
é km . b iy
LS b 1 = = = 2 2-
o= = = coyf P Eq - Ey PR (2-48)

where ¢, Eyy are the eccentricities of the ellipsoid & = 0 whose surface is denoted by S, (see
0y ~0 S ’ d

2-19). On the other hand, at large distances from Sy (i.e., £ = o0) the ellipsoids approximate

perturbed spheres, and

" A'” k:;a
¢ - FE—1: A'“’ Ey A_': (2-49)

Now, by elimination of £ * from (2-47) we use (2-48) and obtain

& =0 gives

1-E* 1-E?

= 3 —. 2-50
1-é2 1-¢¢ (2:50)
Noting that
1-E2 42— L.
7 = = = k%, (2-51)
1-¢f a*—¢*
the eccentricities of the ellipsoid are then related by
E2+R2(1-8)=FE*+ (1 -¢) =1, (2-52)
Hence by the above relation and the following transformation
32 22
’ P B =
(= | —— . 2-53
; ( - ) (2-53)
the associated external harmonics in terms of the meridian eccentricity are
il 1—u? ,
“(é|%) () / — il
V1 = u?)[1 — k2 l—nz)]
1—u?
IY(é|r Oy / di 2-54)
( [1— A2(1 — u?)|\ /(1 = u?)[1 = A2(1 = u?)] (

T (|£) 6 / L= i di
k) = O : — di
‘ ¢ 13/(1—u?)[1 - £3(1 — u?)
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where,

b - —20 _fiow(i-2d), o \Jer/kn (2-55)

(1 - 0%})>
Figs. [2-2| and [2-3] depict the profiles of the integrands in (2-54) as well as plots of the
associated external harmonics for various values of #?

2.3 Computation of External Potential

The computation of the external potential may involve solving the cubic

“ i T 10 (2-56)
o= = 7 = = s = U, 2-9
a? +a b2y G "4

Q(d) =

for the largest root which we require to be positive®, and the evaluation of the integrals
in (2-42). Solving the cubic numerically will give no difficulty, but straightforward numerical
integration of (2-42) or (2-54) may not work well due to, as we will show, the slow convergence
of these integrals. Therefore, reduction or normalization of the integrals may be required.
Noting that those integrals can be represented as

/ R, f)di, (2-57)
where R is a rational function, and f? is a cubic or quartic polynomial in @ the expressions
for I'", T'¥, T'* are elliptic integrals. Hence, since any elliptic integral can be expressed in terms
of the three standard kinds of Legendre-Jacobi elliptic integrals, the computation of (2-42) or

(2-54) may probably best handled by reducing the associated external harmonics to elliptic
integrals of the first and second kinds which now read

) j ;
'ﬁ):/ __ 4 (2-58)
JO

1 — £2sin? ¢

J -
/ V11— i2sin? ¢ do. (2-59)
0

By the change of variable ¢ = cos i, that is,

and

(

5 £ (’.Z b ‘E‘ .
cos® 1) 0<d<nr/2 (2-60)
a? T f

We eXpress F"'(S:). I'Y(€) and F:(é) in terms of F' and E. For instance, by substitution of (2-60)
into the expression for I'(£), we obtain

Do)~ — ”b‘, . / 3 dg-";, (2-61)
(42 — é2)2

\/ — 2 Lulll

where # is defined in (2-51). Now, noting the identity

“Note that for @ = 0, the cubic corresponds to the surface equation of the ellipsoid So



22 o2 1
K" 81T D S .
nE = : — /1 - #2sin? (2-62)

\/1 — K2sin? ¢ 1—#2sin% ¢

it follows from (2-61) that

abé

(62 — é2)2 k2

Fr(f”r‘:’) = {F( r‘ilfc) — E(iﬂﬁ:)] ; (2-63)

Similarly, 1"”(5;: ) and I’:(!;: ) may be expressed in terms of standard elliptic integrals. For
instance, by exploiting the differentiation of the following reduction formulae|11]

. . H o P
sin ¢ cos ¢ sin /1 — K2sin® ¢
—_—— and > . (2-64)
V11— £2sin? ¢ cos ¢
Hence,
., abé - e B 5 sin ¥ cos 0
TY(|#) ————— | E(J|§) — REF(|R) — & . (2-65)
(42 — (2)7R2A2 1— £2sin?
. bé siny/1 — #2sin? 9 » _
[ (0]k) . . - B(J|f) | (2-66)
(a% — é2)zR? cos U
where
Fe (2-67)

is called the complementary modulus.

2.3.1 Con-ergence

Expanding the integrands in the standard elliptical integrals, it follows from the binomial
theorem that

-5-++(2m —1)

L2m o 2m ] g
£ osin™ @, 2-68
c4-6-++2m ( )
o5 eos(2m — 1) 62 sin?™ b
—— : : (2-69)
2:4-6---2m 2m—1
Using the reduction formula
=2 ., ., 2m-=1f"2  , .. ; @w1-3:-5---(2m-1)
1 dm : = so2m—2 [ ogf < -
sin“™ o do = / sin odo = — 2-70)
/n 2m 0 ) 2 2.-4.-6---2m (

the complete elliptic integrals (i.e, for which ) = 7 /2) of the first and second kind are|[16, 17]
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. m & 1.3.5...(2”]_1))2 e
F 2|k = =11+ 2 9.7
(m/2|%) = [ +?§:l( R g, (2-71)
5 T 20 135(27”_1))2 fom
E 215 — |1 - . 279
(/21%) 2[ ,;( 2:4-6---2m 2m—1 LB<72)

The above series converge absolutely and uniformly for |£?| < 1. Hence it follows from (2-51)
that the associated external harmonics converge for

2 2 : g ki
(g< Ej <1 ie, e< Ey AT < !.7 (2-73)
'y x

By the preceding series, the associated external harmonic I'" may be written as

o
!
b |

8 123%,, 12 123252 ,

£ ¥ (A . A “
al’ (7("/2 h) 1 5 Wh t ? mh.
16 12323'2'"'2,. 20 1'.!32‘.—'2—-'202 .
= 2—.3'."-“‘.—-’\'-[' fr == fj.'“—f-—.h's e (2-74)
7 224262 82 9 22426282 102
Here )
1 w abé 5.75)
o 44— )3 (2-75
Obviously, the above series converges slowly for |£2%] < 1.

2.3.2  Analyticity

For convenience, we may consider the elliptic function (i.e, the inverse of the elliptic integral)
of the first kind. By the change of variable, ¢ = sin ¢, the elliptic integral of 1st kind takes on
the form

1[' 3
F(T)#) f s . (2-76)
S -y - ke

Differentiating the above integral, we then take the square of each side and obtain the following
non-linear differential equation

s\ 2
(%) = (1 - T%)(1 — £2T?), (2-77)

which obviously admits the following analytical cases

sy 2 ;.
dT 1-T% |, k=0,

—_— . A 2-7
(dF) {(1-1”)2 , K= 1. WT8)

Solving the equations, we get

N

1+

1 .
e

F(T|fk = 0) = sin™' T, F(T|k =1) =

(S

(2-79)

—

8]
b



Hence the associated external harmonics have trigonometric and hyperbolic analytical solu-
tions when £% = 0 and 4% = 1, respectively. In geometrical context, the above cases signify
the deformation of the ellipsoid whose surface is Sy, to the spheroids a — bh>é (for % = 0)
and b= ¢ < a (for £% = 1).

2.3.3 Analytical E+aluation of Associated External Harmonics

Apart from preceding cases in which £? = 0,1, there are no primitive functions for the inte-
grands in (2-54). Therefore, I'", T¥ and T'* are essentially to be evaluated numerically. For
the analytical case &% = 0,

i L 2 g 1 u
I*(é]0) = TY(€]0) = © / ——du =0 / ( - . ) du,
(40} (€10) 0 i w1 — u? ¢ Je uv1l—u?  1—u?

& [ —— du-8s [ -4
O / —— du - 6 / —_— du,
e w/1l=-a? e Vi-u2
i, ‘ EE
- [tan_'(-—ﬁ—f} + a1 — u{| .
2 1—u? ¢
, ) ,
360 [tmr‘( ) - evi- «'J] .. (2-80)
2 ‘
and
=(¢]0) o, [ L=« 4
€ = > — Y,
e 121 — u?
|
. 1— u? i
0y | —— — tan~ M {——=)| .
4 V1 —¢2 V1 — é2
Ao [—-— C o tan (S )J. (2-81)
( ¢
where ' .
(-)U L4 - (2'82)

(1~92f'é]:z

In the other analytical case, £2 = 1

re(d1) - © /] L= 6 ]' ( 2 ) ) Iu
: & — (1 " _— au
‘ - ¢ uvl— u? : ¢ \uvl—u? 1-u?

1. ! 1 V1 — u? : 1 u
H(-)./ __ dn—(—n/ .
Je \uv1 — u? t Jé 1= u?

