Arild Aurvåg Farsund, John Hille, Carlo Aall m.fl.

Klima- og energiplan for Stavanger kommune

Rapport RF – 2001/184

Prosjektets tittel: Klima- og energiplan for Stavanger kommune – utredningsprogram
Oppdragsgiver(e): Stavanger kommune
Forskningsprogram:

ISBN: 82-490-0136-2
Gradering: Åpen (åpen fra: 01.09. 2001)

RF – Rogalandsforskning er sertifisert etter et kvalitetssystem basert på NS – EN ISO 9001

© Kopiering kun tillatt etter avtale med RF eller oppdragsgiver
Forord

Stavanger kommune har fått støtte fra SFT til å utarbeide en klima- og energiplan. Dette skal være en handlingsplan som kan bidra til reduserte utslipp av klimagasser og redusert energibruk som følge av privat og offentlig aktivitet i kommunen. I den sammenheng ble RF – Rogalandsforskning, Stiftelsen Idebanken (IB) og Vestlandsforskning (VF) engasjert til å gjennomføre prosjektet, og RF har fungert som sekretariat for arbeidet.

Fra RF har følgende medarbeidere deltatt: Harald Storås (Kapitel 2), Christin Berg (Kapitel 5), Arild Aurvåg Farsund (Kapitel 1, 2, 5 og prosjektleder). Faglig kvalitetssikrer har vært Gottfried Heinzerling.

Fra Vestlandsforskning har følgende medarbeidere deltatt: Carlo Aall (Kapitel 6), Kyrre Groven (Kapitel 2 og 6), Oluf Haugen og Erling Holden.

Fra Idebanken har Jon Hille deltatt, og han er ansvarlig for kapitel 3, 4 og 7.

Stavanger 13. august 2001

Arild Aurvåg Farsund, prosjektleder
Innhold

1 **INNLEDNING** ... 4

2 **STATUS OG UTFORDRINGER I STAVANGER** ... 5
 2.1 Innledning.. .. 5
 2.2 Grunnlagsdata for klimagassutslipp i Stavanger... 5
 2.3 Stasjonære utslipp av klimagasser... 9
 2.3.1 Stasjonær forbrenning .. 9
 2.3.2 Prosessutslipp... 16
 2.4 Utslipp av klimagasser fra transportsektoren.. 21
 2.4.1 Veitrafikk ... 21
 2.4.2 Skip og båter... 22
 2.4.3 Luftfart ... 23
 2.5 Andre mobile kilder... 24
 2.5.1 Fremskrivninger av utslipp fra mobil forbrenning....................................... 24
 2.6 Utvidet utslippsregnskap med fremskrivninger til 2010 ... 25
 2.7 Oppsummering .. 27

3 **INDIREKTE ENERGIFORBRUK OG INDIREKTE KLIMAGASSUTSLIPP** 30
 3.1 Innledning.. 30
 3.2 Nærmere om begrepene... 30
 3.3 Beregning av indirekte energiforbruk og korrigert energiforbruk 32
 3.4 Beregning av indirekte utslipp .. 33
 3.5 Direkte og indirekte energiforbruk og CO$_2$-utslipp i Norge i 1992 34
 3.6 Endringer i direkte og indirekte energiforbruk 1992-98 .. 36
 3.7 Indirekte energiforbruk og korrigert energiforbruk for Stavanger 38
 3.8 Stavangers indirekte og korrigerte utslipp av klimagasser................................. 46
 3.9 Hva kan gjøres for å redusere det indirekte energiforbruket og klimagassutslippene? ... 49

4 **DET ØKOLOGISKE ROMMET - OG STAVANGERS ØKOLOGISKE ANDEL** 54
 4.1 Bakgrunn og definisjoner .. 54
 4.2 Sterke sider ved “økologiske andeler” som veiviser til en bærekraftig utvikling .. 55
 4.3 Invendinger mot “økologiske andeler” som styringsverktøy 57
4.4 Kvantifisering av våre økologiske andeler ... 60
4.5 Norges energiforbruk - og vår økologiske andel ... 69
4.6 Scenario for Stavangers energiforbruk til 2050 .. 73
4.7 Konsekvenser for det lokale klima- og energiarbeidet .. 76

5 TILTAKSANALYSE - STAVANGER .. 80
5.1 Stasjonær energibruk .. 80
5.2 Transport ... 83
5.3 Urban Sjøfront og tiltak knyttet til energi og transport .. 94
5.4 Individuell handling – klimakalkulator som hjelpemiddel ... 101

6 TILTAK FOR REDUKSJON AV KLIMAGASSUTSLIPP .. 102
6.1 Innledning ... 102
6.2 Om virkemidler og tiltak ... 102
6.3 Kriterier for valg av tiltak .. 104
6.4 Utslipp fra mobile kilder ... 105
6.5 Avfallsdeponi .. 111
6.6 Landbruk ... 113

7 ERFARINGER FRA FOREGANGSKOMMUNER I SVERIGE, TYSKLAND, NEDERLAND OG DANMARK .. 116
7.1 Innledning ... 116
7.2 Växjö - “Allt väl utom trafiken” .. 117
7.3 Karlstad - Minsker bilismen i sentrum .. 120
7.4 Lund - Mot et miljøtilpasset transportsystem? .. 122
7.5 Borlänge - 15 % mindre energiforbruk på sju år? ... 126
7.6 Freiburg - Stoppet veksten i bilismen ... 128
7.7 Münster - Sykkelbyen i Tyskland ... 130
7.8 Saarbrücken - Halverte energiforbruket i kommunale bygg 134
7.9 Veenendaal - Beste sykkelby i et sykkelland .. 136
7.10 Schiedam - halverte energiforbruket i nye boliger ... 139
7.11 Amersfoort - Bygger med sola .. 141
7.12 Albertslund - Måling og mobilisering .. 146
7.13 Langå - klarer seg med 20 % av strømmen ... 149
7.14 Samsø - skal gå på 100 % fornybar energi .. 151
7.15 Toftlund - “Brundtlandbyen” som halvvegs lyktes .. 154
7.16 Drøfting og konklusjoner .. 156

8 REFERANSEN.. 165
1 Innledning

Prosjektet har vært støttet av Statens forurensingstilsyn (SFT), og bl.a. på den bakgrunn har vi tatt utgangspunkt i den veilederen som SFT har utarbeidet for å bistå kommunene i deres arbeid med klima- og energiplaner. I søknaden til SFT har Stavanger kommune presentert følgende målsetting med planen:

• Bruke verktøy “økologisk rom” for fastlegging av fremtidige utslippsmål (reduksjon i klimagassutslipp).
• Fastsette tiltak for å nå reduksjonsmålsettingen.
• Klargjøre planer og strategier for å gjennomføre tiltakene.
• Prioritering av tiltak.

Disse punktene har også vært retningsgivende for det arbeid som har vært gjennomført.

Hensikten med klima- og energiplanen er å synliggjøre noen av de utfordringene som kommunen og dens innbyggere står overfor i forbindelse med den globale klimautfordringen. Planen skal gi retningslinjer for den kommunale planleggingen, samtidig som den er viktig i forbindelse med at den enkelte innbygger må motiveres til å tilpasse sin adferd til de utfordringer vi står overfor i disse spørsommålene.

I forbindelse med en klima- og energiplan for Stavanger, er det viktig å presisere at kommunen har en del særtrekk som vil prege både energibrøken, utslippene av klimagasser og bidraget til utslipp andre steder i regionen og utenfor.

• Regionalt tyngdepunkt: Stavanger er både et befolkningsmessig tyngdepunkt og en relativt liten geografisk del av en raskt voksende region. Kommunene på Jæren har utviklet felles infrastruktur for avfall (lokalisert i Sandnes og Sola), og har felles flyplass (Sola). Dette betyr at en god del av Stavangers klimagassutslipp blir registrert i nabokommunene.
• **Næringsliv**: Næringslivet i Stavanger er preget av offentlig og privat tjenesteyting, men her også en god del industri. Hoveddelen av industrien er knyttet til mekanisk produksjon, og den bruker i liten grad energi som innsatsvare i produksjonen. Stavanger har derfor ingen store energibrukere innenfor kommunegrensene. Fremtidsperspektivene er usikre, men en forventer ikke vekst i næringer med stort energibruk, noe som i stor grad kan knyttes til kommunens arealsituasjon.

• **Transport**: Stavanger er et viktig trafikknutepunkt på Vestlandet, samtidig som befolkning og næringsliv har stor transportaktivitet både internt i kommunene og i den bosteds- og næringsregionen som byen utgjør kjernen av. Utviklingen på dette område vil dels være avhengig av befolknings- og næringsutviklingen, dels være avhengig av den generelle økonomiske utvikling og dels være avhengig av tiltak som settes inn for å påvirke utviklingen i transportbruken.

Global utfordring og nasjonal oppfølging

Menneskeskap påvirkning av det globale klima ble en del av den vitenskapelige debatten allerede på 1970-tallet. Det har alltid eksistert en viss faglig uenighet om, i hvilken grad og hvordan menneskelig aktivitet påvirker klimaet, men etter hvert er det etablert bred faglig enighet om en del sentrale punkter. I den siste rapporten fra IPCC\(^1\) (2001) oppsummeres noen sentrale dimensjoner:

• Den gjennomsnittlige overflatetemperaturen har økt med 0,6 °C i løpet av det 20. århundre.

• 1990-tallet var det varmeste tiåret og 1998 det varmeste året siden målingene startet i 1861.

• CO\(_2\)-mengden i atmosfæren har økt med 31% siden 1750. Tilsvarende har mengden metan (CH\(_4\)) økt med 151% siden 1750.

• Ulike modeller viser at den globale gjennomsnittstemperaturen vil øke med mellom 1,4 og 5,8 °C i perioden 1990 til 2100. De ulike modellene viser at det kan bli store regionale forskjeller i økningene.

\(^{1}\) IPCC = Intergovernmental Panel on Climate Change.
Kyoto-avtalen vil når den er i verksatt kunne få betydelig innflytelse, bl.a. gjennom endringer i avgiftssystemer, kvotehandel og etterspørsel og bruk av ulike energibærere. I forhold til Norges situasjon er det først og fremst industrilandenes forpliktelser som er interessant (basert på St. meld. nr. 29 1997-98: 18 - 22):

- Totalt sett skal industrielandene redusere utslippene av klimagasser med 5% fra 1990 nivå i perioden 2008 – 2012. Kravet medfører alt fra reduksjoner på 8% (EU, Sveits), 7% (USA, Japan) til stabilisering (Russland, Ukraina) og vekst 1% (Norge) og 10% Island.

- Protokollen åpner opp for bruk av “felles gjennomføring” mellom industrieland. Det betyr at industri kan overføre til, eller motta fra, andre industri såkalte “utslippsreduksjonsenheter”. Samlet skal tiltakene føre til reduserte utslipp, eller til økt opptak av klimagasser (bl.a. gjennom planting av skog).

- Protokollen åpner opp for at landene kan delta i “kvotehandel” for å oppfylle deler av utslippsforpliktelsene sine, dvs. som et tillegg til innenlandske tiltak. Selve systemet for kvotehandel er fortsatt under utforming.

Kyoto-avtalen vil være en viktig rammebetingelse for utviklingen på klimapolitikken i Norge i årene som kommer. De norske utslippene kan være 1% høyere i 2008-2012 enn i 1990. Ut fra dagens prognoser vil utslippene ligger på mellom 24 og 30%, avhengig av utbygging av gasskraft basert på dagens konsesjonssøknader. For at målet på 1% vekst skal kunne nås vil norske myndigheter ta i bruk virkemidler som felles gjennomføring og internasjonal kvotehandel (St. meld. nr. 8 1999-2000: 96).

er etablert enighet om prinsippene for internasjonal handel med kvoter er etablert, men målet er at et slikt system skal være etablert fra 2008 av.

Kommunene har til nå ikke blitt tillagt noen selvstendig rolle i klimapolitikken, men i St. meld. nr. 29 (1998-99): “Om energipolitikken” er det et eget avsnitt om kommunenes rolle i energipolitikken. Flere forhold fremheves i den sammenheng (38-39):

• Kommunene skal håndheve plan- og bygningsloven og stå for arealplanleggingen. Denne loven åpner opp for at energiplaner kan inngå som en del av den kommunale planlegging.
• Kommunene har direkte ansvar for egne bygg. I den sammenheng vil det bli satset sterkere på opplæring og nettverksbygging for å styrke ENØK-arbeidet i kommunale bygg.
• Kommunene kan være en aktør i valget mellom fjernvarme og strøm til oppvarming. Det er kommunene som må fatte vedtak om tilknytningsplikt til fjernvarmeanlegg.
• Det er naturlig at kommuner og e-verk samarbeider i forbindelse med en mest mulig effektiv strømforsyning. Energiplanleggingen i kommunene bør derfor finne sted i nær kontakt mellom kommune og selskap med områdekonsesjon.
• I forbindelse med Planlovutvalgets arbeid fremheves det at utvalget skal se nærmere på hvordan plan- og bygningsloven kan bidra til å fremme sterkere grad av energiplanlegging som en del av den samlede ressursplanlegging regionalt og lokalt.
2 Status og utfordringer i Stavanger

2.1 Innledning

Statens forurensningstilsyn (SFT) har i samarbeid med Statistisk sentralbyrå (SSB) lagt til rette data for utslipp av klimagasser til bruk i kommunale og fylkeskommunale klimaplaner. De anbefaler imidlertid at disse dataene ikke anvendes ukritisk, i og med at det er betydelige usikkerheter knyttet til deler av grunnlagsmaterialet. I dette kapitlet gjennomgås derfor datamaterialet utarbeidet for Stavanger kommune. Dette blir gjort med utgangspunkt i en gjennomgang som SSB har foretatt av datakvaliteten i utslippsregnskapet for kommunene (Flugsrud og Haakonsen 2000). Våre betraktninger gjøres med referanse til særtrekk ved Stavanger kommune, og lokale føringer for klimaregnskapet. Dette innebærer at det til slutt presenteres et modifisert regnskap, etter SSB/SFTs mal med hensyn til kilder, men med noe utvidede rammer for hvilke utslipp som inkluderes.

2.2 Grunnlagsdata for klimagassutslipp i Stavanger
Ved anvendelse av datamaterialet lagt til rette av SSB/SFT, vil en kunne sammenlikne utslippsregnskapet direkte med andre kommuner, og nabokommuner kan enkelt slå sammen data ved et eventuelt fremtidig klimaplan-samarbeid. Likeledes blir det enkelt å sammenlikne data med eksempelvis nasjonale eller fylkesvise utslippsstall/trender. Dette følger av at dataene er beregnet etter tilnærmelighet samme metode for alle kommuner. Svakheterne i en slik løsning er at det ikke fullt ut er tatt hensyn til lokale særegenheter.

I dette kapitlet følges SFTs anbefalinger om å bruke SSB/SFTs kommunefordelte tall som et utgangspunkt for Stavanger kommunes utslippsstatistikk. Dataene vil korrigeres på de områder hvor vi mener at vi har tilgang på bedre tall. Dette gjelder primært prognoser for utviklingen i utslipp fra de enkelte utslippskildene.

Regnskapet er som nevnt utvidet noe. Dette er gjort, dels for å få et best mulig datagrunnlag for å utarbeide eventuelle kvantitative målsetninger, og dels for å se nærmere på hvorvidt SSBs avgrensninger til fysiske utslipp innenfor kommunegrenserne, fremfor utslipp assosiert med befolkningen i kommunen, har stor betydning for resultatet. I dette utvidede regnskapet har vi inkludert utslipp fra avfallsdeponi og luftfart. Disse kildene bidrar til klimagassutslipp som i stor grad kan tilskrives avfallsgenerering og reiseaktivitett tilknyttet Stavanger. Lokalisering av deponi og flyplass i Sola kommune gjør imidlertid at utslippene fra SSB/SFTs side ikke
registreres på Stavanger kommune. Videre er SSB/SFTs kommunefordelte utslipp fra luftfart begrenset til å gjelde utslipp i høyder mindre enn 100 meter over bakkenivå. Dette er relevante avgrensninger dersom den fysiske kommunegrensen avgrenser kommunens ansvarsområde, men det kan imidlertid være betimelig å stille spørsmål ved om dette er en naturlig avgrensning for klimaplaner.

SSB/SFTs kommunefordelte oversikt over klimagasser omfatter utslipp av karbondioksid (CO₂), metan (CH₄) og lattergass (N₂O), som antas å være de tre viktigste klimagassene. Kyoto-protokollen omfatter foruten disse tre gassene også tre kategorier med fluorholdige gasser, nemlig hydrofluorkarboner (HFK), perfluorkarboner (PFK) og svovelheksafluorid (SF6). Utslipp av disse tre kategoriene utgjør i størrelsesorden 4% av nasjonale utslipp regnet i CO₂ ekvivalenter, og stammer primært fra metallindustrien. Trenden for utslipp av perfluorkarboner og svovelheksafluorid er fallende, mens utslipp av hydrofluorkarboner stiger som en konsekvens av at HFK anvendes som erstatning for ozon-nedbrytende kjølemedier.

![Diagram av nasjonale utslipp for 1998 fordelt på komponent og kilde](image)

Figur 2.1. Nasjonale utslipp for 1998 fordelt på komponent og kilde. (Kilde: Miljøstatus i Norge, SFT)
Figur 2.2. Fremskrivning av nasjonale utslipp av fluorholdige klimagasser. (Kilde: Miljøstatus i Norge, SFT)

For Stavangers del vil utslipp av fluorholdige klimagasser være neglisjerbart, i og med at kommunen ikke har industri med denne typen utslipp. Vi ser det derfor som uproblematisk at disse gassene ikke er med i SSB/SFTs kommunefordelte utslippstall.

Generelt om SSB/SFTs datagrunnlag for Stavanger kommune

SSB innhenter tallene for utslipp hovedsakelig ved å bruke to forskjellige metoder:

1. For store enkeltbedrifter har SSB direkte tilgang på utslippsdata. Tallene baserer seg på disse bedriftenes egenrapportering til SFT. Disse såkalte punktutslippene kan derfor knyttes direkte til kommunen.

2. Dersom utslippstallene ikke kan knyttes direkte til kommunen, beregnes utslippene ifølge fordelingsnøkler. Disse kan bygge på relevant bakgrunnsinformasjon om eksempelvis antall husstander med oljefyring i kommunen. Dersom det ikke finnes relevant bakgrunnsinformasjon, beregnes utslippene i følge surrogatdata, som for eksempel befolkningstall, antall husstander eller lignende.

Hovedresultatet av Statistisk sentralbyrås estimator for utslippene i Stavanger kan sammenfattes ved å summere CO₂-ekvivalenter for de tre viktigste klimagassene. Sammensetningen av utslipp fordelt på kilde er vist i Tabell 2.1.
Tabell 2.1: Oversikt over klimagassutslipp i Stavanger kommune, målt i tonn CO₂-ekvivalenter. Regnskapet omfatter utslipp av CO₂, CH₄ og N₂O.

<table>
<thead>
<tr>
<th>Kilde til utslipp</th>
<th>Utslipp i tonn CO₂-ekvivalenter</th>
<th>1991</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasjonær forbrenning</td>
<td>71 149</td>
<td>59 943</td>
<td></td>
</tr>
<tr>
<td>Industri, stasjonær</td>
<td>20 667</td>
<td>16 042</td>
<td></td>
</tr>
<tr>
<td>Annen næring</td>
<td>27 571</td>
<td>30 332</td>
<td></td>
</tr>
<tr>
<td>Husholdninger</td>
<td>22 910</td>
<td>13 566</td>
<td></td>
</tr>
<tr>
<td>Annen stasjonær forbrenning</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Prosessutslipp</td>
<td>14 529</td>
<td>14 007</td>
<td></td>
</tr>
<tr>
<td>Industri, prosesser</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deponi</td>
<td>337</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Landbruk</td>
<td>9 151</td>
<td>8 792</td>
<td></td>
</tr>
<tr>
<td>Andre prosessutslipp</td>
<td>5 041</td>
<td>4 922</td>
<td></td>
</tr>
<tr>
<td>Mobile kilder</td>
<td>171 684</td>
<td>187 175</td>
<td></td>
</tr>
<tr>
<td>Veitrafikk</td>
<td>157 485</td>
<td>169 755</td>
<td></td>
</tr>
<tr>
<td>Person- og varebiler</td>
<td>121 696</td>
<td>126 828</td>
<td></td>
</tr>
<tr>
<td>Lastebiler og busser</td>
<td>34 870</td>
<td>41 551</td>
<td></td>
</tr>
<tr>
<td>Moped og MC</td>
<td>919</td>
<td>1 376</td>
<td></td>
</tr>
<tr>
<td>Skip og båter</td>
<td>7 122</td>
<td>8 160</td>
<td></td>
</tr>
<tr>
<td>Fly</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Andre mobile kilder</td>
<td>7 077</td>
<td>9 261</td>
<td></td>
</tr>
<tr>
<td>Totale utslipp</td>
<td>257 362</td>
<td>261 125</td>
<td></td>
</tr>
</tbody>
</table>

Kilde: SSB/SFTs klimakalkulator

Statistisk sentralbyrå har valgt å anvende en tidshorisont på 100 år. Tidshorisonten har betydning for innbyrdes vekting av utslippsmengdene for de respektive gassene når utslippene skal adderes, jmf vedlegg 1. En kortere tidshorisont vil hovedsakelig resultere i at metanutslipp vektes sterkere. Dette gir lite utslag i regnskapet for Stavanger, i og med at SSB har estimert lave utslipp av metan. (Dette endres imidlertid når deler av utslippene fra Sele fyllplass inkluderes i regnskapet.)

Sammenliknet med regional og nasjonal statistikk for 1997, skiller Stavanger seg ut ved å ha en forholdsvis liten andel prosessutslipp, og relativt stor andel fra mobil forbrenning, jmf. Figur 2.3.

Figur 2.3: Hovedkildenes relative bidrag til klimagassutslipp lokalt, regionalt og nasjonalt i 1997, basert på tall fra SSB/SFTs klimakalkulator og nasjonal utslippsstatistikk
2.3 Stasjonære utslipp av klimagasser

I det følgende tar vi for oss hver enkelt av utslippskildene gitt i Tabell 2.1. Vi går gjennom SSBs vurderinger av kvaliteten på datagrunnlaget med hensyn til nivå og utviklingstrend gitt i Flugsrud og Haakonsens "Utslipp av klimagasser i norske kommuner – En gjennomgang av datakvaliteten i utslippsregnskapet". Parallelt med dette vil vi gi foreløpige estimater for utslippene i år 2000, og foreta fremskrivninger av datamaterialet til 2010. For kildene deponiutslipp, og luftfart, gis et utvidet regnskap, basert på at bidrag fra befolkning bosatt i Stavanger, til erstatning for SSB/SFTs beregninger som er avgrenset til utslipp innenfor kommunegrensene.

2.3.1 Stasjonær forbrenning

Stasjonær forbrenning omfatter underkategoriene

- Industri
- Annen næring
- Husholdninger
- Annen stasjonær forbrenning

Stasjonær forbrenning i industri

I 1997 sto stasjonær forbrenning i industri gjennomsnittlig for omtrent 17% av klimagassutslippene fra norske kommuner. For Stavangers del var utslippene i henhold til SSB/SFTs utslippstall, på omtrent 6%, som innebærer en betydelig nedgang i forhold til 1991.

Tabell 2.2: SSB/SFTs estimater for klimagassutslipp fra stasjonær forbrenning i industri

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>724 700</td>
<td>1 048 840</td>
</tr>
<tr>
<td>Stavanger</td>
<td>20 667</td>
<td>16 042</td>
</tr>
</tbody>
</table>

Dataene for utslipp fra stasjonær forbrenning i industri er basert på faktiske opplysninger om forbruk av energivarer i alle bedrifter med mer enn 20 ansatte. Data for mindre bedrifter er beregnet. Sett under ett antas disse tallene å være meget nær reelle utslippstall, og reflekterer ifølge SSBs egne vurderinger godt både nivå og utvikling i utslippene.

Selv om en har god oversikt over historisk utvikling på dette området, er det betydelig usikkerhet knyttet til fremskrivningene til 2010. Dette følger av forventningene om at Stavanger står foran en omfattende endring i næringsstruktur, hvor innfasing av naturgass er en uttalt målsetning både for sentrale aktører i energimarkedet og lokale
politikere. Det er imidlertid ikke gitt at store mengder av naturgassen forbrennes i Stavanger.

Stasjoner forbrenning i annen næring

Kategorien “annen næring” omfatter i hovedsak forbrenning i privat og offentlig tjenesteyting, og i primærnæringene. Disse kildene stod for litt under 12% av Stavangers klimagassutslipp i 1997.

Tabell 2.3: SSB/SFTs estimater for utslipp fra stasjonær forbrenning i “annen næring”

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>87 962</td>
<td>101 206</td>
</tr>
<tr>
<td>Stavanger</td>
<td>27 571</td>
<td>30 332</td>
</tr>
</tbody>
</table>

Utslipptallene baseres på statistikk for salg av petroleumsprodukter, og fordeles primært ved hjelp av sysselsettingsstatistik, og er derfor usikre både med hensyn til nivå og utviklingstrend.

For Stavangers del er denne kategorien en av de største stasjonære utslippskildene, og den betydelige usikkerheten er derfor influere på usikkerheten i det totale utslippsregnskapet.

Stasjonær forbrenning i husholdninger

Oppvarming av boliger bidro i 1997 til gjennomsnittlig 3% av norske kommuners klimagassutslipp. I Stavanger utgjorde utslippene vel 5% av totalen. Dette er en kraftig nedgang fra 1991 hvor tilsvarende andel var nesten 9%. Fallet i utslipp er i tråd med den nasjonale trenden, som også har falt, om enn i mindre grad enn tilfellet er for Stavanger.

Tabell 2.4: SSB/SFTs estimater for utslipp fra stasjonær forbrenning i husholdninger

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>80 815</td>
<td>52 561</td>
</tr>
<tr>
<td>Stavanger</td>
<td>22 910</td>
<td>13 566</td>
</tr>
</tbody>
</table>

Dette er avledede data som er basert på nasjonale tall for bruken av fyringsoljer, som er fordelt på fylker ut fra salgsstatistikken for petroleumsprodukter. De fylkesvise tallene er så fordelt på kommuner basert på Fylke- og boligtellingen i 1990, hvor tilgjengelige oppvarmingskilder er kartlagt. Her er det en rekke usikkerhetsmomenter. Det korrigeres ikke for klimatiske hensyn, hverken som følge av geografiske eller årlige variasjoner. I følge SSBs egne vurderinger reflektører denne statistikken ikke nødvendigvis reell utslippsutvikling i en kommune, men kilden er av relativt liten betydning for de fleste kommuners totale utslipp. Usikkerhetene knyttet til denne statistikken er noe mer uheldige for Stavanger. Dette fordi utslippene fra forbrenning i husholdningene betyr
forholdsmessig mer for de totale utslippene i Stavanger enn tilfellet er for landsgjennomsnittet.

Annen stasjonær forbrenning

Annen stasjonær forbrenning stod for en neglisjerbar andel av totale utslipp både i Stavanger.

Tabell 2.5: SSB/SFTs estimater for utslipp fra “annen stasjonær forbrenning”

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Stavanger</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Denne kategorien omfatter blant annet utslipp ved forbrenning av avfall.

SSB (Flugsrud og Haakonsen 2000) omtaler ikke denne kategorien spesifikt. Utslippene er imidlertid små slik at usikkerhet i nivået får liten innvirkning på det totale regnskapet for Stavanger.

Estimerte utslipp for år 2000

Utslipp fra forbrenning er direkte knyttet til forbruket av fossile brensel, som for stasjonære formål domineres av fyringsoljer og parafin. Salget av lett fyringsolje og parafin i Rogaland lå i år 2000 omkring 15% under nivået for 1997. Utviklingen for Stavanger kan ikke uten videre forventes å overensstemme med fylkestallene i og med at de relative bidragene fra respektive utslippskilder er forskjellige. For å estimere utslippene for Stavanger har vi derfor valgt å ta utgangspunkt i salgstall for Rogaland for den enkelte kjøpegruppe basert på tall fra Norsk Petroleumsinstitutt. Vi har valgt å gruppere kjøpegruppene, og relatere dem til utslippskategoriene som følger:

- Utslippskategori → Kjøpegruppe
 - Industri
 - Husholdninger
 - Annen næring
- Kjøpegruppe → Industri, bergverk og kraftforsyning
 - Boliger/varmeforsyning
 - Primærnæring, og offentlig og privat næring

Utviklingen i kategorien “Annen stasjonær forbrenning” antas å være neglisjerbar.

Tabell 2.6: Oversikt over beregnede utslipp fra stasjonær forbrenning i Rogaland, og estimert utslipp for Stavanger i år 2000

<table>
<thead>
<tr>
<th></th>
<th>Utslipp Rogaland i tonn CO₂</th>
<th>Endring</th>
<th>Utslipp Stavanger i tonn CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industri, stasjonær</td>
<td>89 855</td>
<td>66 109</td>
<td>-26 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annen næringer</td>
<td>43 646</td>
<td>34 268</td>
<td>-21 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husholdninger</td>
<td>53 450</td>
<td>31 842</td>
<td>-40 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annen stasjonær forbrenning</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>186 951</td>
<td>132 218</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I og med at vi her må basere oss på ulike typer regnskap som foreligger på ulike format er det betydelig usikkert knyttet til fordelingen mellom de ulike utslippskildene/kjøpegruppene. Det poengteres også fra Norsk Petroleumsinstitutt at det må forventes en usikkert knyttet kjøpegruppens forbruksformål. Med andre ord kan eksempelvis deler av det som i salgsstatistikken registeres for stasjonært forbruk, i realiteten bli brukt til transportformål. Vi antar likevel at denne usikkerheten har større betydning i områder med større innslag av primærnæringer.

Det totale nivået er også noe usikkert som følge av at Stavangers utslipp fra stasjonær forbrenning i større grad enn for landsgjennomsnittet stammer fra kilder hvor SSB har usikre tall. I det totale utslippsregnskapet viser det seg imidlertid at utslipp fra stasjonær forbrenning utgjør en forholdsvis liten del, slik usikkerhetene i seg selv vil bety forholdvis lite.

Fremskrivninger til 2010

Omfanget av stasjonær forbrenning påvirkes av en rekke faktorer, hvor noen av de viktigste er klimatiske forhold, demografisk og økonomisk utvikling, samt konkurranseforholdet mellom fossile brensel og elektrisitet.

2000 var mildest med 3033 graddager. Forutsatt at andre faktorer ikke endres antas klimaavhengig energiforbruk å vokse direkte proporsjonalt med antall graddager.

Middelverdien for graddagtallene i perioden 1971-2000 ligger vel 4% under normalen, mens det for perioden 1991-2000 ligger over 7% lavere. Tar vi utgangspunkt i Sintef Energiforsknings tall for formålsdeling av den totale energibruken i bygningsmassen, og forutsetter at forbruket av fossilt bremsel til kjøleformål m.m kan neglisjeres, får vi følgende formålssammensetning:

Figur 2.5: Estimert fordeling for fossile brensel anvendt i stasjonær forbrenning.

Som Figur 2.5 viser vil storparten av stasjonært forbruk av fossile brenser påvirkes av klimatiske forhold.

Tabell 2.7: Estimert antall graddager basert på normalen (1961-1990), og RegClims fremskrivning av temperaturer for Vestlandet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vår</td>
<td>0,9</td>
<td>0,36</td>
<td>3487</td>
</tr>
<tr>
<td>Sommer</td>
<td>0,7</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>Høst</td>
<td>1,1</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>Vinter</td>
<td>1,2</td>
<td>0,48</td>
<td></td>
</tr>
</tbody>
</table>

Som det fremgår av tabellen har det har snittet for antall graddager de siste 20 årene ligget omtrent 4% under normalen for 1961-1990. Videre antar vi at klimaendringen fortsetter slik at vi i 2010 har ytterligere 4% færre graddager.

Om vi på bakgrunn av Figur 2.5 antar at respektive 71%, 94%, og 79% av den stasjonære forbrenningen i kategoriene “husholdninger”, “industri” og “annen næring” er klimaavhengig, kan vi korrigerende forbruket etter følgende linning:

\[
\text{Forbruk}_{\text{korrigeret}} = (1 - x) \cdot \text{Forbruk}_{1991} + x \cdot \text{Forbruk}_{1997} \cdot \frac{\text{graddager}_{1997}}{\text{graddager}_{1991}}
\]

Der \(x \) er den klimaavhengige andelen av forbruket. Forbruket er her korrigeret med 1991 som basisår, (ofte korrigeres det heller med hensyn til normal-verdier).

Når 1997-utslippene er korrigeret for klimaforskjellen, får vi følgende resultater:

Tabell 2.8: Endring i utslipp fra stasjonær forbrenning korrigeret for klimavariasjon.

<table>
<thead>
<tr>
<th>Utslippskategori</th>
<th>Årlig prosentvis endring 1991-1997</th>
<th>Klimakorrigeret</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reelt</td>
<td></td>
</tr>
<tr>
<td>Industri, stasjonær</td>
<td>-4,1</td>
<td>-4,7</td>
</tr>
<tr>
<td>Annen næring</td>
<td>1,6</td>
<td>1,1</td>
</tr>
<tr>
<td>Husholdninger</td>
<td>-8,4</td>
<td>-8,8</td>
</tr>
</tbody>
</table>

En mulig forklaring på det reduserte oljeforbruket kan være at behovet for spisslast har blitt redusert som følge av mildere vintre. En forbruker som kun fyrer med olje/parafin når det elektriske anlegget ikke strekker til vil dermed få en større reduksjon i oljeforbruket enn endringen i energiforbruket skulle tilsi. Dette understøttes til en viss grad av at salg av parafin og fyringsolje på landsbasis steg markant fra 1995 til 1996 for månedene januar og februar, samtidig med at det ble satt nye rekker i strømforbruk.²

Det er lite som tilsier at petroleumsprodukter vil styrke sin markedsposisjon i forhold til elektrisitet, med mindre kraftprisene øker betydelig og ligger høyt over lengere tid. De lave investeringskostnadene knyttet til elektrisk oppvarming gjør at trenden vel så gjerne kan bli en ytterligere redusert markedsandel.

For kategorien “annen stasjonær forbrenning” har vi imidlertid valgt en alternativ fremskrivning basert på at antakelsen om at det vil komme et forbrenningsanlegg for avfall før år 2010. Energos ASA har foretatt analyser av miljøkostnadene knyttet til et eventuelt avfallsforbrenningsanlegg på Forus. I disse beregningene er det foretatt estimat av CO₂-potensialet i restavfallet som vil kunne brennes. Det antas at alt brennbart restavfall i IVAR-regionen brennes (Olsen og Larsen 1999). Dette er estimert til 36 000 tonn per år, og CO₂-potensialet knyttet til plastfraksjonen av avfallet er estimert til 0,28 tonn CO₂ per tonn avfall. Dette gir totalt 10 080 tonn CO₂. SSB har i

² Merk: I januar 1996 hadde høyt energiforbruk og lite nedbør ennå ikke resultert i lavere produksjonskapasitet i kraftverkene enn normalt.
sine framskrivninger av avfallsmengder i Norge kommet frem til at mengden nærings- og husholdningsavfall vil øke med 31% fra 1995 til år 2010, (Bruvoll og Ibenholt, 1999). I vår fremskrivning av utslipp fra anlegget på Forus antar vi at denne utviklingen også gjenspeiler seg i tilsvarende økte avfallsmengder til forbrenning. Det er videre forutsatt at halvparten av denne veksten allerede er tatt ut i Energos beregninger, slik at vi i forhold til de 10 080 tonn CO₂ beregnet ut fra Energos tall, kan forvente å ligge 15 % høyere i 2010. Dette gir et forventet utslipp fra avfallsforbrenning som sorterer under kategorien “annen stasjonær forbrenning”, på 11 600 tonn CO₂.

![Diagram av utslipp fra forskjellige kategorier](image)

Figur 2.7: Resultat av fremskrivninger for utslipp fra stasjonær forbrenning

2.3.2 Prosessutslipp

Prosessutslipp omfatter alle stasjonære utslipp som ikke er knyttet til direkte forbrenning. Underkategorier er

- Industri
- Deponi
- Landbruk
- Annet

Industriprosesser

For Stavangers del er denne typen utslipp i følge SSBs statisitikk, neglisjerbar. Dette kan imidlertid endres dramatisk dersom nytt næringsliv baseres på naturgass som råvare og energikilde.
Tabell 2.9: SSB/SFTs estimater for klimagassutslipp fra industriprosesser i Rogaland og Stavanger

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO2-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>646 037</td>
<td>706 315</td>
</tr>
<tr>
<td>Stavanger</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Deponi

Stavanger kommune deponerer avfallet sitt på Sele avfallsplass som ligger i Sola kommune. Dette innebærer at utslipp av metan som følge av avfallsgenerering i Stavanger kommune ikke reflekteres i tallene tilrettelagt av SSB/SFT i klimakalkulatoren, og utslippene blir dermed uforholdsmessig lave, jmf. Tabell 2.10

Tabell 2.10: SSB/SFTs estimater for klimagassutslipp fra deponi i Rogaland og Stavanger

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO2-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>377 106</td>
<td>412 219</td>
</tr>
<tr>
<td>Stavanger</td>
<td>337</td>
<td>293</td>
</tr>
</tbody>
</table>

Utslipp fra avfallsdeponier beregnes etter en egen modell for nasjonalt nivå. Nasjonale tall inkluderer både eksisterende og nedlagte deponier.

Utslipp fra deponier for industriavfall beregnes ut fra sysselsettingstall innenfor treforedling og trelast. Dette gjøres fordi SSB mangler informasjon om hvor slike deponier finnes.

Med andre ord kan utslippstallene fra SSB for kommunale avfallsdeponier, antas å reflektere reelle endringer over tid, men nivået er usikkert. Utslipp fra eventuelle fyllinger for industriavfall er usikre både med hensyn til utviklingstrend og nivå. Sett under ett vil dermed dataene for avfallsdeponiene gitt i SSB/SFTs klimakalkulator bare delvis reflektere reelle endringer i utslippene.

Det er uansett vanskelig å få et sikkert estimat over utslippene knyttet til deponering fra år til år. Dette skyldes foruten de faktorene som allerede er nevnt:
• At det er betydelig usikkerhet knyttet til hvor mye metan avfallet faktisk genererer,
• At inndeling i avfallsfraksjoner anvendt i lokalt regnskap er forskjellig fra det som SFT anvender
• At regnskapet for næringsavfall er delvis mangelfullt

Beregning av teoretisk potensiale for utslipp basert på SSB/SFTs metoder blir dermed usikre. Videre vil utslippene spres over flere år ettersom nedbrytningen av avfallet er en langsom prosess. Utslipp fra Sele vil kunne foregå i opp til 50-60 år etter at deponeringen er avsluttet.

Vi har valgt å foreta egne beregninger for deponiutslipp knyttet til avfall generert i Stavanger.

Sammensetningen av avfallet som deponeres er av stor betydning for klimagasspotensialet. Potensialet er relatert til den nedbrytbare mengden organisk karbon. I prinsippet er det derfor å foretrekke at beregninger gjøres for de enkelte avfallsfraksjonene, men her mangler det tilstrekkelig gode data i form av tidsserier for deponerte mengder av en enkelte fraksjon. Vi må derfor basere oss på data og tilgjengelige tidsserier derfor deponerte mengder av den enkelte fraksjon. Vi må derfor basere oss på tidsserier for hovedkategorien husholdningsavfall og næringsavfall. Det finnes rimelig god statistikk for deponering av husholdningsavfall i og med at denne delen er et kommunalt ansvar.

I mangel på bedre alternativer har vi valgt å anta at næringsavfallet fordeles proporsjonalt med kommunalt avfall, og at avfall fra Stavanger deponert andre steder enn på Sele er neglisjebart. Disse forutsetningene tilsier at Stavanger er ansvarlig for omtrent halvparten av deponigassutlippene fra Sele fyllplass. Stavanger tilordnes derfor halvparten av de utslipp av deponigass som vi har beregnet for Sele fyllplass, basert på deponerte mengder nærings- og husholdningsavfall. Avfallsdataene vi baserer oss på er skaffet til veie av IVAR.

Figur 2.8: Årlig beregnet utslipp fra deponi, og potensielt klimagasspotensial knyttet til deponert husholdningsavfall fra Stavanger kommune
For næringsavfall er det imidlertid ikke mulig å skaffe til veie sikre tall på kommunenivå. Her er det bare den totale mengden for det enkelte deponi som er tallfestet.

Figu 2.9: Årlig beregnet utslipp fra deponi, og potensielt klimagasspotensial knyttet til deponert næringsingsavfall fra Stavanger kommune

Totale utslipp fra Stavangers deponering av husholdnings- og næringsavfall er gitt i Tabell 2.11.

Tabell 2.11: Utslipp fra deponi

<table>
<thead>
<tr>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>1991</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogaland</td>
<td>377 106</td>
<td>412 219</td>
</tr>
<tr>
<td>Stavanger</td>
<td>53 451</td>
<td>94 691</td>
</tr>
</tbody>
</table>

Tall for Stavanger er beregnet ut fra deponerte avfallsmengder på Sele fyllplass. Tall for Rogaland er hentet fra SSB/SFTs klimakalkulator.

Landbruk

Landbruk sto i 1997 for vel 3% av Stavangers klimagassutslipp. Dette er en kategori hvor utslippene er forholdsvis stabile, gitt som funksjon av husdyrholdet.

Tabell 2.12: SSB/SFTs estimater for klimagassutslipp fra landbruk

<table>
<thead>
<tr>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
</tr>
<tr>
<td>Rogaland</td>
<td>695 204</td>
</tr>
<tr>
<td>Stavanger</td>
<td>9 151</td>
</tr>
</tbody>
</table>

Utslipp fra prosesser i landbruket består primært av metan og lystgass. Metanutslippet er i all hovedsak knyttet til husdyr. Kommunefordeling av utslippene baseres på antall
dyr veiet med koeffisienter for mage/vom-gjærutslipp i tonn per dyr per år for det spesifikke husdyrslaget. Utslipp av metan og lysgass fra husdyrgjødsel er fordelt på tilsvarende måte med antall dyr i kommunen veiet med koeffisienter for det enkelte dyreslag. I tillegg til utslipp fra husdyr vil det frigjøres noe lysgass ved oppdyrking av jord, fordampning m.m.

Kommunefordelte tall for utslipp fra jordbruket oppdateres årlig, og antas å være relativt pålitelige. De forventes å gi et godt bilde av utviklingen over tid.

Andre prosessutslipp

Dette er prosess- og fordampningsutslipp fra løsemiddelbruk, bensindistribusjon, kloakk og anestesi. Utslippene antas i henhold til SSB å stå for nær 2% av totale utslipp i kommunen.

Tabell 2.13: SSB/SFTs estimer for klimagassutslipp fra”andre prosessutslipp”

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO2-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>22 490</td>
<td>23 897</td>
</tr>
<tr>
<td>Stavanger</td>
<td>5 041</td>
<td>4 922</td>
</tr>
</tbody>
</table>

Kategorien “andre prosessutslipp” er hovedsakelig kommunefordelt ut fra sysselsettingstall, noe som gir betydelig usikkerhet både knyttet til nivå og trend for utslippene i den enkelte kommune. Mange og små kilder gjør det imidlertid vanskelig å komme frem til bedre estimater på en kostnadseffektiv måte.

Estimat for år 2000

Metanpotensialet fra deponi reduseres betydelig ved å sortere ut fraksjoner som papir og trevirke. Per i dag mangler dessverre en god statistikk over innholdet i restavfallet som går til deponi, men dersom slike tall kan skaffes til veie vil det være mulig å foreta grundigere analyser av utslippspotensialet, jmf vedlegg 3. Her har vi imidlertid valgt å nøyde oss med beregninger gjort på bakgrunn av IVARs statistikk og fremskrivninger for deponert husholdnings- og næringsavfall på Sele fyllplass.

Fremskrivninger til 2010

For de andre kategoriene er det antatt at observert utvikling i perioden 1991-1997 fortsetter frem til 2010, dvs med samme gjennomsnittlige prosentvise endring per år.

![Diagram](image)

Figur 2.10: Resultat av fremskrivninger for utslipp fra stasjonære prosesser.

2.4 Utslipp av klimagasser fra transportsektoren

2.4.1 Veitrafikk

Veitrafikk er den viktigste kilden til utslipp av klimagasser i Stavanger kommune. I 1997 stammet omtrent 65% av totale utslipp fra biltransport. Utslippmengden er likevel betydelig under landsgjennomsnittet.

Tabell 2.14: SSB/SFTs estimater for klimagassutslipp fra veitrafikk

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO₂-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>624 239</td>
<td>700 433</td>
</tr>
<tr>
<td>Stavanger</td>
<td>157 485</td>
<td>169 755</td>
</tr>
</tbody>
</table>

Kommunefordelingen av utslipp fra veitrafikk gjøres med utgangspunkt i tre fordelingsnøkler for henholdsvis lette bensinbiler, lette dieselbiler og tunge kjøretøy, samt egne nøkler for mopeder og motorsykler. Hovedgrunnlaget for fordeling av utslipp er data fra Vegdatabanken, (VDB). Herfra henter SSB samlet trafikkarbeid på riks- og fylkesveier fordelt på kommune og på tunge/lette kjøretøy. Rådata foreligger som lengde og ÅDT for omtrent 25 000 veilenker. Eldre data kan være noe usikre, se vedlegg C i SSBs notat.
Utover dette kommer trafikken på kommuneveiene, som antas å utvikle seg proporsjonalt med utviklingen på riks- og fylkesveier. Samlet trafikkarbeid på kommuneveiene beregnes ved å ta differansen mellom trafikkarbeidet i alt beregnet av transportøkonomisk institutt, og trafikkarbeidet på riks- og fylkesveier i henhold til Vegdatabanken.