Lo, [1,1 LA \/1'——} - [vi—a)’,

du

1—v1—u?




where

and

du,

s . 11— 2
I¥(é]1) = T*(¢|1) = O / e
(él1) (é1) Y w31 — u?

which, by the trigonometric substitution u = sin v,

LU(é1) = T*(¢1) = (~>1/" R

wresin ¢ F;lllJ 1

1.
—@1 cot desed) + In

sin 1?/9]
£l
Arcsine

2 cosUf2] . .
1() 1 — sin? 1 + /1 —sin2d |’
— — 1 i
= =
2 sin?d 1 — /1 +sin?d| .
L aArcsine

——h

lé V1 —é? 1+ V1= ¢é2
2 1 é? 2 l—-\/]_-—-( ’

Surface Value of Associated External Harmonics

Let . .
, (1—(2)?/( l—f"z)"/r‘
() = -
Op (1-¢2) /(U
such that, for £2 — 0
_ 1 oy . .
[(€)0) = TY(¢]0) = 3)\((’\())1'((5)._ LE(€]0) = |1 = A(€|0)]u(€),

where we defined ) Yy
'y 1 1 - ¢4
A0) = —— tan~ () ~ 1
1-¢€%2 [é/1=¢2 ¢

Accordingly, we find that

I (¢10) + T(¢]0) + T*(¢]0) — v(e).

(2-84)

(2-85)

(2-90)

Obviously, when the distances from Sy approach infinity i.e.. (¢ — 1), then v — 0, and the
associated external harmonics vanish. On the other hand. if the above relation is evaluated

on the surface Sy, we obtain

I (peo|) + TY(peg| k) + T (oeg|) = 1.

This relation holds for general ellipsoids|7].

(2-91)
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(A) Integrand of D¥(¢|£) vs. ¢ at various values of £*
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(C) Integrand of T?(¢|#) vs. ¢ at various values of fi?

Figure 2-2: The integrands of the associated external harmonics as function of meridian ec-
centricity for £% — 0,0.25,0.5,0.75,1
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2.4 Continuity Conditions

We are now in a position to apply the continuity conditions in (2-9) and (2-10) in order to
determine the vectors v and w in the solutions® given by (2-18) and (2-45). Since it is required
that the potential and the normal flux must be continuous everywhere on Sy. we may simplify
the subsequent algebraic operations by introducing parametrization of the surface points. For
this purpose, let ¢y C R? be the region

co={(pm)€R|-1<p<1, -1<n<1) (2-92)

and consider the parametrization

z = e, y = by(1—p2)(1-7), T =any/1— ps. (2-93)

Then |p| = 1 corresponds to the pole points (0,0, 4¢) and |p| < 1 to the equatorial ellipses,
@y
all —p%)  b*(1 — p?)

Writing (2-93) in matrix form, a parametrization of surface points (z,y, z) € Sy is given by

2

(x,y) € Sp; |p| < 1. (2-94)

y Cw(ji,n) (x.y,z) € So: (p,7m) € g, C — diag(a, b, ), (2-95)

ar

where we defined

1 — p*
w(pt,n) - (L=n)(1— p*) Il <15 |pl£1, (2-96)
It
2.4.1 Continuity of Potential
Equating (2-45) and (2-18), the condition in (2-9) reads
x x

vV |y (w! ' T(pee)W —JT) | y (z,y,2) € So (2-97)

“ “

Using the parametrization in (2-95), the above equation becomes

0"V — w T (peg)W + JT)Cw(pe. ) = 0 nl <1, |p| <1, (2-98)

To satisfy this equation for |p| < 1 and [5| < 1, we must require

(0TV — w! T (o)W + JT)C = 0. (2-99)

“Tor notational simplicity, we proceed henceforth without explicitly giving £ in the elliptic integrals

e re e

8]
L |




2.4.2 Continuity of the Normal Flux

In reference to (2-1), the matrix form of the unit vector normal to Sy may be written as

T I £
n(z,y,z)=cD | y |, where V(| v | D

£

- 1)” (-7'1!/1 :) € S(h (2'1{]0)

=

L B I ]

e

=

Furthermore, we designate by f,*, and fp, the right- and left-hand side of (2-10) i.e.,

aq)m a(I,m O(I 11

+ . m 2 ‘m m " - 2_

fp k2 v ne + ky oy —ny + k] TS n. (on Sy), (2-101)
N ; 0P ;0P ;0P

fr = AJ a5 = kg ay ny + kL L (on Sy). (2-102)

Since we assume linearity of potential in J, we may derive expressions for f,) and f; by
considering the separate solutions for the pressure distributions. For instance,

0(;1’ .n,. kY — i [ Jow+ A
H i

m T
e m Amzl" (g)}.

e m Am a ey
= ek s AR [ [0 ey
=k e + AR i,, [I”(\) t aﬁr'(é)] N (2-103)
\} i

Evaluating the above equation on Sy, we use the relations in (2-41) and obtain

ae™ x Emo T
m 5 ] _,_1{1_. . ,rfa N a . N = 2.
(k o5 N, )‘1'0 ekl 2 b eAk] 'l".'.f'(r (peo) ].)”,2 (2-104)
Hence, by symmetry,
m a(I)T" m ' m L " I, - vr/ < (4
(A!I a’ NU) 5 - —'EJUA,’ H } Iu ‘,‘;‘:;t (F‘I(Qf'[]) = l)l?‘ (2'100)
aPpm™ z fem z
m - . —“‘:, 2 ‘.I;H_ u f:- .i” R -4 3 — _— 2_
(A . ) L T R G sCRY [T (T ee) - 1) (2-106)
Thus,
b
fi = =(w k™ (T(0e0) - W = I")D | y (2,4, %) € So. (2-107)

4

By similar procedure, we obtain



fp=cv"K'VD |y (z,y,2) € So. (2-108)

<

Equating (2-107) and (2-108), the condition in (2-10) reads

£ X
o' EVD |y | = (w' k(Do) - W —J")D | y (z,9,2) € So.  (2-109)

Furthermore, by utilization of (2-95),

(v k'V — w  k™(T(pey) — HW + JT)DCw(j, 1) = 0 lpe] <1, Jpu| <10 (2-110)
For |pz| < 1 and || < 1, the above equation is satisfied by requiring

(v RV —w k" (T(pey) — W + JTYDC — 0. (2-111)

We now multiply by the equations in (2-99) and (2-111) by C~' and C~' D", respectively,
from the right-hand side and obtain the following linear system of equations

V. -WTio) v 7] o
YV k"W (D (pey) —1I) w —kJ

which has precisely one solution if

o) V _Wr(ef‘()) B m ‘ | B .
D(f[k'V —k"’-W(r(g«-(,)—n} VW (k" — k')D(oco) — k™),

~VWEk™((I - (k") "k (pco) = I) / 0(2-113)

Thus, provided that _
k™ > 0; k' >0, (2-114)

the matrix in (2-112) is singular if
(1 - (k™)~"k")D(0co) ~ T, (2-115)

we must therefore have

(k™) 'k /T =T (0cq). (2:116)

Assuming (2-114) and (2-116) are satisfied, we solve (2-112) for v and w, and obtain

ol JT((™ - k)T (0eo) — k™) 'k™V 1, (2-117)
w'l' i J'I‘((km _ k")I‘(g(‘U) . km)—-l(km . ki)w—l ) [2-118)

Thus, the distribution of pressure inside and outside the surface of the inclusion read
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&
' (x,y,z) = JT((K™ -k )(oco) — k™) 'k™ | y | in Qo (2-119)

£
™ (x,y, 2) ~J" |y
. ) &
,Jl((k"' _ k')r(Q(.‘u) iy Rl )—l(km . k')I‘(:) y in Ql (_2;120)

o

It may be observed that the vectors v’ (Af,., .4:,,,4':) and w! = (A,, Ay, A:) can be
written in component form as follows,

. k' k:‘
Ay = ~— V=2, A=z, 2.121
AR = RO (eco) — RV R o @2
Jer k:’ Join
Ay=1T AT N L S W 5193
AT I R )M (geo) — ki Y B O (2122)

2.5 Discussion on the Generalized Inclusion Model

2.5.1 Verification of Solutions

We summerize now the inclusion problem solved in this chapter by first verifying the developed
analytical solutions. We will then make a brief discussion on specific cases of the generalized
inclusion model presented here. Finally, we show that analytical solutions reported in previous
works are special cases of the generalized solution developed in this study. of similar character.

e Uniform Flow at Infinity: At large distances from the inclusion, ¢ — 1 as the el-
lipsoids approximate spheres. Thus, by noting that the associated external harmonics
vanish at infinity, it follows from (2-120) that

T
d™(a,y,z)=-JT | y as  ||(z,y,2)|| = ec. (2-123)

as it should do. Hence the boundary condition in (2-11) is recovered.

e Continuity of the potential: On the surface of the inclusion, the matrix I'(¢) in the
external solution takes on its surface value T'(¢y). Thus, the distribution of the external
pressure reads

P (r,y,z) - =J¥ y |
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FoJT (k™ = k)T (0eo) — ™) (k™ — RT(E) | y

(]

T
~" (I = (k™ = k" )D(oc0) — k™)' (k™ — K')D(geq)) | y(2-124)

Noting the identity
1 ((km . k")r({](‘u) k! u ([km _ i)r(in[)) _ kru). {2_125

the equation may be written as

®"(x,y,2) = JT((K™ ~ k') (0eo) — k™) TR |y (on Sp). (2-126)

Comparing this equation to (2-119) shows

T
" (w,y,z) = By, 2) = I (™ — k)T (0eo) — k™) k™ | y | (on Sp). (2-127)

Hence the solutions in (2-119) and (2-120) satisfy the continuity condition in (2-9).
e Continuity of the normal flux: The continuity condition in (2-10) requires that
fp = fp.where fi and fp are defined in (2-101) and (2-102). Let P(z,y, 2) € Sp be an

arbitrary surface point and consider the distribution for the external pressure in (2-45).
By the chain rule, we may write

f-% (Am o™ a‘f 07 ) Bl oe™ ac 01 g aq)m c')E 0*-' ) .
3 0‘, o 01 Y OE 0:}0?} ¥ e 07 (')a 01

() h (@) 2 (%) ER.
PY: o 242 o€ ‘o 22 € den 2¢2

Recalling that k™ = (kK7 k7")'/3, we substitute the above expressions into (2-128) and

find
”‘ m ,‘km b'l fAru pm
ff" "" ( A 7 %71 i /az } L:;‘ A-m r{/ '2 | A <11 /( ) ( ) 1
!L I'/ﬂ : 'y y/b ]\_ /( ‘-, .E:.(J

(I)m
Gk (0_) where k™ — (k;f‘k;,”k’:")'/s (2-130)
£-0

where

9¢
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where

P d .1 [ - 3:'
( ¢ )g__u i __E;:(J g —w" I'(§) z )é-o»
. 0.‘1"/05: T T D OE
—{J" | 0y/0¢ _w’(? g |+ T | 99/ | )¢ o
920 ¢4 02 /0¢
i [t i [
1er| ey 1 7 bor
=5 | g/0t | = Sw (T(O) = I) | /b ;
Z :_:,/(:z & 5/(’.2 Ped,
. - &
-t —w'(T0)=1)D | § (2-131)
= PesSy

where I'(0) expresses the value of the I' on the surface of the inclusion. Thus,

. 4 ) i@
fih = =3ek™(J" —w"(TO)-I)D | . (2-132)
# PeSy
Hence by the transformations in (2-19, 2-22, 2-24),
2 ad IS & ‘r
fp = =3ek™(JT —w"(T(0) - HW)W D | y : (2-133)
N Pesy
Furthermore, by noting that
. A,m "-Hl km
m -2 m ing r ¥ Tz m 2.
KW k™ di g Jorn? Jon Y fom ) k ! ( 134)
we substitute (2-118) into (2-133) and obtain
R J‘.
f].‘, —SE_JI(I_ ((k’n _ kl)r(gru) . kru)—l(km . kl))k”l.D y . (2_135)
“ PeSq
Finally, by the identity,
I = (k™ — k)T(0e0) — k™) ' (K™ = k)T (peg) — k™), (2-136)
we obtain
e . . ‘l‘
fip = 3ed T (k™ — k' )D(gep) — k™)' (k™ — k') R'k™D | y . (2:137)
% Ipesy



Similarly, consider the distribution of the internal pressure in (2-18). Similarly, we derive

an expression for fi by first employing the chain rule

fr = g.ia_q’ifj_j‘_ﬁ,, ; ,0_@10_,\8_1 ;_ .2‘1’_:?_5125
P = "= o\ 0 Ox Ty ox 0 Oyn'" T 9N 0% 0x e

where, by implicit derivation of the surface equation in (2-15),

12

ai A [ d

=

3

-

. . ) Y = f= ! — =,
> x+p  ox Ukig  ax A

Substitution of the above in the preceding equation gives

fp =k

ox 0zl | gy 0gat ' g\ 0z a’

'[..i (a@i) bt - 05‘/0/\
=i

35‘7' —_— S?T_T) 0?]/85\
& you ‘ D:/0N | .
L.r' /\/(;\2 Fp) o T
357 M(A 4 q) ) i
YA l5:L 7

(%]

)

a5
v}
T &=

ST g

Pesy

Referring to the transformations defined in (2-13, 2-16). we obtain

£

1

,(0<I>‘ OXi 00N 0P OA )

PeSy

Pesy

Iy 3ekiv ' VEDV | g (x,y,z) € Sp.

ol

Furthermore, since,
P s ; kR k -
A.‘V_J =N (lia.‘.{('k—“;_. A_:'A—:) kl.

substitution of (2-117) into (2-141) gives

f}: 3E.J'1'((km _ ki)r(Q(‘[)) — kM )—I(km _ kt))kikr'aaD y

13

Thus, fp f,t and the condition in (2-10) is satisfied.

2.5.2 Special Cases of the Inclusion Problem

Pesy

(2-138)

(2-139)

(2-140)

(2-141)

(2-143)

We will finally consider special cases of the generalized inclusion model in this study by varying
the permeability contrast and the anisotropy ratio of the formation. Furthermore, we will show
that particular inclusion problems reported in [1, 7| can be directly derived from (2-119) and
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(2-120). Consider now the pressure distributions given by (2-119) and (2-120), and define the

matrix

§=(k™)"'k' ie., &= diag(kL/kD ky/k)

such that

iz, y.z) = J (T -8T(o)-D7" |y |,

T
™ (z,y,z) = I |y |+ JTI = 8)T(é)— 1) (I -8)T() | y

yl vy o

kLK),

L~

(2-144)

(2-145)

(2-146)

The matrix & expresses the degree of heterogeneity, we investigate therefore the behaviour of
pressure distribution in £ at certain extreme permeability contrasts.

e Ellipsoidal inclusion surrounded by a highly permeable medium: If the ellip-
soidal inclusion is submerged in a medium of highly permeable rock (e.g. a sand body
containing aligned ellipsoidal shale inclusions), then § ~ 0. In this case, the distribution

of pressure is,

i(r,y,z) = J(D(ég) — T)™

i

" (w,y, )= —J |y | JT(T(éy) — I)7'T(¢)

-

L

ill Q(],

in €2y.

(2-147)

(2-148)

e Ellipsoidal inclusion surrounded by an impermeable medium: Consider now a
case in which the inclusion is surrounded by a relatively impermeable matrix (e.g. a
medium with fracture of high conductivity). In such a case, § ~ oo. Thus, by referring

to (2-145) and (2-146), we have

(I = 8)T(éo) = I) ' ~67" =0,
(I — 8)T(éo) = I) (I = 8) ~ (I —8)""T7"(éo)(I - &)

Hence, the distribution of pressure reads

S (r.y,z)=0 in Qy, P"(v,y,z)= =J¥
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y | +ITTHET(E) | v

(2-149)
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e Homogeneous formation: If we let the permeabilities of the ellipsoidal inclusion and
the surrounding matrix be nearly equal in each of the principal directions, then éd~1
and the medium should behave like a homogeneous formation. Hence,

£
®'(2,y,z)~ O™ (2, y, ) “JT oy . in €. (2-152)

e Isotropic (spheroidal) inclusion submerged in an anisotropic matrix: Consider
now the distribution of pressure for a heterogeneous formation made up from the sub-
mersion of ellipsoidal inclusion of scalar permeability, in an anisotropic formation. This
type of problem is reported solved by Dagan/1, 6]. Designating by k' the permeability
of the spheroidal inclusion, we have & ki(k™)~'. Hence, it follows from (2-145) and
(2-146) that

Pz, y,z) = JT((R" = kT DT(éo) — k™) TR™ |y [2-153)

" (x,y,z) = —dT |y | IR = K DT(G) — k™) (RT = KT |y [2154)

Assuming oblate spheroidal inclusion, see Dagan|1]

%)\(r')
A(€) , (2-155)
1= A(€)

where v(¢) and M¢) are defined in (2-87, 2-89).

e Isotropic ellipsoidal inclusion in an Isotropic formation: We conclude this chap-
ter by considering a simple case in which both the ellipsoidal inclusion and the surround-
ing matrix have scalar permeability. Denoting by & k'/k™ the permeability contrast,
the distribution of internal and external pressures are easily derived from (2- 145) and
(2-146) by putting 6 = oI. Thus,

&' (r,y,z) = J((I— o)L (é)—I)7" | ¢

b=

—_
o
—
ot
(=]

—

2

&"(x,y,z) = ~I7 | y | + I = oD)T(o) = D)7 = oDT(E)

=
—_
(Rv]
)
—
w
=1
—

e

Similar results are reported in [7] in the context of determining the distribution of
temperature in a heterogeneous material where @ being thermal conductivity anisotropy
ratio.



Chapter 3

Single Ellipsoidal Inclusion with
Arbitrary Permeability Orientation

We have derived analytical solutions for the distribution of pressure by assuming that the
permeability tensors of the inclusion and the surrounding matrix are aligned with the principal
axes of the ellipsoid. In this chapter, we generalize the preceding solutions by allowing arbitrary
orientation of the permeability tensors relative to the principal axes of the ellipsoid.

"@rn — ‘I)-w

Figure 3-1: An individual ellipsoidal inclusion with permeability tensors arbitrarily oriented
relative to the principal azes of the ellipsoid.