Dataene som hentes fra SSB/SFTs klimakalkulator antas å være robuste for store kommuner med mye trafikk, og bør i så måte gi pålitelige tall for Stavanger kommune. Tallene antas å gi et riktig bilde av utviklingstrenden.

2.4.2 Skip og båter

Denne kategorien står i følge SSB for omtrent 3% av Stavanger utslipp av klimagasser.

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO₂-ekvvalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>44 104</td>
<td>50 562</td>
</tr>
<tr>
<td>Stavanger</td>
<td>7 122</td>
<td>8 160</td>
</tr>
</tbody>
</table>

Kommunefordelingen av tallene er konstant, basert på utslippstall fra 1993. Endringer i tallene fra år til år gjenspeiler derfor bare endringene på nasjonalt nivå. SSB antar at skipsbevegelser i havnedistriktene vil være relativt stabile fra år til år, men poengter at endringer i bilfergesamband kan ha stor betydning uten at det fanges opp i denne modellen. Et prosjekt gjennomført i år 2000 har til hensikt å forbedre kommunefordelingen.

Dette er et område hvor endinger i Stavanger kommunes næringsstruktur vil kunne gi store utslag på utviklingstrenden i årene som kommer. Innflytelsen på den totale mengden av klimagasser blir imidlertid forholdsvis liten. Dersom Stavanger kommune også belastes en viss andel av utslipp fra utenrikstrafikken blir bildet et annet.
2.4.3 Luftfart

Det er ingen flyplass i Stavanger kommune, og dermed heller ikke registrert noe utslipp fra fly. Befolkning og næringsliv i kommunen står imidlertid for en stor andel av trafikken fra Stavanger lufthavn Sola, og et utslippsregnskap for denne trafikken er vesentlig i et datagrunnlag for estimering av økologisk rom e.l.

Kommunetallene for Sola inneholder kun utslipp for luftfart under 100 meter over bakken. Resten av utslippene kommunefordeles ikke av SSB/SFT. De nasjonale utslippstallene (under 100 meters høyde) kommunefordeles etter antall landinger og avganger (LTO), hvor det skilles mellom store fly, privat-/flyklubb-/skolefly, helikopter, militær aktivitet og utenriks LTO. Kommunefordelingen antas av SSB å være usikker, men trenden antas å gjenspeile reell utvikling.

Utslipp fra utenlandsreiser er også estimert på bakgrunn av midlere reisehyppighet for Rogaland. Denne er brukt til å beregne Rogalands andel av total mengde norske utenlandsreiser, som er estimert i personkm. Stavangers andel av personkm er igjen beregnet ut fra folketallet. Totalt ga dette et utslipp på omtrent 41 000 tonn CO2.

Vi har derfor antatt at Stavangers befolkning i sum bidro til utslipp av 72 000 tonn CO2 som følge av innenlands og utenlands flyreiser, (unntatt militær luftfart og helikoptertrafikk). Hille (kap 3) har beregnet utslippene samme år til 94 000 tonn CO2, noe som understreker usikkerheten i denne type beregninger. Tabell 2.16 og 2.17 viser utslippene ut fra de ulike anslagene.

Utslipp av vanndamp og NOx i store høyder antas også å gi en betydelig drivhuseffekt, som ikke reflekteres i det vanlige regnskapet for klimagasser. FNs klimapanel IPCC opererer med en såkalt Radiative Forcing Index, (RFI), en faktor som relaterer den totale klimaefekten av utslipp fra fly til flyenes utslipp av CO2. IPCCs anbefalte RFI-verdi for subsoniske fly er 2,7. Dette er imidlertid en verdi som det er knyttet meget stor usikkerhet til. Det faktiske forholdet mellom utslipp av CO2, og den totale klimaefekten vil variere i meget stor grad, både fra flyrute til flyrute, og til en viss grad fra flyvning til flyvning, som følge av atmosferiske variabler. Selv om usikkerheten er betydelig ser en RFI verdi på 2,7 ut til å være et forholdsvis konservativt anslag. Referanse: IPCC 1999.

Dette gir grunnlag for å lage noen estimator for hvor store klimagassutslipp som innbyggerne i Stavanger bidrar til gjennom sine flyreiser (tabell 2.16). Utgangspunktet for prognosen for 2010 er Transportøkonomisk institutt sine anslag for vekst i norsk
luftfart, som i 2000 ble satt til 3,3% per år. Dette er ut fra dagens trafikk et noe høyt anslag.

Tabell 2.16: Utslip fra luftfart for Stavanger kommune (lavt anslag)

<table>
<thead>
<tr>
<th>Kilde til utslipp</th>
<th>Utslipp i tonn CO2-ekvivalenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly – direkte</td>
<td>52 000</td>
</tr>
<tr>
<td>Fly – indirekte</td>
<td>89 000</td>
</tr>
<tr>
<td>Fly – totalt</td>
<td>141 000</td>
</tr>
</tbody>
</table>

Tabell 2.17: Utslip fra luftfart for Stavanger kommune (høyt anslag)

<table>
<thead>
<tr>
<th>Kilde til utslipp</th>
<th>Utslipp i tonn CO2-ekvivalenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly – direkte</td>
<td>68 000</td>
</tr>
<tr>
<td>Fly – indirekte</td>
<td>116 000</td>
</tr>
<tr>
<td>Fly – totalt</td>
<td>184 000</td>
</tr>
</tbody>
</table>

2.5 Andre mobile kilder

Tabell 2.18: SSB/SFTs estimater for klimagassutslipp fra “andre mobile kilder”

<table>
<thead>
<tr>
<th></th>
<th>Utslipp av klimagasser (tonn CO2-ekvivalenter)</th>
<th>Gjennomsnittlig årlig endring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1997</td>
</tr>
<tr>
<td>Rogaland</td>
<td>83 954</td>
<td>79 564</td>
</tr>
<tr>
<td>Stavanger</td>
<td>7 077</td>
<td>9 261</td>
</tr>
</tbody>
</table>

Kommunefordelingen av utslipp fra jernbane er gitt av antall vognkilometer på hver bane med dieseldrift, oppdelt etter kommunens andel av banelengden. Rådata hentes fra NSB. Utslippstallene oppdateres årlig, og vurderes som “tilstrekkelig gode for formålet”.

2.5.1 Fremskrivninger av utslipp fra mobil forbrenning

Vi antar at klimabelastningen er omtrent proporsjonalt med trafikkutviklingen på Stavanger lufthavn Sola. I perioden 1991-1999 var gjennomsnittlig årlig vekst på 5,5%.
I perioden frem til 2010 forventer Transportøkonomisk institutt (TØI) at Stavanger lufthavn Sola vil få en midlere vekst på 3,3% per år (kilde: Denstadli 2000). Dette tilsier at klimabelastningen i 2010 svarer til over 296 000 tonn CO₂.

Årlig vekst for veitrafikk fra år 2000 er her satt til 2%. “Skip og båter” samt “andre mobile” kilder antas å ha en uendret vekstfaktor.

![Resultater av fremskrivninger for utslipp fra mobile kilder](image1)

Figur 2.11: Resultater av fremskrivninger for utslipp fra mobile kilder

2.6 Utvidet utslippsregnskap med fremskrivninger til 2010

Basert på de data og fremskrivninger beskrevet i dette notatet vil Stavangers totale utslipp øke betydelig frem mot år 2010. Økningen forventes å komme fra mobile kilder.

![Utslipp av klimagasser fra Stavanger kommune inklusiv tilordnet utslipp fra deponi og luftfart](image2)

Figur 2.12: Utslipp av klimagasser fra Stavanger kommune inklusiv tilordnet utslipp fra deponi og luftfart

Av de mobile kildene er det flytrafikken som forventes å stå for de klart største bidragene, samtidig som utslipp fra personbilstrafikken også vokser betydelig. For flytrafikken er det likevel viktig å ha i mente at det er knyttet meget stor usikkerhet til den faktiske virkningen av utslippene.
Den største reduksjonen i utslipp er knyttet til utslipp fra avfall hvor innsamling og fakling av deponigassen antas å halvere utslippene, og økende grad av gjenvinning, komposting og energiutnyttelse også forventes å gi reduserte utslipp av deponigass.

Tabell 2.18: Oversikt over det utvidede utslippsregnskapet for klimautslipp fra Stavanger kommune

<table>
<thead>
<tr>
<th>Kilde til utslipp</th>
<th>Utslipp i tonn CO₂-ekvivalenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasjonær forbrenning</td>
<td>71 149</td>
</tr>
<tr>
<td>Industri, stasjonær</td>
<td>20 667</td>
</tr>
<tr>
<td>Annen næring</td>
<td>27 571</td>
</tr>
<tr>
<td>Husholdninger</td>
<td>22 910</td>
</tr>
<tr>
<td>Annen stasjonær</td>
<td>2</td>
</tr>
<tr>
<td>Prosessutslipp</td>
<td>67 643</td>
</tr>
<tr>
<td>Industri, prosesser</td>
<td>0</td>
</tr>
<tr>
<td>Deponi</td>
<td>53 451</td>
</tr>
<tr>
<td>Landbruk</td>
<td>9 151</td>
</tr>
<tr>
<td>Andre prosessutslipp</td>
<td>5 041</td>
</tr>
<tr>
<td>Mobile kilder</td>
<td>171 684</td>
</tr>
<tr>
<td>Veitrafikk</td>
<td>157 485</td>
</tr>
<tr>
<td>Person- og varebiler</td>
<td>121 696</td>
</tr>
<tr>
<td>Lastebiler og busser</td>
<td>34 870</td>
</tr>
<tr>
<td>Moped og MC</td>
<td>919</td>
</tr>
<tr>
<td>Skip og båter</td>
<td>7 122</td>
</tr>
<tr>
<td>Andre mobile kilder</td>
<td>7 077</td>
</tr>
<tr>
<td>Fly</td>
<td>140 988</td>
</tr>
<tr>
<td>Totale utslipp</td>
<td>451 464</td>
</tr>
</tbody>
</table>
Datagrunnlaget lagt til rette av SSB/SFT er velegnet som et bidrag til utarbeidelse av statistisk grunnlag for utarbeidelse av klimaplaner. Med bakgrunn i ønsket om å introdusere begreper som økologisk rom og økologisk fotavtrykk, bør imidlertid dataene korrigeres/suppleres med bidraget kommunens befolkning og næringsliv gir til utslipp av regional karakter som eksempelvis utslipp fra interkommunale avfallsdeponier, og flytrafikk fra Stavanger lufthavn, Sola. Resultatet av en slik utvidelse av regnskapet er gitt i Figur 2.14, og må sies å gi dramatiske endringer i forhold til SSB/SFTs tall.

Figur 2.14: Sammenlikning av SSB/SFTs og utvidet regnskap som inkluderer større deler av utslipp fra luftfart og deponi

For avfallsdeponier vil det være en fordel om en gjennom det interkommunale samarbeidet kunne utvikle et regnskap/fordelingsnøkkel for utslipp relatert til avfallsgenereringen i de deltagende kommunene.

I oppfølging av en klimaplan er det vesentlig at resultater av iverksatte tiltak kan evalueres, og i så måte er tall som er avledet fra nasjonalt regnskap, og fordelt gjennom faste fordelingsnøkler ned på kommunenivå, uegnet. Ved gjennomføring av klimatiltak rettet mot stasjonær forbrenning utenom industrien, vil SSBs løpende statistikk derfor ikke være egnet for evaluering og oppfølgning på kommunenivå.

Av hensyn til tiltak rettet mot kategorier som forbrenning i bygningsmassen, eller mot sjøtransport bør det vurderes hvorvidt det kan utvikles en kommunal statistikk basert på indikatorer som fanger opp lokale endringer.

2.7 Oppsummering

Stavanger er tyngdepunktet i en region med sterker vekst i befolkning, næringsliv og økonomi. Dette er en utfordring i klimapolitikken, men gir samtidig også muligheter for utforming av nye tiltak med bedre miljøløsninger. I det følgende vil vi oppsummere status og utfordringer knyttet til direkte utslipp av klimagasser fra aktivitetene til innbyggerne i Stavanger.

I tabell 2.19 er utslippene for Stavanger gjengitt. Tabellen illustrerer viktige utviklingstrekk. For det første er utslippene fra stasjonær forbrenning redusert betydelig

Transportsektoren er den sektoren med vekst i klimagassutslippene for hele perioden. Det er først og fremst fra privatbilisme at utslippene øker, men befolkningsveksten gir også økte utslipp fra busser og lastebiler.

Tabell 2.19: Klimaregnskap for Stavanger kommune

<table>
<thead>
<tr>
<th>Kilde til utslipp</th>
<th>Utslipp i tonn CO2-ekvivalenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasjonær forbrenning</td>
<td>71 149</td>
</tr>
<tr>
<td>Prosessutslipp</td>
<td>67 643</td>
</tr>
<tr>
<td>Mobile kilder</td>
<td>171 684</td>
</tr>
<tr>
<td>Totale utslipp</td>
<td>311 476</td>
</tr>
</tbody>
</table>

Ut fra beregningsmetodene til SSB/SFT er det et utslippsområde som ikke fanges opp av statistikken, og det er utslippene i forbindelse med flyreiser. Vi har på bagrunn av statistikk over flyreiser til/fra Stavanger gjort beregninger av hvilke utslipp innbyggerne i kommunen er med å bidra til. Tallene er usikre, bl.a. fordi datagrunnlaget for beregningen av Stavangers andel er usikre (se også kap. 3). Vi har likevel valgt å ta dem med fordi de viser et nivå, og de gir perspektiver på en mulig utvikling.

Utslippene er både direkte CO₂-utslipp fra flyene, og indirekte gjennom utslipp av vanndump og NOₓ i store høyder. I tabell 2.20 er tallene for flytrafikk lagt til de andre tallene, og det forsterker inntrykket av at transportområdet er den store utfordringen for Stavanger. Hvis veksten i flyreiser blir så stor som TØI har antatt (3,3% per år), er det særlig luftfart som er den store utfordringen når det gjelder vekst i klimagassutslippene.

Tabell 2.20: Korrigert klimaregnskap for Stavanger kommune

<table>
<thead>
<tr>
<th>Kilde til utslipp</th>
<th>Utslipp i tonn CO2-ekvivalenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly – direkte</td>
<td>68 000</td>
</tr>
<tr>
<td>Fly – indirekte</td>
<td>116 000</td>
</tr>
<tr>
<td>Fly – totalt</td>
<td>184 000</td>
</tr>
<tr>
<td>Totale utslipp</td>
<td>495 476</td>
</tr>
</tbody>
</table>
Ut fra denne gjennomgangen kan en stille spørsmål ved hvordan Stavanger gjør det i forhold til den norske Kyoto målsetningen. Tabell 2.21 illustrerer at kommunen med en vekst på 23% ligger på landsgrenomsmittet i 2010, mens tallene for 2000 indikerer en vesentlig bedre situasjon enn for landet totalt sett. Trekker en inn tallene for luftfart kommer Stavanger klart dårligere ut enn landsgrenomsmittet, men her må en ta det forbehold at denne måten å beregne klimagassutslipp i er vanlig.

Tabell 2.21: Vekst i utslippene av klimagasser (utgangspunkt 1991)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utslipp uten flyreiser</td>
<td>8,4%</td>
<td>23,3%</td>
</tr>
<tr>
<td>Utslipp med flyreiser</td>
<td>21,6%</td>
<td>55,5%</td>
</tr>
</tbody>
</table>

Tabell 2.22: Utslipp per innbygger (i tonn og %)

<table>
<thead>
<tr>
<th></th>
<th>1991</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utslipp uten flyreiser (tonn)</td>
<td>3,19</td>
<td>3,10</td>
<td>3,24</td>
</tr>
<tr>
<td>Endring i prosent</td>
<td>-</td>
<td>-2,8%</td>
<td>+1,5%</td>
</tr>
<tr>
<td>Utslipp med flyreiser</td>
<td>5,08</td>
<td>5,60</td>
<td>6,50</td>
</tr>
<tr>
<td>Endring i prosent</td>
<td>+10,2%</td>
<td>+28%</td>
<td></td>
</tr>
</tbody>
</table>

Denne gjennomgangen illustrerer flere viktige poeng:

• Stavanger har oppnådd gode resultater når det gjelder tiltak på avfallssektoren. Her har en oppnådd reduksjoner av utslippene og dette vil forsterkes i årene som kommer.

• Bruken av fossilt brensel har gått klart ned fra 1991 til 2000, og dette har redusert utslippene av klimagasser. Noe av reduksjonen er knyttet til klima og prisforhold, men det er trolig et betydelig potensiale for å redusere bruken av olje og parafin til oppvarming.

• Transportssektoren er den viktigste utfordringen fremover. Alle prognoser viser klar økning i utslippene frem til 2010. Er prognosene riktig ligger det særlig store utfordringer knyttet til luftfart, men på dette området er det nasjonale myndigheter som har de beste virkemidlene.
3 Indirekte energiforbruk og indirekte klimagassutslipp

3.1 Innledning

Mengden energi som forbrukes innenfor Stavangers kommunegrense kan dels måles, dels estimeres med en beskjeden feilmargin. Den utgjør ca. 3 TWh (litt under 11 petajoule) årlig. Klimagassutslippene kan også estimeres med en litt større relativ feilmargin, og har utgjort ca. 260.000 tonn CO₂-ekvivalenter årlig på 1990-tallet.

I en by av Stavangers type, der det finnes relativt lite industri og så å si hele vareforbruket blir tilført utenfra, må en regne med at det indirekte importen av energi er betydelig større enn eksporten. Dette gjelder i enda høyere grad om klimagassutslippene, ettersom den vare- og tjenesteproduksjonen som skjer i Stavanger for ytre markedet i stor grad drives med vannkraftbasert elektrisitet, mens varene som tilføres, i hovedsak er produsert ved hjelp av fossile brensel (og til dels har medført utslipp av flere klimagasser enn CO₂).

Det faktum at energiforbruket blir større når en retter for indirekte import og eksport, er i seg selv av interesse om en vil sammenlikne energiforbruket per hode med det i andre byer eller områder, eller med et antatt bærekraftig nivå. Dette forholdet blir drøftet i notatet “Det økologiske rommet – og Stavangers økologiske andel”.

3.2 Nærmere om begrepene

Begrepene “indirekte import” og “indirekte eksport” av energi har til nå oftest vært brukt om strømmer inn og ut av land. Slike strømmer har blitt beregnet for en rekke land, deriblant Norge. Når den indirekte importen er lagt til og eksporten trukket fra det
energiforbruket som framgår av landets energibalanse, får vi et resultat - forbruket korrigert for indirekte import og eksport - som heretter for enkelhets skyld blir kalt *det korrigerte forbruket*. Dette kan beregnes enten på sluttbruksnivå eller som primært energiforbruk.

Begrepet “indirekte forbruk” av energi har ofte vært knyttet til individer eller husholdninger. I dette tilfellet defineres det *direkte* forbruket som energiinnholdet i de *energivarene* husholdningen selv kjøper - for eksempel strøm til huset og bensin til bilen, som i Norge oftest er de to dominerende postene. Det indirekte forbruket er da den energien som går med til å produsere alle andre varer og tjenester husholdningen forbruker.

I tillegg til husholdningene, finnes det to andre *sluttførbrukere* av varer og tjenester i et samfunn, nemlig offentlig sektor og frivillige organisasjoner. (Bedrifter er aldri sluttførbrukere: de selger per definisjon varer og/eller tjenester til andre). I likhet med husholdningene, har forvaltningen og de frivillige organisasjonene både et direkte og et indirekte forbruk av energi.

Summen av det direkte og det indirekte energiforbruket til husholdninger, frivillige organisasjoner og forvaltningen i et land er definisjonsmessig lik det samme landets korrigerte energiforbruk, siden det ikke finnes andre mulige sluttførbrukere. All energi som bedriftene i landet har brukt, har enten gått med til å produsere varer og tjenester som i siste instans kommer en av de forbrukende sektorene til nytte, eller i motsatt fall til eksportproduksjon, som trekkes fra det korrigerte forbruket. Alle varer og tjenester landet importerer, forbruker enten direkte av husholdningerne, frivillige organisasjoner eller forvaltningen, eller de brukes av landets bedrifter til å produsere noe annet for de hjemlige forbrukende sektorene, eller de brukes i eksportproduksjon og forsvinner ut igjen av det korrigerte energiforbruket.

Det som er sagt om indirekte import, eksport og forbruk av energi kan også overføres til utslipp av klimagasser. Stavangers indirekte utslipp av klimagasser er dem som oppstår under produksjon av varer og tjenester som forbrukes av husholdninger, frivillige organisasjoner og forvaltning i Stavanger (med det samme forbeholdet vedrørende forvaltningen som ovenfor). De korrigerte utslippene framkommer ved å legge dette til
de registrerte (direkte) utslippene fra Stavangers område, og trekke fra de utslippene som oppstår i Stavanger gjennom produksjon for ytre markeder.

3.3 Beregning av indirekte energiforbruk og korrigert energiforbruk

I begge tilfeller kan en velge mellom to metodiske hovedgrep: et økonomisk eller et fysisk. Den økonomiske metoden bygger på såkalt input-outputanalyse (IO-analyse). Da tar en utgangspunkt i pengeverdien av varene og tjenestene som importeres og eksporterer, alternativt pengeverdien av det som forbrukes (fra nasjonalregnskapet eller fra forbruksundersøkelser). Energiforbruket “bak” for eksempel et forbruk av biler for 10 milliarder kroner beregnes ved hjelp av kryssløpstabeller som viser hvor mye ulike sektorer i en økonomi kjøper av andre sektorer når de øker sin produksjon med x kroner. Disse kan for eksempel vise at når bilindustrien produserer for 10 milliarder, utløser det kjøp for 1 milliard fra stålindustrien og 100 millioner fra gummivareindustrien. Dette utløser igjen (blant mye annet) leveranser for 100 millioner fra malmgruver til stålindustrien og for 10 millioner fra gummiplantasjer til gummivareindustrien. Vet man så i tillegg hvor mye energi bilfabrikanter, stålverk, malmgruver, gummivarefabrikanter, gummiplantasjer osv. bruker for hver million kroner av omsetningen, kan en datamaskin summere energiforbruket som knytter seg til produksjon av “biler for 10 milliarder”.

Den fysiske metoden bygger derimot på fysiske tall og prosessanalyse av produksjonen. I stedet for å ta utgangspunkt i at det ble kjøpt biler for kr. 10.000.000.000, begynner en med opplysningen om at det ble kjøpt for eksempel 100.000 biler. Prosessanalyser (eller mer omfattende livslopassyntese) kan ha vist hvor mye energi som brukes til å produsere de ulike materialene som inngår i en gjennomsnittlig bil, til å sette delene sammen, frakte alt mellom de ulike produksjonsstedene og frakte den ferdige bilen til salgsstedet, samt hvor mye energi en bilforhandler bruker per solgt bil.

Begge metodene støter på betydelige problem. De økonomiske sektorene som inngår i eksisterende kryssløpsmodeller er aldri finmaskede nok for formålet (i stedet for en sektor som heter “gummiplantasjer” kan en for eksempel ha en sektor som heter “jordbruk”). Kryssløpsmodeller er så å si utelukkende nasjonale, hvilket medfører at de norske modellene for eksempel ikke bare mangler gummiplantasjer, men også bilindustri. Og de energiintensitetene (tall for energiforbruk per produsert enhet) som knyttes til ulike sektorer, bygger på historisk erfaring som ofte er foreldet på analysetidspunktet.

Den fysiske tilnærmingen fordrer på sin side ideelt at en har tilgang til detaljerte og oppdaterte prosessanalyser for titusener av ulike vare- og tjennesteslag. De finnes ikke,
og dermed blir en henvist både til slutninger fra kategorier der slike analyser foreligger, til andre kategorier “som likner”, og til andre metodiske grep ad hoc. Til tross for at analysen dermed kan framstå som metodisk uryddig, kan den gi vel så gode resultat som en IO-analyse. Problemet med de titusener av ulike produkt reduseres nemlig vesentlig ved at et lite mindretall av disse normalt står for den overveiende delen av energiforbruket, og ved at den overveiende delen av energiforbruket bak mange varer knytter seg til produksjonen av materialene i dem. Vet man hvor mange tonn bomullsplagg et land importert, kan det gi et fornuftig anslag for det tilhørende energiforbruket uten at en trenger særskilte analyser av skjorter, bukser, kjoler mm.

I valget mellom å ta utgangspunkt i import/eksportstatistikk og forbruksstatistikk, byr det første på en vesentlig fordel dersom målet bare er å finne fram till ett tall for det korrigerte energiforbruket. De fleste land, inkludert Norge, fører en svært detaljert statistikk over eksport og import både i verdi og i fysiske enheter. Forbruksstatistikken i nasjonalregnskapet er langt mer grovmasket hva gjelder husholdninger og frivillige organisasjoner, og nesten ubrukelig hva gjelder forvaltningen. I Norge finnes mer detaljerte opplysninger om husholdningenes forbruk fra Statistisk Sentralbyrås Forbruksundersøkelser. Men felles for disse statistikkskildene er at de (med visse unntak i det siste tilfellet) bare oppgir forbruket i pengeverdi. Vil en utføre en analyse basert på data om forbruket målt i fysiske enheter, må dataene hentes fra vidt ulike kilder.

Dersom en ikke bare ønsker å finne et lands korrigerte energiforbruk, men å bli klar over hvor mye ulike deler av det private og offentlige forbruket (mat, klær, boliger osv..) bidrar til totalen, er det imidlertid ingen veg utenom å ta utgangspunkt i forbruksstatistikk.

Når vi vil anslå det indirekte energiforbruket til sluttforbrukerne i en kommune, står vi overfor helt andre dataproblem enn når det gjelder et land. Det er ikke mulig å bygge på import- og eksportstatistikk. Ei heller finnes det i utgangspunktet noen samlet forbruksstatistikk. Dersom ressursene tillater det, kan det siste løses ved å gjennomføre en egen forbruksundersøkelse i kommunen.

I motsatt fall er den beste mulige løsningen å ta utgangspunkt i en analyse av det indirekte energiforbruket på nasjonalt nivå, der dette er brutt ned på forbrukskategorier. Som første anslag kan en anta at det indirekte energiforbruket per capita er det samme i kommunen som i landet som helhet. Dette anslaget kan dernest korrigeres ved å gjennomgå de opplysningene som tross alt finnes om forbruket av ulike vare- og tjenesteslag i kommunen, og annen statistikk (for eksempel om inntektsnivå) som kan indikere om det er sannsynlig at forbruket per capita avviker fra det nasjonale gjennomsnittet. Det er denne metoden som blir brukt nedenfor.

3.4 Beregning av indirekte utslipp

Beregning av indirekte eller korrigerte klimagassutslipp er én grad vanskeligere enn å beregne indirekte energiforbruk. Når det gjelder energirelaterte utslipp av CO₂, forutsetter en slik beregning at en innfører anslag for hvordan det indirekte energiforbruket (eller -importen og -eksporten) fordeler seg på energibærere, og hvordan den delen som består av elektrisitet er generert (andeler kull-, olje- og gasskraft
og virkningsgrad i kraftverkene). Det betyr samtidig at en beregner det indirekte energiforbruket ikke bare på sluttbruksnivå, men som primær energi. Når det gjelder andre klimagassutslipp, må det eventuelt gjøres egne anslag basert på beregninger av forbruket av varer som gir opphav til slike utslipp (for eksempel sement, aluminium og landbruksprodukt).

3.5 Direkte og indirekte energiforbruk og CO₂-utslipp i Norge i 1992

Beregningene basert på forbruksdata indikerte et litt lavere tall for det korrigerte energiforbruket. Den rommer størst usikkerhet, noe som også kom til uttrykk ved at det ble oppgitt sannsynlige intervaller for det indirekte forbruket knyttet til flere forbrukskategorier. Når en summerer midtpunktene i disse intervallene, kommer en til et korrigert energiforbruk på 573,5 PJ. Avviket er m.a.o. ikke dramatisk, og antas mer trolig å bero på at de forbruksbaserte beregningene har vært litt for forsiktige, enn at de import/eksportbaserte har gitt for høyt et tall.

I de 573,5 PJ inngår 13,5 PJ som er et anslag for mengden energi som årlig brukes til å vedlikeholde og bygge ut de systemene som frambringer den direkte og indirekte forbrukte energien. Denne burde ideelt sett ha vært fordelt på de øvrige forbrukskategoriene, noe som imidlertid byr på særlige metodiske problem og ikke ble

3 Petajoule: Elektrisk kraft måles i kilowattimer (kWh), mens annen energi ofte måles i joule (J). 1 kWh = 3.600 joule eller 3,6 kJ. 1 milliard kWh = 3,6 Petajoule (PJ).
gjort i denne studien. Merk at dette ikke gjelder energien som brukes til drift av kraftverk, oljeraffinerier osv.: dette inngår i det primære energiforbruket, men holdes definisjonsmessig utenfor sluttforbruket. Energien som brukes til å bygge og vedlikeholde kraftverk, raffinerier, ledningsnett osv., og både å bygge og drive tankbiler mm., inngår derimot i sluttforbruket. Det er dette de 13,5 PJ gjelder.

Fordelingen av det korrigerte energiforbruket på forbrukskategorier framgår av tab. 3.1. Der Hille (1995) oppgir et sannsynlig intervall, er bare midtpunktet i dette vist.

Tab. 3.1 Direkte og indirekte energiforbruk hos norske sluttforbrukere 1992. Petajoule

<table>
<thead>
<tr>
<th>Husholdninger:</th>
<th>Direkte energiforbruk</th>
<th>Indirekte energiforbruk</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat, tobakk, drikkevarer</td>
<td>-</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Klær og sko</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Bolig</td>
<td>158</td>
<td>22</td>
<td>180</td>
</tr>
<tr>
<td>Møbler og husholdningsutstyr</td>
<td>-</td>
<td>17,5</td>
<td>17,5</td>
</tr>
<tr>
<td>Helse (privat betalte varer og tjenester)</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Transport*</td>
<td>108</td>
<td>28</td>
<td>136</td>
</tr>
<tr>
<td>Post- og teletjenester</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Trykksaker</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Fritidsvarer og -tjenester ellers</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Hotell- og restauranttjenester, eksklusive mat**</td>
<td>-</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Andre varer og tjenester</td>
<td>-</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Frivillige organisasjoner</td>
<td>2</td>
<td>0,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Forvaltning</td>
<td>47</td>
<td>18</td>
<td>65</td>
</tr>
<tr>
<td>Ufordelt forbruk til investerings- varer mm. i energisystemet</td>
<td>-</td>
<td>13,5</td>
<td>13,5</td>
</tr>
<tr>
<td>Ufordelt avvik</td>
<td>18,5</td>
<td>18,5</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>315</td>
<td>277</td>
<td>592</td>
</tr>
</tbody>
</table>

* Energien som brukes til drift av kollektive transportmiddeel er her inkludert i det direkte energiforbruket, selv om det strengt talt er indirekte (fordi husholdningene som bruker dem kjøper tjenesten, og ikke drivstoffet).

* *Energien som brukes til å produsere mat og drikke som serveres på overnattings- og serveringssteder og i offentlige institusjoner er inkludert i husholdningenes forbruk av mat, drikkevarer og tobakk.
Tabellen viser at det indirekte energiforbruket til norske husholdninger i 1992 var omtrent like stort som det direkte. For forvaltningen og frivillige organisasjoner, som har en betydelig bygningsmasse men relativt sett mindre forbruk av varer, dominerer det direkte forbruket, selv om det indirekte heller ikke her er ubetydelig. Det indirekte forbruket her er for øvrig satt litt for lavt, ettersom alt forbruk av mat, klær, sko, møbler og noen kategorier av fritidsvarer og -tjenester er tilskrevet husholdningene.

Delt på landets befolkning i 1992 svarte det korrigerte sluttforbruket av energi til 138 GJ (38,3 MWh) per capita.

Hille (1995) inneholder også anslag for det korrigerte primære energiforbruket. Dette er bare beregnet ut fra import/eksporttall, ved at det er gjort anslag for hvordan den energien som ble indirekte eksportert hhv. importert fordelte seg på energibærere (inkludert energikilder ved strømproduksjon) og om relevante systemvirkningsgrader. Det korrigerte primære energiforbruket ble anslått til 809 PJ eller 190 GJ per capita. CO₂-utslippene knyttet til dette energiforbruket ble anslått til 32,5 mill. tonn. Dette er bare marginalt mindre enn de registrerte norske utslippene samme år (34,3 mill. tonn) til tross for at Norge hadde en betydelig netto indirekte eksport av energi. Årsaken er at mye av den indirekte energieksporten besto av vannkraft, mens storparten av den indirekte importen besto av fossile brensel.

3.6 Endringer i direkte og indirekte energiforbruk 1992-98

En fullstendig revisjon av denne typen ligger dessverre utenfor rammene for dette prosjektet. For noen deler av det indirekte forbruket foreligger det likevel rimelig grunnlag for å justere tallene. Det er mest hensiktsmessig å knytte slike justeringer til året 1998, siden dette er det siste der det foreligger endelig statistikk over det direkte energiforbruket i Norge (og over bedriftenes energiforbruk, som gir grunnlag for å revidere de delene av det indirekte forbruket som skriver seg fra norsk produksjon).

Momenter som gir grunnlag for å justere anslagene over indirekte energiforbruk fra 1992 til 1998, er drøftet nærmere i vedlegg. Resultatene er vist i tab. 3.2.
Tab. 3.2 Direkte og indirekte energiforbruk hos norske sluttforbrukere 1998. Anslag for 1998. Petajoule

<table>
<thead>
<tr>
<th></th>
<th>Direkte energiforbruk</th>
<th>Indirekte energiforbruk</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husholdninger:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mat, tobakk, drikkevarer</td>
<td></td>
<td>-</td>
<td>105</td>
</tr>
<tr>
<td>Klær og sko</td>
<td></td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Bolig</td>
<td>166</td>
<td>22</td>
<td>188</td>
</tr>
<tr>
<td>Møbler og husholdningsutstyr</td>
<td>-</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Helse (privat betalte varer og tjenester)</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Transport</td>
<td>118</td>
<td>31</td>
<td>149</td>
</tr>
<tr>
<td>Post- og teletjenester</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Trykksaker</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Fritidsvarer og -tjenester ellers</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Hotell- og restauranttjenester, eksklusive produksjon av innkjøpte matvarer</td>
<td>-</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Andre varer og tjenester</td>
<td>-</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Frivillige organisasjoner</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Forvaltning</td>
<td>39</td>
<td>20</td>
<td>59</td>
</tr>
<tr>
<td>Ufordelt forbruk til investeringsvarer mm. i energisystemet</td>
<td>-</td>
<td>13,5</td>
<td>13,5</td>
</tr>
<tr>
<td>Ufordelt avvik</td>
<td></td>
<td>18,5</td>
<td>18,5</td>
</tr>
<tr>
<td>SUM</td>
<td>328</td>
<td>310</td>
<td>638</td>
</tr>
</tbody>
</table>

Uten disse postene blir den prosentvise fordelingen av det indirekte energiforbruket om lag som følger:
Tab. 3.3. Prosentvis fordeling av det indirekte energiforbruket på forbrukskategorier og forbruk per capita. Norge 1998.

<table>
<thead>
<tr>
<th>Husholdninger:</th>
<th>%</th>
<th>GJ/capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat, tobakk, drikkevarer</td>
<td>38</td>
<td>23,7</td>
</tr>
<tr>
<td>Klær og sko</td>
<td>7</td>
<td>4,5</td>
</tr>
<tr>
<td>Bolig</td>
<td>8</td>
<td>5,0</td>
</tr>
<tr>
<td>Møbler og husholdningsutstyr</td>
<td>8</td>
<td>4,7</td>
</tr>
<tr>
<td>Helse (privat betalte varer og tjenester)</td>
<td>2</td>
<td>1,4</td>
</tr>
<tr>
<td>Transport</td>
<td>11</td>
<td>7,0</td>
</tr>
<tr>
<td>Post- og teletjenester</td>
<td>2</td>
<td>1,4</td>
</tr>
<tr>
<td>Trykksaker</td>
<td>2</td>
<td>1,4</td>
</tr>
<tr>
<td>Fritidsvarer og -tjenester ellers</td>
<td>7</td>
<td>4,5</td>
</tr>
<tr>
<td>Hotell- og restauranttjenester, eksklusive produksjon av innkjøpte matvarer</td>
<td>4</td>
<td>2,3</td>
</tr>
<tr>
<td>Andre varer og tjenester</td>
<td>4</td>
<td>2,3</td>
</tr>
<tr>
<td>Frivillige organisasjoner</td>
<td><<1</td>
<td>0,2</td>
</tr>
<tr>
<td>Forvaltning</td>
<td>7</td>
<td>4,5</td>
</tr>
<tr>
<td>SUM</td>
<td>100</td>
<td>62,7</td>
</tr>
</tbody>
</table>

Klær og sko, møbler og husholdningsutstyr og fritidsvarer og –tjenester står hver for seg for noe mindre andeler av det indirekte energiforbruket, men fortjener oppmerksomhet da forbruket på alle tre områdene er sterkt økende.

3.7 Indirekte energiforbruk og korrigert energiforbruk for Stavanger

Er det grunn til å anta at det korrigerte energiforbruket i Stavanger skiller seg fra det nasjonale gjennomsnittet, som er anslått til ca. 144 GJ per capita? Er det eventuelt grunn
til å anta at den indirekte delen av dette forbruket skiller seg fra det nasjonale gjennomsnittet, eller viser en annen fordeling?

Det første spørsmålet fordrer for det første et mål på det direkte energiforbruket til husholdninger, frivillige organisasjoner og forvaltning i Stavanger. Dette består dels av stasjonært forbruk (strøm, fyringsolje og bioenergi som brukes i bygninger) og dels av drivstoff til transport. Når vi bruker samme prinsipp som er lagt til grunn for tab. 1-3 ovenfor, inkluderer alt drivstoffforbruk til persontransport (også ved kjøpte transporttjenester) i det direkte energiforbruket.

Tab. 3.4. Stasjonært direkte energiforbruk i Stavanger (PJ). Anslag for 1998

<table>
<thead>
<tr>
<th></th>
<th>Elektrisitet</th>
<th>Fossile brensel</th>
<th>Bioenergi</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husholdninger</td>
<td>3,06</td>
<td>0,18</td>
<td>0,31</td>
<td>3,55</td>
</tr>
<tr>
<td>Frivillige org.</td>
<td>0,10</td>
<td>< 0,01</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>Forvaltning</td>
<td>0,68</td>
<td>0,10</td>
<td>-</td>
<td>0,78</td>
</tr>
<tr>
<td>SUM</td>
<td>3,84</td>
<td>0,28</td>
<td>0,31</td>
<td>4,43</td>
</tr>
</tbody>
</table>

Tab. 3.4. Stasjonært direkte energiforbruk i Stavanger (PJ). Anslag for 1998

Det (semi-) direkte energiforbruket knyttet til transport kan bare anslås. Biltettheten i Stavanger er nesten nøyaktig lik landsgjennomsnittet. I 1998 var det 42.107 personbiler, én på 2,5 innbyggere (Statistikk for Stavanger - Næring og Transport). Samtidig viser SSBs undersøkelse “Eie og bruk av personbil” fra 1997 (med referanseår 1994) at biler i Rogaland hadde en litt mindre årlig kjørelengde enn i landet under ett (12684 mot 13642 km, eller 93,0 % av landsgjennomsnittet). Antas dette å gjelde også for
Stavanger, blir det rimelig å anta at energiforbruket til drift av privatbil m.v. omtrent svarte til det nasjonale tallet (59,6 PJ, jfr. vedlegg) multiplisert med Stavangers andel av landets befolkning (0,0242) multiplisert med 0,93, altså 1,34 PJ.

Når det gjelder energiforbruket til offentlig landtransport og båttransport har vi ikke grunnlag for å anta annet enn at forbruket per capita blant Stavangerfolk tilsvarer landsgjennomsnittet. Til tross for at Stavanger er kystby med mye brukte ferjesamband er innbyggerne flest ikke avhengige av båttransport, og trekker trolig landsgjennomsnittet ned snarere enn opp når det gjelder bruk av innenlands båttransport. Over halvparten av nordmenns energiforbruk ved båttransport gjelder imidlertid reiser til og fra utlandet, og her er det både ut fra byens beliggenhet og inntektsnivå rimelig å tenke seg at Stavangerfolk ligger over landsgjennomsnittet. Energiforbruket på landsbasis til offentlig landtransport er i vedlegg anslått til 8,4 PJ og til båttransport til 7,9 PJ. Multiplisert med Stavangers befolkningsandel gir det et anslag på 0,20 hhv. 0,19 PJ for byens innbyggere i 1998.

Med fly finnes det indikasjoner på at folk i Stavanger reiser mer enn andre. En undersøkelse fra Transportøkonomisk institutt (Rideng og Denstadli 1999) viser at folk bosatt i Rogaland gjennomsnittlig utførte 3,19 reiser med rutefly innenlands og 1,08 reiser til/for utlandet i 1997-98. Landsgjennomsnittene var hhv. 2,03 og 0,83. Uansynligvis lå tallene for Stavanger også over gjennomsnittet for Rogaland. Hyppigheten av flyreiser er klart størst i storbyområdene, og dette er blant de forbrukskategoriene som øker aller mest med stigende inntekt. Om vi likevel legger forholdstallet 3,19:2,03 til grunn for å anslå avviket mellom det samlede per capita-forbruket av flyreiser i Stavanger og i landet under ett, innebærer det at Stavangerfolk sto for 3,8 % (snarere enn 2,42 %) av nordmenns innenriks flyreiser. Legger vi tilsvarende forholdet 1,08:0,83 til grunn når det gjelder reiser med rutefly til/fra utlandet, betyr det at Stavangerfolk sto for 3,15 % av disse reisene.

Det samlede persontransportarbeidet med innenriksfly i 1998 var 4,242 mill. personkilometer; 3,8 % av dette utgjør 161 mill. pkm. Det kunne ligge nært å tro at den gjennomsnittlige lengden av hver tur var litt lavere for folk fra Rogaland enn ellers i landet, gitt betydningen av korte strekninger som Sola-Flesland og Sola-Kjevik. Dataene til Rideng og Denstadli understøtter ikke en slik antakelse. 40 % av innenlandsreisene folk i Rogaland gjorde gikk til Østlandet og 10 % skulle videre med fly til utlandet; i begge tilfeller vil det si at reisene helt overveiende gikk til Gardermoen, en strekning på 375 km. Den gjennomsnittlige lengden på flyturen innenlands i 1998 var 449 km. Imidlertid skulle hele 10 % av de reisende fra Rogaland til Nord-Norge og 6 % til Trøndelag (helst via Gardermoen), hvilket trekker gjennomsnittslengden på turene opp til et nivå omtrent lik gjennomsnittet. Anslaget på 161 mill. pkm blir dermed stående.

Persontransportarbeidet ved nordmenns reiser med rutefly til og fra utlandet er i vedlegg anslått til 8,1 mill. pkm i 1998. 3,15 % av dette blir 253 mill. pkm.

Når det gjelder charterreiser, gir Rideng og Denstadli ingen opplysninger. Statistisk Sentralbyrås Forbrukundersøkelse for 1998 viser derimot at folk i storbyene (Oslo, Bergen og Trondheim) hadde et forbruk av pakketurer som lå 13,2 % over landsgjennomsnittet. Av grunner som vi kommer tilbake til er det rimelig å tro at

Lundli og Vestby (1999) oppgir energiforbruket ved innenriks flyreiser til 2,92 MJ/pkm, ved utenlandsreiser med rutefly til 2,4 MJ/pkm og ved charterreiser til 1,53 MJ/pkm. Det samlede energiforbruket ved flyreiser utført av bosatte i Stavanger kan dermed anslås til 0,47 PJ ved innenriksreiser, 0,61 PJ ved utenlandsreiser med rutefly og 0,21 PJ ved utenlandsreiser med charterfly - i alt 1,29 PJ. Det gjentas at dette tallet nesten sikkert er for lavt, da det ikke er noen rimelig tvil om at folk fra Stavanger reiser mer med fly enn folk fra Hå eller Suldal, og at dette særlig gjelder reiser med rutefly.

I vedlegg omtales to andre kategorier av (semi-) direkte energiforbruk knyttet til transport, dvs. energiforbruk ved godstransport som utføres for private husholdninger og energiforbruk ved “tjenester knyttet til transport” (av personer). Disse postene så små, hhv. 1,0 og 1,7 PJ, at eventuelle avvik i per capita-forbruk mellom Stavanger og landsgjennomsnittet blir ubetydelige. De er dessuten svært usikre. Ved likt per capita-forbruk blir anslaget for disse postene samlet 0,07 PJ for Stavangers vedkommende.

Det betyr at det samlede direkte energiforbruket knyttet til transport blir som vist i tab. 3.5.

Tab. 3.5 Anslått direkte energiforbruk til transport for bosatte i Stavanger. PJ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Privatbil, motorsykkel m.v.</td>
<td>1,34</td>
</tr>
<tr>
<td>Offentlig landtransport</td>
<td>0,20</td>
</tr>
<tr>
<td>Båt</td>
<td>0,19</td>
</tr>
<tr>
<td>Fly</td>
<td>1,29</td>
</tr>
<tr>
<td>Frakt og tilknyttede tjenester</td>
<td>0,07</td>
</tr>
<tr>
<td>SUM</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Forvaltningens i egentlig forstand direkte energiforbruk til transport er fortsatt ikke med i disse tallene. De inkluderer reiser som offentlig ansatte gjør med egne biler eller offentlige transportmidde og leverer reiseregning for, liksom de inkluderer forretningsreiser gjort av ansatte i private bedrifter. Men de inkluderer ikke energiforbruket til forvaltningens egne biler, båter og fly. Vi har ingen holdepunkt for å anslå det mobile energiforbruket til forvaltningseheter som fysisk ligger i Stavanger, og kan derfor i dette tilfellet bare ty til den forenklingen å fordele det mobile energiforbruket til norsk forvaltning likt på befolkningen. Dette forbruket utgjorde 4,6
PJ i 1998 ifølge Statistisk sentralbyrås (SSB) Energiregnskap, og Stavangers andel blir dermed 0,11 PJ.

Frivillige organisasjoners mobile energiforbruk er ifølge Energiregnskapet 0, hvilket selvsagt ikke er riktig, men det faktiske tallet er nok såpass lite at det kan neglisjeres her.

Stavangerfolks direkte energiforbruk kan dermed anslås til 4,43 PJ stasjonært og 3,22 PJ mobilt, i alt 7,65 PJ. Det utgjør 71,2 GJ per capita.

Det indirekte forbruket til Stavangers sluttforbrukere består dels av energi som brukes i Stavanger for å frambringe varer og (særlig) tjenester de selv forbruker, og dels av energiforbruket bak varer og tjenester som innføres til Stavanger. Dette åpner igjen for to mulige angrepsvinkler. Vi kan forøke å analysere energiforbruket til næringslivet i Stavanger, og vurdere hvor store deler av dette forbruket til å produsere for Stavangers eget forbruk, og dernest forøke å legge til den energien som blir indirekte importert utenfra. Eller vi kan utelate hele forbruket til næringslivet i Stavanger, og anslå det indirekte forbruket til sluttforbrukere i Stavanger utelukkende ved å ta utgangspunkt i nasjonale gjennomsnittstall for indirekte energiforbruk, korrigert for kjente eller antatte avvik i vare- og tjenesteforbruk per capita i Stavanger.

Den første tilnærmingen forutsetter at vi har data om hvordan energiforbruket til bedriftene i Stavanger fordeler seg på næringer, og at vi kan gjøre fornuftige antakelser om hvor stor andel av de ulike næringenes produksjon som skjer for Stavanger-markedet. Deretter måtte tallene i tab. 3 korrigeres for å komme fram til et første anslag over det importerte indirekte energiforbruket til sluttforbrukerne i Stavanger. Disse tallene inkluderer for eksempel energi som brukes til å markedsføre varene, dvs. energiforbruk i næringen varehandel. Operasjonen som her omtales, ville innebære å trekke energiforbruket til markedsføring fra tallene i tab. 3, for i stedet å legge til et tall basert på det faktiske energiforbruket til varehandel i Stavanger. Vi sier et tall basert på det faktiske energiforbruket i varehandelen i Stavanger, da dette måtte justeres for å ta hensyn til den antatte nettoflyten av vare mellom Stavanger og andre kommuner.

Status i dag er dessverre at det bare foreligger næringsfordelte tall for forbruket av elektrisitet i Stavanger, og at det er knyttet betydelig usikkerhet selv til disse tallene. Derfor er vi i praksis henvist til å gå ut fra de nasjonale tallene for det indirekte energiforbruket som er vist i tab. 3, med de justeringene som følger av kjente eller antatte avvik i vare- og tjenesteforbruket per capita i Stavanger.

Statistisk sentralbyrås Forbruksundersøkelse for 1997-99 gir her noen pekepinner. Det er ikke mulig å skille ut forbruket i Stavanger (her blir utvalget for lite). Derimot gir undersøkelsen tall for forbruket per husholdning i Agder+Rogaland og for de andre storbyene (Oslo+Bergen+Trondheim). Det er større forskjell i forbruksmønsteret etter bostedsstrøk enn mellom landsdeler, og større grunn til å vente likhet i mønsteret mellom Stavanger og de andre storbyene enn med Agder/Rogaland for øvrig.

Forbruket per capita i storbyene er 16 % høyere enn landsgjennomsnittet. Størst utslag gjør boligforbruket, som er 28 % høyere. Dette er selvfølgelig ikke et uttrykk for et fysisk sett større forbruk av bolig, men for et høyere prisnivå. Men forbruket av praktisk talt alle vare- og tjenesteslag ligger litt høyere i storbyene enn i landet for øvrig.
Forskjellen når det gjelder matvarer, som er av sentral betydning mht. indirekte energiforbruk, er likevel svært liten.

Tab. 3.6 Årlig forbruk per capita i Oslo, Bergen og Trondheim og i landsgjennomsnitt 1997-99. 1999-kroner.

<table>
<thead>
<tr>
<th></th>
<th>Storbyene (1)</th>
<th>Landet (2)</th>
<th>(1) i % av (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matvarer</td>
<td>15358</td>
<td>14799</td>
<td>104</td>
</tr>
<tr>
<td>Drikkevarer og tobakk</td>
<td>4809</td>
<td>3468</td>
<td>139</td>
</tr>
<tr>
<td>Klær og sko</td>
<td>8383</td>
<td>6923</td>
<td>121</td>
</tr>
<tr>
<td>Bolig</td>
<td>34370</td>
<td>26929</td>
<td>128</td>
</tr>
<tr>
<td>Strøm og brensel</td>
<td>4520</td>
<td>4871</td>
<td>93</td>
</tr>
<tr>
<td>Møbler og hush. artikler</td>
<td>8297</td>
<td>7676</td>
<td>108</td>
</tr>
<tr>
<td>Helsepleie</td>
<td>4669</td>
<td>3148</td>
<td>148</td>
</tr>
<tr>
<td>Transport, egne transp.middel</td>
<td>20385</td>
<td>20290</td>
<td>100</td>
</tr>
<tr>
<td>Transport, kollektiv*</td>
<td>6046</td>
<td>4034</td>
<td>150</td>
</tr>
<tr>
<td>Post- og teletjenester</td>
<td>2297</td>
<td>2320</td>
<td>99</td>
</tr>
<tr>
<td>Kultur og fritid (varer og tj.)**</td>
<td>17241</td>
<td>15698</td>
<td>110</td>
</tr>
<tr>
<td>Hotell- og restauranttjenester</td>
<td>7516</td>
<td>4988</td>
<td>151</td>
</tr>
<tr>
<td>Andre varer og tjenester</td>
<td>8508</td>
<td>7462</td>
<td>114</td>
</tr>
<tr>
<td>SUM</td>
<td>142406</td>
<td>122609</td>
<td>116</td>
</tr>
</tbody>
</table>

* inkluderer flytreiser.

** inkluderer utdanning.

Inntektsnivået per capita i Stavanger var i 1999 nesten nøyaktig identisk med det befolkningsveide gjennomsnittet for Oslo, Bergen og Trondheim. Gjennomsnittlig bruttoinntekt per person over 17 (kr. 254.800) var ifølge SSBs “Nøkkeltall om kommunene” knapt 3 % høyere enn gjennomsnittet for de tre andre byene, men andelen av befolkningen som var over 17 var til gjengjeld 75,6 % i Stavanger mot 78,8 % i de andre byene. Dette gir god grunn til å anta at også forbruksnivået i Stavanger var svært likt gjennomsnittet for Oslo, Bergen og Trondheim. Det er også grunn til å anta at de typiske “storbysviktene” i forbruksmønsteret gjør seg gjeldende i Stavanger på omtrent samme måte som i de andre byene.

På enkelte områder har vi andre opplysninger som kan kaste lys over det faktiske forbruksnivået i Stavanger. Nedenfor gjennomgås de enkelte forbrukskategoriene og de avvikene i indirekte energiforbruk per capita det kan være grunn til å regne med.

Mat, drikkevarer, tobakk:
Vi har ingen grunn til å anta at indirekte energiforbruk per capita i Stavanger avviker fra landsgjennomsnittet. Drikkevarer og tobakk står for svært liten del av energiforbruket i denne kategorien.

Klær og sko:

Forbruksvolumet og tilhørende indirekte energiforbruk antas her å være 21 % høyere enn landsgjennomsnittet (5,5 i stedet for 4,5 GJ/capita).

Bolig:

Den største indirekte energiposten knytter seg til bygging av nye boliger. Faktisk boligbygging i Stavanger har de siste åra vært omkring 600 enheter per år (ca. 5,7 per 1000 innbyggere, innbyggertall 1998) (Statistikk for Stavanger, Boforhold og boligbygging). Dette er svakt i underkant av den raten som er stipulert for hele landet ovenfor (27.000 enheter eller 6,1 per 1000 innbyggere), men høyere enn den faktiske raten på landsbasis på 1990-tallet. Gjennomsnittsstørrelsen på boligene i Stavanger ligger også nært landsgjennomsnittet. Det er neppe grunn til å anta at indirekte energiforbruk knyttet til boliger avviker vesentlig fra landsgjennomsnittet per capita.

Møbler og husholdningsartikler:

Forbruk og energiforbruk per capita i Stavanger antas her å ligge 8 % over landsgjennomsnittet. Tallet på 4,7 GJ/capita økes til 5,1 GJ.

Helse:

Vi har ikke grunnlag for å anta at forbruket i Stavanger avviker fra landsgjennomsnittet.

Transport:

Biltettheten i Stavanger er nesten identisk lik landsgjennomsnittet (2,5 personer/bil). Det er grunn til å anta at det samme gjelder indirekte energiforbruk knyttet til egne transportmidler.

Indirekte forbruk knyttet til andre transportmidler, spesielt fly, kan ligge noe høyere, men da fly er den transportformen som medfører klart lavest indirekte forbruk per personkilometer, er avviket ikke nødvendigvis vesentlig. Vi lar landsgjennomsnittet gjelde for Stavanger.

Post- og teletjenester:

Her er det ingen grunn til å anta avvik for Stavanger.

Fritidsvarer og –tjenester:

Det antas her at forbruket og det indirekte forbruket (unntatt for trykksaker) ligger 10 % over landsgjennomsnittet. Tallet på 4,5 GJ/capita økes til 5,0 GJ.

Hotell- og restauranttjenester:

Her er forbruket til Stavangerfolk trolig betydelig høyere enn på landsbasis - 50 % høyere om vi legger storbytallene i tab. 6 til grunn. Mye av forskjellen knytter seg riktignok til restauranttjenester, mens det er hotellene som står for den største delen av
energiforbruket. Men det er også grunn til å tro at folk i Stavanger oftere reiser og bor på hotell enn landsgjennomsnittet (jf. også overhøyepigheten av flyreiser). Dette gjelder for øvrig ikke bare privat betalte reiser og hotellopphold, men også forretningsreiser og hotellopphold under disse, der folk bosatt i storbyområdene er klart overrepresentert. Som et sannsynligvis forsiktig anslag vil vi legge til grunn at det indirekte energiforbruket her er 30 % høyere enn landsgjennomsnittet, dvs. 3,0 snarere enn 2,3 GJ per capita.

Andre varer og tjenester:

Forbruket per capita i Stavanger antas her å ligge 14 % over landsgjennomsnittet. Tallet på 2,3 GJ per capita økes til 2,6 GJ.

Frivillige organisasjoner:

Her har vi ikke grunnlag for å anta noe om avvik fra landsgjennomsnittet. Tallet på 0,2 GJ/capita beholdes.

Forvaltning:

Her har vi ikke grunnlag for å anta noe om avvik fra landsgjennomsnittet. Tallet på 4,5 GJ/capita beholdes.

Energisystem og ufordelt avvik:

Disse postene i tab. 2, som dels dekker det indirekte energiforbruket til selve energisystemet, og dels representerer en korreksjonsfaktor opp til et noe mer sannsynlig anslag for det totale indirekte energiforbruket enn vi får ved å summere delene, kan med rimelighet bare fordeles likt per capita.

Det anslåtte indirekte energiforbruket i Stavanger blir dermed som vist i tab. 3.7 (per capita-tall er omregnet til totalt forbruk ved hjelp av middelfolketallet i 1998 på 107.400).
Tab. 3.7 Anslått indirekte energiforbruk for folk bosatt i Stavanger. 1998. GJ per capita og PJ totalt.

<table>
<thead>
<tr>
<th>Husholdninger:</th>
<th>GJ/capita</th>
<th>PJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matvarer, drikkevarer, tobakk</td>
<td>23,7</td>
<td>2,54</td>
</tr>
<tr>
<td>Klær og sko</td>
<td>5,5</td>
<td>0,59</td>
</tr>
<tr>
<td>Bolig</td>
<td>5,0</td>
<td>0,54</td>
</tr>
<tr>
<td>Møbler og husholdningsartikler</td>
<td>5,1</td>
<td>0,55</td>
</tr>
<tr>
<td>Helse</td>
<td>1,4</td>
<td>0,15</td>
</tr>
<tr>
<td>Transport</td>
<td>7,0</td>
<td>0,75</td>
</tr>
<tr>
<td>Post- og teletjenester</td>
<td>1,4</td>
<td>0,15</td>
</tr>
<tr>
<td>Trykksaker</td>
<td>1,4</td>
<td>0,15</td>
</tr>
<tr>
<td>Fritidsvarer og –tjenester ellers</td>
<td>5,0</td>
<td>0,54</td>
</tr>
<tr>
<td>Hotell- og restauranttjenester</td>
<td>3,0</td>
<td>0,32</td>
</tr>
<tr>
<td>Andre varer og tjenester</td>
<td>2,6</td>
<td>0,28</td>
</tr>
<tr>
<td>Frivillige organisasjoner</td>
<td>0,2</td>
<td>0,02</td>
</tr>
<tr>
<td>Forvaltning</td>
<td>4,5</td>
<td>0,48</td>
</tr>
<tr>
<td>SUM AV DISSE</td>
<td>65,8</td>
<td>7,06</td>
</tr>
<tr>
<td>Energisystem og ufordelt avvik</td>
<td>7,2</td>
<td>0,78</td>
</tr>
<tr>
<td>SUM I ALT</td>
<td>73,0</td>
<td>7,84</td>
</tr>
</tbody>
</table>

Vi kommer dermed til at det direkte og det indirekte energiforbruket til Stavangerfolk trolig er omtrent like store. Summen på 71 + 73 = 144 PJ per capita - det korrigerte energiforbruket - er nøyaktig likt det anslåtte landsgjennomsnittet. Det kan delvis bero på at det statistiske grunnlaget for å gjøre egne beregninger for Stavanger er så vidt dårlig at vi mange steder bare har måttet gå ut fra like per capita-verdier. Men i den grad det enten er funnet eller antatt noe om avvik, kan vi si at et noe høyere forbruk av flyreiser og et litt høyere indirekte energiforbruk oppveies av et noe lavere direkte energiforbruk i bygninger, som delvis er klimatisk betinget.

3.8 Stavangers indirekte og korrigerte utslipp av klimagasser

import/eksportbaserte beregningen av det korrigerte sluttforsyningen, ikke den forbruksbaserte. Det er derfor ikke mulig å justere anslagene for indirekte CO₂-utslipp ved å ta utgangspunkt i justeringene av det indirekte sluttforsyningen per forbrukskategori som for Stavangers del framkommer i tab. 3.7.

Omregnet til primær energi - dvs. tillagt energiforbruk og -tap ved utvinning, transport og raffinering - svarte de 128 PJ til ca. 140 PJ, herav 2-3 PJ i form av naturgass (brukt i utvinningsleddet) og nesten alt det øvrige i form av råolje; altså 3,3 mill. tonn olje og under 100 mill Sm³ naturgass. Det tilsvarer litt over 10,5 mill. tonn CO₂-utslipp.

Til dette bør legges utslipp av andre klimagasser, som ikke ble drøftet i Hille (1995). De viktigste komponentene her - når vi ser på Stavangers vare- og tjenesteforbruk - er trolig utslipp av metan og lystgass knyttet til forbruken av jordbruksvarer, og utslipp av metan knyttet til kull og naturgass som inngår i det indirekte, primære energiforbruket. I tillegg kommer en lang rekke andre, fra utslipp av lystgass ved produksjon av nylon i Stavangerfolks strømpebukser til utslipp av svovelfluorkarboner ved produksjon av aluminium i deres kasseroller og bilfelger.

Utslippene av metan fra norsk landbruk i 1997 er anslått til 108.000 tonn og av lystgass til 8.400 tonn. (SSB, Naturressurser og miljø 2000). Produksjon av nitrogengjødsel medførte utslipp på 4.800 tonn lystgass; av denne produksjonen ble ca. 15 % omsatt innenlands, hvilket vil si at utslippene av lystgass knyttet til norsk landbruk kan anslås til ca. 9.100 tonn. Med en GWP-faktor for metan på 21 og for lystgass på 310, svarer metanutslippene knyttet til norsk landbruk til 2,3 mill. tonn CO₂-ekvivalent og lystgassutslippene til 2,8 mill. tonn, til sammen 5,1 mill. tonn CO₂-ekvivalent eller 1,15 tonn per capita. I tillegg til dette kommer utslipp knyttet til importerte jordbruksvarer. Når det gjelder metan er disse trolig relativt små. Globalt sett er landbrukets metanutslipp mest knyttet til (1) drøvtyggere og (2) våtrisproduksjon. Norge er en marginal nettoeksporter av produkt fra drøvtyggere, og importen av ris er liten. Når det gjelder lystgass må vi derimot regne med at utslippene per dekar fra de vel 5 millioner
da. som brukes i utlandet til å forsyne oss med alle slags jordbruksvarer, i beste fall er litt lavere per arealenhet (grunnet lavere forbruk av kunstgjødsel) enn fra de ca. 9 mill. da. fulldyrka jord i Norge. Anslår vi disse utenlandske utslippene til 1 mill. tonn CO₂-ekvivalent, øker summen av metan- og lystgassutslipp som kan knyttes til norsk forbruk av jordbruksvarer til 6,1 mill. tonn CO₂-ekvivalent, eller ca. 1,4 tonn per innbygger. Når vi ikke har grunn til tro at matvareforbruket per innbygger i Stavanger avvikler fra landsgjennomsnittet - og avviket i klesforbruket med tilhørende lystgassutslipp fra bomullsproduksjon er beskjedent - lar vi det samme tallet gjelde Stavanger, så lenge vi snakker om det løpende matvareforbruket.

Det *historiske* forbruket av matvarer - fra før deponering av våtorganisk avfall ble forbudt - genererer imidlertid også utslipp av metan. Stavangers andel i utslippene fra deponiet for Nord-Jæren er anslått til 75.000 tonn CO₂-ekvivalent per år i 2000, eller 0,7 tonn per innbygger (Rogalandsforskning 2001).

De *indirekte* klimagassutslippene per innbygger i Stavanger kan dermed anslås til 7,9 tonn CO₂-ekvivalent *pluss* de bidragene fra “mindre” klimagasser som knytter seg til produksjon av annet enn matvarer. Nærings- og nyttelsesmiddel alene står trolig for ca. 2,5 tonn + det meste av 0,7 tonn fra deponi. (Den største delen av de 23,7 GJ/capita som iflg. tab 7 går med til å produsere, transportere og markedsføre disse er fossile brensel, som kan anslås å medføre CO₂-utslipp på ca. 1,15 tonn i tillegg til de omtalte utslippene av metan og lystgass).

Klimagassutslippene knyttet til det *direkte* energiforbruket er noe lettere å anslå. Det direkte stasjonære forbruket av fossile brensel, som i alt vesentlig gjelder fyringsolje, er ovenfor anslått til 0,28 PJ (3,1 GJ/capita). Det mobile forbruket er anslått til 3,22 PJ (29,1 GJ/capita), hvorav 98-99% - la oss si 3,15 PJ - er oljeprodukt. Totalt blir det 3,43 PJ oljeprodukt. Av dette igjen er om lag 1,2 PJ bensin (jfr. de 1,34 PJ som knytter seg til private biler og motorsyklar), resten tyngre oljefraksjoner. For bensinens del kan energiforbruk og -tap langs kjeden fra utvinning via raffinering til distribusjon utgjøre alt fra ca. 12 til over 20%, mest avhengig av om det er brukt cracking-prosess. For andre oljeprodukt kan det variere fra 6-7% og oppover. Gjør vi her et tillegg på 16% for bensin og 8% for øvrige oljeprodukt, betyr det at det direkte oljeforbruket svarer til 3,81 PJ målt som primær energi. Av den primære energien er ca. 98% råolje, resten naturgass brukt ved utvinningen og små mengder av uspesifiserte energikilder (i Norges fall vannkraft) som brukes til å generere elektrisitet til raffineridrift. Det er tale om 90.000 tonn råolje pluss en liten mengde naturgass, som til sammen gir CO₂-utslipp på ca. 287.000 tonn, eller 2,7 tonn per innbygger i Stavanger.

Av det mobile energiforbruket har vi imidlertid anslått at flydrivstoff (målt i sluttrukksleddet) utgjør 1,29 PJ, tilsvarende 30.000 tonn flydrivstoff og 94.000 tonn CO₂. Utslippene fra fly i marsjhoøyde er av FN’s klimapanal IPCC anslått å ha 2,7 ganger større drivhuseffekt enn CO₂-utslippet alene skulle tilsie. Antar vi at 75% (70.500 t) av det nevnte utslippet skjer i høyder over 1000 m, betyr det at det bør tillegges 120.000 t for å gi et riktig uttrykk for oppvarmingspotensialet. Det tilsvarer 1,1 tonn per innbygger i Stavanger.

De korrigerte klimagassutslippene kan dermed summeres som vist i tab. 3.8.
Tab. 3.8 Korrigerte klimagassutslipp for bosatte i Stavanger. Anslag for 1998. Tonn CO₂-ekvivalent

<table>
<thead>
<tr>
<th>Utslipp av CO₂ knyttet til direkte energiforbruk</th>
<th>Tonn totalt</th>
<th>Tonn per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillegg for utslipp ved flyreiser</td>
<td>160.000</td>
<td>1,5</td>
</tr>
<tr>
<td>Utslipp av CO₂ knyttet til indirekte energiforbruk</td>
<td>623.000</td>
<td>5,8</td>
</tr>
<tr>
<td>Utslipp av CH₄ og N₂O knyttet til jordbruksvarer</td>
<td>150.000</td>
<td>1,4</td>
</tr>
<tr>
<td>Utslipp av CH₄ fra deponi</td>
<td>75.000</td>
<td>0,7</td>
</tr>
<tr>
<td>Øvrige utslipp av andre drivhusgasser enn CO₂</td>
<td>ikke anslått</td>
<td>ikke anslått</td>
</tr>
<tr>
<td>SUM</td>
<td>1.298.000+</td>
<td>12,1+</td>
</tr>
</tbody>
</table>

Tallet på ca. 12 tonn per innbygger er over fire ganger større enn de klimagassutslippene fra Stavangers eget område som er beregnet av Statens forurensingstilsyn og Statistisk sentralbyrå.

3.9 Hva kan gjøres for å redusere det indirekte energiforbruket og klimagassutslippene?

Av gjennomgangen over kan vi trekke følgende generelle konklusjoner om hvor vi bør rette oppmerksomheten når det gjelder reduksjon i det indirekte energiforbruket:

- Det indirekte energiforbruket til sluttforbrukere i Stavanger er om lag like stort som det direkte. For husholdningene er det trolig litt større enn det direkte, også når bruk av offentlige transportmidler inkluderes i det direkte forbruket.
- For forvaltning og frivillige organisasjoner, som har en betydelig bygningsmasse men relativt sett mindre forbruk av varer og tjenester, dominerer derimot det direkte energiforbruket.
- Når det gjelder klimagassutslipp som utløses av sluttforbrukere i Stavanger, er bare om lag en tredjedel knyttet til det direkte energiforbruket (da hovedsakelig det mobile forbruket). To tredjedeler er knyttet til forbruk av varer og tjenester utenom energivarer og transporttjenester.
- Den klart viktigste forbrukskategorien med hensyn til indirekte energiforbruk er nærings- og nyttelsesmiddel - hovedsakelig matvarer - etterfulgt av transport.
- De postene som genererer det direkte energiforbruket i husholdningene – “bolig” og “transport” – er også viktige bidragsytere for det indirekte energiforbruket.
- Klær, sko, mobler, husholdningsutstyr og fritidsvarer- og tjenester fortjener også oppmerksomhet, ikke minst fordi forbruksstatistikk viser at forbruket innenfor disse kategoriene er sterkt økende.

Fordi matvarene står for en så stor del av det indirekte energiforbruket og av utslippene, er det naturlig at de får en viktig plass i strategier for å redusere begge delene. Det er
særlig tre endringer som kan gi vesentlige bidrag til en slik reduksjon: et mindre forbruk av *animalske* matvarer, en økt forbruk av *lokalt produserte* varer og et økning i andelen *økologiske* matvarer. Det første har betydning dels fordi animalske matvarer, og da særlig kjøtt og fisk, er mer energikrevende å produsere (regnet i forhold til kostenergien) enn de fleste vegetabilske (drivhusgrønnsaker er her et unntak). Der forholdet mellom energibruk under produksjonen og innholdet av kostenergi for korn og poteter ligger mellom 0,5:1 og 1:1, er det for mjølk ca. 4:1 og for storfekjøtt ca. 16:1. (Breirem o.fl. 1980). Samtidig er dørvetyggere kilde til ca. 85 % av metanutslippene fra norsk landbruk (Statistisk sentralbyrå 2000).

Økt forbruk av lokalt produserte matvarer er viktig fordi ca. 15 % av energiforbruket i matvarekjeden - og en fjerdedel av det fossile energiforbruket - skyldes transport i leddene etter primærproduksjonen. Også en del av energiforbruket til bearbeiding og emballasje kunne bortfalle i mer lokale marked. Ved den mest lokale løsningen - dyrking til eget forbruk - bortfaller også energiforbruket til markedsføring.

Økt bruk av økologiske matvarer er viktig dels fordi produksjon av kunstgjødsel og sprøytemiddel står for 10-12 % av energiforbruket i hele matvarekjeden (og en noe større del av det fossile energiforbruket). Fordi nitrogenomsetningen i økologisk jordbruk nødvendigvis blir noe mindre enn i konvensjonelt, reduseres også utslippene av lystgass.

Av de øvrige forbrukskategoriene er *transport* og *boliger* naturlige å fokusere på fra et myndighetssynspunkt. Dette ikke bare fordi tiltak som minsker det indirekte energiforbruket også vil tendere til å minske det direkte energiforbruket på disse områdene, men fordi kommuner her har betydelig påvirkningskraft. Når det gjelder transport er det indirekte energiforbruket stort sett bare et ytterligere motiv for tiltak som uansett er fornuftige mtp. det direkte. Å redusere bilbruk til fordel for sykkel og kollektivtransport reduserer også behovet for energi å produsere kjøretøy og infrastruktur. Det første forutsetter riktiggnok at redusert bilbruk ledsages av redusert billettethet, hvilket gjør tiltak som *bildeling* enda mer interessante.

Når det gjelder boliger har kommunen, gjennom sine planverktøy enda større makt enn mht. transport. Her blir det interessant, dels å legge til rette for *mindre* boliger, dels å påvirke valget av materialer i retning av slike som kan skaffes lokalt og/eller krever lite energi i produksjonen. Stavanger kommune har allerede tatt viktige initiativ på begge områdene.

Forvaltningens indirekte energiforbruk er selvfølgelig det som aller lettest kan styres. Siden en betydelig del av dette er knyttet til bygningsmassen, gjelder det samme for boliger. Det å spørre om en kan klare seg med færre kvadratmeter bør få høyere prioritet i en kommunal enøk-strategi, ved siden av de tradisjonelle tiltakene som er rettet inn mot forbruket *per* kvadratmeter.

De øvrige forbrukskategoriene - der klær og sko, møbler og husholdningsartikler, fritidsvarer og -tjenester veier mest - kan ved første blikk synes vanskelligere for en kommune å påvirke. Noen av de mer opplagte virkemidlene, som avgiftssystemet og miljømerking (der energiforbruket ved produksjonen av en vare oftest ingår blant kriteriene) finnes på nasjonalt eller høyere nivå. Gjennom et kreativt samarbeid mellom
kommunen, lokale organisasjoner og næringsliv har kommunen likevel muligheter til å legge til rette for forbruksvalg som reduserer det indirekte energiforbruket.

Av disse betraktningene kan man utlede ulike kommunale tiltak som kan rette seg inn mot å redusere det indirekte energiforbruket og klimagassutslippene hos de tre kategoriene av sluttbrukere nevnt over. Under har vi gitt noen forslag til slike tiltak; men dette må bare oppfattes som noen eksempel. Her bør det være rom for utvikling av flere tiltak; ikke minst spørsmålet om å se i sammenheng tiltak rettet inn mot det direkte og indirekte energiforbruket og klimagassutslippene.

En del av det energiforbruket som er “indirekte” fra sluttforbrukernes standpunkt, skjer likevel innenfor Stavanger: Det gjelder spesielt energiforbruket til markedsføring av de ulike varene - denne består hovedsakelig av energiforbruk hos handelsstanden i Stavanger - og energiforbruket til lokale produsenter av tjenester. Tiltak for å redusere disse delene av det indirekte energiforbruket faller inn under kap. 4 og nevnes derfor ikke i tabellen.
Tab. 3.9: Aktuelle tiltak for reduksjon av det indirekte energiforbruket og klimagassutslippene

<table>
<thead>
<tr>
<th>Forbrukskategori/tiltak</th>
<th>Ansvarlig*</th>
<th>Klima-/energieffekt</th>
<th>Sannsynlighet for gjennomføring før 2010¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat, tobakk, drikkevarer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruke økologisk merket og/eller lokalt produsert mat i offentlige kantiner</td>
<td>Kommunen</td>
<td>Begrenset, men viktig som signal - også til markedet</td>
<td>Svært sannsynlig</td>
</tr>
<tr>
<td>Informasjon om bærekraftig mat (lavere i næringskjeden – lokalt - økologisk). Helse- og miljøvinkling kombineres</td>
<td>Kommunen, frivillige organisasjoner, helsesektor</td>
<td>Ukjent</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>Kurs i økologisk hagebruk Tilby parseller til interesserte</td>
<td>Kommunen, frivillige organisasjoner</td>
<td>Middels (signaleffekt)</td>
<td>Svært sannsynlig</td>
</tr>
<tr>
<td>Tiltak for lokal omsetning av lokalt dyrkede og økologiske matvarer. Evt. merkeordning for lokal mat. “Matnettverk” mellom lokale aktører</td>
<td>Kommunen, matvarebutikker, hoteller og restauranter, jordbru frivillige organisasjoner,</td>
<td>Potensielt stor</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>Klær og sko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Støtte til etablering av bedrifter som reparerer sko og klær. Informasjon om hvor slike finnes</td>
<td>Kommunen</td>
<td>Ukjent</td>
<td>Mulig</td>
</tr>
<tr>
<td>Bytteordninger / brukmarked</td>
<td>Avfallsselskap, støtte frivillige organisasjoner</td>
<td>Ukjent</td>
<td>Mulig</td>
</tr>
<tr>
<td>Bolig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberal holdning overfor forsøksbyggeri med utradisjonelle, lite energikrevende materialer</td>
<td>Kommunen</td>
<td>På kort sikt: signaleffekt</td>
<td>Mulig</td>
</tr>
<tr>
<td>Utnytte planverktøy, utbyggingsavtalier, kontrakter ved tomtesalg m.v. til å kreve boliger av nøktern størrelse og/eller mindre energikrevende materialer. Prioritere samarbeid med utbyggere som selv vil gå lenger</td>
<td>Kommunen, utbyggere</td>
<td>Stor</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>Møbler og husholdningsutstyr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Støtte tiltak for omsetting av brukte møbler og husholdningsutstyr, for eksempel knyttet til drift av avfallspluss</td>
<td>Avfallsselskap, støtte til frivillige organisasjoner</td>
<td>Ukjent</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alle tiltak som kan medføre lavere bilbruk. Se kap. xxx</td>
<td>Kommunen i samarbeid med stat, fylkeskommune, næringsliv</td>
<td>Stor</td>
<td>Varierer</td>
</tr>
<tr>
<td>Alle tiltak som kan medføre lavere bilhold, f.eks. bildeleordninger</td>
<td>Kommunen, næringsliv, frivillige organisasjoner</td>
<td>Stor</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>Fritidsvarer og –tjenester</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bytteordninger / bruktmarked for fritidsutstyr.

<table>
<thead>
<tr>
<th>Kommunen, næringsliv, frivillige organisasjoner</th>
<th>Liten</th>
<th>Sannsynlig</th>
</tr>
</thead>
</table>

Utlånsordninger for fritidsutstyr (bibliotekmodell)

<table>
<thead>
<tr>
<th>Kommunen evt. frivillige</th>
<th>Liten</th>
<th>Sannsynlig</th>
</tr>
</thead>
</table>

Forvaltning

<table>
<thead>
<tr>
<th>Stille krav om bruk av lokale byggematerialer og byggematerialer som krever lite energi/medfører lavt CO2-utslipp i offentlige bygg</th>
<th>Kommunen</th>
<th>Ukjent</th>
<th>Svært sannsynlig</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Feie for egen dør” mht. forbruk av møbler og inventar, papir, engangs-artikler, kjemikalier mm,</td>
<td>Kommunen</td>
<td>Ukjent</td>
<td></td>
</tr>
<tr>
<td>Gjennomgang av egen bygningsmasse mtp. mer effektiv arealutnyttelse - evt. sambruk med andre lokale aktører</td>
<td>Kommunen</td>
<td>Middels</td>
<td>Svært sannsynlig</td>
</tr>
</tbody>
</table>

Der andre aktører er nevnt, har kommunen et ansvar for å invitere/oppmuntre disse

1. Dette er en metodikk vi har tatt fra Klimaplanen for Kristiansand. Her gjør vi en grov sammenveiing av kostnad og konfliktgrad. Poenget er at rimelige, enkle og lite kontroversielle tiltak har “svært høy sannsynlighet” mens dyre, kompliserte og kontroversielle tiltak har “lav sannsynlighet”.

4 Det økologiske rommet - og Stavangers økologiske andel

Fordi selve begrepene “økologisk rom” og “økologiske andeler” hittil er lite kjente i Norge, er det lagt forholdsvis stor vekt på den innledende presentasjonen og en drøfting av deres styrker og begrensninger som verktøy for en bærekraftig utvikling.

4.1 Bakgrunn og definisjoner

I Norge ble begrepet utredet i boka Sustainable Norway (Hille 1995), seinere popularisert som Din bit av jorden (Hille 1996). Denne forfatteren har også utredet begrepets konsekvenser, spesielt med hensyn på transport- og landbrukspolitikk og miljørapportering, på oppdrag fra Det europeiske miljøbyrået EEA (Hille 1998).

I Towards Sustainble Europe defineres det økologiske rommet (environmental space) som “mengdene av energi, vann, areal, ikke-fornybare råvarer og tømmer som vi kan utnytte under hensyn til bærekraft”. Det dreier seg altså om grensene for det ressursforbruket som er økologisk forsvarelig.

Det springende punktet er imidlertid ordet “vi”. “Environmental space” brukes i denne studien om det forsvarelig ressursforbruket både på globalt, nasjonalt og europeisk nivå. Hva som er forsvarelig på globalt nivå avhenger av ressurstilgangen og miljøulempene ved å utnytte ressursene. Hva som er forsvarelig på nasjonalt nivå avhenger i tillegg av en fordelingsetikk. Med visse forbehold hevder Towards Sustainable Europe at alle mennesker har lik rett til å forbruke ressurser: et lands “økologiske rom” blir derfor lik det globale rommet mulitisert med dette landets andel i verdens befolkning. Ettersom Norge har 0,7 promille av verdens befolkning, har vi rett til 0,7 promille av det globalt forsvarelige ressursforbruket.

For å unngå forvirring innførte denne forfatteren i Sustainable Norway uttrykket “environmental share” (økologisk andel) for å betegne et lands andel i det globale
økologiske rommet. Nedenfor opprettholdes denne begrepsbruken: dvs. at økologisk rom betegner mengden av ressurser som verden kan bruke år om annen, mens økologisk andel betegner mengden som for eksempel Norge eller Stavanger kan bruke under hensyn til en rettferdig fordeling.

Avledede begrep: Faktor 4 og Faktor 10

4.2 Sterke sider ved “økologiske andeler” som veiviser til en bærekraftig utvikling

Tre ting særmerker tenkningen omkring økologisk rom/andel, slik disse begrepene er brukt i Towards Sustainable Europe, Sustainable Norway og seinere studier. Det første er at det fokuseres på det som går inn i økonomien (ressursforbruket) og ikke på miljøbelastningene som kommer ut (forurensning i vid forstand). Det andre er vekten som legges på rettferdig internasjonal fordeling. Det tredje er kravet om å se alle ressurser i sammenheng. Det er ikke tilstrekkelig å føre en politikk som holde f.eks. energiforbruket på et bærekraftig nivå, om dette fører til uforsvarlige krav på materialer eller areal.
Det er flere motiv for å fokusere på ressursforbruket. Det første er at det forenkler sakene. Vi trenger ikke så altfor mange kategorier for å beskrive de naturressursene som går inn i økonomien. For noen formål kan vi klare oss med tre: energi (målt i J eller kWh), materialer (målt i tonn) og areal (målt i hektar). For styringsformål må hver av disse brytes ned på flere underkategorier, men vi kommer svært langt med noen titalls kategorier i alt. Miljøkonsekvensene av ressursforbruket er derimot utallige. *Alle* energikilder - enten det dreier seg om fossile brensel, kjernekraft, vannkraft, bioenergi, vindkraft eller t.o.m. solenergi - skaper miljøulemper ved utnyttelsen, og for de fleste av dem dreier det seg om *mange* ulemper. I tilfellet fossile brensel er det for eksempel ikke bare tale om utslipp av klimagasser, men om utslipp av forsurende forbindelser, tungmetaller og en lang rekke giftige organiske forbindelser; om naturinngrep - enten det er dagbrudd, oljerigger eller gassrørledninger; om vannforurensning ved oljesøl eller avrenning fra kullgruver, alternativt eksplosjonsfare ved gasstransport, og så videre. Ser vi på en hovedkategori av materialressurser som metaller, finner vi som regel både store naturinngrep, store avfallsmengder og vannforurensning - gjerne med mange ulike giftige stoff - ved uttakststedet, et nytt register av forurensninger knyttet til beredning og smelting, og nok ett når metallene spres i miljøet dels under og dels etter bruksfasen. Ser vi på ny eller intensivert utnyttelse av arealer til tømmer- eller jordbruksproduksjon, vil tapspostene typisk omfatte redusert biologisk mangfold, netto utslipp av klimagasser (og ofte av ammoniakk), økt erosjon, forstyrrelser i det hydrologiske regimet og vannforurensning bl.a. med næringsstoffer.

Det tredje motivet for å fokusere på ressursforbruket henger sammen med det globale fordelingsperspektivet. Mange av de miljøbelastningene som følger av ressursforbruket i Nord, oppstår ikke her men i Sør - der en stor del av ressursene ikke bare utvinner, men også i økende grad foredles (til halvfabrikata eller ferdige produkt). En lokal, nasjonal eller europeisk miljøpolitiikk som bare fokuserer på utslipp og naturinngrep
“hos oss” overser at vi gjennom vårt ressursforbruk gjør krav på en urimelig stor del av bære- og opptaksevna til økosystem i andre deler av verden.

Det fjerde (mulige) motivet for å fokusere på ressursforbruket er at ressursene som sådanne er begrensete. Dette er åpenbart når det gjelder areal, og likeså når det gjelder fornybare energikilder (der det finnes fysiske grenser for den årlige tilgangen). Når det gjelder ikke-fornybare ressurser ser derimot Towards Sustainable Europe helt bort fra knapphet som begrensning på det økologiske rommet. Dette bestemmes utelukkende av behovet for å minske de mangfoldige miljøbelastningene som ressursforbruket forårsaker. I Sustainable Norway er synet mer nyansert (mer om dette nedenfor).

Det at tankegangen om økologiske andeler dreier søkelyset fra utslipp og inngrep til ressursforbruk er en styrke, gitt at miljøpolitikken på 1980- og 90-tallet har vært mest opptatt av de førstnevnte. (På 1970-tallet var ressursforbruket faktisk noe mer i fokus, men da i større grad ut fra en til dels ubegrunnet frykt for kortsiktig ressursknapphet). En styrke er også kravet om å se alle ressurser i sammenheng. I den grad noen land hittil har ført en politikk for å begrense ressursforbruket, har det dels vært tale om energiforbruket, dels om å begrense visse former for intensivering av arealforbruket. Målsettinger for energi og for areal har sjelden blitt sett i sammenheng, og overordnede målsettinger for materialforbruket er enda sjeldnere.

Transportsektoren er et godt eksempel på at sammenhengende betraktninger kan føre til endrede konklusjoner. Elektriske biler kan framstå som del av løsningen på et energiproblem, både fordi de har et vesentlig lavere energiforbruk enn gjengse bensinbiler og fordi denne energien kan leveres fra fornybare kilder. Men etter 160 års eksperimentering med el-biler er fortsatt bly-syre batterier den vanligste kraftkilden (og de viktigste alternative batterityper er basert på andre sjeldne og giftige metaller - sink eller kadmium). Dersom verden i 2030 skulle ha én bil på 2,5 personer (som Norge i dag) og disse skulle ha blybatterier store nok til å gi en rekkevidde på 15 mil, ville produksjonen av batteriene alene kreve minst 800 ganger verdens nåværende årlige gruveproduksjon av bly. Arealforbruket til el-bilene ville heller ikke bli mindre enn for bensinbiler. Et annet eksempel: Høyhastighetstog kan, om belegget er høyt, være mer energieffektive enn fly. Men de er langt mer material- og arealkrevende i forhold til transportarbeidet som utføres (bl.a. fordi de krever egen skinnegang med minimalt med kurver). En sammenhengende ressursbetraktning kan alltså medføre at løsningene “el-biler” og “høyhastighetstog” skyves noe lenger ned på lista over aktuelle strategier for å minske energiforbruket - til fordel for strategier som minsker bilbehovet, hhv. kravet til hastighet ved lengre reiser.

4.3 Innvendinger mot “økologiske andeler” som styringsverktøy

Det har blitt reist både faglige og politiske innvendinger mot å bruke økologiske andeler som styringsredskap. De faglige innvendingene gjelder dels problemene med å beregne størrelsen på det økologiske rommet og i neste omgang de økologiske andelene. Dels påpekes det at noen aktiviteter medfører svært alvorlige forurensningsproblem selv om
ressursforbruket er beskjedent. De politiske innvendingene gjelder dels konsekvensene for fattige land, og dels spørsmålet om ikke implementeringen må føre til urimelige inngrep i handlefriheten til bedrifter og individer.

Beregningsproblemet

Det er opplagt at størrelsen på det økologiske rommet for de fleste ressurser ikke kan beregnes nøyaktig. Dette vedgås både i *Towards Sustainable Europe* og *Sustainable Norway*. Vansk eligtetene er ikke bare knyttet til det store mangfoldet av miljøbelastninger som ressursforbruket forårsaker - og som kan være med på å avgjøre grensen for det forsvarlige forbruket. Det vil også være ulike vurderinger av teknologiske muligheter for å løse disse problemene uten å senke ressursforbruket. Ikke minst vil det ulike *etiske* vurderinger - hvor store miljøskader eller -trusler er akseptabel?

Vurderingsproblem oppstår imidlertid i like høy grad når en vil sette grøner for spesifikke miljøbelastninger. Det skjer enten det gjelder utslipp av CO₂, utslipp av næringsalater til Nordsjøen, bruken av piggedekk eller reduksjoner i det genetiske mangfoldet i den skandinaviske ulvestammen. Nesten alltid er det både faglig uenighet om effektene på naturen eller menneskers helse, og ulike etiske vurderinger (hvor stor skade er akseptabel). Kvantiseringer av det økologiske rommet for ressursforbruk skiller seg ikke fra kvantiseringer av det akseptable nivået på spesifikke miljøbelastninger ved at de er normavhengige eller faglig diskutable. Forskjellen er i stedet at anslag for økologisk rom i tillegg krever et sammenfattende skjøn - der konklusjonen bygger på et *overblikk* over de ulike miljøbelastningene som ressursforbruket forårsaker.

Forholdet mellom det økologisk rommet og våre økologiske andeler kan også problematiseres. Dels kan det hevdes at mennesker i noen land av naturgitte grunner har større behov for visse ressurser enn i andre land. Et vanlig synspunkt i Norge er for eksempel at vi trenger mer energi per capita til romoppvarming enn gjennomsnittet i verden. *Sustainable Norway* tar eksplisitt høyde for den generelle innvendingen, og går også nærmere inn på det nevnte eksemplet (mer om dette nedenfor).

Det kan også innvendes at noen land har et høyere ressursforbruk enn andre på grunn av sin industristruktur: de forbruker energi og råvarer for å produsere halvfabrikata som eksporteres til andre land. Også dette er høyst aktuelt i Norge. Dette er imidlertid enighet mellom dem som har skrevet om økologiske andeler om at dette ikke bør føre til endringer i andelene, men derimot i måten ressursforbruket måles på. Et lands ressursforbruk er etter denne tankegangen *de ressursene som går med til å produsere de ferdige varene og tjenestene som forbrukes i landet*. Den norske kraftkrevende industriens forbruk av energi og malmer er i all hovedsak *ikke* del av det norske ressursforbruket. Jorda som brukes for å dyrke bomullen i nordmenns skjorter og jernet i bilene våre *er* derimot del av det norske ressursforbruket.

Det er videre klart at ikke alle ressurser *tar seg* fordele fritt mellom alle land i verden: det er ikke praktisk mht. vannressurser, og ikke mulig mht. arealressurser i streng forstand - derimot kan arealenes avkastning av mat, tekstiler og tømmer omfordeles.
Towards Sustainable Europe innfører flere unntak fra målsettingen om en global utjevning i ressurstilgangen per capita, som også kommenteres nedenfor.

Forurensninger uavhengig av ressursforbruk

Miljøgifter kan ha svært alvorlige konsekvenser for miljøet selv om de slippes ut i små mengder, om det har gått med små mengder energi og materialer til å utvinne eller framstille dem, og selv om virksomhetene som slipper dem ut også ellers har et beskjedent ressursforbruk. Dette er en relevant innvending mot å bruke “økologiske andeler” som eneste styringsverktøy i miljøpolitikken, noe som også tas opp både i *Towards Sustainable Europe* og *Sustainable Norway*. En politikk som tar sikte på å redusere ressursforbruket må nødvendigvis suppleres med egne regler som forby eller begrenser bruken av spesielt miljøfarlige stoff.