3.1 Formulation of the Problem

Consider the heterogeneous formation described in Section 2.1 and let now (a,3,v) and
(p, p,v) be orthogonal coordinate systems in which the permeability tensors of the inclu-
sion and the matrix are respectively diagonal. The internal and external potentials are now

satisfied by
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TLE IR/ S

ki i .BW + K, e 0 (inside Sp) (3-1)
m 0’2@!’:1 m 02(1),” m 0'2(1,"1 ( 1
R 5 PR 57 + kT = 0 (outside Sp) , (3-2)

where Sy denotes by the ellipsoidal surface in (2-1). Furthermore, designating now by (J,. Jyu, Ju)
the components of a constant potential gradient, we prescribe uniform flow at infinity i.e.,

7
" (pypryv) = Pog(pypyv) = ~JT as  |[(py . v)|| = o0 (3-3)

vV

Finally, denoting by P € Sp an arbitrary surface point, we require continuity of potential and
the normal flux on the surface of the inclusion,

P Pp, (3-4)
fr = £ (3-5)
where
_ , 0P 0 0
f k“‘a—ﬂﬁ"“ | kﬂo—dwﬁ | k'T—EF“"' (3-6)
4 m O(I)m y .m O(I,m L oqan a(I,m . -
f = A,p 0{] o + I\‘“ 0“ Ry ot Au dy Ty (3_ f)

Here (ng, nag, 1) and (R, 1, 1y,) are the components of the unit vector n normal to So-
x4 T3y TEey oy e

3.2 Principal Axis Transformation

The most general equation of a second degree quadric in the variables, say p, pt, v may be
written in the form

i
P P | _
T Al p |+ 2a” | | ta=0. (3-8)
174 v 1%

Here A € R3*3 is a real matrix whose off-diagonal elements (i.e., the terms which describe
rotation relative to the coordinate axes) are not all zero. a is a real column vector which
describes translation of the surface out of origo, and a is an arbitrary constant. Assuming A
be symmetric and positive definite i.e,

. [) 7 p
A=AT; wl| Al p | >0, (3-9)
v v
we may put
a =0, (3-10)
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such that, by taking the value of a to be unity, the quadric in (3-8) describes an inertia
ellipsoid in (p, p, v), of equation

o1 o
So pl| Al p =1 (3-11)
v v

Similarly, denoting by A" a real symmetric and positive definite matrix, the surface equation
in (o, 3,7)is given by

o ! |«
So': gl A|lp|=1 (3-12)
¥ 7

Our objective is to express the left-hand side of (3-11) and (3-12) as a sum of squares in
(2,4, z), such that the above surface equations take on the central quadric form in Chapter
2(2-1). For this purpose, denote by (ep, €u, €v) and (e, e,, e:) unit vectors oriented along
the axes of the coordinate systems (p, ji, #) and (2,4, z), respectively, see Fig. [3-2].

v

H

e, e,

€

P

Figure 3-2: Coordinate systems and unit vectors used to describe the orthogonal transforma-
tion.

Furthermore, let the direction cosines specify the orientation of (p, jt, v) relative to (x, y, z).
Hence

p = cos(e, e;)r cos(e,, e,)y + cos(e,, €:)z
o= cos(ey, ex)r + cos(ey, ey)y cos(e,.e.)z (3-13)
v = cos(e,, e;)r + cos(e,, ey)y | cos(e,, e:)z

is an orthogonal 3D axes rotation (origo unchanged) which preserves the the identity

oy s )| = I, 9, 2. (inner product invariant) (3-14)
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For convenience, let now (1., iy, ), 1 =

x,y, z, denote by the nine direction cosines in (3-13).

where
I, = cos(eye)
m, = cos(ey,ey) =B iE (3-15)
1y cos(e,, e,)
such that
P & L. 1, I
I Q| y Q My My M (3-16)
v z Ny My N
Since the matrix @ must be orthogonal
Q'Q 1, (3-17)
hence the reverse of the transformation in (3-16) is easily given by
x P
y|=Q" | » (3-18)
z 1

Similarly, the transformation of the equation of the ellipsoid in (a,/3,7) into a central
quadric in (2, y,2) s accomplished by means of the orthogonal transformation

o 1 [
aya ¥

p Qv : Q, n

v z n'.

s RO .
where (I}, m}., n.), 1
with respect to (z,y,2) .

functions of either direction cosines or rotation angles (e.g.

ion
-m;, mi : (3-19)
n;’ n

&, y, z are the direction cosines which specify the orientation of (a, 3,7)
Note that the rotation matrices @ and Q; may be expressed as
. Euler’s angles; see Appendix

B). However, unless otherwise stated the dependence of the matrices on direction cosines or

rotation angles will not be explicitly indicated.

Finally, by making use of the preceding orthogonal transformations, we establish a relation-
ship between the coordinate systems (p, ji, /) and (o, 3,7) i.e, the orientation of permeability
tensors of the inclusion and the surrounding matrix relative to each other. For instance, it

follows from (3-16) and (3-19) that

a o P
y Q| s Q" |
z 5 v
Thus
a P
5 =QQ" |
"‘«' 1

Hence, by (3-11) that
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ot o
3] Q.Q"AQQ! | 5 1. (3-22)
Y ¥

By comparing above equation to (3-12) we obtain

A~ Q.Q"AQQ. (3-23)
The relations in (3-21) and (3-23) will be used in the algebraic operations needed for the
continuity conditions.

3.2.1 Orthogonal Transformation of Surface Equation

Let us now consider the transformation of the quadrics in (3-11) and (3-12). The key ingredient
in the transformations is to orthogonally decompose the matrices A and A'. For instance, by
substitution of (3-16) into (3-11),
7
& @

So : y| QTAQ |y | =1 (3-24)

Furthermore. let here A, (r = ,¥, z) denote by the (positive and distinet) eigenvalues of A.
Designating by q, € Q, (r = &,y ). the basis of the three eigenvectors associated with Az,
Ay and A., where
l,
q, my B = (3-25)
Ty

then by a real Schur decomposition[18] of A, there exists a diagonal matrix|18] whose entries
are the matrix Q7 AQ is diagonalized i.e.,

T 0 forr £ s, .
q, Aq, { v for 7-{5 78 = &, Y 2, (3-26)

Denoting such matrix by A, the decomposition of A reads

A - QX QT: A = diag(Az, Agy As)- (3-27)
Accordingly, the central quadric form of (3-11) is
i
2 x
So: Y A oy | = Ax )\,Jy2 + Ag2® = 1 (3-28)

- -

in which the principal axes of the ellipsoid are now aligned with the principal axes x, y and
z. For convenience, we may define

1 1

o= —=; b= ——=; o=

where a. b, ¢ are the semi-axes of the ellipsoid, such that

(3-29)
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So : N NN (3-30)

Similarly, the orthogonal transformation in (3-19) puts the equation of the ellipsoid in
(v, 3,7) into its central quadric form:

So : y | A | = et eyt Al = (3-31)

where AL, r = 2, y, = are the eigenvalues of A"

3.3 Isotropic Equivalents of Potential Problems

By direct application of (3-16) and (3-19), the orthogonal transformation of the differential
equations in (3-2) and (3-1) may involve full permeability tensors. Therefore, we simplify the
problem by first determining the isotropic equivalents of the potential problems by means of
the following coordinates

[ /] p
gl -wul, W = diag(y/km fky, \Jkm fhge \Jlem [k, (3-32)
v v
[ ] o
gl=v|8], v diag(‘/k"/k;,.\/L-"/A:fi,\/A:f/k~;,). (3-33)
| ¥ gl

Hence the external potential satisfies now

02‘}}”1 az(i,m a;!q,m

+ — =0 outside Sy): 3-34
o7 | T D02 (outside Sy) ( )
subject to the boundary condition
S| P
S, fi, 1) = Poo(py 1 V) = = | i as  ||(p, i, V)| = o0, (3-35)
v

Similarly, the isotropic equivalent of the interior problem is

N S
0ar o | oy

0 (inside Sp). (3-36)

In the above equations, Sy and Sy indicate the transforms of Sy equations in (3-11) and (3-12),

AT
) P P

5[) g ;}t A JH - ].. (3-37)
v U
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n

(=]
=T 2

ot
< T B2

=

» ~1 L. ., .
A and A are transforms of the coefficient matrices in (3-11) and (3-12).

(3-38)

3.4 Orthogonal Transformation of Isotropized Potential Prob-

lems

In virtue of the coordinate transformations in (3-32) and (3-33), the orthogonal transforma-

tions in (3-16) and (3-19) are now given by

P & 0 T
Ji Q|| 3 Q| ¥
v Z ¥ z
Thus, the transformation of (3-34) reads
az(I,m 02(1,1:: a‘z(I,m )
— — — =0 outside S,
di? dy? 922 ( o)
where . 4 2
: X ] z
So: — -t =t = Ly
0 R VN ‘
and the boundary condition reads now
B (E, 1, £) = Bool 4y #) = —Sui — Ty — Jo% as ||(£.4, 5| = co.
where ) ;
j.r 'Ip
: |
Ty | =@ |
I J,,

Similarly, the orthogonal transformation of the isot ropized interior problem gives

02(1,1' 62(1,:' 0‘2<I,r'

032 1 9 } 532 0 (inside Sg),

where

5() :

3.5 Solution of Potential Problems

(3-39)

(3-40)

(3-41)

(3-43)

The potential problems in (3-40) and (3-44) are analogous' to the problems in the previous
chapter, see (2-14, 2-20). Hence by straightforward reference to the solution methodology and

UThe similarity in notation must not be confused.



the underlaying assumptions, possible solutions to (3-40) and (3-44) read, (refer to (2-43) and
(2-17)) can be readily written down as