Politiske innvendinger: konsekvenser for Sør

Begrepet “økologiske andeler” blir selvfølgelig først politisk relevant når forbruket av noen ressurser i noen land overstiger - eller kan forventes snart å overstige - den økologiske andelen. Så er avgjort tilfellet i EU i dag ifølge *Towards Sustainable Europe* og i Norge i dag ifølge *Sustainable Norway*. Begrepets innebygde budskap er da at det her bør settes mål og settes i verk tiltak for å bringe ressursforbruket ned. En slik politikk i rike land kan være nødvendig bare av økologiske grunner. Det vil være tilfellet der rike lands ressursforbruk alene overskriver det globale økologiske rommet. Om vårt ressursforbruk ikke overgår det globalt forsonlige, men likevel overgår vår rimelige andel av det globalt forsonlige, må motivasjonen for å redusere det være at vi vil “rydde plass” for at fattige land kan øke sitt forbruk.

Det er to hovedinnvendinger mot den siste tanken, som begge innebærer at den holder bedre sinnelags- enn konsekvensetisk mål. Den første er at økt ressursforbruk i fattige land ikke vil følge av at rike land lar være å forbruke, men av at fattige land øker sin kjøpekraft og dermed sin evne til å konkurriere i verdensmarkedet om ressursene. Den andre at siden mange fattige land i dag får en vesentlig del av sine valutaintekter ved å eksportere ressurser til rike land. Derfor vil minsket ressursforbruk i vår del av verden ikke minske, men tvert imot øke deres fattigdom. Betydningen av disse argumentene kommer an på hvordan og med hvilket tidsperspektiv en politikk for minsket ressursforbruk iverksettes. Verken *Towards Sustainable Europe* eller *Sustainable Norway* tar til orde for brå reduksjoner i ressursforbruket. Begge kom ut i 1995; tidshorizontene er hhv. 2025 og 2030. Innen 2050 er det, om trenden fra de siste 15 åra legges til grunn, slett ikke usannsynlig at den gjennomsnittlige kjøpekrafta i Sør- og Øst-Asia, med nær halve verdens befolkning, vil overstige dagens europeiske. Land i Sør vil gjøre krav på større andeler av det globale ressursforbruket. Om ikke det er rom for å øke ressursforbruket på globalt nivå, så er en politikk for å minske det i vår del av verden like mye et uttrykk for egennyttig framsynsethet som for altruisme. - Dette løser ikke de kortsiktige problemene til land som er sterkt avhengige av eksport av lите foredelede naturressurser. Disse tilhører stort sett de aller fattigste landa og dem med minst økonomisk vekst (m.a.o. har råvareeksport ikke vært en særlig vellykket
vekststrategi). Én av grunnene er at det betales lite for naturressursene, også i den forstand at prisene ikke dekker de miljømessige og sosiale kostnadene ved utvinningen. Det gjelder enten vi snakker om tømmer eller bomull, kopper eller kull. Dersom prisene ble hevet for å dekke de lokale eksternalitetene, ville det på én gang bidra til å få fart på ressurssparing - og kompensere eksportørene for det reduserte eksportvolumet.

Politiske innvendinger: implementering

4.4 Kvantifisering av våre økologiske andeler

Det framgår av det som er sagt ovenfor at enhver tallfesting av våre økologiske andeler må betraktes som et anslag. Selv anslag med betydelig usikkerhet kan imidlertid være nyttige, når de er kvalifiserte og indikerer et stort gap mellom det forsvarelige ressursforbruket og det aktuelle. La oss ta det tilfellet at den økologiske andelen anslås til 10 % av det aktuelle ressursforbruket - altså at dette bør reduseres med 90 %.
Bommer anslaget med en faktor 2 oppover, bør rensursforbruket reduseres med 95%; bommer det med en faktor 2 nedover, holder det å redusere med 80 %. Setter vi oss som mål å redusere rensursforbruket lineært ned mot vår økologiske andel i løpet av 50 år, betyr det at vi tar sikte på å redusere det med 18 % de første 10 åra. Oppdager vi så en bommert av den første typen, betyr det at vi da burde ha redusert det med 19 % - i det andre tilfellet hadde det klart seg med 16 %. Hadde vi valgt en eksponsiell bane hadde avvikene blitt litt større. Likevel: selv med betydelige usikkerheter kan et anslag som viser stort sprik mellom det aktuelle rensursforbruket og den økologiske andelen gi nokså robust veiledning på mellomlang sikt. Det er også - som vi skal se nedenfor - mulig å sette opp mer nyanserte reduksjonsscenarier som eksplisitt tar høyde for mulige framtidige endringer i teknologi og/eller erkjennelse.

Nedenfor skal vi kort gjennomgå de anslagene som Towards Sustainable Europe og Sustainable Norway gir mht. økologiske andeler for areal og materialer, og dernest se litt mer ingående på anslagene for energiressurser.

Gitt at 50 % av verdensforbruket anno 1990 skal fordeles på 7 milliarder mennesker kommer en fram til at per capita-forbruket av råstoffer blir på ca. 10 % av EU-nivået i 1990. Tallet på 7 milliarder representerer ingen egentlig prognose for verdens befolkning anno 2050, som er studiens tidshorisont. Towards Sustainable Europe legger derimot til grunn at befolkningssvoksten bør stanse i 2010. Om en i stedet hadde gått ut fra et mer sannsynlig befolkningstall på 9-10 milliarder i 2050, hadde den økologiske andelen per capita da ligget på vel 7 % av forbruket per capita i EU anno 1990: en faktor 13 eller 14-reduksjon.

I Sustainable Norway skilles det mellom økologisk rom for geokjemisk alminnelige metaller (der de viktigste er jern og aluminium), for geokjemisk sjeldne metaller (de fleste) og for ikke-metalliske industrimineraler. For den første kategorien finner en ingen opplagt grense for det økologiske rommet, med mindre den settes av utslippene ved rensjonsprosessen. Det gjelder spesielt utslipp av CO₂. Om CO₂-frie teknologier kan utvikles er det ifølge denne studien ingen hindring for at alle kan forbruke like mye jern og aluminium per capita som vi gjør i Norge i dag, for de geokjemisk sjeldne metallene gjelder derimot ikke bare at malmforekomstene er følbart begresende, men også at det kreves store naturingrep per utvunnet tonn, og dessuten at de fleste har miljøgiftegenskaper. For mange industrimineraler er både knapphet og miljøskader ved utvinningen svært påtakelige problem. For disse to gruppane anslås den økologiske andelen per capita til i størrelsesordenen en tiendedel av dagens per capita-forbruk i Norge.
“Arealforbruk” er en kompleks størrelse. Vi kan snakke om en serie overganger, der mennesker i økende grad omdanner og legger beslag på arealene. Trinn i en slik utvikling kan for eksempel være

1. Uberørte økosystem >
2. Forvaltet skog (med bl.a. endret arts- og alderssammensetning) >
3. Jordbruksareal under tradisjonelle eller økologiske driftsformer >
4. “Industrielle” jordbrukslandskap (med få vekstlag, få refugier for andre arter (hekker, grøfter, dammer, åkerholmer) og høyt kjemikalieforbruk) >
5. Bebygde areal (i ytterste instans under asfalt), eller areal som på andre vis er biologisk ødelagte.

Selv arealforvaltningen må nødvendigvis skje på stedet: her er det altså ikke grunn til å skille mellom økologisk rom og økologiske andeler. *Towards Sustainable Europe* fraviker imidlertid prinsippet om global fordeling av ressursene, også når en diskuterer avkastningen fra jordbruks- og skogarealene. Her forutsettes det nemlig at EU skal være selvforsynt. Det globale perspektivet kommer bare inn ved at det kreves at en ikke skal beslaglegge større areal i andre verdensdeler til å produsere mat for EU, enn det EU bruker til å produsere mat for eksport. Dette, sammen med kravet om 100 % økologisk jordbruk og at en del av jordbruksarealet skal bli nasjonalparker, skulle etter de flestes mening medføre at det ville stå merkbart mindre planteproduksjon til disposisjon for hver EU-borger i 2050 enn nå. Det ville ikke bety sult, men at kostholdet måtte legges drastisk om, med mye lavere kjøttforbruk. *Towards Sustainable Europe* går imidlertid ut fra samme avlingsnivå i (framtidig) økologisk som i konvensjonelt jordbruk, og at bortfallet av areal for øvrig kan kompenseres ved å redusere andelen av maten som går til spille etter innhøsting. Tømmerforbruket må derimot reduseres noe.

I *Sustainable Norway* settes ingen bestemte nedre krav til omfanget av det verna arealet, eller øvre grenser for det bebygde. Det kreves heller ikke 100 % økologisk jordbruk. Denne studien betrakter derimot mat, tekstilfibre og tømmer - og dessuten fisk - som ressurser der det finnes et globalt økologisk rom å fordele. Når det skal tas rimelige miljøhensyn og forutsettes en verdensbefolkning på 8,5 milliarder mennesker i 2025, kommer en til at de økologiske andelene per capita for så vel animalske matvarer som bomull blir i nærheten av det den gjennomsnittlige verdensborgeren forbruker i dag. Det vil si hvert 50 % og 70 % mindre enn dagens norske forbruk. Dette gjelder derimot ikke for tømmer.
Tab. 4.1 oppsummerer anslagene for økologiske andeler i de to studiene som er omtalt. Til sammenligning er også dagens norske forbruk av de samme materialene og arealslagene vist. Tallene for disse gjelder året 1998 og er etter Hille (2000).

Tab. 4.1: Økologiske andeler for areal og materialer ifølge Towards Sustainable Europe og Sustainable Norway⁴

<table>
<thead>
<tr>
<th></th>
<th>Økologisk andel per capita 2050 ifølge TSE</th>
<th>Økologisk andel per capita 2025 ifølge SN</th>
<th>Norsk forbruk per capita 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bebygd areal</td>
<td>0,51 da</td>
<td>?</td>
<td>0,9 da</td>
</tr>
<tr>
<td>Fuldyrka jord</td>
<td>1,5 da</td>
<td>1,7 da</td>
<td>3,2 da*</td>
</tr>
<tr>
<td>Kjøtt</td>
<td>?</td>
<td>str. orden 32 kg</td>
<td>65 kg</td>
</tr>
<tr>
<td>Tømmer</td>
<td>0,56 m³</td>
<td>1,4-2,4 m³</td>
<td>1,35 m³</td>
</tr>
<tr>
<td>Sement</td>
<td>80 kg</td>
<td>str. orden 30 kg</td>
<td>360 kg</td>
</tr>
<tr>
<td>Råjern</td>
<td>36 kg</td>
<td>forholdsvis stor</td>
<td>330 kg**</td>
</tr>
<tr>
<td>Primær aluminium</td>
<td>1,2 kg</td>
<td>forholdsvis stor</td>
<td>18 kg**</td>
</tr>
<tr>
<td>Kopper (fra gruver)</td>
<td>0,75 kg</td>
<td>str. orden 0,7 kg</td>
<td>4,6 kg **</td>
</tr>
<tr>
<td>Bly (fra gruver)</td>
<td>0,39 kg</td>
<td>str. orden 0,1 kg</td>
<td>1,4 kg **</td>
</tr>
</tbody>
</table>

* Dyrka jord i Norge og i utlandet som brukes til å produsere mat og tekstiler som forbrukes i Norge

** De økologiske andelene gjelder jomfruelige metaller (det settes ingen grenser for forbruk av resirkulert metall). Forbrukstallene i Hille (2000), som i utgangspunktet gjelder totalt forbruk av de enkelte metallene, er derfor redusert ved hjelp av tabell 2 B i samme kilde som viser hvilke andeler av verdensforbruket som stammer fra ny produksjon hhv. gjenvinning. Dvs. at samme fordeling antas å gjelde for det norske metallforbruket.

Når det gjelder energi, er betraktningsmåten i Towards Sustainable Europe delt. Det økologiske rommet (og dermed andelene) for kjernekraft settes til 0. Fossile brensel betraktes som globale ressurser. Det økologiske rommet (anno 2050) bestemmes her alene av behovet for å begrense CO₂-utslippene, som vurderes å overskygge de øvrige miljøkonsekvensene av forbruket. Det forsvarlige nivået på CO₂-utslipp avledes igjen av den vurderingen at de ikke må forårsake en større temperaturstigning enn 0,1 grad

⁴ Merk: Andelene for areal etter den første kilden gjelder EU. For mineraler krever den samme kilden at forbruket av "alle under ett" reduseres med 50 % globalt. Tallene i tabellen er basert på lik prosentvis reduksjon for hvert enkelt mineral.

Om en i stedet hadde beregnet den økologiske andelen ut fra en realistisk forutsetning om en global befolkning på 9,5 milliarder i 2050, hadde den blitt redusert til 18,4 GJ (5100 kWh).

I Sustainable Norway settes det økologiske rommet for så vel kjernekraft som fossile brensel til 0. Begrunnelsen for det siste er hovedsakelig at enhver videre, menneskeskapt klimaendring - ut over det som alt er uunngåelig - vurderes som uakseptabel.

Det globale potensialet for utnyttelse av andre fornybare energikilder enn solenergi anslås til mellom 263 og 480 EJ (exajoule) per år. Disse tallene er basert på ulike vurderinger av det fysiske potensialet for vann-, vind-, bølge-, bio- og geotermisk energi, og det som må kalles moderate begrensninger på utnyttelsen av hensyn til miljøet. Det forutsetter ingen økonomiske begrensninger. Verdens nåværende forbruk av primær energi ligger til sammenligning på ca. 420 EJ. Fordelingen på energikilder er vist i tab. 4.2.
Tab. 4.2: Globale potensialer for fornybare energikilder (utenom solenergi) ifølge *Sustainable Norway*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vannkraft</td>
<td>20-30 EJ</td>
<td>10 EJ</td>
</tr>
<tr>
<td>Vindkraft</td>
<td>100-200 EJ</td>
<td><<1 EJ</td>
</tr>
<tr>
<td>Bølgekraft</td>
<td>2-10 EJ</td>
<td>ubetydelig</td>
</tr>
<tr>
<td>Bioenergi</td>
<td>140-240 EJ</td>
<td>ca. 60 EJ</td>
</tr>
<tr>
<td>Geotermisk energi*</td>
<td>1-10 EJ</td>
<td><<1 EJ</td>
</tr>
</tbody>
</table>

* hvorav en del lar seg utnytte til strømproduksjon og en del bare til oppvarming.

Det bærekraftige potensialet for solenergi er, som det påpekes i *Sustainable Norway*, langt vanskeligere å anslå. Det fysiske potensialet er så å si ubegrenset (solenergien som treffer jorda, svarer til over 10.000 ganger verdens nåværende energiforbruk). Den kan utnyttes enten direkte i form av varme eller ved å omdanne den til elektrisitet (gjennom solceller eller varmekraftverk) - og eventuelt videre til hydrogen. Potensialet for direkte utnyttelse av solvarme begrenses imidlertid av behovet for lavtemperaturvarme - den kan bare brukes til formål som tøring eller oppvarming av bygninger og tappevann. Dette potensialet anslås til høyst 100 EJ globalt for en verdensbefolkning på 8,5 milliarder i 2025. Solvarme, sammen med lavverdig geotermisk varme (der potensialet anslås til noen få EJ) skiller seg dessuten ut fra de øvrige fornybare energikildene ved at de ikke kan transporteres over store avstander.

Elektrisitet fra sola kan derimot brukes til å dekke ethvert energibehov, slik at begrensningene her utelukkende ligger på forsyningssida. Den fysiske tilgangen er altså heller ingen begrensning. Det er visse miljøproblem knyttet til framstillingen av solceller, men heller ikke disse vurderes som kritiske. Derimot er det et problem at solenergien er tynt fordelt over jorda. For å skaffe fram like mye energi som verden forbruker i dag, anslås det at vi måtte ha nær 500.000 kvadratkilometer med solcelleanlegg i verden. Arealforbruket i seg selv er likevel ikke av gjørende problem: dette tilsvarer ca. 0,35 % av landjorda, og anleggene kan godt plasseres både på hustak og i ørkenområder. Derimot trengs store mengder med *materialer* for å kle så store områder med solceller, og det er ikke helt uproblematisk å resirkulere materialene når anleggene skal fornyes. For å bygge en første generasjon av anlegg som kunne

5 Anslaget er basert forutsetter en virkningsgrad for solceller på 22,5 % (betydelig høyere enn for celler som er i vanlig bruk i dag), som gir en virkningsgrad for hele anlegg - der en del av plassen opptas av annet enn aktive solcelleoverflater - på 13,5 %. Videre forutsettes det at anleggene er fordelt over klonen proporsjonal med befolkningstettheten, hvilket fører til at den gjennomsnittlige solinnstrålingen er på 1800 kWh per år. Ble i stedet alle anleggene plassert i Sahara o.a. ørkenområder på samme breddegrad, ville arealbehovet falle med 30-40 %. Derimot ville behovet for transport av energien - via høyspentledninger eller som hydrogen - øke sterkt. Dette ville igjen kreve både areal, materialer og energi (økte overførings- og omvandlingstap).
produsere 400 EJ strøm årlig, ville det ifølge *Sustainable Norway* trenges ca. 2 milliarder tonn silisium, 420 millioner tonn kopper (50 verdens nåværende årlige gruveproduksjon), like mye aluminium (20 ganger verdens årlige primærproduksjon av dette metallet) og over 4 milliarder tonn glass, foruten store mengder sement, stål og annet. Disse tallene forutsetter allerede betydelige forbedringer i den teknologien som var tilgjengelig i 1995. Dette ville åpenbart sprege det økologiske rommet for kopper, og trolig for flere andre materialer. Det kan imidlertid tenkes ytterligere teknologiske forbedringer og substitusjoner, der for eksempel det meste av kopperet byttes ut med aluminium. Derfor nøyter *Sustainable Norway* seg med å gi nedre og øvre størrelsesordennestimat av det økologiske rommet for høyverdig (elektrisk) solenergi. Størrelsesordenen kan være 100 EJ, men den kan også være 1000 EJ. Den er med stor sikkerhet ikke 10.000 EJ.

Resultatet av beregningene i *Sustainable Norway* er dermed at den globale tilgangen på høyverdig energi, som lar seg transportere over store avstander, anslås til minst ca. 360 EJ (100 EJ fra sola og 260 EJ fra andre kilder). Den kan tenkes å bli over 1000 EJ større enn dette - dersom vi går ut fra de høyeste tallene i tab. 4.2 og er optimistiske mht. potensialet for solenergi. Netttopp fordi noe av energien må transporteres, og dessuten omformes eller lagres av andre grunner, vil mengden som står til disposisjon for sluttforbruk bli noe mindre enn primærproduksjonen. Dette er imidlertid også tilfellet i dagens energisystem, der omtrent 20 % av primærproduksjonen på verdensbasis blir borte på veggen til sluttforbrukerne. Tapene vil ifølge *Sustainable Norway* kunne holdes på omtrent samme nivå i et framtidig system basert på fornybare kilder.\(^6\)

I tillegg til de nevnte tallene kommer altså et bidrag fra lavverdig sol- og jordvarme, som begrenses mer av den mulige etterspørselen enn av tilgangen.

Disse tallene kan sammenlignes med andre anslag for den mulige globale tilgangen på fornybar energi i det 21. århundret, som er hentet fra viet ulike kilder og sammenstilt i Hille (1998):

Tab. 4.3. Ulike anslag for mulig global tilgang på fornybar energi i det 21. århundret.

\(^6\) Tapene er da regnet av den energien som konverteres i første instans (for eksempel den delen av solenergien som omdannes til likestrøm av en solcelle, eller den som når generatoren i et vindkraftverk). De store andele av den tilgjengelige energien som slike anlegg overhodet ikke lykkes i å utnytte, regnes ikke med i det primære energiforbruket. Tapene blir 0 når det er tale om uforedlet bioenergi som brukes direkte, og lave (i beste fall under 10 %) når det er tale om for eksempel vind- eller solenergi som utnyttes samtidig og på nærliggende sted i form av elektrisitet. Da er det bare tale om vekselretter/transformatortap og små ledningstap. De blir større når energien skal lagres fra dag til natt eller fra perioder med mye til perioder med lite vind eller når strommen skal føres over større avstander. De blir enda større når lagringsmediet er hydrogen eller når bioenergi skal omdannes til flytende eller gassform, for eksempel for å brukes i biler.
Disse scenariene bygger på noe ulike forutsetninger, både med hensyn til hvor høye økonomiske kostnader som kan aksepteres for å utvikle de fornybare energikildene, og mht. hvor store naturingrep som kan godtas. Det er likevel interessant at tallene alle unntatt to ligger innenfor en avstand på +/- 40 % fra dagens globale energiforbruk. De to unntakene er Shell-scenariet, som er vesentlig mer optimistisk enn de andre mht. solenergi, og Greenpeace/SEI, som også mener at en kan komme opp i nærmere 1000 EJ - men først ved århundrets slutt. Deres studie har imidlertid blitt kritisert for å være for optimistisk (eller for lite miljøfølsom) når det gjelder bruken av bioenergi.

Det laveste anslaget i Sustainable Norway (360 + ca. 100 EJ) er klart mest i tråd med flertallet av dem som er vist i tab. 4.2. Det er til og med langt mer optimistisk enn de fleste mht. hva som kan oppnås i første halvdel av dette århundret. I Sustainable Norway var tidshorisonten år 2025. Der ble det ikke forutsatt noen systemtregheit eller modningstid for de nødvendige investeringene, men tvert imot en helhjertet satsing på bærekraft i alle land, uten økonomiske sidehensyn, fra Dag 1 (dvs. f.o.m. 1995). Knytter vi i stedet realiseringen til år 2050, med en forventet verdensbefolkning på mellom 9 og 10 milliarder, vil en global tilgang på 360 EJ bety at det står ca. 38 GJ eller 10.600 kWh høyverdig energi til disposisjon for hvert menneske på jorda. I tillegg kommer den mengden lavverdig sol- og jordvarme som det ut fra lokale forhold måtte være ønskelig og praktisk mulig å utnytte.

Bytter vi ut de laveste anslagene for andre energikilder enn sol med middelverdiene av de intervallene som er vist i tab. 1, øker den globale tilgangen på høyverdig energi til 465 EJ, eller 49 GJ per verdensborger i 2050.

Fordi det er så stor usikkerhet knyttet til solenergiens muligheter, kan det imidlertid være riktig å skille denne helt ut. Det åpner for en mer fleksibel tilnærmelse til økologiske andeler, der disse kan økes etter hvert som solenergien eventuelt beviser et økende potensiale innenfor økologisk bærekraftige rammer. Uten solenergi, men med
middelverdiene av de anslagene som er vist i tab. 2, blir det globale potensialet for høyerdig energi 365 EJ, eller 39 GJ per verdensborger i 2050. I tillegg kommer da både en usikker mengde høyerdig energi fra sola, og en mengde lavverdig energi som avhenger av lokale forhold og behov.

Spørsmålet blir da om det også finnes et økologisk rom for fossil energi i 2050, og i tilfelle hvor stort. Nedtrappes de globale utslippene til de 12 milliarder tonn som Towards Sustainable Europe regner med, vil det ikke hindre en fortsatt betydelig global oppvarming. Det er vesentlig å være oppmerksom på at denne ikke ville opphøre i 2050, selv om utslippene da øyeblikkelig ble redusert til 0 (hvilket åpenbart ikke er forutsetningen). Klimapåvirkningen fra CO2 skjer nemlig med betydelig forsinkelse på grunn av havets temperaturtreght.

Et annet mål for et “bærekraftig” nivå på CO2-utslipp har blitt en del brukt - også med utgangspunkt i IPCCs første rapport og der tilfeldigvis tallet på 1,7 tonn per capita også opptrer. I denne rapporten hevdes det nemlig at utslippene straks måtte reduseres med minst 60 % fra 1990-nivå (til 10 mrd. tonn per år) om en skulle stabilisere CO2-konsentrasjonen i atmosfæren fram til 2100. Dette ville betydd en reduksjon til 1,7 tonn per capita for verdens befolkning omkring midten av 1990-tallet. Men det ville ikke ha medført en varig stabilisering av CO2-konsentrasjonene. “Stabiliseringen” - på tross av fortsatte utslipp - ville skjedd gjennom en liten nedgang de første tiårene, inntil det ble gjenoppretett likevekt mellom CO2-konsentrasjonene i lufta og i havet. Dette ville så bli etterfulgt av en ny økning i konsentrasjonen i lufta, inntil nivået i 2100 ble omtrent likt det i 1990. Med fortsatte utslipp ville konsentrasjonene deretter fortsatt øke. I dag er verdens befolkning og klimagassutslipp begge høyere enn i 1990, og det samme er CO2-konsentrasjonen i atmosfæren, slik at en større prosentvis og øyeblikkelig reduksjon måtte til for å oppnå samme effekt. Ble reduksjonen fordelt over få tiår (straks er i alle fall helt urealistisk) - måtte den bli enda større for å føre til stabilisering fram til 2100.

Det ofte siterte tallet på 1,7 tonn per capita krymper til så vidt over 1 tonn i 2050 allerede når vi tar i betraktning at verdens befolkning da blir ca. 9,5 og ikke 5,2 milliarder. Men for å holde de akkumulerte utslippene gjennom dette hundreåret på de ca. 1000 mrd. tonn som IPCCs regnestykke forutsatte, må altså utslippene mye lenger ned om de skal skje gradvis. Verdens CO2-utslipp var i 2000 på ca. 32 milliarder tonn (herav 24 mrd. tonn fra fossile brensel). Et akkumulert utslipp på 1000 mrd tonn gjennom århundret kan oppnås ved at utslippene reduseres lineært fra nå til 2,6 mrd. tonn i 2050, for deretter å ligge fast. Alternativt kan det oppnås ved at de reduseres eksponentielt med 30 % per tiår til litt over 5 mrd. tonn i 2030, for deretter å ligge fast. Disse utslippsnivåene svarer til ca. 0,28 hhv. 0,55 tonn per capita f.o.m. 2050, som ville gi rom for et forbruk av fossile brensel på ca. 4-7 GJ per capita (høyst 2000 kWh/capita). Selv det forutsetter at alle øvrige CO2-utslipp opphører. Etter som dette ikke er realistisk (det er for eksempel ikke mulig mht. sementproduksjon) blir det økologiske rommet i realiteten enda mindre.
Selv en midlertidig CO₂-stabilisering (ut dette århundret) krever altså at den fossile energibrukten nesten opphører innen 2050. Fordi treghetseffekter medfører at vi ennå ikke har sett den fulle klimaeffekten av den økningen i CO₂-konsentrasjoner som allerede har skjedd, tilsier føre-var prinsippet at enhver ytterligere økning så vidt mulig bør unngås. Derfor er det rimelig å sette det økologiske rommet for fossil energibruk til (så godt som) 0.

Dette betyr at vi står igjen med en økologisk andel på 39 GJ primær energi per capita, pluss solenergi. Ved gjennomsnittlige tap på 20 % fram til sluttbrukene, betyr det siste tallet at tilgangen på energi i dette leddet blir på 31,2 GJ per capita pluss solenergi.

4.5 Norges energiforbruk - og vår økologiske andel

Sluttforsøket av energi i Norge var i 1998 på 0,816 EJ (816 petajoule, PJ) eller 183 GJ per capita, ifølge Statistisk Sentralbyrås Energibalanse. Snarere enn en faktor 2-reduksjon i energiforbruket, som Towards Sustainable Europe anbefalte for EU, kan det ved første blikk se ut som om vi står overfor behovet for en faktor 6-reduksjon, med mindre solenergien kommer oss til stor hjelp.

Import- og eksportkorrigert forbruk

Tab. 4.4 Norsk energiforbruk – korrigert for eksport og import. GJ per capita. 1998

<table>
<thead>
<tr>
<th>Formål</th>
<th>GJ per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vannkraft-el</td>
<td>50</td>
</tr>
<tr>
<td>Kjernekraft-el:</td>
<td>5</td>
</tr>
<tr>
<td>Fossil-el:</td>
<td>6</td>
</tr>
<tr>
<td>Fossile brensel:</td>
<td>73</td>
</tr>
<tr>
<td>Bioenergi:</td>
<td>9</td>
</tr>
<tr>
<td>Fjernvarme:</td>
<td>1</td>
</tr>
<tr>
<td>SUM</td>
<td>144</td>
</tr>
</tbody>
</table>

Dette skulle fortsatt bety at vi kan stå overfor behovet for en faktor 4,6-reduksjon i det eksport- og importkorrigerte energiforbruket.

Kaldt klima = større økologisk andel?

Det kan imidlertid hevdes at vi av klimatiske grunner har større objektivt behov for energi enn mennesker i de fleste andre land, og at den økologiske andelen bør justeres tilsvarende. Dette behovet knytter seg i så fall til oppvarming av bygninger. Av det reelle norske energiforbruket på 638 PJ i 1998 ble om lag 150 PJ (23,5 %) brukt til romoppvarming. Andelen av energi som brukes til oppvarming og/eller avkjøling av rom er faktisk ikke vesentlig forskjellig i de fleste andre industriland. Dette skyldes imidlertid delvis at vi i Norge har tatt konsekvensen av klimaet ved å ta brytet og kostnaden ved å isolere bygningene. Det kan hevdes at rettferdighet fordeler at andre land påtar seg tilsvarende kostnader - eller finner på andre og billigere løsninger - heller enn å kreve en like stor energiandel per capita som Norge. - Det er også mulig at folk i tropiske land, gitt samme kjøpekrav som Norge, kunne tenke seg å bruke like mye energi til avkjøling som vi gjør til oppvarming. Men det kan også hevdes at behovet for oppvarming hos oss er mer essensielt enn behovet for avkjøling i Afrika.

La oss anta det klimabetingede behovet for energi til romoppvarming og -avkjøling ellers i verden settes til halvparten av det norske i gjennomsnitt. Det skulle, ut fra den andelen romoppvarming tar av det norske energiforbruket, tale for at Norges økologiske andel for energi ble satt 13 % høyere enn verdensgjennomsnittet. Men det finnes gode argumenter for at tillegget burde bli mindre. I en situasjon der mange må spare mye energi, er nemlig romoppvarming et av de områdene der det er aller lettest å spare. Det gjelder selv når utgangspunktet er som i Norge, dvs. at de fleste bygningene allerede har
noe isolasjon. Det finnes bebyggelser i Norden i dag der en gjennom en årrekke har klart seg med 20-30 kWh per kvadratmeter årlig til oppvarming, uten å slå av på komforten, uten varmepumper, og uten at husa har blitt særlig dyre. Til sammenligning bruker en norsk gjennomsnittsbolig 110-120 kWh/m² til oppvarming. På en del andre områder enn romoppvarming er det langt vanskeligere å redusere energiforbruket med 80%. Når vårt eventuelle tilleggsbehov for energi finnes på et område der det er særlig lett å redusere forbruket, kan det tale for at også tillegget i vår økologiske andel bør være mindre.

En slik diskusjon kan føres lenge. Poenget bør imidlertid være klart, nemlig at klimafaktoren ikke kan brukes til å begrunne en vesentlig høyere energiandel per capita for Norge enn for gjennomsnittet av andre land. Tillegget for Stavanger bør ellers være mindre enn det eventuelle tillegget for Norge i gjennomsnitt. I diskusjonen nedenfor vil vi imidlertid sette både Norges og Stavangers økologiske andel per capita til 10% over verdensgjennomsnittet, noe som trolig er litt generøst overfor Norge, og særlig overfor Stavanger.

Dette betyr at vår økologiske andel for energi i slutbruksleddet i 2050 øker til 34,3 GJ (9500 kWh) per person, pluss bidrag fra solenergi. Vi står da overfor en faktor 4,2-reduksjon.

Andelstanken betyr å dele ressursene med andre

I et nasjonalt perspektiv kan tallet på 9500 kWh synes urimelig. Allerede utbygd vannkraft forsyner norske forbrukere i dag med vel 24.000 kWh per capita, og bioenergi med ca. 3500 kWh per capita. Påstanden er altså at Norges økologiske andel for energi kan være vesentlig mindre enn den mengden fornybar energi som kan skaffes innenlands uten ytterligere miljøbelastninger.

Det skyldes at begrepet økologiske andeler handler om internasjonal solidaritet. Norge er et land som tilfeldigvis er eksepsjonelt godt forsynt med fornybare energiressurser. Det gjelder i globalt perspektiv, og enda mer i regionalt. Ser vi på Europa (vest for den tidligere Sovjetunionen), så har Norge ca. 0,8 % av befolkningen i dette området, men mellom 20-30 % av så vel vannkraft- som bølgekraftressursene, mellom 10-20 % av vindkraftressursen, og ca. 4 % av den årlige skogtilveksten (som kan utnyttes i form av bioenergi). Tanken om økologiske andeler krever at disse ressursene deles med flere.

Til en viss grad skjer dette allerede. Vi bruker en del av vannkraften til å produsere metall og andre varer som brukes andre steder, og en del av bioenergien til å produsere papir og papp som forbrukes andre steder. (Som tab. 4 viser, er det bare 50 GJ eller knapt 14,000 kWh vannkraft per år som inngår i det egentlige norske forbruket). Det er dette som ligger bak vår netto direkte eksport av energi. Slik produksjon kan også forekomme i Norge i 2050. Den energien som eventuelt brukes til det, inngår i så fall ikke i vår økologiske andel.

Fordi det økologiske rommet for materialforbruk på verdensbasis også er begrenset, og fordi det å redusere materialforbruket er en av strategiene verden som helhet kan bruke for å redusere energiforbruket, er det imidlertid tvilsomt om det vil være riktig å satse
på en sterk utvidelse av den kraftkrevende industrien. Også direkte eksport av fornybar energi til områder med større knøpphet bør derfor være aktuelt for Norge.

Norge og solenergien

Tallet på 9500 kWh per capita representerer et minimumsnivå for det økologiske rommet, i og med at det ikke forutsetter noe bidrag fra solenergi. Dersom verden velger å satse på en bærekraftig utvikling, må en regne med at det kommer et visst bidrag til energiforsyningen også fra denne kilden, der størrelsen på det økologiske rommet er nøkså uklart. Ethvert land og lokalsamfunn må stå fritt til å bygge ut og bruke så mye solenergi det ønsker og evner uten å spreng sin økologiske andel for materialforbruk.

Denne muligheten er imidlertid ikke like lett tilgjengelig for alle. Solenergien er langt jevnere fordelt over jorda enn noen av de andre fornybare energikildene. Likevel er innstrålinga over Sør-Norge (ca. 900 kWh/m² per år) bare om lag halvparten av det befolkningsveide gjennomsnittet for verdens bebodde områder. Det betyr at det er om lag dobbelt så kostbart og dobbelt så materialkrevende å utnytte den her som gjennomsnittet av andre land.

En annen og bokstavelig talt mer nærliggende løsning er at Norge tillater seg selv å forbruke mer av de fornybare energiformene som vi faktisk har mye av, som kompensasjon for de mer begrensete mulighetene til å utnytte solenergi lokalt. Størrelsen av denne kompensasjonen bør da stå i forhold til de realistiske mulighetene som andre har til å utnytte solenergi (innenfor det økologiske rommet for materialer og til overkommelig pris). Hvor store disse mulighetene er, vil vi få et gradvis klarere bilde av gjennom de kommende tiårene.

Det er derfor rimelig å ta utgangspunkt i et forsiktig estimat av det økologiske rommet for solenergi anno 2050. Ett slikt er allerede antydet – 100 EJ i form av elektrisitet + 100 EJ i form av solvarme. Det tilsvarer et tillegg på 21 GJ i den økologiske andelen per capita globalt, eller 23,2 GJ (6400 kWh) når vi øker den med 10 % for Norges del.

Det å øke estimatet av vår økologiske andel anno 2050 med en slik “solfaktor”, betyr at vi foreløpig innstiller den langsiktige energiplanlegginga og virkemiddelbruken på at forbruket om 50 år skal komme ned i ca. 16.000 kWh snarere enn 9500 kWh per person. Dvs. en reduksjon med faktor 2.5 snarere enn en faktor 4.2. Det krever en åpenhet overfor den muligheten at ny kunnskap som samles gjennom de nærmeste tiårene indikerer at anslaget var for høyt og at ambisjonsnivået med hensyn til å senke energiforbruket derfor bør økes.

Fordi anslaget er ment å være forsiktig, bør det imidlertid være en større sjansen for at ny kunnskap øker den økologiske andelen. Det er i så fall et enda mindre problem. La oss
si at det om 20 år blir sannsynliggjort at det økologiske rommet for fornybar energi på verdensbasis er i størrelsesordenen 1000 EJ (jfr. Shells og SEIs estimat i tab. 3). Det tilsvarer 29.000 kWh per verdensborger i 2050. Har vi i mellomtida redusert energiforbruket med sikte på å komme ned i 16.000 kWh i 2050, vil det trolig bety at vi i 2020 kan konstatere at vi allerede er nær målet.

4.6 Scenario for Stavangers energiforbruk til 2050

Ovenfor er det hevdet at det økologiske rommet for bruk av fossile brensel i 2050 er tilnærmet 0, og rommet for bruk av kjernekraft lik 0. Rommet for bruk av fornybar energi (målt i sluttbruksleddet) er anslått til ca. 34 GJ eller 9500 kWh per capita når solenergi holdes utenfor. Det øker til ca. 58 GJ eller 16.000 kWh når det gjøres et tentativt, men forsiktig anslag over det økologiske rommet for solenergi.

I dag er vårt egentlige energiforbruk på 144 GJ (40.000 kWh) per capita. Av dette er 84 GJ eller 58 % enten fossile brensel eller elektrisitet som er produsert ved hjelp av fossile brensel eller kjernekraft. Resten – den fornybare andelen på 60 GJ – er så godt som identisk med vår anslåtte økologiske andel i 2050. For å nå dette målet, må vi med andre ord redusere den første delen til 0, uten dermed å øke den andre. Den fornybare energien må utnyttes langt mer effektivt og på flere områder, slik at en stort sett konstant mengde rekker både til å fylle de oppgavene den gjør i dag og til å overta dem som i dag fylles av fossile brensel.

Målet om å (nesten) eliminere bruken av fossile brensel, kan i praksis ikke nås ved norske tiltak alene. Av vårt import- og eksportkorrigerte forbruk, består om lag 30 % av energiforbruket bak varer og tjenester som vi importerer. I dette ingår en enda høyere andel av det fossile og kjernekraftbaserte energiforbruket. Det kan i prinsippet påvirkes ved at bedrifter og forbrukere stiller miljøkrav til importvarer de kjøper (dvs. om at de skal være produsert med fornybar energi). I praksis er det trolig mye lettere å påvirke mengden av energi vi indirekte importerer enn sammensetningen av den. Det første kan skje gjennom endringer i det generelle forbruks- og produksjonsmønsteret: det siste er avhengig av at det stilles krav til de enkelte leverandørene i utlandet. Vi må med andre ord sette vår lit til at også andre land og lokalsamfunn satser på en overgang til fornybar energi. Til gjengjeld trengs selvfølgelig tilsvarende satsinger i norske eksportbedrifter, til tross for at deres energiforbruk faller utenfor vår økologiske andel.
Fig. 4.1 illustrerer en eksponensiell bane for energiforbruket per capita fram til 2050. Den viser også hvordan det totale energiforbruket i stedet for å reduseres helt fram til 2050, kunne få lov til å flate ut fra 2020-tallet om vi da var overbevist om at de mer optimistiske anslagene mht. det økologiske rommet for solenergi ville slå til.

Fig. 4.1: Mulig utvikling i energiforbruket per capita 2000-2050 (Status 2000 gjelder 1998)

Stavanger

Den økologiske andelen *per capita* for Stavanger forutsettes her å være identisk med det for Norge. Det kunne som nevnt argumenteres for at det burde settes marginalt lavere av klimatiske grunner. Noen vil også hevde at det objektive behovet for energi til transport er mindre for mennesker i en storby som Stavanger enn i spredtbygde strøk. Gitt at energiforbruket til lokal vare- og persontransport utgjør i størrelsesordenen 10 % av Norges samlede (korrigerte) energiforbruk, vil en eventuell rettelse her i verste fall redusere Stavangerfolks økologiske andel med noen få prosent.

Den økologiske andelen for hele Stavanger blir dermed en funksjon av per capita-andelen for Norge og av byens befolkning. Antas denne å bli 128.000 i 2050 (se nedenfor) mens den økologiske andelen per capita er 16.000 kWh, blir den for hele byen 2.05 TWh.

Dette tallet er tilfeldigvis nesten identisk med det aktuelle, stasjonære energiforbruket i Stavanger, som i 1999 var på 2,07 TWh ifølge Energiplan for Nord-Jæren. Det mobile
forbruket innenfor kommunens grenser var i størrelsesordenen 0,95 TWh i 1997. Det vil si at det energiforbruket som kan registreres i Stavanger er om lag 3 TWh i dag, hvilket igjen kunne tale for at byen hadde en atskillig kortere vei å gå til sin økologiske andel enn landet for øvrig.

Tallene som viser energiforbruket i Stavanger er imidlertid misvisende for dette formålet, og det i enda høyere grad enn det registrerte forbruket i Norge – denne gangen bare med motsatt fortegn. Mens Norge har en netto indirekte eksport av energi til andre land, har Stavanger en stor netto indirekte import både fra det øvrige Norge og resten av verden. Det allerede meste av det folk i Stavanger forbruker, er produsert andre steder. Energiforbruket bak disse varene og tjenestene er mye større enn det som brukes i Stavanger for å produsere varer og tjenester til bruk i andre kommuner eller andre land. Stavangers innbyggere bruker dessuten mye mer energi på reiser utenfor byens grenser, enn folk utenfra bruker på reiser innenfor Stavanger kommune.

Fig. 4.2 viser et scenario der energiforbruket i hele Stavanger reduseres slik at byen lever innenfor sin økologiske andel i 2050. Denne er basert på SSBs befolkningsframskrivning for kommunen fram til 2020 (alternativ med middels nasjonal vekst). Fra 2020-2030 forutsettes det at Stavangers befolkning vokser prosentvis like mye som Rogalands, deretter like mye som Norges ifølge SSBs framskrivninger. Dette gir et folketall på 128.000 i 2050.

Energiforbruket reduseres fra 4,33 TWh i 2000 til 3,29 TWh i 2020 og 2,05 TWh i 2050 under basisscenariet (uten tillegg for “ekstra” solenergi). Det tilsvarer en reduksjon med faktor 2,1 gjennom hele perioden.

7 Basert på ”tilbakeregning” fra SFT/SSBs tall klimagassutslipp fra mobile kilder (187.000 tonn). Tallet revideres når jeg har tilgang til grunnlagsdataene.
4.7 Konsekvenser for det lokale klima- og energiarbeidet

Dersom Stavanger velger å ta i bruk den økologiske andelen som veiviser i det videre klima- og energiarbeidet, gir det en rekke vesentlige og til dels spennende konsekvenser.

Høyt ambisjonsnivå - men ikke umulig

Derimot er det en stor politisk, organiseringsleg og psykologisk utfordring å sørge for at det kjente tekniske potensialet blir tatt i bruk. Dette er ikke en oppgave som kommunen eller lokalsamfunnet kan løse alene; det trengs nasjonale rammevilkår som fremmer målsettingen om redusert ressursforbruk. I siste instans er en, som før nevnt, også avhengig av endret atferd hos andre land og produsenter i disse. Men det er en oppgave der kommunen og de lokale nettverkene kan spille en helt sentral rolle. Nettopp fordi utfordringen i så liten grad dreier seg om teknikk, og i så høy grad om organisering, motivasjon og kommunikasjon, er de arbeidsformene som utvikles gjennom satsingen på Lokal Agenda 21 vesentlige verktøy. Stavanger er blant de kommunene i landet som har lengst og mest positiv erfaring med disse verktøyene og har dermed et godt utgangspunkt.

De eksemplene som hittil finnes i den rike verden på at samfunn har redusert energiforbruket, eller deler av det, drastisk i løpet av få år eller tiår, gjelder nettopp kommuner og ikke stater. Noen få kan nevnes. Toftlund i Sønderjylland bestemte seg i 1991 for i løpet av fire år å redusere det stasjonære energiforbruket med minst 30 %. De kom omtrent i mål, gjennom en bred lokal mobilisering som blant annet innebar at de 900 huseierne i landsbyen mellom seg investerte over 7 mill. NOK av egne lommer i enøk-tiltak. I Schiedam i Nederland har de 5000 boligene som ble bygd fra 1979-96 halvparten så stort energiforbruk som boliger ellers i Nederland fra samme periode. Det har skjedd som resultat av reinit lokale politiske virkemiddel, lokal innovasjon og lokal dialog med byggherrer og entreprenører. I Tyskland har bilbruken økt med vel 70 % siden 1976, men i byen Freiburg med 0: dvs. at hele bedringen i bilparkens energieffektivitet der kommer til uttrykk som redusert energiforbruk. I Sverige har flere kommuner satt seg som mål å halvere bruken av fossile brensel innen årstall som varierer mellom 2025 og 2050, og allerede tatt store skritt i retningen. Én av dem, Växjö, har til og med vedtatt helt å avvikle bruken av fossile brensel i egen virksomhet. Det er på det lokale planet - og enn så lenge bare der - at det har vist seg mulig både å sette og å følge opp virkelig ambisiøse, kvantitative mål for reduksjoner i energibruken. Et eget delprosjekt innenfor rammen av energi- og klimaplanarbeidet vil gå nærmere inn på erfaringene til noen av disse og andre kommuner som har lyktes.