I
(7,7, 2) v! L i (inside Sp). (3-46)
, -7
# ’ ’ ‘I: g ‘ll ra
(b0, 2) = ~(Je Sy Sy | ¢ | T T(E) | ¥ (outside Sp).  (3-47)

Switching to the coordinates (o, 3,7v) and (p, i, v), the potentials read

P

8}
P'(a,B8,7)=v' QI'V | B in 0, (3-48)
’}, -4
e ]
" (p, p,v) = “JT e | w T(HQ™W | p in Q, (3-49)
1A 124

where V and W are now defined in (3-32) and (3-33), respectively. v and v are constant
vectors to be determined by satisfying the continuity conditions in (3-4) and (3-5), and I['(€) is

a diagonal matrix whose entries are the associated exterior harmonics given by the following
elliptic integrals

2
(¢€]#) O, / Lo du,
V1= u)[1 = £(1 - u? )|
; 1 — u?
iR — O / _ , _ __ du. 3-50
(é1%) ¢ |1—f§'2(1~uz)]\/(l~u")|1—+’.t3(1—-”.3)| r ( )
= (¢]#) o, [ l-9 du
) = O , .
Je u? (1 = u?)[1 = £%(1 — u?)]
Here A -
. (S‘fu P ,”l _ 5
O = ———5 /1 - #¥(1 = 6%, £ = . (3-51)
(1 _ dz (2] Am (‘,Z(U
and

§ = ke (3-52)

Alternatively, the pressure distributions may be expressed in terms of the (x, y, z) coordinates
system. Hence,

e
(2, y, 2) v'rQ;rVQ,- Y inf2, (3-53)

| # ]

) M i1 . ‘ [ & W
(2, y.2) = ~dTQ | y | +w'T(EQTWQ | y in €, (3-54)
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However, it is emphasized that the above elliptic integrals implicitly capture the transforma-
tions in (3-32) and the first equation in (3-39) by means of eccentricities. Therefore, to evaluate
the associated external harmonics, we derive transformations formulae for eccentricities.

3.6 Transformation of Eccentricities
Since ey and Egy denote by the meridian and equatorial eccentricities of the ellipsoid, we may

first derive expressions for ¢y and Ey. For instance, by elimination of the vector (g, f, v)!
from (3-32) and (3-39), we obtain

i P
Qli|-w|nu| (3-55)
z v

Furthermore, by substitution of (3-16) into the above equation, we multiply both sides of the
equation by Q" and obtain the coordinate transformation

[ T 1 [ £ 1
7 Q'waQ |y |. (3-56)
from which L -
i «
b Q'waqQ | b |. (3-57)
L ¢ ] L ¢ ]
Hence the ratios
é a'Waq.atq'Wq,b+ q!Wq.c (3.58)
i IWaq,atql'Wq,bt qiWq.c’ ")
b ayWaate,Wa,bia,Wa.c (3-59)
a g Waq,a+q ' Wq,b+qlWgq.c'

define the required transforms of eg, Ey. Thus, by the definition of meridian and equatorial

eccentricities

y qz'wa. { qZ‘ng:Eu t qz"-"‘Q:(‘tJ (3-60)
¢ qlwq, + qtwq, Ey + qlwg.co’
- ” e
, y g, ) ,E I ywq.c
£, q9,%9, + 9,%9,EL0 + 9,wq:¢ (3-61)

qlwq, + q¢twq, Ey + qlwq.co’

[ JEw 502
w (ld-g’( ' I.:_‘"‘«_ .k_:f) W Jorn ) &

It may be seen that when the components of the permeability tensor k™ are aligned with the

where we defined

principal axes of the ellipsoid, @ = I i.e.,
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g’ = (1,0,0), qF =(0,1,0), gl =(0,0,1). (3-63)

Thus, as expected, the transforms of eccentricities are

o — ot 12 Bo=E \/U (3-64)
€o — Corl T 0 oA! Tom
ky ki,

3.7 Continuity Conditions

Let us finally consider to determine v and w in (3-48) and (3-49) by requiring th continuity of
potential and the normal flux, see (3-4 and 3-5). Obviously, those conditions must be satisfied
in any coordinate system. It is however emphasized that the functions in T'(¢) are defined in
the (#, 1§, #) coordinate system. Hence we will switch to that coordinate system to easily carry
out the differentiations of T'(¢) required for the derivations related to the normal derivative.

3.7.1 Continuity of Potential

By the condition of the continuity of potential (see 3-4),

. . o a
(w!'T()Q"W —JT) | 1 0'QIV | 8 ; (3-65)
v PeSy v 1*€ 5o

Furthermore, by the transformation (3-21), the above equation may be written as

7 b - : I
("’FIQ:‘I VQ;QI —w! ' T())Q"W JUy | n 0. (3-66)
v PESq

To satisfy this equation at P € So, we must have (refer Section 2.4)
TQIVQQ" — w'T(é)Q"W +JT =0 (3-67)

3.7.2 Continuity of the Normal Flux

By the surface equation in (3-12), the unit vector normal to Sy may be written as

o
n(a,B,7)=cA'| B (e, 3,7) € So- (3-68)
v
Hence the condition in (3-5) reads
» g . . (1'
fp=co'QIRVA| 3 (3-69)

T 1P(p,p,v) € So

Furthermore. we use the relations in (3-21) and (3-23) and find the following expression for

fr




fr =o' QTR'VQ.QTA | 1 (3-70)
v P(pu”'a 1/) € SD

To determine fj5, we may first write (3-49) in the form

. e p
" = Do, + AGIW | | TE(E) + BqtW | p [ TY(é) + CqlW | p | T5(¢),  (3-T1)
1% v v

Differentiation of the above equation, first with respect to p, gives

op™ 0 P —— 0 T P " o T P .
_a;_ = —J, 40 (qr | T)H Ba—p(qu o | TY) %Ca)( W o | TF),
v 7 12
]‘m fm (’) fm 0
S - Al N, T L | —=— y . f___ z ,
]P * 4 x A”l 0 (pr ) B Y k;:] ap(lnr ) * C"ru ]\""l ap(pr )
A.m ‘ o Am 0 y Am 0
— Al —— 2 4 " —_— ! L, — _—,2
Tp + Al o g5 T )+ Bly ki 97 (ATY) + CL Py, (rF ); (3-72)
where
0 . ar+ g¢  orvoir oIt dr
¥ . T (g4 g + 1.2 - —s == o
d 5y P G e B L 01" 0 OTY di ('JI“ di .
ap(,uF ) = D%+ (mgd + myy + m:2)( % O;t "B ('),u . BE 8_;: ; (3-74)
2 I O Y oi = a
g Z((T%) = T° 4 (nef + nyy n,:')(a of M de ol gd ). (3-75)

% P50 0§05 0 0w

Since we assume linearity of potential in J, we may consider separate distributions of pressure.
For instance, for flow in (J,,0,0) we may evaluate the above equations for the gradients
in (J,,0,0), (0, ],,,(1) and (0,0,.J.). Thus, by first considering distribution of potential in
{.fr, 0,0), we obtain

b= 1,8, fio= m,d, U = Mgt (3-76)
Hence, by (3-73),

d .. ) x
T ’l’*l‘ I*u — . e
Oﬁ(p ) |- o7 (3-77)
Evaluation of this equation on the surface of the inclusion yields, as noted in Chapter 2
a—ﬁ(ﬂf ) =T"(éo) = 1, in (0,.J,,0,0). (3-78)

Determining the remaining terms by symmetry
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d ;
5;(/51"”) = TY(éy) -1 in (0,.J,,0), (3-79)

%(ﬁl“) = T%(é) -1 in (0,0,.J.), (3-80)

we substitute (3-78)-(3-80) into (3-72) and get

m OCI)T” m 1 }‘:n X
Ap ap AIA 1 4] A ;)"(F ((“(]) - 1)
1 Am .
BI, k! L“(ry(c{,) -1) + CLEy Lm(l"(fu) ~1). (3-81)
P

Accordingly, the remaining components of the normal derivative read

O‘I)m A.m
1 —J kM Amgk™ [ —(T%(ép) — 1) +
1 0“ H™ " ;1

Am "
Bm,, k'” Am(l"”((’g)—l) : C'711=k:1"}:m{r(t())-l) (3-82)

(I,m A m )
k7 801 - —J T+ Angky'y | T—(T%(éo) — 1)
m ,‘r m o =(2
Buykl' [ -—(TY(ég) = 1) Cn.k, Am(I“(r-'U) —1). (3-83)
174 v
Furthermore, since now
f)
n(p,p,v) = cA| p (p,pt,v) € So, (3-84)
174
we obtain the required expression for f)
P . r
b = c(w QTR W (D(éo) = 1) = J k™A | (ps#,v) € So, (3-85)
v
and the condition fi = fp leads to
b b " P
QTR VQ,QT —w" QTR W (T(éo)—1)+J k™A | ji | =0.  P(p,p,v) € So (3-86)
v

To satisfy the above equation, we must have

47




v 'QTkVQ,QT —w  QTR"W (L(éo)—I) + JTk™ =0 (3-87)

Finally, we transpose the equations in (3-67) and (3-87), such that v and w are determined
by solving

(3-88)

QQ/vQ, ~WQT(¢o) v | [ -J
QQIKVQ, —k"WQ(T(¢) 1) || w —k"J |

The analytical solutions derived in this chapter complete the proposed generalization of

the potential problems for single ellipsoidal inclusion embedded in homogeneous matrix of
infinite dimensions.
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Chapter 4

Composite Ellipsoidal Inclusions

Finally, we consider the pressure fluctuation created by a composite ellipsoidal inclusion,
submerged in an infinite homogeneous matrix. By referring to the preceding chapters, recall
that the exterior space was conveniently handled by ellipsoidal coordinates. Probably, we
might be able to model the potential of an intermediate region, geometrically sandwiched
between the interior ellipsoid and the exterior ellipsoid of a confocal system of composite
ellipsoids.