Fokus på forbruk framfor utslipp

Fig. 2 viser en utvikling der det fornybare energiforbruket i hele Stavanger øker svakt, mens hele reduksjonen gjelder de fossile brenskene. I lys av dette kan det synes paradoksalt å hevde at styring mot økologiske andeler betyr å sette sterkest søkelys på selve nivået på energiforbruket, snarere enn CO2-utsippene. Men forutsetningen for CO2-reduksjonen er at det skjer en drastisk reduksjon i bruken av fornybar energi på områder der den alt brukes, slik at et overskudd kan frigjøres til å overta for de fossile brenskene på andre områder. Dette enten det er til å drive transporten i Stavanger eller til å lage varer som brukes her. I Stavangers situasjon vil det særlig si at det å redusere bruken av elektrisitet i bygninger må være et like viktig mål som å redusere bensinforbruket. Det kan også motiveres ved den refleksjonen at de nær 2 TWh elektrisitet som brukes årlig i Stavanger, er nok til å erstatte et dansk kullkraftverk med fire ganger større CO2-utsipp enn Stavangers egne.
Forbruksmønsteret blir viktig

I og med at tankegangen om økologiske andeler krever at en setter søkelys også på det indirekte energiforbruket, innbyr den til å tenke igjennom hvordan forbruksmønsteret i videre forstand kan dries i mindre energikrevende retning. Verken energi- eller klimapolitisk er det likegyldig om folk i Stavanger spiser biff eller laks, om de spiller golf eller fotball, om de leser aviser eller bøker. Hvilke forbruksvalg som har størst betydning, vil bli tatt opp i et annet delprosjekt innenfor rammen av klima- og energiplanarbeidet, samtidig som “individ-klimaspillet” blir et redskap til å anskueliggjøre konsekvensene av noen slike valg for folk flest. Det er imidlertid klart at kommunen som myndighet i mindre grad kan påvirke de fleste andre forbruksvalg enn tilfellet er når det gjelder direkte energibruk. Det betyr at det frivillige opplysnings- og holdningsskapende arbeidet, bl.a. innenfor rammen av Lokal Agenda 21, får en enda viktigere rolle i forhold til det indirekte energiforbruket.

Se ressursene i sammenheng

Langsiktige mål krever kortsiktig oppfølging

Om en setter mål som ligger så vidt langt fram i tid som år 2050, er det vesentlig både at det settes delmål underveis, og at det finnes et egnet rapporteringssystem som regelmessig viser om en er “i rute” eller ikke. Dette er i seg selv en viktig del av motivasjonsarbeidet. Rapporteringen bør være hyppig (årlig) når det gjelder tunge deler av energiforbruket som det samtidig er enkelt å innehente data om (for eksempel det lokale stasjonære energiforbruket). Den kan skje med noe lengre mellomrom (hvert 5. eller høyest 10. år) når det gjelder størrelser som er mer krevende å anslå, for eksempel det indirekte energiforbruket, men heller ikke disse må forsømmes. Hille (1998) inneholder en nærmere drøfting av indikatorer som er egnet til oppfølging av arbeid med økologiske andeler.

Levendegjør solidariteten

Tankegangen om økologiske andeler handler først og sist om global solidaritet. Forbindelsen kan imidlertid synes abstrakt for mange. Stavanger er særlig godt i stand
til å levendegjøre den, som den kommunen i Norge som har flest vennskapsforbindelser med kommuner i Sør (Antsirabé, Nablus, Estelí og Massawa). Formålet med et redusert ressursforbruk i Stavanger er i siste instans å også hvert av disse lokalsamfunnene skal ha mulighet til et like stort ressursforbruk, uten at det globale økologiske rommet derved sprenges. I drøftingen ovenfor ble det påpekt at Norge er et land med særlig stor tilgang på særlig billige fornybare energiressurser. Til gjengjeld for å slippe egne kostnader ved å bygge ut solenergi for å nå opp i en økologisk andel på 16.000 kWh per capita, var det derfor ikke urimelig at vi hjalp andre til det samme. Et samarbeid om utvikling av solenergi med én eller flere av vennskapskommunene ville være et naturlig komplement til Stavangers eget klima- og energiarbeid. Forbilde for et slikt samarbeid finnes hos flere av de 900 europeiske kommunene som deltar i Klimaalliansen. Disse har satt seg som mål å reducere CO₂-utslippene med 50 % fra 1990-2010, og knyttet målsettingen til en avtale med søramerikanske indianerfolk, som på sin side påtar seg å verne skogen. Flere av kommunenes samarbeider også direkte med indianersamfunn om utvikling av solenergi.
5 Tiltaksanalyse - Stavanger

5.1 Stasjonær energibruk

I forbindelse med utarbeidelsen av “Energiplan for Jærregionen” ble det samlet inn data for den stasjonære energibruken innenfor grensene til Stavanger kommune. Analysen viser at strøm, med en markedsandel på hele 86%, dekker en stor del av det totale forbruket. Den andre store energikilden er olje og parafin, som brukes til oppvarming i næringslivet, og i mindre grad boliger. Disse energikildene dekker i alt 10% av forbruket. De siste 4% av forbruket dekkes hovedsakelig av ved i private boliger. Tallene er oppsummert i tabell 5.1.

Tabell 5.1: Energiforbruk i Stavanger (2000)

<table>
<thead>
<tr>
<th>Strømforbruk (GWh)</th>
<th>Bioenergi (GWh)</th>
<th>Fossilt (GWh)</th>
<th>Totalt (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.777,2</td>
<td>83,6</td>
<td>205,3</td>
<td>2.068,8</td>
</tr>
<tr>
<td>86%</td>
<td>4%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

I forbindelse med miljøplanen ble energi en av de dimensjonene som ble satt opp som sentral for en helhetlig planlegging. Det mest profilerte prosjektet i forlengelsen av dette har vært utbyggingsplanene for Krosshaug/Loen på Hundvåg. I dette området vil det bli bygget i alt 1000 boliger med tilknytning til et system med vannbåren varme, og hvor hovedkilden for varme er en warmepumpe til sjø. Erfaringene fra dette prosjektet er viktig i forbindelse med andre boligområder i kommunen. Foreløpig har det kommet få konkrete utbyggingsprosjekter som tar i bruk denne teknologien, men flere planlegges.
Stavanger bystyre har også vedtatt at kommune skal følge hovedkonklusjonene i “Energiplan for Jærregionen”. Dette medfører at kommunen bl.a. har forpliktet seg til å legge til rette for introduksjon av vannbåren varme i nye boligfelt, samt ved byfornyelse og utbygging av næringsfelt, der dette er den riktige energiløsningen. Videre har kommunen forpliktet seg til gjennom sine virkemidler som kommuneplaner, reguleringsplaner, utbyggingsavtaler m.v., å fastsette vilkår for hvilke energiløsninger som velges. Bystyret vedtok også installasjon av vannbårent varmeanlegg og eventuelt varmepumper foretrekkes brukt i kommunale bygg. Kommunen har også forpliktet seg til å delta i en regional kompetangseoppbygging på området energiforsyning.

I Energiplan for Jærregionen ble det også presentert en del områder med potensielle i forhold til regionens fremtidige energiforsyning. I det følgende vil vi kort presentere de områdene som er mest relevante mht. å begrense energibruken og redusere utslippene av klimagasser.

Energiøkonomisering (ENØK): Energiplan for Jærregionen viste at det fortsatt er et betydelig ENØK potensialet i Stavanger. Rogaland ENØK har identifisert et betydelig potensialet for lønnsomme tiltak i kommunens egne byg, i eksisterende bygningsmasse (bolig/næring) og i overføringsnettet. Totalt for regionen er det identifiserte potensiale på mer enn 500 GWh, og Stavangers andel av dette kan settes til ca. 250 GWh. Ny teknologi kan øke dette ytterligere. De viktigste barrierene mot økt satsing på ENØK er bl.a.: manglende kunnskaper om mulighetene som finnes når det gjelder å øke energieffektiviteten, uttilstrekkelige økonomiske virkemidler for økta investeringer og begrensninger som svekker lønnsomheten i investeringer i elnettst.

Varmepumper: Stavanger ligger i Norges mildeste klimasone, (Sør-Norge kyst), slik at de klimapåvirkede energikildene (vann/luft) holder relativt høy temperatur. De klimatiske forholdene gjør med andre ord forutsetningene meget gode for utnyttelse av naturlige varmekilder. Økonomien i slike prosjekter forutsetter at varmeforbruket som dekkes er forholdsvis høyt. Tall fra SSB indikerer at energiforbruket i bygningsmassen i området ligger over det klimasonen skulle tilsi. Ved inndeling i klimasoner er det imidlertid kun temperaturstatistikk som ligger til grunn. Vind og sol er neglisjert (Tokle et al 1999a). En betydelig andel av Jærregionens energiforbruk til oppvarming kan tilskrives vind, og varmepumper vil dermed være særdeles velegnet, i og med at forbruket blir forholdsvis høyt til tross for det milde klimaet.

For Stavanger kan det antas at det i områder nær sjø eller åpent vann vil være naturlig å vurdere varmepumper som oppvarmingsalternativ. Dersom naturgass gjøres tilgjengelig kan dette være et godt alternativ til å dekke spisslast, den vil også være aktuell for drift av selve varmepumpen.

Solenergi: Stavanger ligger i et område som tilsier at solinnstrålingen er stor etter norske forhold, men klimasonen innebærer at det er et forholdsmessig lite samsvar mellom innstrålingen og det sesongavhengige oppvarmingsbehovet. Her er det imidlertid en betydelig usikkerhet som følge av manglende hensyn til vinden i klimasoneinndelingen. Solvarmeløsninger stiller sterkere dersom vind bidra til å forlenge fyringssesongen utover vår og høst. Dette fordi sesongen med oppvarmingsbehov da forlenges inn i måneder med betydelig solinnstråling. Dersom en bygning baserer oppvarming på vannbåren gulvvarme med et varmelager, vil
ekstrakostnadene ved å installere solfangere være forholdsvis små, men kostnadseffektiv utnyttelse av solvarmen tilsier uansett at den bare utgjør en begrenset del av det totale varmeforbruket.

Bioenergi: Fyring med fast biobrensel utgjør i følge tall fra SSB omtrent 0,2 TWh. Manglende skogbruks- og trevareindustri gjør at tilnærmet hele forbruket skjer i boligmassen. Vekstpotensiotalet knyttet til utnyttelse av ren biomasse er begrenset som følge av lite lokal skogsdrift, og høye transportkostnader dersom biomassen skal importeres til området. Avfall er imidlertid en lokal ressurs, med et betydelig potensiale.

Utbyggingsområder: Urban Sjøfront er bare ett av mange utbyggingsområder med potensiale for omfattende bolig og næringsutbygging i Stavanger og nabokommunene. I den sammenheng er det sentralt at erfaringene fra bl.a. Hundvåg videreutvikles, slik at alle større utbygginger “pålegges” mest mulig effektiv energiforsyning.

Ny teknologi: Den internasjonale teknologiutviklingen innen området alternativ, miljøvennlig energiforsyning er rask og omfattende. Til nå har kostnader, kompetanse og manglende muligheter for utprøving vært barrierer mot forsøk. Norges gode tilgang til ulike energikilder, som vannkraft, olje og gass har trolig medvirket til at nye og innovative måter å tenke energiforsyning har hatt vanskelig for å slå gjennom. Det er derfor et betydelig potensiale for å utvikle norske bruksområder for denne teknologien. Stavanger, med sine sterke teknologimiljøer, bør i utgangspunktet ha et stort potensiale på dette området. Planleggingen av energiforsyningen i Urban sjøfront er et eksempel på at det finnes vilje og mulighet for satsing på disse områdene.

I forbindelse med klima- og energiplanen til Stavanger kommune er det flere områder som peker seg ut som sentrale for videre satsing på energiområdet. Mål og tiltak vil bli utdypet i selve planen:

- Stavanger kommune må satse systematisk for å sikre mest mulig energieffektive løsninger og investeringer i egne bygg. Dette må gjelde både nye og gamle bygg.
- Stavanger kommune må bidra til å styrke den lokale/regionale kompetansen på ENØK og nye energikilder. Offentlige utviklingskontrakter er et virkemiddel som kan utvikles i den sammenheng.
• Kommunen må pålegge utbyggere at alle nye/gamle utbyggingsområder pålegges områdekonsepsjon for energiforsyning. Energiselskap/leverandør velges etter anbud for å sikre optimal teknologisk og økonomisk konkurranse.

• Stavanger kommune må arbeide for økt bevissthet om energibruk og –sparing i næringslivet og blant innbyggerne. Tiltak som stimulerer til minst mulig bruk av olje og parafin til oppvarming, installasjon av varmegjenvinningsanlegg og energistyringssystemer i næringsbygg, og luft til luft varme pompere i boligmassen, bør gjennomføres. Samarbeid med det lokale energiselskap er sentralt i den sammenheng.

• Stavanger kommune bør arbeide for å bedre de nasjonale rammebetingelsene for ENØK og nye energikilder. Reduserte avgifter og støtte fra Enova er viktig i den sammenheng. Nye teknologiske løsninger bør søkes testet ut gjennom egne prøveprosjekter, og hvor ekstern finansiering er sentralt.

5.2 Transport

Gjennomgangen av kildene for klimagassutsipp i Stavanger (kapittel 2) viser at en betydelig del av utsippene er knyttet til transport. En stor del av dette er persontransport, og i den sammenheng er en oversikt over innbyggernes reisevaner et viktig grunnlag for vurdering av nye tiltak i klimaplanen.

Tall for antall turer som foretas av kommunens beboere

Tar vi utgangspunkt i dette gjennomsnittet, og kommunens befolkning 13 år og eldre (i 1999), utgjør dette et samlet turvolum per døgn på i underkant av 324.100. En tilsvarende beregning ut fra gjennomsnittlig antall turer per innbygger per døgn om sommeren svarer til et volum på 383.800 turer. Anslagsvis foretar kommunens innbyggere 13 år eller eldre med andre ord i underkant av 60 000 flere turer per døgn om sommeren enn det antatte årgjennomsnittet.

Tabell 5.2 gir en presentasjon av gjennomsnittlig antall turer per døgn kategorisert etter kjønn, alder, hovedbeskjeftigelse, om informanten har førerkort for bil og om informantens husstand eier eller disponerer en eller flere biler.

<table>
<thead>
<tr>
<th>Kjønn</th>
<th>Hovedbeskjeftigelse</th>
<th>Førerkort for bil</th>
<th>Eier eller disponerer bil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann</td>
<td>Yrkesaktiv</td>
<td>3,88</td>
<td>Ja</td>
</tr>
<tr>
<td>Kvinne</td>
<td>Hjemmearbeidende</td>
<td>3,36</td>
<td>Nei</td>
</tr>
<tr>
<td></td>
<td>Skoleelev, student</td>
<td>4,31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Militærtjeneste, sivilteneste</td>
<td>3,33</td>
<td></td>
</tr>
<tr>
<td>Alder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-19</td>
<td>Alderspensjonist</td>
<td>2,60</td>
<td>Ja</td>
</tr>
<tr>
<td>20-29</td>
<td>Trygdet</td>
<td>2,28</td>
<td>Nei</td>
</tr>
<tr>
<td>30-39</td>
<td>Arbeidsledig</td>
<td>2,71</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>Annet</td>
<td>3,84</td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-</td>
<td></td>
<td>2,73</td>
<td></td>
</tr>
</tbody>
</table>

Reisestrømmer

Nesten 50 prosent av turene i Jærregionen går til, fra eller mellom områder som ligger i Stavanger kommune. Dersom vi kun ser på turene som er foretatt av beboere i Stavanger, finner vi at over 90 prosent av turene går mellom områder i Stavanger.

Tabell 5.4 . Turer til og fra steder i Stavanger kommuner foretatt av beboere på Jæren og deler av Ryfylke utenom Stavanger.

<table>
<thead>
<tr>
<th></th>
<th>Til Stavanger</th>
<th>Fra Stavanger</th>
<th>Andel i prosent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandnes</td>
<td>15 118</td>
<td>14 936</td>
<td>40,0</td>
</tr>
<tr>
<td>Stavanger</td>
<td>5 744</td>
<td>5 744</td>
<td>15,3</td>
</tr>
<tr>
<td>Hå</td>
<td>653</td>
<td>601</td>
<td>1,7</td>
</tr>
<tr>
<td>Klepp</td>
<td>1 410</td>
<td>1 384</td>
<td>3,7</td>
</tr>
<tr>
<td>Time</td>
<td>1 593</td>
<td>1 384</td>
<td>4,0</td>
</tr>
<tr>
<td>Gjesdal</td>
<td>1 201</td>
<td>1 149</td>
<td>3,1</td>
</tr>
<tr>
<td>Sola</td>
<td>6 345</td>
<td>6 032</td>
<td>16,5</td>
</tr>
<tr>
<td>Randaberg</td>
<td>4 126</td>
<td>4 126</td>
<td>11,0</td>
</tr>
<tr>
<td>Strand</td>
<td>1 279</td>
<td>1 175</td>
<td>3,3</td>
</tr>
<tr>
<td>Rennesøy</td>
<td>548</td>
<td>548</td>
<td>1,5</td>
</tr>
<tr>
<td>Sum</td>
<td>380 18</td>
<td>370 78</td>
<td>100,0</td>
</tr>
</tbody>
</table>

I figuren under gjengir vi hvordan reisestrømmene fordeler seg innenfor Stavanger kommunes grenser.
Figur 5.1. Fordeling av turer til og fra ulike soner i Stavanger aggregert i forhold til regionens befolkning (utvalg: alle kommunene).

I denne framstilling har vi inkludert turer foretatt av innbyggere i hele regionen. Figuren viser at Stavanger sentrum klart er kommunens (og regionens) viktigste målpunkt, med rundt 28 000 turer til og fra sonen. Større soner som Øyane, Hinna, Hillevåg og Madla har også mange turer. Slår vi sammen de mindre sonene nærmest sentrum, har disse også et høyt turvolum. I vurderingen av reisestrømmene gjengitt i figuren må en med andre ord ta betraktning at sonene kan være svært ulike geografisk størrelse og befolkningsgrunnlag.
Reisemiddelfordeling

Som vist i figur 16, foretar Stavangers innbyggere rundt 68 prosent av turene med bil (hvorav 7,1% er turer som passasjer), 17 prosent til fots, 8 prosent med buss, båt eller tog, og 6 prosent med sykkel. Sommerundersøkelsen viser at det er sesongvariasjoner i reisemiddeltilpasning. Hovedforskjellen ligger i det at færre benytter bil, mens flere går til fots eller sykler.

![Diagram av reisemiddelfordeling]

Figur 5.2. Reisemiddelfordeling bosatte i Stavanger (RVU 1998)

Ser vi nærmere på hva som er formålet med turene som ble foretatt, finner vi at nesten 30 prosent av turene var knyttet til å komme seg til eller fra jobb, 27 prosent for å handle og utrette ulike andre ærend, og 26 prosent til ulike fritids- og rekreasjonsaktiviteter. Ved 5 prosent av turene var formålet til eller fra undervisning, mens 11 prosent av turene dreide seg om å hente eller bringe andre til ulike formål.
Figur 5.3. Turfordeling etter formål bosatte i Stavanger (RVU 1998)

Det er til dels store variasjoner i reisemiddelfordelingen når vi skiller mellom ulike formål. Til hente- og bringeformål benyttes bil på nesten 9 av 10 turer. Videre benyttes bil til i overkant av 6 av 10 turer når formålet er til eller fra jobb og til eller fra det å handle og andre ærend. Til fritid og rekreasjon benyttes bil på rundt halvparten av de registrerte turene og rundt 20 prosent benytter bil til/fra skole.

Figur 5.4. Reisemiddelfordeling etter formål, bosatte i Stavanger (RVU 1998)
At turer til og fra skole er minst dominert av bil, er naturlig siden reiseformålet er nært knyttet opp mot en avgrenset del av befolkningen der mange ikke har sertifikat og kan disponere bil. Henholdsvis 23 og 20 prosent av disse turene foregår til fots eller med sykkel og 29 prosent med kollektive transportmidler. På turene til eller fra arbeid ble kollektive transportmidler benyttet på 12 prosent av turene, og rundt 10 prosent av turene til fots eller med sykkel. Når det gjelder formålene fritid eller rekreasjon og handle- eller andre ærend er både bilandelen andelen som går til fots framtredene, med henholdsvis 26 og 19 prosent. Til fritids- og rekreasjonsformål er det også interessant å legge merke til at andelen som er passasjerer i bil ligger på 11 prosent.

Som en tydeliggjøring av forskjellen i reisemiddelttilpasning til ulike formål, har vi i figur 5.5 skilt mellom andelen turer der bil ble benyttet og alle de andre transportmidlene sett under ett. Figur 5.5 viser tilpasning i Stavanger, mens figuren til høyre viser tilpasning på Jæren og deler av Ryfylke samlet. Vi ser at andelen som selv kjører bil er gjennomgående lavere, så å si til alle formål blant beboere i Stavanger enn for regionen sett under ett.

Oppsummering

Med utgangspunkt i data fra reisevaneundersøkelsene kan vi konkludere at Stavangers befolkning genererer et stort turvolum, med over 300.000 turer per døgn. Over 90 prosent av turene foretas innenfor kommunens grenser. Undersøkelsen viser dessuten at kommunens befolkning, med en gjennomsnittlig turantall på 3,69 turer per døgn, foretar flere turer enn landsgjennomsnittet (3,15 turer per døgn). Vi har også sett at gjennomsnittlig antall turer er høyere i sommersesongen. Når nesten 70 prosent benytter bil, gir den høye mobiliteten seg utslag i stor biltrafikk og høye klimagassutslipp.
Utfordringer vil derfor være å søke å oppnå at en større andel av turene blir foretatt til fots, med sykkel, kollektivt eller som passasjer i bil. I analysen av reisemiddelfordeling etter reisehensikt, ser vi at det er betydelige forskjeller i hvordan kommunens befolkning tilpasser seg i valg av reisemåte. Det er dessuten betydelige geografiske forskjeller i valg av transportmiddel til og fra områder som ligger sentralt i kommunen, sammenlignet med bolig og næringsområdet rundt. Aktiv planlegging og tilrettelegging for alternative reisemåter enn bil ut fra regionens reisestrommer og viktige reisemål, vil være vesentlig for å oppnå en reduksjon i andelen som velger å benytte bil.

Vi ser ut fra dette hvilken betydning de individuelle valg befolkningen foretar har for antallet biler på veiene. I det følgende skal vi se nærmere på noen viktige planer.

Kommuneplanens arealdel 1998-2009

Til grunn for utarbeidelsen av gjeldende kommuneplans arealdel (1998-2009) lå et bystyrevedtak (17.06.96) om å følge rikspolitiske retningslinjer samt følge opp kommunens arbeid og forpliktelser knyttet til lokal Agenda 21 satsning. Dette reflekteres i videreføringen av de overordnede målene om å legge til rette for “bærekraftig byutvikling (/byøkologi)” og “optimal nytte av den utbygde by”. Som strategiske hovedmål presiseres bl.a. at kommunen ønsker å sikre og videreutvikle trehusbyen, stimulere sentrumsutvikling og legge til rette for effektiv og miljøvennlig transport.

Mens forrige kommuneplan la vekt på utviklingen av Stavanger sentrum og trehusbyen har gjeldende kommuneplan et bredere fokus på sentrumsutvikling. For hver bydel er det definert et bydelsenter som “skal være det naturlige sted for detaljhandel, offentlig- og privat service og kultur” (s.13). For noen bydeler ble det i tillegg definert et lokalsenter. Som hensikt vises det til at kommunen ønsker å tilby dens befolkning “best mulig service nær stedet de bor. Dette bidrar til å øke trivselen, styre følselen av tilhørighet og gir mulighet for en rasjonell og miljøvennlig transport” (s.13). I retningslinjene for utforming av bydels- og lokalsentre legges det vekt på at senteret skal være geografisk konsentrert, med korte avstander og gods oversikt. Videre skal hovedkollektivårer og bussstopp ligge i eller i direkte tilknytning til senteret (Stavanger kommune 1997b:19). Disse retningslinjene er i tråd med rikspolitiske retningslinjer for samlet areal og transport og anbefalinger fra Miljøverndepartementet og mål om reduksjon av transportarbeidet. Planen legger dessuten opp til underbygging av traffikkgrunnlaget til kollektivtransporten gjennom retningslinje om at “innefor gangavstand til hovedkollektivtraseer skal det i nye reguleringssplaner prioriteres høy tomteutnyttelse og fortetting innenfor den eksisterende bystruktur.” (s.11).

Miljøplan for Stavanger kommune 1997-2009

I Miljøplan for Stavanger kommune 1997-2009 slås det fast at tilrettelegging for en bærekraftig byutvikling skal vises igjen i arealbruken og transporten (s.39). Byfornyelse og fortetting med mål om at arealforbruk per inbygger skal holdes konstant og at antallet personer i utvalgte utbygde områder skal opprettholdes eller øke. Det legges

Transportplan for Stavanger 1994-2001

I utviklingen av kollektivtilbudet legges det i transportplanen vekt på kvalitet, framkommelighet og frekvens. I samarbeid med fylkeskommunen har Stavanger kommune arbeidet med utredning av framtidig bybane og strategisk gjennomføringsplan for kollektivtrafikken. Høyfrekvent rutetilbud til Hundvåg, Hundvågpakken, er et av de etablert tiltakene. Denne siste satsingen har de siste årene vært sterkt påvirket av manglende stabilitet i de nasjonale rammebetingelsene.

Planlagt tiltak for buss

I forbindelse med omleggingen kan det forventes en nøktern passasjervekst på 30%. Hvis halvparten av veksten er overgang fra bil til buss, og gjennomsnittlig reiselengde er 6 kilometer, gir det et overføringspotensiale på ca. 23.000.000 km per år. Dette gir en besparelse på ca. 2,5 millioner liter drivstoff, noe som tilsvarer et CO2-utslipp på ca. 8.000 tonn (Kilde: TØI, Miljøhåndboken).

Bybane Nord-Jæren

Den planlagte bybanen, som også er et tiltak fra transportplanen, vil også gi et stort potensiale for reduksjoner i utslippene av klimagasser i regionen. En prognoser viser at bybanen kan erstatte et transportvolum med bil på 126.000 personkilometer med bil. Dette tilsvarer en reduksjon i CO2-utslippene på ca. 44.000 tonn. I denne sammenheng er det viktig å understreke at dette vil gjelde hele regionen, og komme etter 2010.

Et annet forbehold er at selve bybanen indirekte vil kunne bidra med økt utslipp. Hvis den elektrisiteten som banen trenger kommer fra fossile kilder vil energiforbruket bidra til et CO2-utslipp på ca. 7.300 tonn. Nettogevinsten vil dermed bli mellom 36.000 og 44.000 tonn CO2 per år. Utbygging av bybane fremstår dermed som et svært viktig tiltak i forbindelse med å redusere utslippene av klimagasser i Stavanger og nabokommunene.
Fylkesdelplan for langsiktig byutvikling på Jæren

Fylkesdelplan for langsiktig byutvikling på Jæren stiller krav til en utvikling i tråd med prinsipper knyttet til “gangbyen”, “sykkelbyen” og kollektivbyen. Det presiseres at høy tetthet er den viktigste strategien for å begrense transportomfanget og legges opp til en utvikling der det legges vekt på reduksjon i transportomfang og økt overgang til mindre ressurskrevende transportformer (gang, sykkel og kollektivtransport).

Oppsummering

Følgende områder peker seg ut som viktige områder for satsing på transport i forbindelse med klima- og energiplanen, og de vil bli presentert nærmere der:

• Det er viktig å videreføre intensjonene som ligger i gjeldene planer om å styrke grunnlaget for kollektivtransport gjennom konsentrert utbygging langs kollektivvåler og –knutepunkt.
• Det er viktig å videreføre arbeidet med å legge til rette for effektiv og sikker gang- og sykkeltrafikk.
• Det er mulig å benytte tilgang til og pris på parkering som virkemiddel for reduksjon i bilbruk til steder med god kollektivdekning.

• Det er viktig å arbeide for å bedre de nasjonale og regionale rammebetingelsene for drift av kollektivtransport. Redusert pris på bruk av kollektivtransport bør være et sentralt mål.

• Det er sentralt å motivere til redusert bilbruk, for eksempel ved å støtte opp om initiativ til bildeleordninger, motivere til kameratkjøring, markedsføre, og gjennomføre kampanjer for å gå, sykle eller benytte kollektivtransport.

• Når det gjelder flytrafikk er det viktig å øke bevisstheten om mulige alternativer til tjenestereiser.

• I forhold til varetransport er det sentralt å minske det totale omfanget av transport gjennom høyere utnyttelsesgrad av de kjøretøy som er involvert i varedistribusjon.

5.3 Urban Sjøfront og tiltak knyttet til energi og transport

Stavanger kommune har i forbindelse med klima- og energiplanarbeidet ønsket å få analysert og konkretisert tiltak i det pågående utbyggingsprosjekt Urban sjøfront i bydelen Storhaug. Dette er et område som allerede er under planlegging samt det er gjennomført prosjektering av første utbygging. I disse planer er det allerede vedtatt utbygging etter en økologisk profil hvor temaene vannbåren varme, miljøvennlig transport og materialbruk er innarbeidet. I klimaplanarbeidet kan vi få testet ut hvilke ambisjoner/miljømessige mål et slikt område må legge seg på for å innfri kommunens samlede mål for klimagassutslitte på lang sikt.

Tiltak Energi

Arbeidet med en helhetlig og miljøvennlig energiforsyning kan deles i tre faser. Den første fasen var gjennomføring av et forprosjekt. Dette var en utredning av mulighetene for å få etablert en helhetlig termisk energiløsning med vannbåren oppvarming og kjøling, og bruk av miljøvennlige energikilder. I forprosjektet fant man at det var gode betingelser for etablering av et slikt system i dette området, og styringsgruppen vedtok at det skulle lyses ut et anbud for valg av hvilket energiselskap som skulle engasjeres i arbeidet.

Den andre fasen var anbudsfasen. Utgangspunktet var at Stavanger kommune forpliktet seg til å støtte det prosjektet som vant i forbindelse med konsesjonssøknaden til NVE. I anbudskonkurransen ble fire energiselskaper bedt om å komme med et tilbud som skulle gi 1) God miljøprofil og fleksibilitet, 2) God teknisk løsning, 3) Utbygger måtte ha kompetanse på området, 4) Kostnadene for kundene måtte synliggjøres, og 5) Det måtte også være tilbud om en del tilleggstjenester.

Ett av selskapene valgte å ikke levere anbud, og to selskaper valgt å levere et felles anbud. De to forslagene ble vurdert av tre uavhengige konsulenter, Calor Consult as, Sintef Energiforskning og VVS Design. På bakgrunn av konsulentgruppens innstilling valgte styringsgruppen våren 2001 Lyse Energi og Birka Energi til å gjennomføre prosjektering og utbygging av planområdets energiforsyning. I den forbindelse var det et krav at utbygger skulle dekke kostnadene som Urban Sjøfront har hatt med prosjektet. Det er også et sentralt moment at det er den private energileverandøren som tar all risiko i forbindelse med utbyggingen av energiforsyning.

Lyse Energi og Birka Energi sitt forslag til energisystem har følgende hovedmoment:

Kostnadene ved utbygginger med et langt tidsperspektiv er vanskelig å anslå, men per i dag antar en at inntil 100 millioner kroner gir et godt estimat for full utbygging. Økonomien i prosjektet er avhengig av at det blir et visst volum på utbyggingen, men i planen har en tatt utgangspunkt i en viss mengde næringsarealer og en viss mengde boligareaal, og er ikke avhengige av ”store energiforbrukere” for at det skal bli lønnsomt. Generelt vil et øket energiforbruk trygge økonomien i prosjektet. Det vil derfor være gunstig å få lagt slike virksomheter til området.

Den bærende idéen for denne utbygningen/byfornyelsen er at det skal være en termisk energiløsning med “høy miljøprofil”. Et “bilde” på miljøeffektene av de løsningene som er valgt kan knyttes til reduserte utslipp av klimagasser. Tar en utgangspunkt i at varmeproduksjon i varmepumper henter inn to kWh for hver kWh el. som blir tilført pumpen, vil det representert en årlig innsparing i energibruken som tilvarer utslipp på...
35.000 tonn CO₂. Forutsetningen er at all varme ble produsert med importert elektrisitet basert på dansk kullkraft.

Valget av løsninger når det gjelder energiforsyningen i Urban sjøfront er ikke avhengig av at andre deler av Stavanger får tilsvarende energiforsyning. Men erfaringene fra dette prosjektet vil kunne danne et viktig kunnskapsgrunnlag for tilsvarande prosjekter i andre store utbyggingsområder, som Paradis/Hillevåg, Jåttåvågen og Forus. I den sammenheng er det viktig at kommunen følger opp intensjonene i “Energiplan for Jærregionen”, og legger til rette for at denne type prosjekter skal bygges ut med vannbåren varme.

Erfaringene med prosessen til nå kan oppsummeres i følgende momenter:

- Grunneiernes deltakelse og innflytelse har vært en sentral premiss for å få til utviklingen av denne type energiforsyning.
- Prosjektor organiseringen i Urban Sjøfront har vært et viktig bindeledd mellom utbyggere og energiselskap. I den sammenheng er “markedsføring” av området til aktuelle utbyggere en viktig oppgave for Urban Sjøfront.
- Nasjonale rammebetingelser er sentralt for hvordan energiforsyningen kan utvikles. Kommunen må anbefale ett energiselskap for at NVE skal gi lensejøsjon. Selve lensejøsjøen gir grunnlag for langsiktig planlegging, og at kommunen kan pålegge nye bygg tilnynningsplikt. NVE sitt krav om samfunnsøkonomisk nytte var også et sentralt premiss mht. valg av tekniske løsninger.
- Energiselskapene ser muligheter i denne type prosjekter.

Tiltak Transport:

I forbindelse engasjement i prosjektet Mobilitet 21, legger Stavanger kommune opp til å prøve ut flere tiltak for å fremme miljøvennlig bytransport. I første omgang konsentreres innsatsen mot enkelte områder i kommunen, deriblant området Urban Sjøfront.

Hovedmålsettingen er å legge til rette for en reduksjon i det totale transportarbeidet, i tillegg til at høyest mulig transportandel skal foregå på en miljøvennlig måte. Under gir vi en summarisk presentasjon av tiltakene som planlegges og ideer som diskuteres for Urban Sjøfront.

1. **Reduksjon i samlet transportarbeid for området og yte hjelp til å tenke alternativt**

Reduksjon i det totale transportarbeidet tenkes søkt oppnådd gjennom å stimulere arbeidstakere til å bo i eller i nærheten av området. Antallet turer som hver enkelt foretar kan ut fra en slik tankegang være konstant eller høyere, men likevel utgjør en reduksjon i antallet kilometer en forflytter seg.

Det tenkes også å arbeide for å legge til rette for og motivere bedriftene til å lage egne tiltak og målsetninger som bidrar til å redusere bedriftens bidrag til klimautslipp fra transport. Begrense tjenestereiser med fly, motivasjon til økt bruk av kollektive
transportmidler, sykkel eller å gå til fots, og deltakelse i bysykkel og bildeleordninger er noen eksempler som diskuteres.

2. **Tilrettelegging for bruk av kollektivtransport og sykkel**

Det legges dessuten opp til å ta i bruk miljøvennlige kjøretøyer, busser som kjører på elektrisitet og gass.

3. **Bysykkelordning**

En ordning med tilgang til bysykler plassert på sentrale steder i området skal bidra til å lette det å komme seg fra et sted til et annet i området på en rask og effektiv måte uten å måtte benytte bil.

4. **Bildeleordning**

Det er allerede opprettet et samarbeid med en aktør som skal legge til rette for og drive bildeleordningen.

5. **Parkering**

Kommunen vil benytte normer for parkering aktivt for å styre biltilgjengeligheten i området. Det legges opp til bestemmelser som begrenser etablering av parkeringsplasser til 1 plass per bolig og 1 plass mer 100m² annet bruksareal. Det presiseres dessuten at dersom parkeringsnormen tillater en lavere parkeringsdekning skal denne følges.

6. **Nærservice**

7. **Mål for området**

Plandokumentene forutsetter en høy utnyttelse i området. Trafikkberegningene for området er gjort ut fra en forutsetning om etablering av 3.300 boliger i området og 400.000 m² næringsareal. Dette gjelder hele området som inngår i visjonen for Urban Sjøfront. Ut fra beregningene som er foretatt vil området produsere et turvolum på 60.000-70.000 turer per døgn, hvorav 50.000 er anslått å komme i tillegg til dagens turvolum (Sak 0149/01).

Begrunnelsen for høye ambisjoner om redusert bruk av bil knytter seg først og fremst til tilgjengelighet og framkommelighet på veinettet. Reduserte bruk av bil vil imidlertid også bidra positivt sett i en klimasammenheng. Hvilke utslag vil et slikt mål gi med hensyn på klimautslipp. Dersom vi tar utgangspunkt i gjennomsnittlig reiselengde for bilturene (som sjåfør) i tid for beboere i Stavanger som er 11,7 minutter, og tall for nettutslipp av CO2 per kjørte kilometer hentet fra TØIs miljøhåndbok kommer vi fram følgende variasjoner i utslipp. Til grunn for beregningene forutsetter vi en gjennomsnittshastighet på 40 km/t dvs. gjennomsnittlig reiselengde på 7,8 km per tur og et totalvolum på 67.500 turer per døgn.

Tabell 5.5. Beregning av utslipp av CO2 fra veitrafikk generert fra et ferdigutbygget område.

<table>
<thead>
<tr>
<th></th>
<th>66 % bil</th>
<th>45 % bil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall turer</td>
<td>44.550</td>
<td>30.375</td>
</tr>
<tr>
<td>kWh/km</td>
<td>1,07</td>
<td>1,07</td>
</tr>
<tr>
<td>g/kWh (bensin)</td>
<td>325</td>
<td>325</td>
</tr>
<tr>
<td>Gjennomsnittlig kjørelengde per tur</td>
<td>7,8</td>
<td>7,8</td>
</tr>
<tr>
<td>Tonn CO2</td>
<td>120,8</td>
<td>82,4</td>
</tr>
</tbody>
</table>

8 Det vises her til Reguleringsplan Breivik, Lervik og Spilderhaugvåg Plan 1785. Sak 0149/01

"Trafikkanalyse for Storhaug næringsområde som lagt fram for kommunalstyret for byutvikling 22/5 2001.

10 I sak 149/01 vises det til et turvolum på 60.000-75.000. Vi benytter gjennomsnittsverdien.

11 Tallene er hentet fra sak 149/01. For mål på reduksjon i andel bilturer benytter vi gjennomsnittsverdien.
8. Utfordringen

Vi har sett litt nærmere på reisevanedata, for å undersøke variasjoner i reisemiddeltilpasning blant dagens Storhaugbeboere og reisende til og fra Storhaug. Med grunnlag i dette og presentasjonen av området gitt over, vil vi diskutere utviklingen av området med hensyn på utvikling i etterspørselen etter transport og valg av reisemiddel.

Vi har skilt Storhaug i tre soner. De grunnkretser som i størst mulig grad svarer til henholdsvis området Urban sjøfront, Platået på Storhaug og Godalen.

Figuren under gir en presentasjon av reisemiddelfordelingen blant beboere innenfor ulike soner på Storhaug sammenlignet med hele kommunen.

![Figur 5.6. Reisemiddelfordeling blant beboere i området Urban sjøfront sammenliknet med to referanseområdet på Storhaug og hele Stavanger kommune (Kilde: RVU 1998).](image-url)

Det er imidlertid også relevant å undersøke reisemiddelfordelingen på alle turene inn, ut og innen området. Figuren under viser reisemiddelfordelingene for de respektive sonene på Storhaug.

Figur 5.7. Reisemiddelfordeling på turer til og fra soner på Storhaug

Som gjennomgangen av planene og ambisjonene gjengitt over viser legges det til rette for gode muligheter bruk av alternative framkomstmidler til bil, men vil dette tilstrekkelig for å oppnå målet om en samlet bilandel for området på 40 til 50 prosent? Sett i lys av tall fra reisevaneundersøkelsen innebærer dette reduserte andeler i forhold til regionens områder med kanskje lavest andel bruk av bil. Sagt på en annen måte forutsetter en med dette at tilflyttingen benytter bil i mindre grad enn gjennomsnittsbeboeren på platået på Storhaug, med den befolkningssammensetningen denne sonen har. Samtidig vil det være nødvendig med lave bilbruksandeler knyttet til næringslivet.

Slik gjennomgangen viser planlegges det en rekke tiltak for å nå ambisjonene som legges til grunn for utviklingen av området. I en klimaplan sammenheng vil det slik vi tidligere har konstateret være vesentlig å søke å redusere bidraget også i antall flyreiser. Som gjengitt arbeides det med motivasjonskonsepter overfor næringslivet der dette er inkludert. En markedsføring av området som understreker den miljø- og ressursproffen som planlegges vil dessuten være nødvendig for å møte transportmålene for området.
5.4 Individuell handling – klimakalkulator som hjelpemiddel

Et viktig tiltaksområde i forbindelse med klima- og energiplanen vil være å motivere innbyggerne til selv å redusere sine bidrag til utslipp av klimagasser. I den sammenheng har det blitt utarbeidet en klimakalkulator som kan være et hjelpemiddel som kan gi oversikt over effektene av husholdningens ulike aktiviteter.

Klimakalkulatoren er tenkt lagt ut på hjemmesiden til Miljøheimevernet, evt via denne til “Dine Sider” under Dagbladet.no. Miljøheimevernet vil vurdere muligheten for å legge opp til at brukere kan lagre resultatene.

Kommunens bruk av kalkulatoren vil bli avklart i det videre, og aktuelle bruksområder kan være i skolesituasjoner, på bibliotek, i studiesirkler og overfor utvalgte målgrupper som er aktuelle i en klimaplansammenheng (formannskap, brukergrupper o.a.). Et viktig poeng må være å skape en læringssituasjon der brukerne får respons på de valg som gjøres og de tips til forbedringer som klimakalkulatoren presenterer.

Klimakalkulatoren vil enkelt kunne oppdateres når det gjelder endringer av energibruks- og utslippsfaktorer. Videre kan den utbygges med tanke på nye tips. Den vil også kunne utbygges med en simuleringenhet, der brukeren kan tilbys å få fram konsekvenser av ulike forbedringstiltak i form av endrede tall for energiforbruk, klimagassutslipp og økologisk fotavtrykk.
6 Tiltak for reduksjon av klimagassutslipp

6.1 Innledning
Formålet med dette kapitlet er å gi en generell gjennomgang av noen virkemidler og tiltak som kan være aktuelle å gjennomføre for å redusere klimagassutslippene. Vi har ikke gjort konkrete vurderinger av om eller hvordan de omtalte virkemidlene og tiltakene eventuelt skal kunne gjennomføres i Stavanger. I dette kapittelet har vi bare i liten grad omtalt temaet energiforsyning (bioenergi/fjernvarme/fornybar energi) og energiøkonomisering innenfor stasjonær energibruk. (se for øvrig kapittel 5 og 7).

6.2 Om virkemidler og tiltak
Begrepene virkemidler og tiltak vil stå sentralt i dette kapittelet, og trenger derfor en nærmere definering. En offentlig utredning om miljøpolitiske virkemidler definerer disse begrepene slik:12

“Virkemidler er de styringsverktøy myndighetene kan benytte for å påvirke menneskers handlemåte. Som en fellesbetegnelse for de handlinger som utløses av myndighetenes virkemiddelbruk, benyttes det i denne rapporten begrepet tiltak”.

I Norge er det vanlig å bruke begrepet virkemidler bare i sammenhenger der en omtaler myndighetene sine handlingsalternativ. Dette er en forståelse vi også legger til grunn her. Tiltak er likevel et begrep vi mener det ikke er naturlig å reservever for det offentlige styringsverket. Næringsliv, frivillige organisasjoner og enkeltindivid kan alle sette klimagassreducerende tiltak ut i livet.

Om vi likevel holder oss til det offentlige virkemiddelapparatet en stund, kan det være nyttig å kategorisere dette:

• økonomiske virkemidler
• juridiske virkemidler
• fysiske virkemidler
• samarbeid (inkludert avtaler)
• normative virkemidler
• informasjon.

Når det gjelder *tiltak* for reduksjon av klimagasser er det aktuelt å kategorisere også disse. Vi kan skille mellom tre\(^{13}\) prinsipielt ulike former for tiltak:

- Tiltak for *direkte* reduksjoner
- Tiltak for *indirekte* reduksjoner
- Tiltak for å øke *karbonlagre*

Tiltak for *direkte* reduksjoner tar sikte på å redusere klimagassutslippene gjennom direkte fokus på selve utslippskildene. Eksempel på dette kan være overgang til biobrensel i stedet for oljefyring eller parkeringsrestriksjoner for å dempe biltrafikken. Alle forslag til klimatiltak som SFT har presentert, både gjennom tiltaksanalysen og klimaplanrettlederen, sorterer under kategorien tiltak for direkte reduksjoner.

Tiltak for *indirekte* reduksjoner vil i større grad ta sikte på å redusere klimagassutslippene gjennom endring av forbruksmønster, mentalitet og samfunnsstrukturer (jf. kapittel 3). Dette kan for eksempel skje gjennom informasjon og økonomiske virkemidler med tanke på å dreie forbruket vekk fra produkt og tjenester som fører til store klimautslipp. Et livsløpsperspektiv måtte ligge til grunn for slike tiltak: Klimaeffekten av et produkt blir vurdert ut fra de samla utslippene “fra vogge til grav”, dvs. i produksjon, distribusjon, bruk og heilt fram til avfallsstadiet. En eventuell strategi for indirekte reduksjoner er langsiktig og må gå parallelt med tiltak rettet direkte mot utslippskildene.

Med tiltak for å øke *karbonlagre* mener vi tiltak som tar sikte på å øke oppholdstiden for karbon i deler av det naturlige karbonkretsløpet, for på den måten å forsinké CO\(_2\)-utslipp til atmosfæren. Karbon sirkulerer i naturen ved at CO\(_2\) blir bundet som organiske materiale i planter gjennom fotosyntesen, og kommer ut i atmosfæren igjen når daude planter og dyr rotner eller brenner. Naturen er innstilt på en likevekt mellom uorganisk karbon i atmosfæren og organiske karbon i biosfæren. Den menneskeskapte drivhuseffekten har oppstått ved at denne likevekta er forskjøvet. Det har skjedd ved at store mengder organiske karbon som er “lagt til side” som reservoar av kol, olje og gass gjennom millioner av år, har vært brukt opp i løpet av hundre år og komme ut i atmosfæren som CO\(_2\). Tiltak for å øke karbonlagrene må vi se på som et forsøk på å etablere en motsett strøm av karbon ved å binde mer karbon i biosfæren. Økt skogplanting er det mest omdiskuterte tiltaket i denne sammenhengen\(^{14}\).

\(^{13}\) Det er rimelig å peke på at vi også har en *fjerde* kategori tiltak som gjelder tiltak for å *tilpasse* samfunnet til klimaendringene. Fordi denne typen tiltak ikke er tatt med i forutsetningene for klimaplanarbeidet vil dette ikke bli omtalt.

\(^{14}\) Kyotoprotokollen åpner for godskriving av CO\(_2\)-opptak som følger av skogbruk og arealbruksendringer etter 1990, men mekanismene for inkludering av utslipp/opptak i skog er ikke fastsatt. CO\(_2\)-opptak i skog var det viktigste stridsspørsmålet da klimaforhandlingene i Haag (COP6) brøt sammen i november 2000.
Om vi legger til sides spørsmålet om karbonlagre, er tilrettelegging for bruk av *bioenergi* et opplagt klimatiltak knyttet til *skogbruket*. Brenning av ved, flis, trepellets o.l. gir klimanøytrale CO₂-utslipp. Det vil si at karbodioksid ikke blir regnet som klimagassutslipp så lenge den stammer fra forbrenning av ikke-fosilt brennstoff. Overgang fra olje og gass til ved og flis som energibærer vil slik være et tiltak for redusert klimagassutslipp fra stasjonær energibruk. Skogressurser kan også gå inn som alternativ til fossile innsatsmidler i prosessindustrien.

I dette kapittelet har vi valgt å fokusere på de tiltakene som kan gi utslippsreduksjoner på en mest mulig kostnadseffektiv måte. Det betyr at vi framhever tiltak som kan være innenfor rekkevidde uten at de krever store økonomiske offer eller dyptgripende endringer av samfunnsstrukturer. Tiltakene er adressert både til myndigheter, næringsliv og enkeltpersoner.

6.3 Kriterier for valg av tiltak

Under er vist en oversikt over samla utslipp av klimagasser med de tall som er presentert av Rogalandsforsking. Av figuren ser vi at utslipp fra transport er totalt dominerende med utslipp fra avfallsdeponi som nest største utslippskilde. Videre finn vi at utslipp knyttet til industri, landbruk og husholdninger kommer sist på med om lag like store utslipp. Ut fra figuren er det naturlig at vi særlig retter oppmerksomheten mot tiltak innenfor *transportsektoren*. Videre vil tiltak i forhold til utslipp fra deponi være viktig. I kapittelet har vi derfor konsentrert oss om disse to tiltaksområdene. Videre har vi også trekt fram tiltak innenfor *landbruket*. Selv om utslipp fra landbruket er lite for Stavanger sin del er dette en relativt stor kilde om vi ser Rogaland under ett (omlag 18 prosent). Tiltak gjennomført i Stavanger vil derfor kunne ha en gunstig "spredningseffekt" overfor landbruket i nabokommunene.

![Figur 6 Klimagassregnskap for Stavanger kommune i 2000](image-url)
6.4 Utslipp fra mobile kilder

Veipring

Bompenger og veipring er to avgiftssystem knyttet til veitrafikk som likner hverandre. I begge tilfeller dreier det seg om innkreving av en ekstraavgift fra brukerene av veinettet. Den viktigste forskjellen dreier seg om formålet med avgiften: Mens bompenger tradisjonelt har vært innført for å finansiere veibygging, er veipring et system som tar sikte på å belaste de som kjører med en avgift som reflekterer kostnadene og ulemperne som den enkelte kjøreturen / transporten fører til. I dette ligger det et prinsipp om at kjøring i tett befolkede område har større “eksterne kostnader” enn kjøring i griseområder, der ulemper som lokal luftforurensning, støy og kødanning er mindre problemer.

Lokalisering av arbeidsplasser, boliger og servicefunksjoner

Valg av transportmiddel og transportvolumet blir påvirket av hvordan arbeidsplasser, boliger og servicetilbud er plassert i forhold til hverandre. Gjennom arealplanlegging som tar sikte på å redusere transportbehovet mellom ulike funksjoner innenfor byer og tettsteder, kan en bidra til å avgrense eller redusere energibruk, og dermed klimagassutslipp, fra den lokale person- og varetransporten. Dette kan en legge til rette for blant annet ved å planlegge etter disse prinsippene:

- Høy folketetthet for byen/tettstedet som helhet
- Høy tetthet innenfor det enkelte bolig- og arbeidsplassområdet
- Sentralisert lokalisering av boliger og arbeidsplasser
- Lokalisering av arbeidsplasser ved knutepunkt for kollektivtrafikken

Høy tetthet, både for boliger og arbeidsplasser, kan en oppnå gjennom fortetting, dvs. utnytting av ledig arealkapasitet. Dette er med på å redusere den gjennomsnittlige avstanden mellom ulike funksjoner. Arbeidsplasser som ligger nær kollektivtrafikk-knutepunkt er lettere å nå uten bruk av bil. Disse knutepunkta er som regel å finne i sentrumområda, slik at sentrumsnære arbeidsplasser er et viktig vilkår for å fremme bruk av kollektivtransport. I større byer er det en utfordring å balansere fortetting og sentral lokalisering av boliger med kravet til gode boligmiljø i indre byområde.
Visse planvedtak har særlig stor innvirkning på framtidig arealbruks og transportmønstre:

- Utbygging av veier i område som ikke er utbygd fra før
- Plassering av offentlig service
- Plassering av nye enkeltstående utbyggingsområder med høye etableringskostnader

Ved slike strategiske avgjørelser, som lett vil utløysse videre utbygging i tilgrensende område, er det særlig viktig å vurdere de framtidige konsekvensene for transportmønsteret.

Det ser ut til at høgare tetthet fører til redusert transportbehov både for byer og relativt små tettsteder, mens lokalisering av arbeidsplasser og boliger innenfor tettstedet ikke er en så viktig faktor for de minste tettstedene.

Dagligvarebutikk, grunnskole og barnehage er Eksempel på servicetilbud som retter seg mot lokalmiljøet i boligområda. Slike funksjoner genererer minst transport dersom de har en desentralisert struktur, og er slik unntak fra regelen om at sentral lokaliserating skaper mindre transportvolum. Dette er i tråd med prinsipp om en hierarkisk oppbygging av senter- og servicestruktur. Det inneber at varer en ofte har bruk for, skal ha et lite handelsomland, mens folk må reise lenger for å få tilgang til varer og tjenester som de sjeldnere benytter seg av.

Transporteffektiv servicelokalisering vil blant annet bygge på disse prinsippene:

- Samordnet lokalisering av hendel og offentlige/private servicefunksjoner
- Lokalisering av større serviceanlegg til knutepunkt i kollektivtransporten
- Tilpassing av servicetilbudet til kunde- og grunnlaget
- Tilrettelegging for lokale nærtilknyttede tjenester der det er grunnlag for dette

Fra 1. februar 1999 vedtok regjeringa en rikspolitisk bestemmelse om fem års midlertidig stopp for etablering av nye kjøpesenter på mer enn 3000 m² (og tilsvarende utviding av eksisterende senter) utom sentrum av byer og tettsteder. Dette vedtaket kom som svar på en utvikling der store kjøpesenter vokste fram i rask takt i utkanten av byer og tettsteder, der det var billige tomter og rikelige parkeringsareal. Etableringsstoppen er ment å styrke de forvitrende handels- og servicefunksjonene i sentrum av byer og
tettsteder. I løpet av femårsperioden fram til februar 2004 skal fylkeskommunene i samarbeid med andre aktører utarbeide prinsipp og retningslinjer for regional lokaliseringspolitikk og by- og tettstedsstruktur, og nedfelle disse prinsippene i fylkes(del)planer.

Parkeringsregulering

Begrensninger i parkeringstilbudet er et viktig virkemiddel for regulering av biltrafikk i byer og tettsteder. Norske reisevaneundersøkelser viser en klar sammenheng mellom parkeringstilbud og bilbruks. Parkeringsregulering har først og fremst vært benyttet for å løse lokale problem knyttet til trafikkavvikling, for eksempel som virkemiddel for å skjerme utsatte sentrumsområder mot sterk trafikkbelastning eller sikre bedre trafikkflyt (for alle trafikantgrupper) ved å avgrena biltrafikken i visse område eller til visse tider på døgnet. Effekten vil imidlertid ofte være lokal og ha lite å si for samla trafikkvolum. Dersom parkeringsregulering blir benyttet målbevisst og i kombinasjon med andre virkemidler, kan en likevel oppnå redusert biltrafikk for hele byområde eller tettsteder.

Transportøkonomisk institutt deler parkeringsregulerende tiltak inn i tre grupper:

- **Planbaserte tiltak**
- **Restriksjoner på bruk av parkeringsplasser og forbud mot parkering**
- **Tilrettelegging for å unngå unnødig kjøring.**

Med planbaserte tiltak mener en tiltak som med utgangspunkt i Plan- og bygningsloven regulerer plassering av og tallet på parkeringsplasser. Et viktig poeng her er lokalisering av parkeringstilbud i forhold til viktige målpunkt, ettersom avstanden fra parkeringsplass til ulike servicefunksjoner har mye å si for hvor attraktivt det blir å bruke bilen. Kommuner har anledning til å gi bindende bestemmelser om parkering i kommuneplanen.

Restriksjoner på bruk av parkeringsplasser retter seg mot eksisterende plasser, først og fremst på område som er kontrollert av det offentlige (det er øg mulig å arbeide for frivillige restriksjoner på private parkeringsområde). Det kan dreie seg om reservering for spesielle brukargrupper, tidsbegrensninger og parkeringsforbud.

Tilrettelegging for å unngå unnødig kjøring går mellom anna ut på å gjøre det lettere å finne parkeringsplass. Det kan skje vha. visningssystem, reservering av plasser, sørge for tilstrekkelig tall parkeringsplasser til de som bur i boligområde og tilrettelegging for innfartsparkering.

Bruk av sykkel

Tilrettelegging for sykkel i og omkring byen er viktig med tanke på å redusere omfanget av arbeidsreiser med bil. Videre utbygging av gang- og sykkelveinettet og etablering av innfartsparkering for biler og sykler er de mest aktuelle tiltakene her.
Veikapasitet

Kapasiteten i veinettet har stor effekt på utvikling av transportvolum. Bygging av nye veier, utbedring av eksisterende veier og kryssutbedringer har tradisjonelt vært benyttet for å gjøre veitransporten mer effektiv. Samtidig er dette tiltak som generer ny trafikk og virker inn på reisemiddelfordeling. I byer og tettbygde strøk vil reduseret veikapasitet i visse tilfeller være et aktuelt virkemiddel for å dempe omfanget av veitrafikken. Dette kan for eksempel ha form av omdisponering av veier/kjørefelt til kollektivfelt eller gang/sykkelveier. Vedtak om ikke å utvide veikapasiteten vil også være et aktuelt virkemiddel på en venta vekst i transportvolumet, for eksempel i forbindelse med utbygging av nye boligområder.

Energieffektiv lastebiltransport

Det går an å følge to hovedstrategier for å redusere veksten i utslippene fra godstransport med bil:

- Gjennomføre tiltak for å redusere energibruken i lastebiltransporten
- Gjennomføre tiltak for å dirigere godstransport fra vei og over til sjø eller bane.

Lastebiltransporten kan gjøres mer effektiv ved å redusere drivstoffforbruket, og ved å bedre utnyttingsgraden av bilene. I begge tilfeller oppnår lastebileieren bedre økonomisk resultat, samtidig som CO₂-utslippene går ned.

Tiltak for å redusere drivstoffforbruket

Informasjon og motivasjonstiltak rettet mot sjåførene har vist seg å være et godt tiltak for å redusere drivstoffforbruket. Eksempel fra enkelte transportselskap – blant annet i Sogn og Fjordane - viser at en kan oppnå fem prosent reduksjon av dieselforbruket etter ett år med motivering og kursing av sjåførene. Stadige forbedringer i motorteknologi og karosseriutforming gjør at hyppig fornying av bilparken til godstransportørene vil bidra til reduserte utslipp. Kjøleaggretat på kjøle- og frysevogner brukar også diesel, og teknologiforbedringer her gir også grunnlag for reduserte utslipp. Grundig vedlikehold og renhold av bilene er viktig for å holde dieselforbruket nede. Det gjelder blant annet skifte av dekk, kontroll av dekktrykk og renhold av understell for å redusere oppsamling av snø og is. Dette er tiltak som vil redusere rullemotstand og luftmotstand. Videre kan bileieren redusere luftmotstanden gjennom tekniske tiltak, som korrekt montert vindavviser og gjennom å unngå å montere ekstrautstyr på karosseriet (solskjerm, firmaskilt, maskot m.v.).

Tiltak for å bedre utnyttingsgraden av bilene

Lastebiler som går tomme eller halvtomme på deler av turen, har dårlig energiutnytting og høye utslipp av klimagasser per utført transportarbeid. For godstransportører fra Vestlendet kan det være et problem å skaffe returlast etter at de har fraktet for eksempel

Styrke overgangen til sjø- og jernbanetransport

Kollektivtransport

Tiltak for å fremme bruk av kollektivtransport kan være å opprette bedre rutetilbud (hyppige avganger/flere ruter), innføre lavere billettpriser/attraktive kortordninger eller å tilby *gratis* kollektivtransport. Effektiv informasjon om det faktiske tilbudet er en forutsetning for å lykkes med å dreie persontransport over fra bil til kollektive transportmidler. Eksempel på vellykket tiltak for styrking av kollektivtransport er helst å finne i større byer, gjerne der dette er kombinert med restriktive tiltak overfor privatbiler.

Bykommunen Kristinehamn ved Vänern (20.000 innbyggere) og landkommunen Ockelbo nord for Gävle (6.400 innbyggere) har begge innført ordninger med *gratis* busstilbud. I Kristinehamn koster ordningen to millioner kroner i året, og ordningen blir behandlet årlig i samband med kommunebudsjettet. Tidligere betalte kommunen 75 prosent av kostnadene med kollektivtillbudet, mens resten skulle dekkes inn gjennom billettinntektene. Prøveordning med gratis busstilbud i 1997 førte til dobla passasjertall. I Ockelbo har en makta å innføre gratisbusser med fire ganger så hyppige avganger som før, uten å bevilge mer penger til kollektivtransport enn tidligere (4 mill. kroner per år). Dette er gjort blant annet ved å samordne den vanlige busstrafikken med andre former for transport som kommunen eller fylkeskommunen betaler (blant annet skoleskyss, som tidligere delvis gjekk med drosje). Overgang fra store til mellomstore busser, forbedre anbudsrutiner og det at en har avskaffa billettsystemet har også gjort sitt til at de samla utgiftene til kollektivtransport ikke har økt. Siden tiltaket starta i 1994 har tallet på daglige turar økt fra 24 til vel 90, dekningen er mer enn dobla og tallet på voksne passasjerer har økt fra 10.000 til 50.000 per år.
Alternative drivstoff: biodiesel og etanol

Råstoffet for framstilling av biodiesel er i hovedsak vegetabilske oljer. I Europa er frø fra raps-/rybs-planten den største råstoffkilden, mens soya og solsikke er viktige råstoff på verdensbasis. Animalsk fett og fiskeolje har vært diskutert som aktuelle nye utgangspunkt for framstilling av biodiesel.

Biodiesel kan brukes direkte i dieselkjøretøy uten større motortekniske endringer. De aller fleste dieselkjøretøy som er mindre enn ti år gamle er tilpassa dette drivstoffet. For eldre dieselmotorer trengs det bare mindre tilpasninger. Biodiesel har vært tilgjengelig i Norge i flere år, men drivstoffet er lite utbredt i bruk. I løpet av de siste 3–4 årene har det likevel skjedd en utvikling som har gjort biodiesel mer aktuelt som drivstoff her til lands. Distribusjonsnettet er i ferd med å øke, i første omgang på Østlandet: Tre bensinstasjoner selger i dag ren biodiesel, mens det er 15 stasjoner der all dieselen som blir solgt har en innblanding av om lag fem prosent biodiesel.15 Det er likevel bare et avgrensa potensial for produksjon av biodiesel fra raps/rybs i Norge, slik at en eventuell satsing på dette drivstoffet må være basert på import, for det meste fra Tyskland.16 Transport av drivstoffet vil måtte tas med i klimaregnskapet.

Etanol kan framstilles fra fossile hydrokarboner, som naturgass. Vi forutsetter at bruk av dette drivstoffet som et klimatiltak må være basert på etanol framstilt av fornybart råstoff. Sukker, mais og hvete er viktige kilder for etanol-framstilling. Trevirke kan også brukes, men dette er mer komplisert fordi denne råvaren er mer kjemisk og strukturelt kompleks. Etanol blir i dag framstilt fra trevirke både i Sverige

15 De norske bensinstasjonene som selger biodiesel per i dag er alle drevet av Hydro/Texaco. Statoil har bygd opp et stort distribusjonsnett for biodiesel i Sverige. Firmaet Habiol importerer biodiesel til Norge.

16 Vestlandsforsking har gjennomført en analyse av det norske potensialet for dyrking av råstoff for biodiesel med tanke på en omfattende erstatning av fossilt drivstoff (diesel) i tunge kjøretøy med biodiesel i år 2005. En tok utgangspunkt i tre ulike landbruksystem for Norge, og benyttet i alle tre anledning optimistiske forutsetninger for dyrking og produksjon av biodiesel. Erstatningspotensialet en kom fram til (målt som prosentdel av norsk dieselforbruk) var på 12-17 prosent i det intensive jordbruksystemet (med store negative miljøeffekter som resultat), 5-8 prosent for det tradisjonelle og 2-4 prosent i det økologiske jordbruksystemet.
(Örnsköldsvik) og Norge (Borregård). I tillegg er et stort anlegg for produksjon av etanol fra hvete under oppføring i Norrköping.

Det er i dag mulig å blende inn så mye som 20 prosent etanol i bensin og diesel uten motortekniske endringer. Bruk av ren etanol som erstatning for diesel krever spesielt tilpassa motorer. Sverige har i dag om lag 350 busser som er drevne av ren etanol, i tillegg til ca 350 drivstoff-fleksible personbiler (FFV) som kan gå på både etanol og bensin.

Busselskap og lastebiltransportører vil med enkle tiltak kunne erstatte vanlig diesel med biodiesel. Selv om biodiesel etter hvert har blitt mer konkurransedyktig i pris med fossil diesel, er det likevel en viss prisforskjell. Denne forskjellen vil måtte subsidieres av det offentlige inntil prisen jevner seg ut. Prisen for å bygge om en dieselbuss til ren etanoldrift ligger på om lag 100.000 kr. Dette ser vi på som en så stor investering at det er lite realistisk å gå inn for etanoldrevne busser eller lastebiler i denne omgang. Den enkleste måten å legge til rette for overgang til alternative drivstoff for vanlige forbrukere vil dreie seg om innblanding av biodiesel eller etanol i tradisjonelt drivstoff.

Fly

Øke bruk av fly som transportmiddel er utslag av en generell tendens i det norske transportmønsteret. Det er slik trolig lite lokale myndigheter kan gjøre for å demme opp for en slik utvikling. Offentlige etater kan innføre rutiner for tjenestereiser som tar sikte på å avgrense unnødig bruk av fly. Dette kan skje ved tilrettelegging for bruk av buss og tog på offentlige tjenestereiser til for eksempel Oslo og Bergen. Videre kan en gjennomføre holdningsskapende tiltak overfor publikum generelt for å få de til å reise mindre med fly, for eksempel oppfordring om å feriere i heimlendet i steden for energikrevende syndturere med fly.

6.5 Avfallsdeponi

Avfallshåndtering har to viktige tilknytningspunkt til klimapolitikken: Problemet med utslipp av metan fra avfallsdeponi og potensialet for energiutvinning fra avfallet. Avfallshåndtering bør både ta sikte på å utnytte avfallet som ressurs og ta hensyn til avfallet som utslippsskilde for metan. En aktuell prioritering av tiltak kunne skje i denne rekkefølgen:

1. Reduksjon av totall avfallsmengde
2. Materialgjenvinning av utnyttbare fraksjoner
3. Utnytte energien i det avfallet som ikke lar seg gjenvinne

17 Borregård eksporterer i dag store mengder etanol som er framstilt av trevirke, men de ønsker å dreie dette produktet over mot den norske marknaden.
4. Deponere resten og samle opp / oksidere metangassen fra deponiet.

Fra en klimapolitiskståsted må det fremste målet være å hindre at metangass (deponigass) slipper ut i atmosfæren. For det avfallet som blir lagt på deponi er det i praksis to måter å hindre/reducere metanutslipp på:

- Uttak / fakling av metangass fra deponi
- Oksidering av metan vha. toppdekke

I tillegg er det et alternativ å omgå problemet med deponigass ved ikke å legge avfallet i deponi:

- Kompostering av våtorganisk avfall
- Avfallsforbrenning

Både gassuttak og avfallsforbrenning åpner for energiutvinning fra avfallet, mens oksidering i toppdekke (biofilter) går ut på å la mikroorganismer i jord omdanne metan til CO₂ før gassen når opp til overflata. Toppdekke kan være aktuelt som et supplement til fakling og som tiltak mot metanlekkasje fra nedlagte deponi.

I 1999 var det bare ett avfallsdeponi i Norge (Ås i Akershus) som hadde tilrettelagt toppdekke spesielt med tanke på å optimalisere forholdene for oksidering av metan. Dette har skjedd som ledd i et fou-prosjekt i regi av Jordforsk (Klimatek-prosjektet).

Det foreligger ingen statlige krav til hvor effektiv oppsamling av metan fra deponi skal være. Videre er det et udekket kunnskapsbehov når det gjelder optimalisering av drifta ved avfallsplasene med tanke på størst mulig uttak av metan. Kapital- og driftskostnader ved etablerte anlegg for uttak av metangass ligger i området 50-80 kr/tonn CO₂-ekvivalenter.18

Ved kompostering av våtorganisk avfall blir organisk karbon omsatt under aerobe forhold (nedbrytning med tilgang til oksygen). Sluttproduktet av denne prosessen er CO₂, vann og varmeenergi. Karbondioksids er en svakere drivhusgass enn metan, og dermed kan kompostering fungere som forebygging av metanutslipp fra deponi. SFT regner med at kostnaden ved reaktorkompostering ligger mellom 650 og 1.000 kr per tonn avfall. Ettersom alternativet til kompostering i mange tilfeller vil være deponering, kan en trekke fra den gjennomsnittlige komposteringskostnaden på 400 kr per tonn avfall (ekskl. sluttbehandlingsavgift), slik at tiltakskostnaden blir liggende i intervallet 250-600 kr per tonn avfall. Det er vanskelig å si hvor stort reduksjonspotensialet er ved dette tiltaket. SFT antyder at det ligger rundt to tonn CO₂-ekvivalenter per tonn avfall som blir kompostert i steden for å havne på deponi.

Forbrenning / energiutvinning er også et aktuelt tiltak for å hindre at organisk avfall blir liggende på deponi som potensiell metangasskilde.

18 SFT 2000.
Den kommunale avfallshåndteringen har i stor grad fokuset på spørsmål om hvordan en skal håndtere det våtorganiske avfallet. Dette har blant annet sammenheng med at våtorganisk avfall representerer en større utfordring når det gjelder hygiene og luktproblem. I en klimagass-sammenheng er det ikke minst viktig å se på tørt organisk avfall. I det lange løp vil alt organisk karbon bli omsatt, enten til CO₂ der det skjer aerob omsetning, eller til metan der det ikke er lufttilgang. SFT vurderer tiltakskostnadene ved avfallsforbrenning (som alternativ til deponering) til 200 kr per tonn avfall når kostnadene ved deponering er takt fra. Det er vanskelig å slå fast hvor stort klimagassreduksjoner potensiell tiltaket har, ettersom det er avhengig av utslippene ved den alternative avfallsbehandlinga (hvor effektivt metan blir samla opp på deponi) og hvor godt energien ved forbrenninga blir utnytta.

I tillegg til CO₂-avgift ser innføring av kvoteplikt ved utslipp av klimagasser ut til å bli det viktigste nasjonale virkemiddelet for å redusere klimagassutslippene. Innføring av et nasjonalt kvotesystem er tidligere utredet, og våren 2001 blir det trolig lagt fram en stortingsmelding om temaet. Planene går ut på at de som blir omfatta av kvoteplikt, må kjøpe kvoter for å få sleppe ut klimagasser. Kommunene vil kunne bli omfatta av kvoteplikt på to område: Som kjøpere av energivarer og som eierer av avfallsplasser. Det er ikke opplagt at metanutslipp fra deponi blir kvotepliktig, blant annet fordi det er usikre utslippstall når vi taler om enkeltflyllinger. Et alternativ kan være å tildele omsettelige utslippskvoter til de som kan dokumentere effektive tiltak for utslippreduksjoner på området, men ved en slik ordning vil det ligge i bunn et minstekrav om at alle deponi som er i drift skal ha gjenomført pålegg om gassuttak. Stortingsvedtak om opprettelse av nasjonalt kvotesystem kan få mange å si for den videre utviklingen av klimatiltakene i avfallssektoren. Det er likevel ikke råd i skrivende stund å utlede tiltak på lokalt nivå i forhold til dette spørsmålet, ettersom systemet ikke er ferdig utformet og vedtatt.

6.6 Landbruk

Landbruk er en beskjeden sektor i Stavanger kommune. Vi har likevel tatt med tiltak overfor landbruk, fordi slike tiltak kan være viktige i en regional sammenheng ved at tiltak i Stavanger vil kunne ha en demonstrasjoneffekt overfor landbruken utenfor kommunegrensen.

Landbruket gir opphav til utslipp av lystgass og metan. Disse klimagassene er viktige ikke først og fremst på grunn av omfanget av utslippene, men fordi de har så mye sterkere klimaeffekt enn karbondioksid. Metan er 21 ganger sterkere og lystgass hele 310 ganger sterkere enn CO₂ per vektenhet. SFTs tiltaksanalyse for reduksjon av klimagassutslipp i Norge inneholder ingen framlegg til tiltak rettet mot prosessutslipp i

20 Peer Stiansen, Miljøverndepartementet, personleg opplysning.
landbruket. Det kommer av at en mangler data for kvantifisering og prissetting av tiltakene.

For lystgassutslippene sin del vil de viktigste tiltakene være rettet mot:

- bedre jordstruktur; der aktuelle tiltak er grøfting og unngå jordpakking fra tunge maskiner
- balansert gjødsling; først og fremst redusert nitrogengjødsling
- optimal gjødselutnyttning; først og fremst ved å gjødsle i rett mengde til rett tid for å sikre at plantene drar bruke av næringsstoffene

Når det gjelder metanutslipp er det særlig tiltak mot metanlekkasje fra gjødsellagre som er aktuell. Hovedkilden for metanutslipp fra landbruket, vom- og tarmgass fra husdyra, er utslipp som er avhengig av vekten av tallet på husdyra. Det er et tema vi ikke drøfter i denne sammenhengen.21 De to mest aktuelle tiltakene mot metanutslipp fra gjødsellagre er:

- la anaerob gjøring skje under kontrollerte forhold i tette tanker og brenne metangassen (gjerne med energigjenvinning)
- legge særlig til rette for aerob omsetning av gjødsel, for eksempel ved å sprøye inn luft i bløtgjødsla (våtkompostering) eller ha skilt lagring av fast og flytende fraksjon for så å kompostere den faste møkka

Det viktigste tiltaket for å hindre lystgassutslipp fra landbruket er å unngå for store gjødselmengder og gjødsling kombinert med jordpakking og våt mark. Forsøk tyder videre på at lystgassutslippene er større ved bruk av kunstgjødsel enn ved bruk av husdyrgjødsel22. Redusert kunstgjødselbruk vil i tillegg ha gunstig klimaeffekt fordi det skjer utslipp av lystgass i forbindelse med framstilling av kunstgjødsel23. En omlegging til driftsformer uten bruk av mineralnitrogen, blant annet \textit{økologisk drift}, er dermed et

21 På landsbasis regner en med at 85 prosent av metangassutslippene fra landbruket stammer fra fordøyingsprosessene til husdyr. Skulle disse utslippene gå ned måtte det skje gjennom redusert husdyrproduksjon som resultat av en langsiktig endring av kostholdet i den norske gjennomsnittsfamilien. Ellers er det mulig at sammensettingen av fôret til husdyra har noe å si for mengden metangassutslipp som vom- og tarmgass, men dette har vi ikke fått stadfesta fra husdyrfaglig hold.

22 Det er gjennomført forsøk som viser at det i de første 34 dagene etter gjødsling var det et gjennomsnittlig utslipp på 1,35 gram lystgassnitrogen daglig per kg mineralnitrogen (NH\textsubscript{4}NO\textsubscript{3}). Tilsvarende utslipp som resultat av gyllegjødsling var på 0,7 gram lystgassnitrogen daglig per kg mineralnitrogen (NH\textsubscript{4}) i gylla. Videre fann en en ut at sammenhenga mellom jordpakking og øke lystgassutslipp var sterkest på de felta som ble gjødslede med kunstgjødsel.

23 Ved produksjon av ammoniumnitrat blir en prosent av nitrogenet sleppt ut som lystgass. Dette tallet er noe lavere i Norge fordi Norsk Hydro har arbeidde med å minimalisere \textrm{N}_2\textrm{O}-utslippene i forbindelse med gjødselproduksjonen sin.
tiltak med potensial for reduksjon av N₂O-utslippene fra landbruket. Økologisk landbruk er i tillegg en driftsform som legger vekt på å opparbeide god jordstruktur. Generelt lavere gjødslingsintensitet i økologisk landbruk sammenligne med konvensjonelt landbruk, vil også være positivt med tanke på å få ned klimagassutslippene.
7 Erfaringer fra foregangskommuner i Sverige, Tyskland, Nederland og Danmark

7.1 Innledning

Denne delen av rapporten beskriver erfaringer fra 14 nord-europeiske kommuner som fører en mer enn vanlig ambisiøs politikk for bærekraftig energibruk og/eller mobilitet. Det er erfaringer som bør kunne komme Stavanger til nytte i det videre arbeidet med å utvikle og gjennomføre kommunens egen klima- og energiplan.

Formålet med eksempelsamlingen er todelt. For det første at de enkelte kommunenes erfaringer hver for seg kan komme til nytte - at det her finnes tiltak og virkemiddel som kan tas i bruk eller tillempe etter forholdene i Stavanger. Og for det andre at det i summen av erfaringene kan finnes enkelte lærdommer om hvilke tiltak eller sett av tiltak som gir størst sjanse for suksess.

Det innebærer at den avsluttende drøftingen er av induktiv karakter, med den faren for subjektivitet som dette medfører. Leseren oppfordres derfor til å måle de tentative konklusjonene opp mot sin egen erfaring og egen lesning av empirien.

Kommunene som omtales ligger i Sverige, Danmark, Tyskland og Nederland. Grunnen til å fokusere på utenlandske erfaringer er dels at norske kommuners erfaringer med energi- og klimapolitikk antas å være relativt godt kjente; dels at det i utlandet finnes enkelte kommuner som har satt seg mer ambisjøse mål, og/eller nådd større resultat på visse områder, enn noen norsk kommune til nå har gjort. På noen viktige områder (klima, velstandsnivå, kommunenes rolle i samfunnet) er forholdene i disse landa ikke altfor forskjellige fra dem en finner i Stavanger. Andre forhold, for eksempel priser på visse energibærere eller tilgang til statlige støttemiddel, har for noen av kommunene vært vesentlig forskjellige fra dem en står overfor i Stavanger i dag. Slike forskjeller er kommentert og gjør ikke nødvendigvis erfaringene uinteressante.

Kommunene som omtales, er valgt ut med blikk både for ambisjonsnivå og oppnåddé resultat. De fleste kan derfor skilte med sterke resultat i det minste på enkelte områder. Men det finnes flere eksempel på at kommuner med et høyt ambisjonsnivå på et spekter av områder har oppnådd lite på flere av dem. Deres erfaringer er ikke minst interessante, og slike - foreløpige eller kanskje varige - nederlag er derfor også omtalt.

De fleste av kommunene kan sies å ha et mer enn gjennomsnittlig høyt ambisjonsnivå både hva gjelder bærekraftig mobilitet og stasjonær energibruk, og de fleste av disse har

Kommunene varierer betydelig i størrelse, næringsgrunnlag og andre forhold. Av de 14 kommunene er 11 urbane, og åtte av de i tillegg til samme størrelsesorden som Stavanger (mellom 60.000 og 200.000 innbyggere). Det gjelder blant annet fire av de fem som særleg utmerker seg med satsinger på transportsiden (Münster og noen større). Det er mht. transport at størrelsesforhold og bosettningstetthet har mest å si for hvilke strategier som er aktuelle. Når det gjelder å påvirke den stasjonære energibruken, er det flere opplagte grunner til at erfaringer fra en liten kommune ikke skulle la seg overføre til en stor eller omvendt.

Seks av kommunene (Lund, Münster, Veenendaal, Amersfoort, Samsø og Langå) er besøkt i direkte forbindelse med dette prosjektet. For øvrig bygger framstillingene på inntrykk fra tidligere besøk Idébanken har gjort i kommunene, på telefonintervjuer (i hovedsak med kommunale tjenestemenn) på tilsendt skriftlig materiale og på omtale på Internett. Sentrale kontaktpersoner, skriftlige kilder og nettsider er oppgitt i tilknytning til omtalen av hver enkelt kommune.

7.2 Växjö - “Allt väl utom trafiken”

Växjö (74.000 innb.) i Småland vakte internasjonal oppsikt i 1996, da et enstemmig kommunestyre ikke bare sluttet seg til Klimalliansens målsættelse om å redusere CO₂-utslippene i lokalsamfunnet med 50 % (fra 1993-nivå) innen 2010, men samtidig vedtok at all bruk av fossile brensel i kommunens egen virksomhet skulle avvikles. Til det siste vedtaket var det riktig nok ikke knyttet noe årstall. Men begge målsættningene oppfattes som retningsgivende for den aktuelle politikken og følges opp gjennom programmet “Fossilbränslefritt Växjö”. Innsatsen er bl.a. belønnet med ICLEIs og UNEPs “Local Initiatives Award” i 2000.

Reduksjonen i de stasjonære utslippene skyldes en lang rekke tiltak, hvorav mange er beskrevet i kommunens Energiplan fra 1996. Det klart viktigste enkelttiltaket var
åpningen av et nytt flisfyrt kraftvarmeverk i 1997, som både har fortrengt olje i fjernvarmeforsyningen og dessuten står for om lag en tredjedel av strømforsyningen til Växjö by. Men det skjer også en stadig utbygging av fjernvarmeforsyningen i selve byen (ca. 400 nye hus knyttes til årlig) mens fire andre tettsteder i kommunen de siste åra har fått egne “nærvarmesystem”, også basert på bioenergi. De sistnevnte satsingene har til dels fått en respons (i form av tilsluttede kunder) som overgikk forventningene. Det kan bl.a. ha sammenheng med at mobiliseringen omkring LA 21- og energiarbeidet - her basert på muntlig kommunikasjon og drahjelp fra lokale bygdeutvalg - ifølge en evaluering har vært mest effektiv i de mindre tettstedene.

Utenfor fjernvarmeområdene gir kommunen tilskudd til individuelle solvarme- og biobrenselanlegg. I tillegg er det gjennomført større enøk-satsinger både i kommunens og andre offentlige bygg samt i den kommunale boligmassen. Flere større bygg utenfor fjernvarmeområdet og flyplassen har gått over til bioenergi. Både kommunen og dens tre boligselskap har gått over til å kjøpe utelukkende eller nesten utelukkende miljømerket strøm.

“Flaggskipene” i Växjös satsing når det gjelder transport ligger imidlertid på teknologisida. Det mest kostnadskrevende er utbyggingen av et pilotanlegg for produksjon av det bioenegibaserte drivstoffet DME. Dette er på prosjekteringssstadiet i samarbeid med flere innen- og utenlandske interessenter. Kommer det i drift, skal det følges opp av forsøk med en flåte DME-drevne biler i Växjö.

I mindre skala satses det også på konvertering av biler til etanoldrift. Dessuten byttes bilene i den kommunale personbil gradvis ut med elektriske, hybride eller etanolrevne modeller.

Felles for de teknologirettede satsingene - det gjelder både DME, biogass og etanol - er at de per dato har kommet kortere enn forutsatt da ble lansert (i det første tilfellet delvis av årsaker som ligger utenfor Växjö: DME-biler finnes ennå ikke på markedet). Selv om de opprinnelige planene hadde holdt, ville de imidlertid ennå ikke ha kunnet gjøre nevneverdig inntrykk på CO₂-utsippene i Växjö.
Växjö kommune erkjenner at dersom CO₂-utslippene fortsatt skal reduseres, må det meste nå skje på transportsida. Ja, selv om alle utslipp fra stasjoner forbrenning ble eliminert, ville det ikke være nok til å nå målet om halvering av de totale utslippene fra 1993-nivå innen 2010. I en søknad om støtte under den svenske LIP-ordningen (Lokala investeringsprogram) for 2001-2004, beskrives prosjekt som skal reducere utslippene med ytterligere 14 % fra dagens nivå, hvorav det aller meste skal komme fra transportsida. Tiltak som skal bidra til dette er

- fortsatt satsing på DME-prosjektet
- fortsatt satsing på sykkeltiltak
- forsterket satsing på innføring av biler med alternative drivstoff (200 stykk)
- flere logistikk- og transportstyringsprosjekt for å rasjonalisere varetransport og yrkeskjøring.

Det skal også etableres et “Mobilitetskontor” etter mønster fra Lund, som får ansvar for å samordne satsingene på transportsida.

Spennende strategidokument/ïdésamlinger: Energiplan 1996 for Växjö kommun.

Beste resultat: CO₂-utslippene fra stasjoner energibruk er mer enn halvert siden 1993.

Resultatene av de prosjektene som har fått støtte gjennom den svenske LIP-ordningen (Lokala investeringsprogram) er oppsummert på http://www.vaxjo.se/agenda21/projekt%2098-01.html#fossil. Strategiplanen som kom ut av prosjektet “Dämpa trafikökningen” kan også leses som en evaluering av dette prosjektet.

Nettverk kommunen deltar i: Fra 1998-2000 deltok Växjö i programmet “Utmanarkommuner” sammen med Svenska Naturskyddsföreningen og fire andre svenske kommuner. Växjö er medlem av Klimaalliansen.

Suksessfaktorer som ikke kan overføres til Stavanger: Växjö hadde alt i 1996 et fjernvarmenett som dekket det meste av selve byen, og har rikeligere tilgang på bioenergi i omlandet enn Stavanger. Programmet “Fossilbränslefritt Växjö” er støttet med ca. 70 mill. statlige kroner fra LIP-ordningen 1998-2001 (dette utgjør likevel bare en mindre del av investeringene. Særlig de prosjektene som har gitt størst resultat, er i all hovedsak lokalt finansiert.)

Suksessfaktorer som er relevante for Stavanger: Signaleffekten av et dristig politisk vedtak og tverrpolitisk støtte både til vedtaket og til oppfølgingen. Faktisk og
systematisk oppfølging av Energiplanen. De aller fleste av tiltakene på transportsida - hvis suksess ennå ligger i vektskåla - er like relevante for Stavanger som for Växjö.

Kontaktperson: Roger Hildingsson
Växjö kommun, Box 1222, S-351 12 Växjö
Tlf.: +46-470 - 415 71
Faks: +46-470-164 89
roger.hildingsson@kommun.vaxjo.se
www.vaxjo.se

7.3 Karlstad - Minsker bilismen i sentrum

Karlstad (74.000 innb.) hører ikke til de kommunene som har høست mest mediaomtale og prisdryss for sitt miljøarbeid, men har ved en mangesidig og til dels nyskapende innsats gjennom de siste åra faktisk oppnådd større resultat enn de fleste, både når det gjelder å begrense biltrafikken og å redusere det stasjonære oljeforbruket.

Det som derimot er klart er at Karlstad gjør en betydelig innsats for å fremme mer bruk av sykkel. Det finnes allerede 224 km gang- og sykkelveger i kommunen; ytterligere 10 km bygges i 2000-2002. To ganger årlig arrangeres månedlange sykkelkampanjer i samarbeid med frivillige organisasjoner og arbeidsplasser i kommunen. Andelen som sykler til jobben er allerede 44 % om sommeren og 19 % om vinteren; det kortsiktige målet er å øke dette til hhv. 50 og 23 %. Tjenestesykler er snart tilgjengelige på alle kommunale arbeidsplasser, i tillegg til bysykler (“Solacykeln”).

Det mest nyskapende tiltaket for mer miljøvennlig trafikk i Karlstad er likevel **Transportrådgivningen**. Denne har base i Rådrummet, et informasjonskontor på torget der åtte personer er ansatt for å informere innbyggerne om miljø- og forbrukerspørsmål, herav 1,5 i transportrådgivningen. Denne driver eller tilbyr blant annet

- oppsøkende virksomhet overfor bedrifter, med sikte på å få medarbeidere til å finne mer miljøvennlige reisemåter til arbeidet. 1700 personer ved 70 arbeidsplasser skal ha bitt på.
- informasjon/opplæring om “eco-driving” - kjøretefterd som reduserer drivstoffforbruket. Transportrådgivningens erfaring er at de fleste - fra drosjesjåfører som på forhånd tror de har lite å lære om bilkjøring til husmødre med et mer beskjedent selvbilde på området - oppdager at de kan redusere forbruket med ca. 10 % ved å følge deres tips.
- generell informasjon om kollektivtrafikk og rutetilbud
- et tett samarbeid med det nyopprettede og sterkt voksende Universitetet i Karlstad, der målet er å sørge for at reisene mellom universitetet (i den østre utkanten av byen) og sentrum kommer til å skje på mest mulig miljøvennlig vis. Dette prosjektet inngår i EU-programmet MOST (Mobility Management Strategied for the next Decades), der ett av satsingsområdene er styring av reisene til og fra nye boligområder eller arbeidsplasskonsentrasjoner.
- samarbeid med idrettslag, deriblant den lokale ishockeyklubben Färjestad, om busstransport til arrangementene.

Karlstad har ellers redusert det stasjonære oljeforbruket sterkt i løpet av 1990-tallet gjennom utbygging av fjernvarmesystemet, som er basert dels på avfall og dels på skogsflis. De aller siste åra er også strømforsinkelr noe redusert.

Spennende strategidokument/idésamlinger: Miljöanpassade trafikplanen, 1995

Beste resultat: Biltrafikken i sentrum minsker jevnt og er redusert med 27 % siden 1994.

Evalueringer: Kommunen utgir årlig en omfattende Miljöredovisning med bl.a. grundig dokumentasjon av utviklinga når det gjelder transport og stasjonær energibruk.

Nettverk som kommunen deltar i: MOST (Mobility Management Strategies for the next Decades). EU-program med totalt vel 20 deltakende kommuner, hvorav Karlstad er en av fem som deltar i delprogrammet om “Development Sites”.

Suksessfaktorer som ikke kan overføres til Stavanger: Noen av tiltakene som er utført etter 1997 (alså ikke den opprinnelige trafikksaneringen) har fått støtte gjennom den statlige LIP-ordningen.

Suksessfaktorer som er relevante for Stavanger: De fleste av Karlstads erfaringer bør være av interesse for Stavanger. Det gjelder også i høy grad de som samles gjennom MOST-prosjektet.

Kontaktpersoner: Per Olof Haster/Hasse Zimmermann

Rådrummet, Kungsgatan 12, S-651 84 Karlstad Tlf. +46-54-29 73 00, Faks +46-54-29 73 10 radrummet@karlstad.se http://www.karlstad.se/radrummet/index.shtml

7.4 Lund - Mot et miljøtilpasset transportsystem?

Derimot har Lund både formulert og begynt å følge opp en mangesidig strategi for bærekraftig mobilitet. Strategien skriver seg fra 1997 og heter LundaMaTs, der MaTs står for “miljøanpassat transportsystem”. Dokumentet inneholder ca. 130 forslag til tiltak fordelt på fem hovedområder:

- samfunnsplanlegging (her et vidt begrep som ikke bare omfatter fysisk planlegging men også bl.a. å opprettolde nærbutikker og å påvirke andre aktørers, f.eks. familienes, “planlegging” av sin hverdag

- sykkelbyen (framfor alt infrastrukturtiltak, dessuten kommunale utlånssykler, “sykkelverter”, sykle-til-jobben-kampanjer mm.

- utvikling av kollektivtrafikken (nye linjer med store investeringer, bedret framkommelighet, bedre overgangsmuligheter mellom individuell og kollektiv transport)

- miljøvennligere biltrafikk (opplæring/rådgivning om miljøvennligere kjøreatferd (“Karlstad-modellen”), fremme bilpooler, lavere fartsgrenser, tekniske tiltak i vegbanen mm.)
• næringslivets transport av både gods og personer (samlasting, oppmuntre til bedre ruteplanlegging, bruk av mindre og mer miljøvennlige kjøretøy, arbeidsreiseplanlegging mm.)

I tillegg til de fem hovedområdene finnes to mindre, som det ikke er oppstilt kvantitative mål for: en vil undersøke mulighetene for å redusere transportbehovet ved hjelp av IKT, og en vil sette søkelys på innbyggernes reiser utenfor Lund.