Figure 4-1: Composite ellipsoidal inclusion model with permeability tensors aligned with prin-
cipal azes of the confocal ellipsoids.

The analysis proceeds along the same lines as in the preceding chapter. As shown in
Fig. [4-1], the composite body is composed of an inner ellipsoid of tensorial permeability
k*, surrounded by an ellipsoidal skin of tensorial permeability k*, sandwiched between the
surfaces Sp and S;. The composite ellipsoid is then submerged in an infinite homogeneous
matrix of tensorial permeability k™. For simplicity, we restrict our attention to a case in
which all permeability tensors are aligned with the principal axes of the composite inclusion.

49




4.1 Formulation of the Problem

Still denoting by € C R? the flow domain of infinite dimensions, let Qg be the region interior
to So. € the ellipsoidal ring externally bounded by S;, and Q3 the region outside the surface
Si. Our purpose is to determine the internal, skin and external potential denoted by ', P*
and ®™, respectively, by solving the following set of partial differential equations satisfied by
the potentials

0 0N

a 0‘1:2 1 y 0!}2 - a;l 0 11 SEU (4 1)
R0t M . _
ki TR g 0 inQ, (4-2)
) OZ(I)HJ aZ(Pn], 2(1),”
pmd 2 g g2 0 in Qs (4-3)

gz2 YV Oy* * 8
Here the superscripts s signify the skin problem. Assuming uniform flow at infinity, we

prescribe the boundary condition

&xr
" (x,y,2) = Pz, ¥, 2) “JT oy as  ||(z,y,2)|| = oo (4-4)

Finally, we require the continuity of potential and the normal flux across the surfaces Sg and

S

by P, (4-5)
(k' oP ) (k‘;%’—) . (-1--6)
dn B dn ) p,
& - ®p, (4-7)
oP* oP™
8 er i 4_
(k dm );:{ ( am )[11 (4-8)

Here Py € So and Py € Sy are arbitrary surface points, and n and m denote by the outward
normals to Py € So and Py € S;, where

So: Yy Dyl vy 1 Dy (li;ag(l/uf;"pl/hf,, 1/:"?,}. (4-9)

D, — diag(1/a®,1/b%,1/c}). (4-10)

=

S U D,
| # | L = ]

¢

4.2 The Interior and Exterior Problems

The internal and external problems in (4-1) and (4-3) are similar to those solved previously.
Hence, by referring to the solution methodology and the underlaying assumptions, we may
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readily write down the internal and external potentials

'(2,y,z)=u'U | y in Qo

Py, z) = Pl y,2) w! T (W | y in €29,

(4-11)

(4-12)

where w and w are arbitrary constant vectors to be determined by continuity conditions. U

and W are the matrices

[ >0

U diag( =
\/ \f "u

W YO N LIu |
diag ke \ ",27 )

and finally, I'(€) is the diagonal matrix whose entries are

!!"

1—u?

I (é]%) ()/\/1—14 [1 - #2(1 - u?)

du,

1=w?
V(¢ 6, f o
("") [1—A2(1 - u? ]\/l—i'-' Il”'h 1—“2”“’

1 — u?

(i)K/ tu.
Je ut (1 —u?)|1 = A1 —u?)| o

T (¢#)

These integrals, in which

43
(1 - o%})?

v alp2
1'2.2 k!l 4 El 0 /L.m/‘kru
9 9 [~ i "

keyi= p%e?

are now to be evaluated for ¢, < ¢ < 1.

O, - \/l—h(l—nlfz)

4.3 The Skin Problem

By the coordinate transformation

x
. ks L ks
Vv ,{ : |4 (.lmg,(\/k—;, A‘E‘; k-j}'

e S B

the isotropic equivalent of (4-2) reads

(4-13)

(4-14)

(4-15)

(4-16)

(4-17)

(4-18)




oy PP P 5 4-19
o5z Do om0 MU (+18)

where €2, is the region bounded by the surfaces

- T -
i T
So : g | Do|d|=1 D, ~ diag(1/a, 1/b3,1/¢).  (4-20)
A -
8y g | Dy| @ 1, D, = diag(1/a®,1/b%,1/&). (4-21)
| # ] | %

We now refer to our discussion of ellipsoidal harmonics. Since the ellipsoidal harmonics
for an intermediate ellipsoids could be constructed by linear combination of Lamé’s first and
second solution (see Section 1.2), a possible solution to the skin problem in (4-19) may have
the form

& s 3 El (;‘“ 5D

(I) (fl‘I)l f (‘.2@[ B = s (4'22)
¢ \-3('14',)\/(&,‘2 Fa)(b? 4 u)(e? o+ ou)

where € = const. denotes by the ellipsoid of surface S;. Thus, since we assume the ellipsoidal

harmonics of second species form the basis of a possible solution

P vl in Q. (4-23)

ISTE 1
[
)
=
™
=t
—

by S B

where v, and v, are the arbitrary matrix vectors to be determined by the continuity conditions,
and T'(¢é|#) is the diagonal matrix whose entries are

1 —u?
(@) : \/M -]

1-—u®
. 5. Iu, 4-24
‘}) Je [1—‘1‘!2(1""“ I\/l_”l)ll_h 1_” )|{H ( )

sl 1 =u? .
F(elr) = O / u*’-\/l—u N1 — &2 (1 —u?)] s,

where, by noting the relations,

€p = €00s! €1 = €104, (4-25)
O; and k are given by
= 25€0
Oy i 4-26
Sy = (1_92(2 \/ w2 oed), ( )

o ky, _QSE -
52 = Wﬁ’ Dy = kA HKL. (4-27)
y — Est0

(5]
]



Switching to the (x,y, z) coordinates, we obtain

x i
(2, y, 2) ‘UP{V y |+ Ug‘l"(('-h':)V Y (ép €€ < ép); in €. (4-28)

~ -~

4.4 Volume Ratios Between Composite Ellipsoids

Consider the ellipsoidal ring between Sy and S;. The equation

g, B2, & P 0<é<é, (4-29)
az+¢ bi+€ @+¢ c
describes the surfaces of the ellipsoids € —const. in Q,, and
. . b o an b
é (‘5 : &:),: E (”—‘3’—6)2 (4-30)
at+¢ a3 + &

accordingly are the transforms of eccentricities. Since £ — 0 and £ = & define the ellipsoids in
(4-20) and (4-21), respectively, the volumes Vy and Vy for the interior and exterior ellipsoid

are

~ 4

5 4 Z 4
1’,() ? I()b[;('(), 1"1 = —

SV (@8 + €0 + €01 + ). (4-31)
Hence the volume ratio of the interior ellipsoid; denoted by « is

apbycy

o = . (4-32)

V(@ + (B + & + &)

To eliminate the surface parameter from the above equation, we evaluate (4-30) on Sy and

substitute into the above equation

* ~
a R T (4-33)
(ag 1+ &)z €1 B

Moreover, we evaluate (4-30) on Sy and S; to give

B . ('.‘.!: -
g=2 - |9t (4-34)
Iy

Eliminating ég from the above relations, we obtain

3 -251{ — & .
& = ag = (4-35)
Hence, substitution into (4-33) vields
IR g
. (fll:(fg,) J Ztl:gt: (4-36)




Finally, since

Eo = /1 —R2(1-é&}), By = \/1-R¥(1-¢é}), (4-37)

€o = Ds€0, €1 = gs€1, (4-38)

we note that

Hence the volume ratio of the interior ellipsoid in terms of eccentricities may be written as
follows

a g3 " N
(1- o2ed)E fery/1 - #2(1 - o2¢})
(1- Qﬁfﬁ)%/(’u \/1 — R2(1 - p2e}

Fig. [4-2] depicts the relationships between eccentricities and the volume ratio between com-

P

(4-39)

posite ellipsoids.

Eccentnaitics of the Interior Ellipsosd

L L L i " i i i
1] ol 0.2 03 04 0s 0 0.7 (L% 1 (0] 1
Volume Fraction of the Tnterior ERipaoid

Figure 4-2: Meridian and equatorial (dashed) eccentricities of an interior ellipsoid as functions
of the volume fraction of the ellipsoid at various permeability anisotropy ratios. The curves
refer to ey — 1.0 and £* = 0.75.

Before we proceed further, it may be shown that

~('0L) ‘(-*7?) _(sz_) | 2% for0<é<é
/e e e lad+ O+ (@ + &)

(4-40)
Evaluating the above equations on Sg, we put
1, -
og =g toboco, (4-41)

such that
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Evaluating (4-40) on S, we obtain

u z 5 B
( Oar; ) o (lj'aail__) o (5081—;) (I(]b(](?n - - (4‘43)
£ Y & A J(”() + & )(b() 5 El)( o+&1)

which is the volume ratio of the interior ellipsoid relative to the volume of the exterior ellipsoid.