En vesentlig grunnleggende antakelse i LundaMaTs er at den økningen i utslipp som en kunne få pga. den underliggende trafikkveksten i denne perioden, stort sett vil bli unngått som følge av forbedret drivstoffeffektivitet i bilene. Det vil si av en teknologisk utvikling som ventes drevet fram av forhold utenfor Lund - av bilindustrien og av nasjonale og overnasjonale myndigheters krav til denne. Det kan synes som en optimistisk antakelse, når den underliggende trafikkveksten anslås til 1,7 % årlig for personbiltransport og 1 % for godstransport på veg. På den andre sida kan det første tallet synes noe pessimistisk; det bygger på en nasjonal prognose, der veksten i biltrafikken ligger langt over den faktiske årlige økningen i tiåret fram til 1997.

De ventede reduksjonene fordeler seg på de fem hovedsatsingsområdene slik tabell 7.1 nedenfor viser. Tabellen viser også de forventede kostnadene for hvert av satsingsområdene.

Tabell 7.1: Kostnader ved ulike satsingsområder

<table>
<thead>
<tr>
<th></th>
<th>Prosentvis reduksjon i biltrafikk (vogn-km)</th>
<th>Prosentvis reduksjon i CO₂-utslipp, til 2020</th>
<th>Kostnad, mill. SEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sykkelbyen</td>
<td>0,6</td>
<td>0,9</td>
<td>1,3</td>
</tr>
<tr>
<td>Utvikle kollektivtrafikk</td>
<td>0,6</td>
<td>1,2</td>
<td>0,9</td>
</tr>
<tr>
<td>Næringslivets transport</td>
<td>0,8</td>
<td>2,2</td>
<td>3,2</td>
</tr>
<tr>
<td>Planlegging</td>
<td>0,1</td>
<td>3,7</td>
<td>3,4</td>
</tr>
<tr>
<td>Miljøvennligere biltrafikk</td>
<td>0,0</td>
<td>2,3</td>
<td>15,6</td>
</tr>
<tr>
<td>SUM</td>
<td>2,1</td>
<td>10,3</td>
<td>24,3</td>
</tr>
</tbody>
</table>
Planene i Lund er viet såpass omtale dels fordi LundaMaTs er en av de mer omfattende og interessante tiltakskatalogene som er frambrakt på dette området av en nordisk kommune i løpet av de siste åra, og dels fordi det likevel kan stilles noen alvorlige spørsmål ved dem, som det må være viktig også for Stavanger og andre kommuner å ta stilling til.

- Er det eller er det ikke rimelig å basere framskrivninger av CO₂-utslipp på den forutsetningen at aktører utenfor kommunen gjør jobben sin med å bringe fram mer effektive kjøretøy?
- Storparten av CO₂-reduksjonene i LundaMaTs forventes oppnådd gjennom fysisk planlegging og atferdsavviklende tiltak, som ofte regnes blant de mindre treffsikre virkemidlene. Er dette urimelig optimistisk, eller er det nettopp her det finnes et stort skjult potensiale?
- Planen er svært ambisiøs på lang sikt, men en regner bare med å nå en tredjedel av den ønskede CO₂-reduksjonen innen 2020, og bare en svært liten del av reduksjonen fram til 2020 innen 2005. Spesielt gjelder dette effektene av planlegging og atferdsrettet tiltak. Er dette å skyve det virkelige ansvaret over på framtida, eller er det rimelig for at nettopp slike tiltak trenger lang tid for å virke?
- Planen medfører betydelige økonomiske uttellinger (det er klart at noen av dem blir større enn tabellen viser). Men ser en på de ulike kategoriene av tiltak, er det liten sammenheng mellom kostnad og forventet effekt. Skal en som Lund satse mest på tiltak med en forventet, men relativt sikker effekt, eller burde det vært omvendt? (Det må nevnes at tabellen ikke får fram synergier, f.eks. at noe av effekten av tiltakene under “miljøvennlige biltrafikk” kan ha som forutsetning at den forbedrede kollektivtransporten først er på plass).
- Planen omfatter få restriktive tiltak mot biltrafikken. Kan det være grunnen til at resultatene ventes å bli såpass beskjdnede på kort sikt, og kan slike tiltak være en forutsetning for å nå de forventede effektene på mellomleng sikt?

Mens disse spørsmålene får henge, kan det konstateres at Lund faktisk satser betydelige ressurser på oppfølgingen av LundaMaTs, og at det på noen områder allerede er oppnådd løfterike resultat. Oppfølgingen er for tida organisert i fire prosjekt: Cykelkommunen Lund, som stort sett dekker de tiltakene som inngår i “Sykkelbyen”; Lundalänken, som er det viktigste prosjektet når det gjelder å “utvikle kollektivtransporten”; Mobilitetskontoret - en enhet med sju ansatte som både skal fremme “miljøvennlige biltrafikk” generelt, endringer i “næringslivets transport” og de myke tiltakene som inngår i “planlegging”; og endelig “Cykla och gå till skolan”, som har status som helt eget prosjekt selv om det også sorterer under Mobilitetskontoret. De “harde” planleggingstiltakene har ikke status av prosjekt, men må komme gjennom oversiktsplanen (=kommuneplanens arealdeel).

Satsingen på Cykelkommunen Lund omfatter både infrastruktur-, rådgivnings- og kampanjetiltak. Det eksisterende sykkelsti og -banennettet på 223 km bygges stadig ut, i 2000 med ca. 4 km helt nye og 2 km oppgraderte strekninger. Ytterligere 20 km planlegges. Det satses sterkt på syklisttilpasning av trafikkryss: ved utgangen av 2000 har det gjennomført på 96 steder i Lund, hvorav hele 52 var nye av året. I løpet av de

Lundalänken er en trasé for hurtig kollektivtrafikk som skal knytte de største arbeidsplassene i kommunen: universitetet, sjukehuset, forskningsparken og et større industriområde - sammen med jernbanestasjonen. Målet er at dette etter hvert skal bli en bybane, men traséen bygges i første omgang ut som atskilt veg for ekspressbusser. Kostnaden er beregnet til ca. 150 mill. kr., hvorav under 10 % dekkes av staten via det lokale investeringsprogrammet, resten av kommunen og regionale aktører.

Resultatene av Mobilitetskontorets virksomhet er til dels vanskeligere å måle, og som nevnt heller ikke forventet å bli så store innen 2005. For tida arbeider en bl.a. med å fremme bildeing, å oppmunte til bruk av servicetilbud i nærmiljøet og kjøp av lokalprodusert mat, å utvikle en arbeids- og tjenestereisepolitikk for kommunen og å påvirke transportmiddelvalg i et av de mindre tetstedene i kommunen. På det første området går det imidlertid framover: Tallet på bilpooler i Lund er økt fra to til tre, og det finnes snart nok interesserde til å etablere ytterligere to. Det er et oppmuntrende resultat på bakgrunn av den utbredte erfaringen i nordiske byer hittil, at bildelingsordninger har lett for å tiltrekke seg noen tiltalls deltakere på kort tid, for deretter å “trå vannet”.

Også prosjektet “Cykla och gå till skolan” har vært en suksess. Her har en jobbet både sammen med barna selv - som har kartlagt hindringer og opplevde farer på vegen til skolen, og overfor foreldre som er redder for å la barna gå eller sykle til skolen. Det siste er bl.a. fulgt opp med et ledsagerprosjekt der grupper av foreldre i et nabolag tar hver sin tønn med å følge barna til skolen - til fots. Spørreundersøkelser viser at andelen av barna i barneskolene i Lund som blir kjørt, er redusert fra 16 % til 11 % som følge av prosjektet.

Spennende strategidokument/idésamlinger: LundaMaTs - Ett helhetsgrepp för miljöanpassat transportsystem i Lund. Kan leses i sammendrag på http://www.lund.se/leva_i_lund/9_trafik_kommunikation/4_lundamats/

Beste resultat: Halvparten av reisene innen Lund tetstted skjer på sykkel eller til fots og sykkelbruken er økende. Andelen barn som kjøres til og fra skolen er redusert fra 16 % til 11 %. Tre bilpooler er etablert og det er interesse for å starte ytterligere to.

oppfølgingen av LundaMaTs bringes løpende på
http://www.lund.se/leva_i_lund/9_trafik_kommunikation/

Suksessfaktorer som ikke kan overføres til Stavanger: Befolkningssammensettingen (30 % studenter mot 6 %). Byens relativt kompakte form (=kortere reiseavtander). De fleste av tiltakene er støttet gjennom det statlige svenske LIP-programmet, men bare med en begrenset andel av utgiftene.

Suksessfaktorer som er relevante for Stavanger: De fleste av tiltakene som er gjennomført i Lund, lar seg like godt tenke i Stavanger.

Kontaktperson: Mats Hagberg
Miljöstrategiska enheten, Lunds kommun
Vårfrugatan 1B, S-223 50 Lund
Tlf.: +46-46-35 64 01
Faks: +46-46-211 49 72
http://www.lund.se/leva_i_lund/9_trafik_kommunikation/

7.5 Borlänge - 15 % mindre energiforbruk på sju år?

Bak “Prosjekt 15 %” står AB Borlänge Energi, som ellers er noe mer en et vanlig e-verk: det kommunale selskapet tar seg i tillegg til strøm- og fjernvarmeforsyning også av VAR-oppgavene, gatevedlikehold og parker.

Informasjon og rådgivning overfor husholdningene har vært tyngdepunkter i satsingen. Her har Borlänge Energi i usedvanlig grad lyktes i å få folk direkte i tale. De er arrangert en rekke områdevis informasjonsmøter for huseiere, der i alt ca. 3500 personer har deltatt - et nesten sensasjonelt tall i betraktning av at det finnes 11.000 eneboiler i kommunen. “Lokkematen” var utdeling av gratis sparedusjer til alle som kom. I tillegg ble møtene helst lagt til lørdag formiddag - det ene tidspunktet i uka der en fant ut at travle foreldre mente at de hadde tid til slikt. Én lærdom høstet en likevel underveget- nemlig at det var liten mening i å invitere til møter om ensøk i sommerhalvåret. Det var i fyringssesongen at folk var motivert for å komme.
I tillegg til folkemøtene har en holdt et stort antall foredrag for bedrifter og foreninger og barnsjetreff for folk innen bl.a. VVS- og byggfag. Det tilbys også gratis telefonrådgivning om enøk. På disse måtene har en kommet i direkte muntlig kontakt med en nokså betydelig del av innbyggerne i Borlänge. Den muntlige informasjonen - her som ellers den mest effektive - er supplert bl.a. med sparetips i bladet “Bo i Borlänge” - som går til alle husstander fire ganger årlig - og på Internett. Dessuten har en lyktes i å få mye omtale i lokale media. Det siste skyldes blant annet noen av de mer nyskapende eller morsomme tiltakene som er satt i verk:

- “Kronometern” - en måler som både viser strømforbruket direkte omregnet i kroner, og viser hvilke apparat som bruker mest. Denne er utviklet av Borlänge Energi i samarbeid med firmaet Daltek AB og installert i en rekke boliger.
- “Energivillan” - et demonstrasjons hus for energieffektivt utstyr som både finnes i virkeligheten og er åpent for publikum, og kan besøkes som virtual-reality presentasjon på http://www.borlange-energi.se/vr/
- “Sportssevenement” - for eksempel et forsøk på å senke Borlänges strømforbruk med 15 % på et øyeblikk, ved å oppfordre alle til å slå av unødvendig elektrisk utstyr på et bestemt klokkeslett. Det lyktes!

All strøm som selges av Borlänge Energi oppfyller Svenska Naturskyddsföreningens krav til miljømerking - dvs. at en ikke kjøper kjernekraft, fossilkraft eller kraft fra vannkraftverk som er bygd etter 1995.

Borlänge Energi legger vekt på den globale solidariteten - ikke bare ved å spare energi og redusere klimagassutsippene hjemme, men også gjennom et direkte miljøsamarbeid med kommuner i Chile, Peru og Romania. Dette er nærmere beskrevet på nettsiden http://www3.borlange-energi.se/globalny/start_index.html.

Spennende strategidokument/idésamlinger: Midtveisrapporten (se evalueringer) redegjør for både gjennomførte og planlagte tiltak

Beste resultat: Det stasjonære energiforbruket per innbygger i Borlänge er redusert med 4 % i prosjektets tre første år, mens det har økt med 3 % ellers i Sverige.

Evalueringer: Det foreligger en midtveisrapport fra prosjektet, “Minska Borlänge energiförbrukning med 15 %” (Borlänge Energi, februar 1999).

Nettverk kommunen deltar i: Nordisk nettverk av “Brundtlandbyer” (med nabokommunen Falun samt Toftlund, Grong og Mikkeli). “Global Challenge” - samarbeidssettverk med kommuner i Chile, Peru og Romania.

Suksessfaktorer som ikke kan overføres til Stavanger: Prisen på strøm er litt høyere, prisen på fjernvarme derimot lavere enn strømprisen i Stavanger. Den sterke rollen - og
mangesidige kontaktflaten med innbyggerne - som Borlänge Energi har, i egenskap av både e-verk og utfører av de fleste av kommunens tekniske tjenester.

Sukcessfaktorer som er relevante for Stavanger: Fantasien som er brukt til å få folk direkte i tale. “No cure - no pay”-prinsippet. Koplingen mellom redusert energibruk og global solidaritet.

Kontaktperson: Pelle Helje

AB Borlänge Energi

Box 834, S-781 28 Borlänge

Tlf. +46-243-730 06

Faks +46-243-863 04

pelle.helje@borlange-energi.se, www.borlange-energi.se

7.6 Freiburg - Stoppet veksten i bilismen

Freiburg im Breisgau (197.000 eksempel) er med god grunn berømt for sin transportpolitikk. Tallet på bilturer innen byen har ikke økt siden 1976: da var det 230.000 per dag, og det var det fortsatt ved siste telling i 1999. I samme tidsrom har bilbruken i Tyskland som helhet økt med over 70 %. I Freiburg har hele veksten i mobilitet skjedd på sykkel eller med kollektivtransport - bruken av begge delene er mer enn fordoblet. Resultatet er at bare 32 % av reisene i Freiburg i dag skjer med bil: 48 % går eller sykler, 18 % reiser kollektivt.

Freiburg har lagt aller størst vekt på å begrense biltrafikken i selve byen, og derfor investert mye i “park-and-ride”-anlegg i ytre deler av den, for å oppmunte pendlere og andre som kommer utenfra til å bytte til kollektivtransport. Av samme grunn ble det i 1989 innført parkeringsgebyr på 2 DM per time i de sentrale bydelene (utenfor den bilfrie kjernen), som i 1993 ble økt til 3 DM og seinere stedvis til 4 DM. I store deler av byen ellers gjelder også parkeringsgebyrer, men med lavere satser. Disse gebyrene har vært blant de mest politisk omstridte elementene i den samlede trafikkpolitikken, og ble ved siste kommunvalg (1999) gjort til et sentralt valgkamptema av ett parti, som gikk noe fram uten å komme i nærheten av flertall i bystyret.

 Beste resultat: Biltrafikken har ikke vokst siden 1976. Hele veksten i mobiliteten siden da - på over 50% - har skjedd ved hjelp av sykkel eller kollektivtransport. Bare 32% av reisene innen Freiburg i 1999 skjedde med bil.
Evalueringer: Ingen kjente ut over trafikktegninger. Hovedkilde til opplysninger om utviklinga er - ved siden av intervj - en rekke utgaver av kommunens informasjonsavis,

Nettverk kommunen deltar i: Klimaalliansen, ICLEI

Suksessfaktorer som ikke kan overføres til Stavanger: Delstaten Baden-Württemberg gir 85 % tilskott til investeringer i infrastruktur for kollektivtrafikken. Freiburg har til nylig hatt mulighet til å la strømregningene fra det kommunale e-verket subsidiere kollektivtrafikkens driftsutgifter.

Suksessfaktorer som er relevante for Stavanger: Resultatene i Freiburg har kommet ved å se alle faktorer i sammenheng (sykkelpolitikk, kollektivtrafikk, direkte restriksjoner på bilismen) og ved å forfølge en klar linje over lang tid.

Kontaktperson: Hans-Georg Herffs
Tiefbauamt der Stadt Freiburg, Fehrenbachallee 12, D-79106 Freiburg i. Br.
Tlf. 0049-761-201 46 00
www.freiburg.de

7.7 Münster - Sykkelbyen i Tyskland

Münster (280.000 innb.) i Westfalen utropte seg i 1997 til “Hauptstadt des Klimaschutzes” (Klimabeskyttelsens hovedstad) og ble samme år av forbrukerbladet “Test” utpekt til Tysklands mest sykkelvennlige by. Kommunen kan likevel ikke helt måle seg med Freiburg når det gjelder å fremme bærekraftig transport: ifølge den siste undersøkelsen, som ble utført så langt tilbake som i 1994, skjedde 37 prosent av reisene i Münster med bil. Andelen som sykler er likevel høyest i Münster (28 %) mens andelen som bruker kollektivtransport er betydelig lavere (10 %); resten går. Det påvirkes nok av at Münster i likhet med, om enn i mindre grad enn Lund er en utpreget universitetsby - en sjettedel av befolkningen studerer ved universitetet.

Likevel står det respekt av Münsters innsats både når det gjelder transport og klimapolitikk generelt, og byen har gjort en rekke nyskapende grep på disse områdene.

En viktig forutsetning for trafikkpolitikken, ved siden av politisk vilje, har vært en tydelig administrativ forankring av de myke trafikantenes interesser på høyt nivå. Lederen for byens trafikplanleggingsavdeling har under seg tre sideordnede tjenestemenn, med ansvar hhv. for sykkel, bil og kollektivtrafikk. Sykkelplanleggingen har faktisk vært satt i system helt fra gjenoppbyggingen etter annen verdenskrig, med det resultatet at det i dag finnes et nett av atskilte sykkelstier som følger alle hovedveger gjennom byen, men også en lang rekke andre løsninger til syklistenes fordel. På 1960-tallet innførte en de første såkalt “uekte” envegskjørte gatene, dvs. gater der bilene bare får kjøre i én retning, men sykler i begge. Disse har seinere blitt vanlige i mange andre tyske byer, mens de i Münster nå nærmest er enerådende, dvs. at det finnes svært få gater der ikke sykler får kjøre i begge retninger. Seinere kom også et stort antall “sykkelgater” til, dvs. gater der det kan sykles i hele gatebredden, og biler bare får kjøre
når de holder sykelfart. (I motsetning til norske gatetun finnes disse ikke bare i boligområder, men midt i byen). 30 km/t fartsgrense for biler er for øvrig innført i store deler av byen, skjønt ikke heldekkende som i Freiburg. Ved større kryss er det anlagt “sluser”, slik at syklene stopper foran og krysser for bilene. Hele sykkelvegnettet inspiseres hyppig og regelmessig for å sikre at vegdekke, merking og skilting er som de skal være.

På 1990-tallet har stor oppmerksomhet vært rettet mot parkeringsforholdene. Alle virksomheter som kan ventes å tiltrekke seg sykkeltrafikk er pålagt å sørge for at parkeringsmuligheter finnes. Kommunen har selv bygd flere værbeskyttede - og til dels bevoktede - sykelparkeringsanlegg. Det langt største og mest kjente er det ved sentralstasjonen, som ble åpnet i 1997 med plass til 3000 sykler men snart måtte utvides med ytterligere 500. Her tilbys også reparasjonstjenester, salg av sykkelutstyr, bagasjeoppbevaring, sykkelutleie mm.

På 1990-tallet ble satsingen på sykkel og kollektivtrafikk understøttet av restriktive tiltak mot bilismen. 800 parkeringsplasser ble fjernet i sentrum og det ble krevd parkeringsgebyrer, de fleste steder på 2 DM per time. Som i Freiburg har de restriktive tiltakene vært mest omstridt, og til forskjell fra Freiburg vant motstanden fram ved kommunevalget i Münster i 1999: Et nytt flertall i bystyret har halvert parkeringsgebyrene og lover flere nye parkeringshus. Dette til tross for at den nye borgermesteren har fortsatt sin forgjengers praksis med å gjøre en symbolskaks av selv å sykle til jobben.

På andre områder skjer det likevel nye og spennende ting i Münster. I 1998 åpnet et “mobilitetssentrum”, Mobilé, som både fungerer som transportrådgivning (jfr. ordningene i Karlstad og Lund) og billettsalgskontor. Etter to år hadde dette kommet opp i ca. 5000 forespørsler per måned, i tillegg til dem som var innom for å kjøpe billetter.

Som “Klimabeskyttelsens hovedstad” er Münster naturligvis forpliktet til å gjøre noe også med den stasjonære energibruken. Dette arbeidet ledes av et eget samordningskontor (”Koordinierungsstelle Klima und Energie”) i kommunen, som særlig har rettet innatsen inn mot kommunens eget energiforbruk og mot boligsektoren, i noen grad også mot næringslivet.

Kommunen har siden 1997 bevilget ca. 1,5 mill. DM (vel 6 mill. NOK) årlig til enøkt tiltak i boliger fra før 1980. Disse pengene gis som relativt små prosentvise tilskudd, som kan øke fra 5 % til 15 % etter hvor stor andel av energiforbruket til oppvarming som spares inn. For å oppnå høyeste tilskottssats må den beregnete innsparingen være på over 30 %; likevel har de fleste av pengene gått til prosjekt i denne klassen, kanskje fordi det er når prosjektene blir så store og det prosentvise tilskuddet såpass stort at det blir mest interessant å søke. Fra 1997 t.o.m. 2000 ble det på denne måten utløst enøkt tiltak for ca. 140 mill. NOK. Et krav for å få tilskudd er elles at det utstedes en energiattest for bygget. Andre huseiere kan på frivillig basis få utstedt en tilsvarende attest, til bruk ved eventuelt salg - noe flere hundre har gjort. (Ordningen med energiattest ved salg er obligatorisk i Danmark, men finnes bare i noen kommuner i Tyskland og da som frivillig ordning).

Samtidig stilles det krav til nybyggeriet, etter en metode som først ble utprøvd i Schiedam i Nederland (omtales lengre fram) og for øvrig også brukes i Freiburg. De som vil kjøpe tomt av kommunen må forplikte seg til å overholde maksimumskrav til energiforbruk til oppvarming. Normen i Münster er 65 kWh/m² for eneboliger og 50 kWh/m² for blokkbebygelse. Av hensyn både til det mobile og det stasjonære energiforbruket søker en samtidig å styre mest mulig av nybyggeriet mot blokker og rekkehus og mot fortettingsområder nær sentrum.

Münster har ellers som en av fire tyske “modellbyer” gjennomført i alt 18 pilotprosjekt for å fremme bærekraftig energibruk de siste tre åra (sykkelparkeringen ved stasjonen og “Gartensiedlung Weissenburg” er blant disse). Oversikten finnes på www.muenster.de/stadt/exwost/index1.html.

Spennende strategidokument/idésamlinger: Programm Fahrradfreundliche Stadt Münster (Stadtplanungsamt der Stadt Münster, 1992). Erster Nahverkehrsrprsplan Stadt Münster (Stadtplanungsamt, 1998).

Suksessfaktorer som ikke kan overføres til Stavanger: Den høye andelen syklister og fotgjengere forklares delvis av en høy andel studenter i befolkningen. Som i andre tyske byer har Stadtwerke i Münster til nylig kunnet la strømregningene subsidiere kollektivtrafikken, hvilket de har gjort, men denne muligheten er nå fjernet.

Suksessfaktorer som er relevante for Stavanger: De fleste av de grepene Münster har gjort både ift. mobil og stasjonær energibruk lar seg tenke i Stavanger. Münster har til forskjell fra den svenske og den nederlandske sykkelbyen som omtales i denne rapporten, ikke noen kompakt bystruktur. Bebyggelsen strekker seg dels som lange “fingre” ut fra sentrum og noe finnes i helt atskilte tettsteder.

Nettverk: Klimaalliansen, ECOMM (europeisk nettverk omkring arbeidsreiseplanlegging), nettverk av “sykkelvennlige byer” i Nordrhein-Westfalen, fra 1997-2000 en av fire “Modellbyer” i Tyskland.

Kontaktpersoner: Birgit Wildt
Koordinierungsstelle für Klima und Energie der Stadt Münster
Klosterstrasse 33, D-48143 Münster
Tlf. 0049-251-49 31 19
wildtb@stadt-muenster.de
www.muenster.de/stadt
Helga Krefit-Kettermann
Stadtplanungsamt der Stadt Münster (abt. Verkehrsplanung)
Hafenstrasse 30, D-48153 Münster
Tlf. 0049-251-49 26 10
7.8 **Saarbrücken - Halverte energiforbruket i kommunale bygg**

Saarbrücken (185.000 innb.) frambyr et sterkt eksempel på hva som kan oppnås ved et langsiktig og systematisk internt ønske- og miljøarbeid i kommunen. Siden 1980 er energiforbruket til oppvarming av kommunens bygg (inkludert leide bygg) redusert med 53 prosent. Fordi en samtidig helt har sluttet å fylle med kull og nesten sluttet å bruke fyringsolje og elektrisk oppvarming (som i Saarland vil si kullkraft), er CO₂-utslippene ved oppvarming redusert med over to tredjedeler. Oppvarmingen skjer i dag med om lag like deler fjernvarme og naturgass - unntatt ved svømmehallene, der det brukes solvarme, og i et enkelt bygg som varmes opp med bioenergi. I tillegg har en klart å redusere strømforbruket til lys og apparater. Selv om denne reduksjonen “bare” er på 13 %, er den ikke nødvendigvis mindre imponerende mtp. at denne delen av energiforbruket de fleste steder viser en ubønnhørlig økende tendens.

De nevnte tallene er absolutte, men er nesten identiske om en regner dem per kvadratmeter av bygningsmassen: denne er nemlig så godt som uendret de siste 20 åra. I norsk sammenheng ville det siste - selv i en kommune med stagnerende folketall som Saarbrücken - i seg selv måtte betraktes som et uttrykk for usedvanlig nøkternhet.

I løpet av perioden 1981-97 brukte Saarbrücken 19 millioner Mark på energisparetiltak - dvs. både på fysiske investeringer og lønn til medarbeidere. Innsparinga på energiregningen utgjorde i samme periode 105 millioner Mark - begge delene målt i løpende penger.

Det hører selvfølgelig med til historien at utgangspunktet for å drive ønske i Tyskland i 1980 var godt, i den forstand at de fleste bygg var i dårlig varmeteknisk stand og - på tross av mildere klima - krevede mer energi til oppvarming enn tilsvarende norske. Saarbrücken har imidlertid for lengst kommet ned i et energiforbruk i stornoten av bygningsmassen som kommer fordelaktig fra sammenlikningen med skandinaviske kommuner, også etter at klimaforskjellene tas i betraktning. Kommunen har deltatt i et samarbeidsprosjekt om energimålning med fem andre europeiske byer - deriblant Odense, en av de danske kommunene som har markert seg som “grønn kommune” og gjort en betydelig ønsk-innsats. Tabellen viser energiforbruket - summen av strøm og oppvarming - i Saarbrücken og Odense i 1997, når energibruken til oppvarming “rettes” til et graddagstall på 2500. (Det faktiske normale graddagstallet i Saarbrücken er 2549 og i Odense 3076, det siste er noenlunde likt med Stavanger). Barnehagene i Saarbrücken ligger klart dårligere an, de øvrige byggene derimot bedre. Alle de øvrige kommunene som deltok i prosjektet, har gjennomgående et betydelig høyere (korrigert) energiforbruk enn disse to.

Energiforbruk i kommunale bygg i Saarbrücken og Odense i 1997. KWh per kvadratmeter. Korrigert for klimaforskjell.

<table>
<thead>
<tr>
<th></th>
<th>Kontor</th>
<th>Skoler</th>
<th>Barnehager</th>
<th>Kulturbygg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saarbrücken</td>
<td>102</td>
<td>118</td>
<td>277</td>
<td>104</td>
</tr>
<tr>
<td>Odense</td>
<td>134</td>
<td>139</td>
<td>171</td>
<td>120</td>
</tr>
</tbody>
</table>

Parallelt med kommunens egen enøk-innsats har Stadtwerke Saarbrücken også gjort en betydelig innsats for å redusere og omstille energiforbruket blant innbyggerne. Til virkemidlene som brukes hører en rekke økonomiske ”gulrøtter”, heriblant:

- Tilbud om gratis tilslutning til fjernvarmenettet
- Tilskudd på 1000-2000 DM til nødvendige arbeider i boligen ved overgang til et mer energieffektivt oppvarmingssystem, og lån til 2,9 % rente for å dekke resten
- Tilskudd på 500 DM ved utskifting av elektriske warmtvannsberedere til fordel for gass eller fjernvarme
- Tilskudd på 1500-7000 DM for solvarmeanlegg
- Tilskudd på 200 DM når elektriske komfyrer byttes ut med gasskomfyrer
- Tilskudd på 200 DM når eldre hvitevarer skiftet ut med nye i energiklasse “A”
- Lån til 2,9 % rente for å dekke kostnadene ved bygningstekniske enøk-tiltak.

Beste resultat: Fra 1980-97 ble energiforbruket til oppvarming i kommunens bygningsmasse redusert med 53 %, strømforbruket med 13 % og CO2-utslippene (fra strømproduksjon og fyring til sammen) med 49 %.

Nettverk kommunen deltar i: ICLEI, Klimaalliansen

Suksessfaktorer som er relevante for Stavanger: De fleste av de tiltakene som er gjennomført i Saarbrücken, kan like godt tenkes gjennomført i Stavanger.

Kontaktperson:
Landeshauptstadt Saarbrücken, Stabsstelle für nachhaltige und gesunde Stadtentwicklung
Rathaus St. Johann, D-66104 Saarbrücken
Tlf.: +49-681-905 18 18
Faks: +49-681-905 18 93
nagSSB@saarbruecken.de

7.9 Veenendaal - Beste sykkelby i et sykkelland

Veenendaal (60.000 innb.) ble i november 2000 av det nederlandske syklistforbundet kåret til “årets sykkelby”. Det er en anerkjennelse til et systematisk arbeid siden 1974 med å gjøre det mest mulig attraktivt å sykle, som har ført til at 52-53 % av alle reiser innen kommunen (reiser til fots ikke medregnet) nå skjer på sykkel. Kollektivtransport og mopeder står hver for noen få prosent, bilen for ca. 40 %. Var turer til fots med i fordelingen, er det trolig at bilens andel hadde kommet ned i samme andel som i Freiburg (32 %) eller mindre.

Sykkelandelen har vært stabil det siste tiåret. Det ligger godt over det nederlandske gjennomsnittet og kan ikke en gang delvis tilskrives befolkningsstrukturen, slik tilfellet er i Lund og av noen hevdes å være det i Münster. Tvert imot: Veenendaal er en industriby uten studenter - her finnes ingen høyere utdanningsinstitusjoner. I konkurranse med 60 andre nederlandske byer, der de øvrige finalistene var Groningen, Houten, Wageningen og Zwolle, fikk Veenendaal aller høyeste karakter for selve sykkelstienes kvalitet og samtidig høyeste karakterer for andelen sykkelbrukere, syklistenes tilfredshet, hurtighet, fravær av trafikkhindringer, fravær av støy, planlegging og ambisjonsnivå.
Nøklene til Veenendaals suksess ligger både i overordnet planlegging og i sensen for detaljer. Befolkningen er godt og vel fordoblet de siste 30 åra, noe som bl.a. skyldes at overordnede regionale planer har styrt en stor del av boligbyggingen i regionen til denne kommunen. En har likevel klart å tiltrekke seg nye arbeidsplasser i omtrent samme tempo, slik at de fleste som bor i Veenendaal, også jobber der og har arbeidsplassen innen sykleavstand.

De nye områdene har helt fra 1970-tallet blitt bygd ut med tanke på dels å være konsentrisk gruppert omkring egne lokale servicefunksjoner, og samtidig å bevare hele byens både kompakte og konsentriske form. De nye boligområdene ligger derfor i dag jevnt fordelt rundt den eldre bebyggelsen, slik at ingen del av tettbebyggelsen er mer enn ca. 3 km fra sentrum. Sykkelstier - inn mot de lokale sentrene og inn mot bykjernen - har vært en selvfølgelig del av planleggingen i de nye utbyggingsområdene, men stiene er også trukket igjennom den eldre bebyggelsen og dens gatenett, om nødvendig på bekostning av plass for bilene. Når gater må graves opp for komme til ledningsnett, gripes stadig sjansen til å legge dem igjen litt smalere, med en ny eller utvidet sykkelsti.

Resultatet er at hele Veenendal i dag dekkes av et rutennett av sykkelstier der prinsippet er at det aldri må være mer enn 300 m mellom dem, m.a.o. at ingen bor mer enn 150 m fra nærmeste sykkelsti verken i nord-sør eller øst-vestretning. Her og der går det også sykkelstier på diagonalen, ut fra prinsippet om at sykkelvegen fra A til B aldri skal avvike nye fra fuglefluktlinjen. Det finnes også nett av gjennomfartsveger for biler, men den er langt mer grovmasket - litt forenklet tre veier N-S og to Ø-V, samt en ring rundt sentrum. Disse er de eneste vegene der det er lov å kjøre i 50 km/t. Ellers gjelder 30 km/t som fartsgrense i hele byen.

Hensynet til detaljer kommer til uttrykk på utallige måter. Det er lagt stor vekt på å finne fram til det mest mulig sikre og bekvemme dekket på sykkelstiene. Der disse løper parallelt med fortau eller gangveger, er det for tydelighets og sikkerhets skyld en høyddeforskjell mellom de to, men den er gjort akkurat så liten og kanten slik avrundet at syklister som uforvarende kommer borti den med hjulet, ikke risikerer å velte. Det finnes også enkelte fartshumper i sykkelstiene - for å sikre at mopeder som bruker dem, holder sykkelfart. Ved snøfall skal alle sykkelstier være ryddet seinest kl. 08.00 - bilvegene må vente. Tunneller under jernbane og hovedveger er gjort så sakte at det alltid er mulig å se tvers igjennom, for å minimere kollisionsfaren.
Der sykkelstiene krysser gater, har syklistene konsekvent forkjørsrett - unntatt ved de få gjennomfartsvegene. Der det kan være noen tvil, gir skiltingen klar beskjed til bilistene om å vike. Noen steder er det lyskryss, da med egne signaler for syklistene. Det er lagt stor omsorg også i den fysiske utformingen av kryss, slik at overgangen fra sykkelsti til gate blir mest mulig bekvem for syklister i begge retninger.

Deler av Veenendaals handleområde er gjort bilfrie: spesielt gjelder det den lange hovedgata som effektivt deler sentrum i to, og dermed henviser all biltrafikk som vil forbi til den ene ringvegen.

Det arrangeres både en årlig “sykkeldag” og en “sykkeluke” i Veenendaal, og kommunen utgir så vel en gratis sykkelkalender som en billig sykkelguide til Veenendaal og omegn.

Dette bør tillegges at den samlede trafikken er voksende i Veenendaal, hvilket dermed også gjelder biltrafikken, selv om dens andel er konstant. Denne veksten har på 1990-tallet vært omtrent lik befolkningsveksten, som i Veenendaal altså er sterk - rundt 2 % årlig.

Veenendaal kan for øvrig skilte med meritter også når det gjelder det stasjonære energiforbruket. Byen har gått tungt inn som kjøper av “grønn strøm” (fra vindkraft, solceller og bioenergi), som i dag dekker en tredjedel av kommunens eget forbruk, og har kjørt kampanjer sammen med det regionale e-verket for å få innbyggerne til å investere i det samme. Byens nyeste videregående skole er et eksperimentelt lavenergibyg, og kommunen oppmuntrer tilsvarende satsinger i boligsektoren.

Kommunens trafikkplanlegger forklarer Veenendaals suksess med to forhold: et tverrpolitisk engasjement blant politikerne, og erkjennelsen av at det å fremme sykkelbruk ikke først og fremst dreier seg om store summer til infrastruktur, men om en mentalitetssendring. Dvs. at en tenker nytt og “tenker sykkel” ved alle avgjørelser - også om de små detaljene som kan være viktige for folks atferd.

Beste resultat: 52 % av reisene innen kommunen (reiser til fots ikke medregnet) skjer med sykkel.
Evalueringer: Ingen kjente ut over kommunens trafikktellinger og syklistforeningens (Fietsersbonds) vurdering

Nettverk kommunen deltager i: Ingen kjente.

Suksessfaktorer som ikke kan overføres til Stavanger: Den kompakte og konsentriske byen. Det siste er umulig ettersom Stavanger sentrum ligger i en sjøkant, det første reiser konflikter med jordvern.

Suksessfaktorer som er relevante for Stavanger: Stort sett all andre sider ved Veenendaals sykkelpolitikk.

Kontaktperson: Leo Smolders
Gemeente Veenendaal, Pb. 1100, NL-3900 BC Veenendaal
Tlf. +31-318-53 89 11
Faks: +31-318-51 04 14
leo.smolders@veenendaal.nl
www.veenendaal.nl

7.10 Schiedam - halverte energiforbruket i nye boliger

Schiedam (72.000 innb.) umiddelbart vest for Rotterdam gir et slående eksempel på hva en uredd kommune kan oppnå når det gjelder å drive igjennom lavenergiløsninger ved nybyggeri.

På slutten av 1970-tallet krevde en nybygd nederlandsk normalenebolig (110 m²) 3000 kubikkmeter naturgass årlig til oppvarming - eller hele 330 kWh per kvadratmeter. I Schiedam bygde en samtidig hus som krevde under halvparten. Midt på 1990-tallet var den nasjonale normen nådd dit Schiedam sto i 1979 - ca. 150 kWh/m² - men da krevde en i Schiedam et forbruk på høyst 6-700 kubikkmeter naturgass per bolig, eller 70-80 kWh/m². Resultatet er at hele den delen av boligmassen i Schiedam som er reist i denne perioden, bruker halvparten så mye energi til oppvarming som samtidige hus i landet ellers.

I 1976 sto bystyret i Schiedam overfor en smertefull avgjørelse. Dersom byen skulle vokse ytterligere, måtte det skje på bekostning av det siste store grønne området innenfor dens grenser. Utbyggingen av området (Spaland) ble vedtatt, men også at “boliger og omgivelser må utformes slik at deres bruk medfører så sparsom bruk av ressurser som mulig”.

Kommunen ville få demonstrert mulighetene for lavenergibyggeri, og ba en entreprenør med teknisk interesse for spørsmålet om å bygge de første boligene. Han var først nølende, og fryktet at “eksperimenthusene” ville bli vanskelige å selge. Kommunens overtalelser var overlegne og frykten ubegrunnet. Etter at det første innflyttingsklare huset viste seg å trenge under halvparten så mye energi som det
vanlige i Nederland, uten å ha kostet mer, ble nesten hele resten av feltet solgt før byggingen en gang tok til.

Schiedam kommune gikk så videre i 1982 og engasjerte en arkitekt til å bygge 184 boliger for kommunens egen regning. Disse skulle oppfylle langt mer radikale krav - et varmeforbruk på høyst 40 kWh/m². Det ble også oppnådd, riktig nok til en kostnad per kvadratmeter som lå ca. 12% over det normale. Det lyktes midlertid kommunen å få statlig tilskudd til forsøksprosjektet, slik at dette ikke gikk ut over utleieprisen.

Etter disse erfaringene kom kommunen til at det burde være mulig å gjøre et maksimalt forbruk på 1000 kubikkmeter naturgass per bolig eller vel 100 kWh/m² gjeldende som generelt krav, uten at det medførte noen ekstra byggekostnad. I takt med den tekniske utviklinga ble kravet gradvis strammet til, slik at det i 1994 var kommet ned mot 70 kWh/m².

For å drive igjennom disse kravene - som hele tida har ligget langt foran de nederlandske byggeforskriftene - brukte kommunen flere virkemidler:

- Kommunen bygde selv om lag en tredjedel av boligene
- Som eier av en stor del av tomtgjennom, kontraktforpliktet kommunen dem som ville kjøpe tomt til å overholde dens krav til lavenergibyggeri
- Planverktøyet ble utnyttet så langt loven tillot det - for eksempel til å kreve at husene ble orientert optimalt med tanke på passiv utnyttelse av solenergien
- Det ble gjort klart at entreprenører og arkitekter som medvirket til å reise annet enn lavenerghus i Schiedam, ikke ville få oppdrag av kommunen.

Det at det lyktes å skape en positiv miljøopinion i lokalsamfunnet var samtidig en viktig suksessfaktor. Ingen entreprenør eller byggherre valgte å utfordre kommunen rettslig for å få bygge mindre miljøvennlig enn den ønsket - PR-belastningen ved å gjøre det hadde trolig blitt for høy. Opinionen kom også til uttrykk ved valg. Pådriveren for energisparepolitikken i Schiedam, byens mangeårige byråd for byplan, miljø og transport, fikk ved det siste valget der han stilte opp flest personlige stemmer av alle politikere i kommunen.

Spennende strategidokument/idésamlinger: -

Beste resultat: Det gjennomsnittlige energiforbruket til oppvarming av nybygde boliger i Schiedam fra 1979-95 (ca. 5000 boliger) ligger på halvparten av gjennomsnittet for nederlandske nybygg i samme periode.

Evalueringer: Spaland-West: Beeld van een hedendagse woonwijk.

Nettverk kommunen deltar i: Klimaalliansen

Sukseffaktorer som ikke kan overføres til Stavanger: I de første åra var relative enøk-gevinster lette å oppnå i Schiedam pga. den dårlige isoleringsstandarden som var vanlig ellers i Nederland. Lønnsomheten var likevel ikke åpenbar, da gass til oppvarming er svært billig i Nederland. I Nederland er det tradisjon for at kommunene
spiller en mer aktiv rolle som boligbyggere og -utleiere enn i Norge. Om lag en tredjedel av boligene i Schiedam er bygd for kommunens egen regning.

Suksessfaktorer som er relevante for Stavanger: Eksemplet Schiedam viser at en kommune der det er sterk politisk vilje til å utnytte handlingsrommet til det ytterste, på egen hånd kan gjennomdrive helt andre normer for energibruk i nye boliger enn dem som gjelder nasjonalt.

Kontaktperson:

Chris Zydeveld
Schiedamseweg 74, NL-3121 Schiedam
Tlf.: +31-10-470 28 63
Faks: +31-10-470 26 88

7.11 Amersfoort - Bygger med sola

Amersfoort (128.000 innb.) har i likhet med Schiedam mye å melde om bærekraftig utbyggingspolitikk. Selv om politikken ikke har vært like kraftfull eller resultatene under ett fullt så dramatiske som i Schiedam, er mye oppnådd under større tidspress og i større skala. Amersfoort er nemlig i likhet med Veenendaal en av de byene i Nederland dit den regionale planleggingen har styrt en stortilt boligbygging. Bare fra 1995-2000 er det bygd om lag like mange boliger (4500) i ett område - Nieuwland - som det ble i Schiedam på de foregående 18 åra. Og når det gjelder bruk av solenergi, står dette området i europeisk særklasse.

D = rådende praksis
C = forbedret praksis
B = streng begrensning av miljøbelastningene
A = “autonom” bebyggelse - nesten intet behov for ressurstillførsel utenfra og nesten ingen utslipp.

Kriterier ble stilt opp for åtte områder som gjaldt selve boligene og tomtene (energi, vannforbruk, hager, lyd, avfall, parkering, byggeomateriale og utstyr) og ni som gjaldt den overordnede planleggingen (energi, vannforsyning, grøntområder, integrering av
arbeidsplasser, orientering av bebyggelsen, avfall, trafikk, ledningsnett og materialbruk).