T i z
(faaih) = (1}%%—) (EOI; ) = —q, (4-44)
. & Y 3 ~ 3

4.5 Continuity Conditions on the Surfaces of the Composite
Inclusion

Hence

We are now in a position to apply the continuity conditions (4-5, 4-6) and (4-7, 4-8). The
algebraic details are lengthy but straightforward and similar to those in Section 2.4. For
instance, let Py(z,y,z) € Sp and Py(x.y,z) € Sy be arbitrary surface points. The conditions
of the continuity of potentials require

F o
(w'U — o'V — vl T(0,e0)V) | ¥ ~ 0. (4-45)
L= 1p
-
(0TV + vIT(p,e0)V — w T(oe)W +JT) | y 0 (4-46)
| = ] P
To satisfy these equations, we must have
w'U —v!'V -0l T(p.e0)V 0. (4-47)
oIV 4 ol T(0,0)V —w ' T(oe)W +JT — 0. (4-48)

For the continuity of the normal fluxes, let fi~ and f; be the left- and right-hand side of
(4-6) i.e.,

P! P! : 0<I>'

fo I.r i ——— e i A:, ay ny + K (1. - (4-49)
; 30(I> oP* 0<I>" 5
f(ll A’J az Ny A ‘I‘u 0 Tty ! I’ 0“ (T2 (4-50)
Similarly, for the left- and right-hand side of (4-8), we define
. aP* DI"‘ P _
fir = Kp=— g et ky, 5 —my + k; : g, M (4-51)
. O‘I)m a(I,m a(I,m .
it = A:T—é;—-m, g k_,,——(ﬁmy : A‘=E—m=. (4-52)

<
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where the outward unit vectors » and mm are given by

& 1 )
1 1
n—=cDo| y |: where - —)—HV( y Do | y | -1 (z,y,2) € So,
(4-53)
i
&r 1 1 T &
m=5D| y |, where -, 3HV( Y D |y | -1 (z,y,2) € 51.
(4-54)
After brief algebraic manipulations, we find that
v 5 [ ;1. ]
fo = cu'KUDg | y (2,y,2) € So, (4-55)
L, Z .
’ [ 2]
fif = colv] k°V +vik*(D(esco) = V) Do | ¥ (v,4,2) € So.  (4-56)
ny
£ ]
7 = a0k V + 0] k*(Flose1) — o)V Y (z,y.2) € S1,  (4-57)
2]
£l e (w kW w k™ (Do) - HW)Dy |y (x,y,2) € S1.  (4-58)
Since we require
o = s for Po(x,y,2) € So, == for Py(z,y,z) € So (4-59)

the conditions of the continuity of the normal fluxes lead to

Wk'U - oTk'V — vl k'V(D(ose0) - I) = 0, (4-60)
TRV + vl k' (D(0se1) — o)V — w'k™(T(oe)) — DHW + JTk™ 0. (4-61)

Finally, by transposing the equations in (4-47), (4-48), (4-60) and (4-61), the vectors u,
v, vy and w are simultaneously determined by solving the following matrix equation

Oy - Y (4-62)
where
U 0
R 0 N
X oy |} Y _J y (4-63)
w —kJ




and

U -V ~VT(0e0i) 0
| KU KV —k*VT'(pse0|r) = 1T) 0 ‘
T=\" v VI(0.e1|R) _WT(oe1|#) (4-64)

0 KV EV([(ow|r)—al) —k"W((eer]k) — 1)

For the cases of spheroidal inclusions, the surface values of associated external harmonics
in the above matrix is replaces by
%A(s|0)
I'(s]0) = FA(510) S = Ds€0, 04€1, 0€1- (4-65)
1— A(s]0)

for oblate spheroidal inclusion, where A(, |0) is defined in (2-89). For prolate spheroidal inclu-
sion,

1 — 2pu(s|1)
I'(s]1) p(s|1) 5 = Py, PsC1,y 0€1- (4-66)
(1)

Here pu(,|1) is the surface value of (2-86). Accordingly, the volume ratio of the interior spheroid
becomes

o2 and g
# i QZ' : }:?' : (Oblate spheroids). (4-67)
(1= 05¢5)2/co
2,288 4.2
- (1 92( :)i;fg (Prolate spheroids). (4-68)
(1 - pkeg)?/eg

ot
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Examples & Figures

The analytical solutions developed in the preceding chapters give generalized solutions for the
distribution of pressure inside and outside an ellipsoidal inclusion over a wide range of inclusion
geometry, permeability orientation and anisotropy ratios. For the purpose of illustration, we
finally present here seven examples to be compared with a base case whose input data is given
by the following Table [E-1]. Observe that we now explicitly express the rotation matrices in

(3-16) and (3-19) as functions of the 3D rotation angles (see Appendix B).

| Parameter [ Symbol ] Value
Meridian eccentricity €o 1/10
Equatorial eccentricity Ey 1/2
Prescribed potential gradient J (1/10,1/10, 1)
Permeability contrast ) (1/2,1/2,1/10)
Rotation Matrices Qo™ 0™ ™) diag(1, 1, 1)
Qi(4', 8, diag(1, 1, 1)

Matrix Anisotropy ratio bl { o 1/10
ky kT 4/5

Inclusion Anisotropy ratio ki /k; 1/20
ki kL 1

Matrix permeability in z-direction | k" 50

Table [E-1]: Base Case data

The results are presented by contour plots' of the pressure distribution in the zz-plane.

In all figures, the distances in z and z are scaled i.e, zp = z/a and zp = z/c.

e Example I: In this example we study the effect of permeability contrast on the dis-
tribution of pressure by first making the contrast tensor § approach zero. In this case,
the distribution of pressure is given by the equations in (2-147 & 2-148). Next, we let
the contrast tensor & — co. Hence the internal potential is constant and zero, refer to
equations in (2-151). Finally, we let § — I and find that the pressure distribution is

uniform, as it should be, see equations in (2-152).

Contour plots for the distribution of potentials are given in Fig. [E-2].

'The numerical computation and the graphical results are made by a Mathematica[20] program. It is
therefore emphasized that the blemishes in the contours around the ellipsoid are due to the Mathematica
algorithm that finds contour lines. This algorithm is found to be susceptible to aliasing which causes such
misleading breaks or turns in the contour lines[21].
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e Example II: We now consider two special cases of the inclusion problem reported in
|1] and [7]. First, we consider the distribution of pressure inside and outside an oblate
spheroid of isotropic permeability k' and we let k7 = kj* for the matrix surrounding the
inclusion. This example illustrates the distribution of internal and external potentials
given in (2-153 & 2-154). In the other case, we consider isotropic ellipsoidal inclusion in
an isotropic matrix of infinite dimension. The solutions are given by equations in (2-156
& 2-157).

The contour plots in Fig. [E-3] illustrate the distribution of potentials.

o Example III: By keeping everything else unchanged, we reduce the permeability anisotropy
of the inclusion and the surrounding medium by a factor of 10. Then we increase the
anisotropy ratio by a factor of 10. Contour plots of potential distribution are given in

Fig. |E-4].

e Example IV: We now study, again, the effect of permeability contrast by first reducing
the contrast tensor with a factor of 10. Then we increase the the contrast with a factor
of 10. The graphical results are given in Fig. [E-5].

e Example V: In the preceding examples, the meridian and equatorial eccentricity were
kept at 0.1 and 0.5. We now vary the geometry of the inclusion by first making eo
approach zero while leaving Eg unchanged. In the other case, we let ¢g — 1 and, again
with fixed Ey. The distributions of pressure for the above cases are given in Fig. |E-6].

e Example VI: In this example, we let the permeability of the inclusion and the surround-
ing matrix be arbitrarily oriented with respect to the principal axes of the ellipsoid. We
consider two cases in which we first let an arbitrary orientation of the inclusion per-
meability tensor while keeping the permeability tensor of the matrix aligned with the
principal axes of the ellipsoid. The orientation of the inclusion permeability tensor is
described by the rotation matrix @; whose entries are now determined by making a suc-
cossive 3D axes rotation (that leaves the origin unchanged) in terms of the Euler angles
(¢, 0, ') = (m/2,7/4,3m/2), see Appendix B.

In the other case, we let the permeability tensor of the medium surrounding the inclusion
be arbitrarily oriented relative to the axes of the ellipsoid while keeping the permeability
tensor of the inclusion aligned with principal axes of the ellipsoid. The rotation angles
are (¢™, 0™, Y™M) = (m/2,7/4,37/2).

The contour plots in Fig. |E-7| depict the distribution of the internal and external
pressures for the above cases.

e Example VII: In this final example, we let both permeability tensors be arbitrarily
oriented relative to the axes of the ellipsoid. First, we let the permeability tensors have
identical arbitrary orientation described by the Euler angles (r/2,7/4,3%/2). Then
we differ the the arbitrary orientation of k' from the orientation of k™ by making
(¢, 0%, ) = (3r /2,7 /4,7/2).

Fig. |E-8] shows the distributions of internal and external potentials with the above
cases of permeability orientations.
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Figure E-3: Distribution of potential in the (2p, zp)-plane for Example II: (A) Inclusion of
isotropic oblate spheroid in an anisotropic matrix for § = k'k™. (B) Both the inclusion and
the surrounding medium are isotropic i.e., § =(k'/k™ 1.
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Figure E-6: Distribution of potential in (2 p,zp)-plane for Example V: (A) ¢y — 0 (B)
co — 1.
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Figure E-7: Distribution of potential in (xp, zp)-plane for Example VI: (A) Orientation
of inclusion permeability tensor - @Q,(7 /2,7 /4,37/2), (B) Orientation of matrix permeability
tensor - Q(w /2,7 /4,37 /2).
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Laplace’s Equation in Ellipsoidal
Coordinates

For a point P(x,y, z) in space we may regard z, y and z as functions of &, n, ¢

€T J‘(E'. ”!C)‘. Y y(fa"i*()' z 2(€, 7."‘(:)3 {A'l)

such that if values are assigned to &, 9, ¢, then the intersection of the corresponding surfaces
- one from each family - gives the coordinates of the point. Thus, denoting by s a position
vector for the the distance between a point P in € whose coordinates are uniquely determined
by the intersection (&, 7, () and an arbitrary neighbouring point  whose coordinates are fixed
by the intersection of the family members &  d€ —, n + dn =, ¢ + d¢ ~const., consider the
clement of length in ellipsoidal coordinates

ds

ds = ds, . i g
ds bEr!E f O—Tldu : (')_C(K’ (A-2)

Accordingly,

) ; dsds  , Jsds .
s YEYT gl WO NS 2.2 ____1-2
ds o Offt‘ ; an a”rir,r } ac GC(C.
Jds s sds sds
22— —d&dny + 2—— 2——dndc.
f %D d€dy J€ oc d&dC an OC{ ndC (A-3)
Defining
, 0sds , Jsds , 0sds
h: - = 2 - ——. he = ——, A-4
'€ 9c o¢ "= on oy T acac (A-4)
the unit vectors along the surface coordinates are
1 ds 1 s - 10s (A-5)

R T ™ s S Y T
he O€ hy Oy he 9¢
Confining ourselves to orthogonal systems in which the surfaces &, 7, meet at right angles,
we must llﬂ‘\'(‘

Jdsds Osds Osds

%0y 0. 0ydC W)

Consequently,
ds?® - hfrlfz 1+ h';’,rl-ng?' { h,frl(,'z. (A-T)
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Now, expressing the element of length in Cartesian coordinates,

ds? = dz? 4 (lyz + dz?, (A-8)
where,
dx dy , 0z . ;
da = O—.fdg i a—ndu i a—(:d.(,, (A-9)

the scaling factors of the curvilinear coordinates, he, hy), he are determined by equating (A-T)
and (A-8) , .
dz? + dy? + dz* = hgd{z l hff,rh;z t hfrECz. (A-10)

it () ) (@)
2 2 2 e

0 - () @)
- 2 '\ 2 2\ 2

@ ()@ @)

Now, the Laplacian in terms of scaling factors, here hg, h,. h¢, is readily given by the
formula (see Kreyszig, 1988):

-2 1 “(?_ h,‘,hci 2_ hfhfg i g h,;h{ﬁ A-12
v hehyhe [Uf he 0 *Or; hy O 'ac he oC /| (A-12)

where, by logarithmic derivation of the equations in (1-9) with respect to &, 1, ¢,

Thus,

|& RIS
r S| M

dE 2(a? +£)’ o9& 2(b*+ &)’ o€ 2(ct 4+ &)
dux x dy Y 0z z
— _ —_ = — A-1
an 2(a* + 1)’ an 2k + ) an  2(c* ) iA-13)
¢ 2(a? + €)' ac 2+ ()’ IC 2e? + )
Hence, substitution of the above expressions into (A-11) gives
e _ 1 (E-mE=9)
C 4@+ O+ (P +E)
S S V3 VLS »
hy = 4 (a? + 5)(b? + n)(c? + 1)’ L)
e 1 (C=m=9)
< 4@+ O+ O+ C)
Thus,
vie - (10D 1 (DO 22 ) +(¢-D 2 (P g ) +e-nDO 5 (Dl6)GE ) =0
(A-15
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where

D(Of) = \/((12 + (\')(bz + (1‘)((—'2 + (I‘) y o= ‘E! UB C (A-]'G)

In connection with the coordinate transformations required to solve the external problems
in this study, the above equations can be readily utilized after a change of notation.



Formulae for Principal Axis

Transformation

Suppose that the inclusion is described by a coordinate system with = and y in the horizontal
plane and z vertically upward. Assuming that the axes of the ellipsoid are aligned with the
(x,y, z) coordinate system, we perform an orthogonal transformation that takes the initial

coordinate system (z,y,z) into coincidence with another Cartesian coordinate system, we
make a sequence of three successive rotations in R? through the Euler angles (¢™, 0™, ¢™) by

proceeding as follows:

e Rotate the initial system of axes by an angle ¢™ counterclockwise about the the = axis
leaving the = axis unchanged) and label the resultant coordinate system (z', y', z). The
g g . ]

transformation is then given by

H @
v | =Qul v |

Q,;

cosd™  sing™ 0
—sind™ cos™ 0 |. (B-1)
0 0 1

e Rotate the intermediate coordinates (', y', z) around the 2" axis counterclockwise by an
angle 0™ to produce yet another intermediate coordinate system, say (2, y"”, z"). This

transformation is given by

y" Q| v

Qy

1 0 0
0 cos@™ sinf™ |. (B-2)
0 —siné™ cosf™

e Finally, Rotate the coordinate system (2',y", ') about y" counterclockwise by an angle
™ to produce the final coordinate system of axes (=", y",2") given by

o z!
" "

Y Q,| v |,
1" i

cos™  siny™ 0
—sin¢™ cosy™ 0 |. (B-3)
0 0 1

Thus the complete 3D axis rotation is obtained as the triple product of the separate rotations

(B-4)




where
Q- Q,QQ,. (B-5)
We may now let (2”,y", z") be the coordinate system in which the permeability tensor of
the exterior space of the formation is diagonal. Hence by replacing (2", y", z") with (p, p, v),
the relative orientation of the permeability tensor k™ with respect to the axes of the ellipsoid
is given by

LT moo_nm T mo LT 1 L 1) m r
Q(() sH v Y ) - lq,;((j -"9 y U )‘qy(u ‘B L )’q:(‘pm‘gn’un )l: (B'G}
where
[ cos V™" cos @™ — cos 8™ sin @™ sin "
qdl((;")!ll‘ 9“1, ];;’m) m, _ —sin "™ cos g:a)m — COS ‘t;’?m sin cpm oS (r.‘)m .
Ny sin ¢ sin ™
Ly cos ™ cos @™ + cos 6™ sin ¢ sin Y™
oL g™ ™ - m — | —sin ™ sin @™ 4 cos @™ sin @™ cos o™ |, B-7
y - u : q
ny i — sin 0™ sin @™
[ 1. 1 [ sin ¢ sin 6™
q. (o™, 0", ") = m. cos 1™ sin 6™
. cos @™

An analogous transformation may be derived for the relative orientation of the permeability
tensor of the inclusion with respect to the axes of the ellipsoid. Denoting by ¢, 0, " the
rotation angles, coordinate transformation along the the preceding sequence of axis rotation
gives

Q, (4,00 ) = gi(¢, 0, '), qi (0" 0" '), gL (&, 0, 0], (B-8)

where gt . g' . q'. are given by replacing the Euler angles ¢™, 6™, 4™ in ( B-7) with ¢', ¢, "
a q_t; z g p 2 ) 1 }

=]
(8]
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Nomenclature

Symbols

(L., my,m,.)
X

e, B

K

A(" I‘ )‘;L(! |1 )
F E

q,

0,0

»~Ngo

Surface parameter; volume ratio of interior ellipsoid.
Permeability tensor.

Potential.

Position vector.

Constant potential gradient.

Semiaxes of an ellipsoid .

Ellipsoidal surface.

ontward normal .

Coordinate system in which the ellipsoid is defined.

Ellipsoidal coordinates corresponding to x,y, 2.

Scaling factors for the curvilinear cooridnates &, 1, Gy
Coordinate system aligned with principal directions of inclusion permeability.
Coordinate system aligned with principal direction of matrix permeability.
Coordinate system in which inclusion (or skin) permeability is isotropic .
parameters defined in (2-15).

Ellipsoidal surface parameter for -t < &<0.

Coordinate system in which matrix permeability is isotropic .
Ellipsoidal coordinates corresponding to &, 9, z.

Euler’s angles for 3D axis rotation.

Associated external harmonics.

Unit vectors along coordinate directions r = (2, y, z), (p; 4, V)
Direction cosines r = (x,y, z)

Function defined in text.

Meridian and equatorial eccentricities.

Modulus of ellipsoidal eccentricities.

Functions defining associated external harmonics for spheroids.
Elliptic integrals of the 1st and 2nd kinds.

Direction vectors r = (x,¥, )

Permeability anisotropy ratios defined in the text.

Orthogonal matrix for 3D axes rotation.

Diagonal matrix containing semiaxes of ellipsoids.

Unitary matrix.

coefficient matrix in surface equations of an inertia ellipsoid.

T4




Subscripts/Superscripts

i - inclusion.

s - skin or ellipsoidal coat in composite inclusion.
m - matrix.

x,y,z - componentin z,y,z direction.

o0 - at boundary.
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