Terrenget viste seg som ofte ellers noe mer komplisert enn kartet. Det var m.a.o. lettere å få oppfylt nivå C-kravene på noen områder enn andre. Når det gjelder aspekter som vann og avløp, felles grøntområder og avfall ble de stort sett oppfylt og til dels overoppfylt. Når det gjelder hager ble de det ikke (det er få grønnsakhager og få frukttrær i Nieuwland). Når det gjelder materialbruk var resultatene høyst varierende: både ønskede plastmaterialer og tungmetaller, sponplater og akrylmaling ble brukt i forholdvis stor stil, men noen av boligene oppfyller samtidig “B-krav” til materialbruk på en del områder. Når det gjelder trafikk er kravene om et tett og sammenhengende nett av gang- og sykkelveger innfridd, og det samme gjelder kravet om at ingen skal bo mer enn ca. 300 m fra bussholdeplass. Derimot kan mange parkere bilen rett ved boligen.
Kriterier for bærekraftig byggeri i Nieuwland (3 av i alt 17 sett)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energi i boligen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- varmeforsyning</td>
<td>vanlig gassfyr</td>
<td>varmegjenvinning fra røykgass mm.</td>
<td>solfanger, gulv- og veggvarme</td>
<td>bare ved/biogassovn ved sprengkulde</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- el-forsyning</td>
<td>varmekraft</td>
<td>kraftvarme</td>
<td>delvis sol/vindkraft</td>
<td>bare sol/vindkraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- energi til bygging</td>
<td>120.000 kWh (materialer og bygging)</td>
<td></td>
<td>lite energikrevende materialer + teknikk</td>
<td>bygging med handkraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- romoppvarming</td>
<td>1300 m³ naturgass/år</td>
<td>750 m³ naturgass/år</td>
<td>450 m³ naturgass/år</td>
<td>0 m³ naturgass/år</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ekstra isolasjon, sonering, effektive vinduer, små vinduer mot N, glastilbygg)</td>
<td>(forvarming ventilasjonsluft mm. i tillegg til "C"-tiltak)</td>
<td>normalt intet oppvarmingsbehov: ekstra isolasjon, passiv sol, restvarme fra kompost m.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 m³ naturgass/år</td>
<td>150 m³ naturgass/år</td>
<td>750 m³ naturgass/år</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sparedusjer med mer.</td>
<td>solfanger, energieff. vaskemaskin</td>
<td>lavg forbruk; dekkes av solfanger + biogass</td>
</tr>
<tr>
<td>- tapevann</td>
<td>400 m³ naturgass/år</td>
<td>1500 kWh/år</td>
<td>1000 kWh/år</td>
<td>500 kWh/år</td>
</tr>
<tr>
<td></td>
<td></td>
<td>effektive apparat, utnyttelse av dagslys</td>
<td>ingen el-komfyrer – høyboks reduserer gassbruk til koking</td>
<td>ytterligere effektive apparat og atferd</td>
</tr>
<tr>
<td>- el-forbruk</td>
<td>3000 kWh/år</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggematerialer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- bærende konstr.</td>
<td>armert betong</td>
<td>bl.a. gjenbruksmaterialer</td>
<td>ikke metall, reine gjenbruksmaterialer, minimer forbruk</td>
<td>tre, leire, gjenbruks-tegl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ytterkledning</td>
<td>mye plast og syntetiske matr.</td>
<td></td>
<td>varige (tegl m/kalkmørtel) eller komposterbare matr</td>
<td>ubehandlet tre, leire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- detaljer</td>
<td>PUR, kitt, bitumen, blymønje, sink</td>
<td>intet av D</td>
<td>innenlandsk tre, naturmaling</td>
<td>tre, leire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- vinduer og -fag</td>
<td>tropisk trevirke, PVC, akrylmaling</td>
<td>europeisk tre, ikke akrylmaling</td>
<td>cellulose, kokos, skjell</td>
<td>som B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- isolering</td>
<td>PS, PUR</td>
<td>mineralull</td>
<td>flexibele innredninger i tre</td>
<td>halm/leire, cellulose, siv, skjell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- innredninger</td>
<td>gips, sponplater, plastlaminat</td>
<td>ikke PUR, PVC, formaldehyde/lim e.l</td>
<td>tre, leire, siv</td>
<td>tre, leire, siv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trafikk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- gang/sykkeltier</td>
<td>for få og for mange omveger</td>
<td>sammenhengende struktur</td>
<td>forkjørsrett for sykler i møte med biler</td>
<td>eneste form for trafikk innenfor boligområdet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kollektivtransport</td>
<td>Buss til Nieuwland</td>
<td>Alle bor maks 300 m fra bussen, 4 x/time</td>
<td>Alle <200 m fra rask bussforb., 6x/time</td>
<td>optimal organisering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- biler</td>
<td>hellige kyr</td>
<td>smalere gater</td>
<td>underordnet, viker for sykler/gående</td>
<td>hifri bydel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- parkering</td>
<td>ved boligen, 1,5 plasser/bolig</td>
<td>enden av gata, 1,0 plass/bolig</td>
<td>0,5 plass/bolig</td>
<td>P ved innkjøring til Nieuwland, 0,25 p/b</td>
</tr>
</tbody>
</table>
Når det gjelder stasjonær energibruk ble kravene stort sett oppfylt - med forbehold for strømforbruket - og på noen områder overoppfylt. Kravene til isolasjon og effektive oppvarmingssystem er gjennomgående overholdt. Det finnes for mange nordvendte vindu og det mangler stedvis noe på temperatursoneringen i boligene. På den andre sida finnes en del hus der en har gått atskillig lenger enn C-kravene, blant annet fordi det ble stilt opp premier på 500-1000 NLG (1900-3800 kr.) per bolig til arkitekter og entreprenører som gjorde dette.

På ett område er kravene overoppfylt til gagns: bruk av aktiv solenergi. Om lag en fjerdedel av husene har solfangere til oppvarming av tappevann. Samtidig har Nieuwland Europas største konsentrasjon av bygningsintegrerte solcellepaneler. De har en samlet toppeffekt på 1,4 MW og produserer 1,2-1,3 GWh årlig, hvilket er nok til å dekke ca. 10 % av strømforbruket i Nieuwland om beboerne oppfører seg som nederlendere flest, eller 20 % av beboerne selv overholder “C-kravene”. Solcellesatsingen var ikke del av de opprinnelige planene for Nieuwland, men ble lansert av det regionale e-verket REMU.

Opprinnelig ville REMU installere 1,0 MW solceller, som de selv betalte 51 % av regningen for, mens de øvrige 49 % ble skaffet dels fra nasjonale og dels fra EU-kilder. Prosjektet ble utvidet med ytterligere 0,3 MW på grunn av den store interessen fra utbyggere for å være med på det. Seinere har REMU fått en del av investeringskostnaden tilbake ved at ca. 50 % av anleggene er overdratt til huseierne til en fjerdedel av kostpris. De REMU-finansierte anleggene er fordelt på ca. 500 hus. I tillegg har om lag like mange huseiere skaffet seg mindre, ikke netttilknyttede solcellepaneler for egen regning, som bringer totalen opp i 1,4 MW.

REMU har også stått for flere forsøksprosjekt i Nieuwland. Det er bygd to “nullenerghus” - som altså tilfredsstiller miljøkrav på A-nivå - og det er valgt avanserte lavenergiløsninger for de tre skolene i området. Det gjelder både isolering, vinduer, ventilasjon og belysning. De tre skolene, med ca. 500 elever hver, bruker ikke mer enn om lag 70.000 kWh årlig hver til oppvarming (i form av naturgass) og 16.000 kWh elektrisitet, hvorav halvparten kommer fra solceller. Det vil si 32 kWh strøm per elev per år - halvparten fra sola! For å stimulere lærernes og elevenes spareiver finnes “energispeil” på flere lett synlige steder i hver av skolene, der en til enhver tid kan se de aktuelle effektforbruket og det akkumulerte energiforbruket for dagen og året.

Planleggings- og prosjekteringsprosessene som førte fram til utbyggingen av Nieuwland var i seg selv på flere måter nyskapende, og kan inneholde noen interessante lærdommer. Det gjelder både de tingene som lyktes, og de feilene som bl.a. kan forklare at de oppsatte målene ikke ble nådd på alle områder. Denne prosessen har vært gjenstand for en evaluering “innenfra” av en av de involverte aktørene, konsulentfirmaet BOOM, som utviklet miljøkriteriene.

Den første overgripende planen, der bl.a. miljøkravene var nedfelt, ble laget av kommunen selv i nokså stor fart. Deretter ble det inngått en utbyggingsavtale med et konsortium av et titall utbyggere. Disse skulle stå for detaljplanleggingen, en oppgave som ble overdratt til arkitektfirmaet Wissing. Reguleringsplanene skulle så godkjennes av tre avdelinger i kommunen: byplankontoret, boligavdelingen (som skulle sørge for at sosiale og boligpolitiske mål ble ivaretatt) og miljøavdelingen. Da reguleringssplanen for
den første halvparten av Nieuwland ble framlagt, hadde miljøavdelingen i kommunen en rekke kritiske merknader, som imidlertid - ifølge BOOMs evaluering - i stor grad ble overkjørt på grunn av tidspress. Den andre reguleringsplanen hadde i betydelig høyere grad integrert miljøkravene.

En viktig lærdom ifølge BOOM er at de private aktørene burde ha vært trukket med i prosessen fra starten, slik at også de hadde miljømålene “under huden”. Det kunne også ha gitt konsekvenser for valget av samarbeidspartnere. Slik det var varierte miljøkunnskapene og -engasjementet vidt blant så vel utbyggerne selv som konsulentene.

Et grundigere arbeid med miljøkravene ville også etter BOOMs vurdering ha avdekket flere muligheter til å innfri disse uten at det virket fordyrende, og til å løse innbyrdes målkonflikter.

Til å følge gjennomføringen av planene ble det utpekt tre “oppsynsmenn” - byrået Wissing som hadde ansvar for den arkitektoniske kvaliteten, BOOM med ansvar for den miljømessige og kommunens egen boligavdeling med ansvar for den sosiale og boligpolitiske. En tilsvarende modell ble brukt på mikronivå, idet hvert enkelt byggeprosjekt skulle ledes av et team der det fantes minst en tradisjonell “formgivningsarkitekt”, én med særlig kompetanse på miljøaspekter og én med boligpolitisk kompetanse. Erfaringene med denne modellen var blandede - avhengig av hvem som møttes og hvor god tid de ga seg - men i hovedsak gode.

Erfaringene fra Nieuwland-prosessen kommer nå til nytte i det Amersfoort går i gang med et enda større utbyggingsprosjekt, Vathorst, der det skal reises 11.000 boliger de neste 10 åra.

Spennende strategidokument/idésamlinger: Ingen kjente.

Beste resultat: Byens nyeste utbyggingsområde med 4500 boliger er samtidig Europas største bygningsintegrerte solkraftverk, med en samlet maksimalytelse på 1,4 MW og årsproduksjon på 12-1300 MWh - nok til å dekke ca. 10 % av strømforbruket til beboerne. En fjerdedel av husene har i tillegg solfangere til vannoppvarming. Alle boligene tilfredsstiller betydelig strengere krav til oppvarmingsbehov enn de nederlandske byggeforskriftene krever. De tre skolene har et ekstremt lavt energiforbruk.

Suksessfaktorer som ikke kan overføres til Stavanger: Det normale energiforbruket til oppvarming i nye hus i Nederland var ennå på begynnelsen av 1990-tallet noe høyere enn i Norge, og gitte prosentvisse forbedringer dermed lettere å oppnå. Til gjengjeld kunne lønnsomheten være enda dårligere. Gassprisen til husholdninger lå nemlig i 1996 på bare 12-13 øre/kWh.
Suksessfaktorer som er relevante for Stavanger: Den framsynte rollen til e-verket, som selv setter av en del av fortjenesten til investeringer i foreløpig ulønnsomme energikilder. Vil Lyse Energi gjøre det samme?

Nettverk kommunen deltar i: Klimaalliansen

Kontaktperson: Fred Schuurman

Gemeente Amersfoort, Stedelijke Ontwikkeling en Beheer (Byplanavd.), Pb. 4000, NL-3800 EA Amersfoort

Tlf.: +31-33-469 42 41

Faks: +31-33-469 54 61

syyy@amersfoort.nl, www.amersfoort.nl

7.12 Albertslund - Måling og mobilisering

Albertslund (29.000 innb.) vest for København var i 1995 den første kommunen i Danmark der det ble vedtatt en Lokal Agenda 21. Planen revideres årlig og setter i siste utgave som mål at albertslundernes CO₂-utslipp skal være redusert med 50 % fra 1986-nivå innen 2010, med 70 % innen 2030 og med 80 % innen 2050.

Noe av atferdsendringene bak reduksjonen i husholdningenes energiforbruk skyldes nok i sin tur at det i løpet av de siste åra er innført individuell varmemåling i alle borettslag og utleieboliger i kommunen. Men dette grepet understøttes av et mangesidig og spennende arbeid for å endre holdninger og handlinger i de ulike boligområdene i kommunen.

Arbeidet med utvikling og oppfølging av disse Agenda 21-planene på mikronivå understøttes av Agenda Center Albertslund, et kontor med fem medarbeidere og et styre
på ni (tre fra kommunen, fire fra beboerforeningene og to fra Kulturøkologisk forening i Albertslund). Agenda-senteret finansieres med ca. 65 % av kommunen, 10 % av egeninntekter og 25 % av statlige tilskudd. Det jobber tett sammen med både beboerforeningene og boligselskap. Én av medarbeiderne, som snakker tyrkisk og kurdisk, har særlig ansvar for å kommunisere med innvandrerne i kommunen.

Den første av boligområdene som vedtok en egen Agenda 21 - og siden har nådd å rullere den fire ganger - var Hyldespjældet, med 800 beboere i uteleboliger. Hyldespjældet er ikke bare med hensyn til enøk, men i videre forstand et slående eksempel på hva som kan oppnås når miljøtiltak og bygging av sosiale fellesskap går hånd i hånd. Det har skjedd i Hyldespjældet, dels ved at et utall av miljøtiltak - dyrehold, økologisk grønnsakdyrking, byttebod, naturlekeplass, avfallssortering, kompostering, beboercafé med økologisk mat osv. - drives av grupper av beboere, slik at en stor del er direkte aktive og blir kjent med hverandre på den måten. Dels er fenomen som bytteboden, kaféen, hønsehusene og avfallsplassen møteplasser også for de mindre aktive beboerne. En rekke av de nevnte tiltakene er med på å minske det indirekte energiforbruket og CO2-utsIPPene til beboerne.

Når folk i Hyldespjældet og andre boligområder i Albertslund til enhver tid vet hvordan det går med å oppfylle deres mål for lavere ressursforbruk, skyldes det at kommunen årlig utarbeider et svært detaljert grønt regnskap. Det grønne regnskapet var hovedmotivasjonen for at kommunen i 1996 ble prisbelønnet som “Europeisk bærekraftig by”. Det viser utviklinga i forbruket av ulike energislag, av vann og avfallsproduksjonen for hvert enkelt av de 52 boligområdene, og dessuten for kommunens egen virksomhet. (Regnskapet for kommunens egen virksomhet viser for øvrig at også det interne enøk-arbeidet har effekt: energiforbruket per kvadratmeter i skoler og barnehager er redusert med ca. 10 % fra 1995-99. Men veksten i den kommunale bygningsmassen medfører at det totale energiforbruket er om lag stabilt).

Den siste utgaven av det Grønne regnskapet - som utkom i 2000 og dekker året 1999 - går et skritt videre enn de tidligere, ved at det er utarbeidet egne foldere for hvert enkelt boligområde, som er delt ut til samtlige husstander. Disse fører rapporteringen helt ned på husholdningsnivå, gjennom diagrammer som viser spredningen i energi- og vannforbruk blant boligene i hvert område. De 280 husholdningene som bor i rekkehus i Fiskens, Bjørnens, Oksens, Hjortens og Værens kvarter kan her for eksempel se at mens de i gjennomsnitt brukte 3255 kWh strøm, så brukte tre husstander mindre enn 1000 kWh, 20 over 5000 kWh og en enkelt over 9,500 kWh. De vel 100 som bodde i endeeligheter gjennomsnittlig brukte 11,4 MWh fjernvarme. De 53 % som brukte mindre enn 12 MWh er vist med grønt i spredningsdiagrammet, de som brukte inntil 14
MWh med gult og de som brukte mer enn dette med rødt; den faktiske spredningen går helt fra 4 til 22 MWh i identiske boliger, hvilket tydeliggjør et enormt sparepotensiale på atferdssida. Folk oppfordres til å sjekke (ved hjelp av strøm- og varmeregningen) hvor de selv ligger hen i diagrammet, og til å gjøre noe med saken dersom de er blant de “røde”.

Går det den riktige vegen med det stasjonære energiforbruket i Albertslund, så gjelder her som de fleste steder det motsatte om det mobile. Siden 1986 anslås CO₂-utslippene fra bilkjøring å ha økt fra 50.000 til 70.000 tonn årlig. Derfor er kommunen nå i ferd med å utvikle en ny klimahandlingsplan (“CO₂-plan”) basert på to søyster - en trafikkplan som allerede foreligger i utkast og en energispareplan. Trafikkplanen - som er resultat av en omfattende hørings- og debattprosess - skulle i første omgang redusere trafikkens utslipp med 4000 tonn fram til 2012, men en virkningsanalyse tilsier at tiltakene den inneholder bare vil gi en samlet reduksjon på ca. 1500 tonn, altså heller lite i forhold til problemet. Ansvaret for å få til resten legges dermed på staten (avgifter, vegprising). Den svake forventede effekten kan skyldes at planen utelukkende inneholder tiltak av “gulrot”-typen. Enkelte av tiltakene er likevel interessante i seg selv, og ville kanske gitt en betydelig større effekt i kombinasjon med noen “pisker”.

Planen kan leses på http://www.albertslund.dk/by/ > Trafik og veje.

Spennende strategidokument/idésamlinger: CO₂-plan er under utarbeidelse. Den årlig reviderte Lokal Agenda 21-planen inngår i “Grønt regnskab” (se Evalueringer).

Beste resultat: CO₂-utslippene fra stasjonær energibruk i Albertslund er halvert siden 1986.

Evalueringer: Albertslund utgir årlig et “Grønt regnskab” i tre deler, en som redegjør for status mht. oppfølgingen av Lokal Agenda 21 og to som dokumenterer ressursforbruk og utslipp hhv. fra kommunens egen virksomhet og fra bolig- og industriområdene.

Suksessfaktorer som ikke kan overføres til Stavanger: Det meste av reduksjonen i CO₂-utslipp siden 1986 skyldes tiltak på forsyningssida som ikke er relevante her. Prisen på strøm til husholdninger i Danmark er ca. tre ganger så høy som i Norge, prisen på fjernvarme derimot sammenlignbar med strømprisen her. Andelen uteie- og samvirkeboliger, der det er mulig å gjøre “felles grep”, er høyere i Albertslund enn i Stavanger.

Suksessfaktorer som er relevante for Stavanger: Det grønne regnskapet. Den sterke graden av beboerorganisering i nabolagene, som allerede finnes stedvis i Stavanger og som i Albertslund er styrket ved at beboerorganisasjonene både er gitt en viss rolle i den lokale forvaltningen og hovedansvar for LA 21-arbeidet. Den “kulturøkologiske” tilnærmingen.

Nettverk kommunen deltar i: Klimaalliansen

Kontaktperson: Søren Birch

Miljøforvaltningen, Rådhuset, DK-2620 Albertslund. Tlf.: +45-43 68 68 68

Faks: +45-43 68 69 26. miljoe@albertslund.dk
7.13 Langå - klarer seg med 20 % av strømmen

Langå (8200 innb.) på Østjylland ble i 1994 kåret til “Årets El-rigtige kommune” i Danmark. Grunnlaget for prisen, som da ble delt ut for første gang, var at strømforbruket per kvadratmeter av den kommunale bygningsmassen i Langå var lavest blant de 26 kommunene som meldte seg til konkurransen. I 1999 vant Langå prisen på nytt, og igjen i 2000. Da hang den atskillig høyere, ettersom 134 kommuner - halvparten av alle i Danmark - deltok. Langå hadde i 1999 et strømforbruk på 19,3 kWh per kvadratmeter av bygningsmassen - nesten det samme som i 1993, til tross for at mengden av PC’er og andre elektriske apparat var økt sterkt i mellomtida. Gjennomsnittet for de danske kommunene var dobbelt så høyt - 37,1 kWh/m² - og det befolkningsveide gjennomsnittet enda høyere, bl.a. fordi København med et forbruk på 56,9 kWh/m² kom nest sist i konkurransen.

Alle disse tallene blekner i sammenlikning med norske forhold. Her er et strømforbruk på 200-250 kWh/m², over det tidobbelte av det i Langå, alminnelig når det brukes direkte elektrisk oppvarming. I Danmark er det siste en sjeldenhet. Men av energiforbruket i de norske byggene går oppunder halvparten, typisk omkring 100 kWh/m², til annet enn oppvarming - altså til lys, apparater og ventilasjonssystem. Dette er direkte sammenlignbart med tallet i Langå - eller mer presist burde det siste reduseres litt for å kunne sammenliknes, ettersom ett av totalt 21 kommunale bygg i Langå faktisk har elektrisk oppvarming og dermed påvirker gjennomsnittet på 19,3 kWh/m².

Bak Langås resultat ligger en systematisk enøk-innsats med røtter tilbake til 1980-82, da kommunen i løpet av tre år satte av 4,2 mill. kr. til formålet - om lag 10 millioner i dagens pengeverdi, altså en betydelig sum for en så liten kommune. I første omgang var det energiforbruket til oppvarming som ble angrepet - et arbeid som har fortsatt fram til i dag men der resultatene dessverre ikke kan dokumenteres under ett. Grunnen til det siste er at de enkelte avdelingene i kommunen - dvs. hver enkelt skole, barnehage osv. - nettopp som ledd i enøk-arbeidet er pålagt å dekke sine egne energiregninger av sitt faste budsjett, og at det ikke har skjedd noen sentral oppfølging av forbruket. Mens bestilling og betaling for energi er helt desentraliseret, er derimot ansvaret for bygningsteknisk enøk lagt i hendene på én person - kommunens bygningsinspektør. Denne har full frihet til å disponere vedlikeholdsbudsjettet, og bruker den gjerne til å sørge for at det blir lagt inn energisparetiltak når vedlikeholdsbehov oppstår, selv om det medfører at noe annet må utsettes. Også den tekniske temperaturstyringen er

24 Blant bygninger som var registrert i NVEs bygningsnettverk i 1999, hadde skoler et gjennomsnittlig energiforbruk på 194 kWh/m², kontorbygg 235 kWh/m² og sykehjem 296 kWh/m². Tallene var 5-7 % lavere for de byggene som hadde direkte elektrisk oppvarming. Det er imidlertid sannsynlig at forbruket hos dem som er så enøk-bevisste at de deltar i bygningsnettverket ligger i underkant av landsgjennomsnittet.
sentraliseret. Brukerne av de enkelte byggene, som skal betale for energien, melder inn til Teknisk forvaltning hvilken temperatur de vil ha i hvert enkelt rom og til hvilke klokkeslett, og dette blir så regulert og overvåket sentralt. - Selv om trenden under ett er ukjent, finnes registreringer av det totale energiforbruket i flere bygninger fra 1994, som viser at skolene da lå 25-30 % under det danske gjennomsnittet i forbruk per kvadratmeter, eldreboliger 50 % under og rådhuset 6 % under gjennomsnittet.

Ventilasjonspumper er gjort forbruksstyrte, slik at de bare trekker strøm i det omfang det faktisk er behov for luftutskifting. Så å si alle elektriske apparat som kjøpes inn tilhører eneergiklasse A. Kommunen er nå i ferd med å gjennomgå alle kjøleområder med tanke på å skifte ut de mindre effektive, og søker å påvirke det regionale e-verket til å innføre en ordning der dette kan finansieres over strømregningen (en ordning som allerede tilbyss av e-verkene i Sønderjylland). Fire tidligere el-oppvarmede bygninger er tilknyttet fjernvarme, og den siste gjenvarende står for tur i 2001. - Parallelt med de tekniske tiltakene er det lagt vekt på opplæring og motivering av vaktmestrene, som sjekker at både varme- og elektrisk utstyr fungerer og brukes som det skal.

Som tilfellet var i Schiedam i Nederland, kan mye av Langås suksess knyttes til en sterkt engasjert politisk leder, som også har hatt tverrpolitisk støtte i sitt byråd. I dette tilfellet dreier det seg om kommunens borgmester fra 1990 (og byrådsmedlem det foregående tiåret), Kaj Christensen, som personlig har tatt initiativ til en rekke spareprosjekt og stamppet opp penger fra ulike kilder når de ikke fantes i kommunen. Denne har ved flere anledninger uttalt at selv om potensialet for lønnsomme energiparretillak i Langå kanskje snart er oppbrukt, så skal arbeidet drives videre. Hovedmotivet er nemlig ikke økonomien, men hensynet til miljøet.

Spennende strategidokument/idésmulinger: Ingen kjente.

Beste resultat: El-forbruket i kommunens bygg (kontorbygg, bibliotek, skoler, barnehager, idretts/svømmehall og sykehjem under ett) lå i 1999 på 19,3 kWh per kvadratmeter: halve det danske gjennomsnittet og trolig under 20 % av det norske gjennomsnittet selv når strøm til oppvarming holdes utenfor. Energiforbruket til oppvarming, som i Langå skjer ved en blanding av naturgass og fjernvarme, ligger også lavt som følge av en vedvarende enøk-innsats gjennom 20 år.

Evalueringer: Kommunen har ikke fått utført noen skriftlig evaluering av enøk-arbeidet. Det ligger derimot en svært positiv ekstern ”evaluering” i at den i tre av de siste sju åra er kåret til “Årets el-riktige kommune” i Danmark.
Nettverk kommunen deltar i: Ingen kjente utenom samarbeid med andre kommuner og forsyningsselskap i Randersområdet/Århus Amt, der Langå kommune har vært en pådriver for å få samarbeidsopplegg om enøk i stand.

Sukcessfaktorer som ikke kan overføres til Stavanger: Lønnsomheten ved å spare elektrisitet er høyere i Danmark enn i Norge. Kommunikasjonslinjene fra en engasjert ordfører til kommunens ansatte er kortere i en liten kommune.

Sukcessfaktorer som er relevante for Stavanger: Sterkt og synliggjort engasjement fra den politiske ledelsen, som poengterer at miljø og ikke økonomi er hovedmotivet. Økonomisk ansvarliggjøring av de enkelte enhetene i kommuneorganisasjonen. Mange av de tiltakene som er gjennomført i Langå vil likevel være lønnsomme også i Stavanger, desto mer fordi graden av overforbruk i utgangspunktet trolig er større.

Kontaktperson: Borgmester Kaj Christensen/Bygningsinspektør Jan Søvsø
Langå kommune, Bredgade 4, DK-8870 Langå.
Tlf: +45-87 73 11 11
radhuset@langaa.dk, www.langaa.dk

7.14 Samsø - skal gå på 100 % fornybar energi

Samsø (4300 innb.) midt i Kattegat vant i 1997 en konkurranse med tre andre danske øyer om å bli utpekt til “Vedvarende Energi-Ø”. Konkurranansen var utlyst av den danske Energistyrelsen, og kravet for å komme i betraktning var at kommunen skulle legge fram en seriøs plan for omstilling til 100 % fornybar energi i løpet av 10 år. Øy kommunene som meldte sin interesse, fikk kr. 150.000 hver i støtte til å utarbeide prosjektforslag, men ble ellers ikke stilt noen penger i utsikt ut over det som ligger i de generelle danske støtteordningene til fornybar energi. Meningen var at det vinnerkommunen oppnådde, dermed skulle kunne betraktes som oppnåelig av mange andre danske kommuner.

Vinnerforslaget fra Samsø omfattet

- Enøk-tiltak for å redusere selve energibehovet med 20-25 %
- Utbygging av vindkraft for å gjøre øya 100 % selvforsynt med elektrisitet
- Fjernvarmeanlegg i alle de små landsbyene på øya, vesentlig basert på bioenergi
- Utskifting av oljefyr og direktevirkende elvarme i den spredte bebyggelsen med varmepumper, bioenergi og solvarme

Initiativet til Samsøs søknad om å bli “Vedvarende Energi-Ø” kom fra næringsrådet på øya, som så fikk både bondelaget og kommunen med på prosjektet. For å følge det opp
ble så to nye institusjoner dannet. Den ene er **Samsø Energi- og Miljøkontor**, som inngår i nettverket av ca. 20 lokale energi- og miljøkontor over hele Danmark (se www.sek.dk) Navnet “kontor” dekker over det faktum at disse er frivillige organisasjoner med betalende medlemmer, hvorav de fleste også mottar statsstøtte til én lønnet stilling for å kunne tilby gratis informasjon og billigere individuell enøk-rådgiving enn det ellers hadde vært mulig. Energi- og miljøkontoret på Samsø fikk snart 150 medlemmer (blant 2000 husstander). Den andre institusjonen, med det overgripende ansvaret for VE-Ø-prosjektet, er **Samsø Energiselskab**, med et representantskap som består av fire personer valgt av Energi- og Miljøkontoret og tre hver fra kommunen, næringsrådet og bondelaget. Energi- og miljøkontoret har i likhet med de fleste andre i Danmark fått statlig tilskudd til én lønnet stilling, og det samme har Energisselskabet. Dette er de eneste som Energistyrelsen har lagt inn i prosjektet på Samsø, utenom det som følger av generelle danske tilskuddsordninger til enøk og fornybar energi. Det har imidlertid også lyktes å få noe prosjektstøtte fra EU-kilder.

Disse institusjonene ble etablert i 1998, og den egentlige prosjektfasen på Samsø har i skrivende stund vart i ca. 2,5 år. I løpet av denne perioden er det allerede oppnådd svært betydelige resultat:

- Det er satt opp 11 vindmøller på 1 MW hver, som sammen med noen mindre møller som fantes fra før dekker nesten hele øyas behov for elektrisk strøm.

- Det er gjennomført en enøk-kampanje overfor pensjonister, som utgjør vel en fjerdedel av befolkningen på øya og etter danske regler er særberettiget til 50 % tilskudd til bygningsmessige enøk-tiltak. Dette har utløst tiltak for over 2 mill. DKK.

- Det er dannet arbeidsgrupper blant beboerne i flere av de mindre landsbyene på øya, som arbeider for å vinne nabøenes tilslutning til tanken om å gå over til fjernvarme. I det største tettstedet, Tranebjerg, finnes allerede et halmfyrt fjernvarmeverk som over 80 % av innbyggerne frivillig har sluttet seg til. Fjernvarmeselskapet NRGi krever minst 70 % forhåndsspenningsutstyr for å bygge ut nye anlegg i de mindre landsbyene, og dette er allerede oppnådd i et par av dem.

- Det er installert ca. 100 solvarmeanlegg i den spredde bebyggelsen, og et liknende antall flere har gått over til varmepumpe, halm- eller vedfyring.

Det neste store løftet for VE-Ø-prosjektet blir å bygge ti større, havbaserte vindmøller sør for øya. Disse skal produsere en mengde energi tilsvarende det som brukes av bilparken på øya, i påvænte av at den kan brukes direkte til å drive el- eller hydrogenbiler (ved utgangen av 2000 var det ennå bare blitt fem el-biler).

To ting er særlig interessante ved prosjektet på Samsø. Den ene er den brede folkelige oppslutningen om prosjektet, som foruten ved de tallene som alt er nevnt kommer til uttrykk i at hele 438 av 2000 husstander er andeleiere i de ti største vindmøllene (hver av de ni øvrige er finansielt av enkeltinteressenter på øya). Det andre er måten denne oppslutningen er vunnet på. Det er i alt vesentlig tale om munn-til-munnkommunikasjon. Arbeidsgruppene i landsbyene snakker selvfølgelig direkte med de andre innbyggerne, men det er også holdt en rekke svært velbesøkte folkemøter for hele øya, i tillegg til en utstilling som ble arrangert av næringsrådet og lokale
handverkere. En stor del av enøk-tiltakene i enkeltboliger har kommet i stand som følge av hjembesøk fra Energi- og miljøkontorets side. De har gått desto glattere ettersom Energi- og miljøkontoret har tatt kontakt med de to bankfilialene på øya og fått disse med på automatisk å yte lån til enøk-investeringer når kontoret attesterer at disse har en sannsynlig tilbakebetalingstid på høyst fem år.

Beste resultat: Øya har blitt selvforsynt med elektrisitet fra fornybare kilder allerede i løpet av 3. prosjektår. Andelen fornybar energi til oppvarming er snart fordoblet til 30%. Det skjer en sterk lokal mobilisering: 25% av husstandene er medeiere i vindkraftverk, 70-80% i noen av tettstedene vil frivillig konvertere til fjernvarme, 20% i spredt bebyggelse har allerede byttet oppvarmingssystem etter 3 år. 4-5% av den voksne befolkningen er medlemmer av Miljø- og energikontoret.

Evalueringer: Foreligger ennå ikke. Framdriften i prosjektet rapporteres løpende på http://www.veo.dk/

Sukcessfaktorer som ikke kan overføres til Stavanger: Som by kan Stavanger åpenbart ikke streve etter å bli selvforsynt med energi. Derimot kunne det tenkes et tett samarbeid med andre kommuner i regionen om å erstatte nåværende oljeforbruk med ny fornybar energi fra lokale kilder. Vindkraft betales bedre i Danmark enn i Norge, og solvarme konkurrerer bedre med alternativene. Forskjellen er ikke like klar når det gjelder lønnsomheten ved bioenergi. En bred lokal mobilisering er trolig lettere å få til i et lite øysamfunn enn i Stavanger.

7.15 Toftlund - “Brundtlandbyen” som halvvegs lyktes

Toftlund (4000 innb.) er kommunesenter i Nørre-Rangstrup, en sønderjysk kommune med i alt ca. 10.000 innbyggere. Toftlund vant i 1990 en konkurranse med seks andre sønderjyske kommuner om å delta i et samarbeidsprosjekt med et tettsted på den tyske siden av grensen, som etter tilsvarende konkurranse der ble Bredstedt. Det de skulle samarbeide om var å redusere energiforbruket og CO₂-utslippene med 30-50 % i løpet av fire år. Målsettingen knytter an til Brundtlandkommissjonens rapport, som krever at verdens rike land satser på en “lavenergiframtid” og eksemplifiserer dette ved et scenario der energiforbruket halveres i løpet av 40 år. Prosjektet skulle altså vise at det med hensyn til det stasjonære forbruket var mulig å nå dette målet - eller i det minste å komme over halvvegs - på en tiendedel av tida. De to tettstedene tok derfor navnet “Brundtlandbyer”.

Oppfølgingen ble sterkere i Toftlund enn i Bredstedt, til tross for at initiativet til samarbeidsprosjektet kom sørfra (fra delstatsregjeringa i Schleswig-Holstein). Det er bare førstnevnte som omtales nedenfor.

På basis av den danske side av saken ble det en underliggende fordeling av ressurser, derfor er det ikke mulig å i tillegg av de eneboligene. De 962 eneboligene i Toftlund, som var hovedmålgruppe for Brundtlandbyarbeidet, utgjør nær 80 % av den samlede boligmassen målt i areal og sto for en enda større del av dens CO₂-utslipp.

Resultatet var mer skuffende når det gjaldt kommunens egne bygg. Her ble det gjort investeringer for vel 2 mill. kr. som en ventet skulle føre til en reduksjon på 15-20 % i energiforbruket. Den tekniske evalueringen viser likevel at strømforbruket i kommunens bygg har vært stabil gjennom hele 1990-tallet, og at varmeforbruket til og med har økt en smule. Evalueringen peker på økt antall PC’er og annet utstyr som en mulig forklaring på det første, men har ingen god forklaring på det siste. Det må likevel innebære at de tekniske tiltakene ikke har vært fulgt opp med tilstrekkelig innsats på
styrings- og atferdssida. Den tekniske evalueringen går ikke direkte inn på utviklinga i næringslivets energiforbruk, som var blant satsingsområdene i de opprinnelige prosjektplanene men i mindre grad ble fulgt opp.

Det er med andre ord innsatsen fra og overfor husholdningene som utgjør den spennende og løfterike siden ved Brundtlandbyprosjektet. Her lyktes det å vekke interesse ved at alle fikk tilsendt et “Brundtlanddiplom” som viste deres “Brundtlandtall” - det vil si deres forbruk av strøm og varme per kvadratmeter av boligen, uttrykt på en skala fra 1 (lavt) til 10 (høyt). Det fikk samtalene om emnet i gang over hagegjerdene og telefonene til å gløde hos forsyningsselskapene. De som hadde middels til høyt Brundtlandtall fikk også tilbud om oppfølgende rådgivning, som vel 500 tok imot. Dessuten kom det tilbud om støtte til enøk-investeringer. To millioner av EU-midlene ble brukt til dette formålet, men i løpet av vel to år ble det utført tiltak for i alt 8,7 mill. DKK, m.a.o. ble det allerede tatt av private lommer. Dugnaden fikk et viktig ekstra puff ved at det ble inngått pakkeavtaler med lokale handverkere, som til gjengjeld for en garantert stor oppdragsmengde var villige til å komme med gunstige tilbud på etterisolering m.v.

Et svært interessant moment er ellers at mens husholdningenes forbruk av varme ble redusert med 12 % i gjennomsnitt som følge av de bygningsmessige enøk-tiltakene, så ble forbruket av strøm fra lys og apparat redusert med det dobbelte - nemlig hele 24 % fra 1991 til 1995, en reduksjon som også ble vedlikeholdt de følgende åra. Dette resultatet er desto mer slående ettersom husholdningenes strømforbruk økte i Danmark i samme periode, og ettersom det ikke tanket tilskudd eller gunstige tilbud fra handverkere på dette området. En spørreundersøkelse som inngår i den tekniske evalueringen, viser at det faktisk skjedde en litt forsinket utskifting av kjølemøbler fra 1992-97, og at bestanden av strømslukende apparat som vannsenger og solarier ble litt mindre. Tallet på sparepærer ble også vel fordoblet, men det sistnevnte var bare i tråd med den generelle tendensen i Danmark. Disse faktorene kan til sammen neppe forklare hele den markante reduksjonen: den må også delvis bero på at det faktisk lyktes å oppnå noenlunde varige forbedringer. Det tyder igjen på at informasjonen om sparemuligheter som ble gitt både av kommunen og av e-verket (via et husstandsomdelt informasjonsblad, gjennom ulike tilstelninger og via skolen) har vært effektiv. Spørreundersøkelsen underbygger dette: 84 % av de spurte som mottok informasjonsbladet sier at de har blitt mer oppmerksomme på sitt energiforbruk, og 57 % at de har endret atferd fordi Toftlund ble Brundtlandby.

Beste resultat: En sterk mobilisering blant husholdningene i kommunen, som alene medførte at disse reduserte sitt stasjonære energiforbruk med omkring 14 % og de tilhørende CO₂-utslippene med 22 % i løpet av 2-3 år, en effekt som synes å holde seg. I er et tidligere kullfyrt fjernvarmeverk erstattet av et gassfyrt kraftvarmeverk - som også fortrenger strøm fra kullkraftverk. Den totale reduksjonen i CO₂-utslippene fra husholdningene er dermed over 50 %.

Evalueringer: Brundtlandbyprosjektet er evaluert både i sosiologisk og i teknisk perspektiv. Den sosiologiske evalueringen (FRA global idé til lokal handling, Brundtland

Sukkessfaktorer som ikke kan overføres til Stavanger: CO₂-utslipp reduksjonen ved tiltak på forsyningssida. Den lokale mobiliseringen er trolig lettere å få til en liten kommune. Prisene på strøm og fyringsolje er høyere i Danmark.

Sukkessfaktorer som er relevante for Stavanger: Mobiliseringskraften som ligger i et høyt ambisjonsnivå og i å skape et samtaleemne blant folk flest ved å tildele alle på én gang “karakter” for energiforbruket. Koplingen mellom informasjon, rådgivning og tilbud om støtte til enøk-tiltak. “Rabatt” på enøk-tiltak som muliggjøres ved å få mange til å bestille på én gang og inngå pakkeavtaler med handverkere (dette har også blitt brukt i et par bydeler i Oslo på begynnelsen av 1990-tallet).

Kontaktperson: Teknisk sjef Bo Bertelsen
Nørre-Rangstrup kommune, Danavej 15, DK-6520 Toftlund
Tlf.: +45-73 21 21 00
Faks: +45-73 21 22 21

http://www.nrrangstrup.dk/, post@nrkadmin.dk

7.16 Drøfting og konklusjoner

Vi har omtalt erfaringer fra 14, på mange måter forskjellige, kommuner som har det til felles at de har satt seg relativt ambisiøse mål når det gjelder å redusere energibruken og/eller utslippene av CO₂. De har likevel valgt høyst ulike strategier og tyngdepunkt for sine satsinger. Noen har lagt størst vekt på transport, andre på stasjonært forbruk; noen størst vekt på kommunens egen virksomhet, andre på lokalsamfunnet ellers; noen størst vekt på forsyning snarere enn forbruk.

Er det ut fra et såpass broket materiale likevel mulig å trekke ut noen samlende erfaringer, som også kan komme til nytte i Stavangers eget energi- og klimaarbeid?

Vi kan begynne med å se på de motsetningsparene som er nevnt når det gjelder tyngdepunkt for satsingene.

Stasjonært og mobilt energiforbruk

Det kommer neppe som noen stor overdrevelse at det er lettere å finne eksempel på klare reduksjoner i det stasjonære enn i det mobile energiforbruket. Både Albertslund, Amersfoort, Langå, Saarbrücken, Schiedam og Toftlund kan slå i bordet med tosifrede
prosentvise reduksjoner av det stasjonære forbruket, enten i kommunens virksomhet, i kommunen som helhet eller i utbyggingsområdene. Også i Borlänge faller forbruket.

Hva disse erfaringene betyr for Stavanger er for det første avhengige av om en vil legge hovedvekten på en klimapolitikk som rettes mot utslipp fra Stavangers eget område, eller føre en klima- og energipolitikk som også fokuserer på forbruket av CO₂-frie energibærere. Det siste er også klimapolitisk relevant, siden spart elektrisitet kan erstatte fossile brensel i andre anvendelser eller på andre steder. Siden trafikken står for en større del av CO₂-utslippene i Stavanger enn i noen av de 14 byene som er omtalt her (med mulig unntak for Växjö i dag) kan erfaringene fra disse byene ved første blikk synes lite oppløftende i det “snevre” klimapolitiske perspektivet. Erfaringene fra en del av de kommunene som har satset sterkt på å redusere det stasjonære forbruket, er desto mer oppløftende i det “brede” perspektivet.

Å redusere - ikke bare stabilisere - det stasjonære energiforbruket så vel i kommunens egen virksomhet som blant innbyggerne er beviselig mulig ved hjelp av lokale virkemiddel. Det er til og med mulig ved hjelp av nokså forskjellige virkemiddel.

At det ikke finnes eksempel på at en over lengre tid har oppnådd en absolutt reduksjon i bilbruken i hele kommuner, eller (så vidt vites) i biltrafikkens CO₂-utslipp, kan føre til ulike konklusjoner. Stavanger kan velge et lavere ambisjonsnivå. En kan eventuelt si - som Lund eller Albertslund - at det trengs dranhjelp fra nasjonale myndigheter og/eller bilindustrien for å nå lenger.

Eller: en kan se på sjansen til å være blant de første som faktisk klarer så ambisjøse mål som en ekstra spore til lokal innsats. Også da kan det være mye å lære av erfaringene til kommuner som er omtalt her. Det kan være at en kan komme lenger ved å sette sammen pakker av virkemiddel som er mer omfattende enn noen enkelt av disse kommunene hittil har prøvd, og det kan hende at en kan komme lenger ved å dosere noen av dem enda sterkere.
Kommuneforvaltning og lokalsamfunn

Kanske mer overraskende enn forskjellene i resultatet på det stasjonære og det mobile området, er forholdet mellom det som er oppnådd i kommunenes egen virksomhet og ute i lokalsamfunnene. En kunne tro at det var nye lettere for en kommune å redusere energibruken i egen virksomhet enn å påvirke innbyggerne til det samme. Langå og Saarbrücken er to eksempler på at systematisk, internt øk-arbeid kan gi imponerende resultat. Men i utvalget finnes eksempler på relativt sett like imponerende resultat ute i lokalsamfunnet: Saarbrückens halvering av energiforbruket til oppvarming av kommunale bygg matches for eksempel av Schiedams halvering av energiforbruket til oppvarming av nye boliger. Samtidig har de fleste av kommunene som er omtalt på grunn av deres satsinger på bærekraftig energibruk i lokalsamfunnet, også satset på å feie for egen dør - til dels med dårligere resultat. Brundtlandby-prosjektet i Toftlund lyktes i å redusere innbyggernes energiforbruks, men ikke kommunens. Albertslund har lyktes i å redusere energiforbruket blant innbyggerne. En har også klart å redusere forbruket per kvadratmeter i kommunens bygg, men ikke totalforbruket i disse. “Fossilfritt Växjö” har hittil ikke klart å minske innbyggernes bilkjøring - og har mislyktes nesten like grundig i å minske kommunens bilkjøring. Enda verre er det faktisk i Karlstad: bilbruken i kommunen som helhet har økt litt de siste åra, men kommuneforvaltningens egen bilbru har økt mye mer.

Det minste en kan lære av dette er at forbedringer i kommunens egen virksomhet ikke kommer av seg selv. De krever en like kraftfull innsats, og like stor omhu i valget av virkemiddel, som tilfellet er når en arbeider med hele lokalsamfunnet. Da er det også mulig å nå svært langt, som Langå og Saarbrücken viser mht. den stasjonære energibruken. Materialet inneholder ingen tilsvarende gode eksempel når det gjelder kommuneforvaltningens mobile energiforbruks. Det betyr ikke nødvendigvis at de ikke finnes blant de 14 kommunene. Spørsmålet er ikke undersøkt hos alle, og mange mangler kort og godt tall som kan fortelle noe om utviklinga.

Forsyning og forbruk

Ved valget av kommuner som er omtalt i denne rapporten er det lagt vekt på at de har hatt ambisjoner om å minske selve energiforbruket (stasjonært og/eller mobilt) og ikke utelukkende å angripe CO2-utslippene ved å bytte energibærere eller -kilder. Dette skyldes dels at miksen av energibærere og -kilder som en finner på den stasjonære sida ellers i Nord-Europa er så vidt forskjellig fra den i Norge at erfaringer ofte har liten overføringsverdi. På den mobile sida finnes det ennå få eksempler på bytte av energibærere i større stilt, unntatt ved utbygging av skinnegående transport, som er en aktuell problemstilling for Stavanger og der det finnes et godt forbilde i Freiburg, etter hvert kanskje også i Lund. Når det gjelder alternative energibærere i biler og busser, gjør økonomiske hensyn at de fleste satsinger av noe omfang hittil har skjedd som ledd i europeiske eller nasjonale FoU-program. Stavanger deltar allerede i ett slikt (ELCIDIS); også andre, som EU-programmet ZEUS og de svenske forsøkene med biodrivstoff, byr på nyttige erfaringer men er ikke omtalt her, unntatt for så vidt det siste berører Växjö.
To av de 14 kommunene har likevel satset *hovedsakelig* på bytte av energikilder og -bærere på den stasjonære sida, nemlig Växjö og Samsø. Dette har også vært en viktig side ved Nieuwland-utbyggingen i Amersfoort. I alle disse tilfellene har det vært tale om satsinger på nye, fornøybare energikilder, som også kan være aktuelle for Stavanger, selv om de her først og fremst vil fortrengte vannkraftbasert elektrisitet - da med en *indirekte* klimaeffekt. Også i Toftlund og Albertslund har en oppnådd store reduksjoner i CO₂-utslipp gjennom tiltak på forsyningssida, men da ved bytte mellom ulike fossile energibærere i fjernvarmesystemene, som ikke er relevant for Stavanger.

Både i Växjö og på Samsø har en oppnådd store resultat på kort tid gjennom satsingene på forsyningssida. I Växjös tilfelle var en del av resultatet lettkjøpt og ikke overførbart til Stavanger (konvertering av et eksisterende fjernvarmesystem fra olje- til flisfyring), men det har også skjedd en rask *utvidelse* av systemet i tillegg til at det er bygd ut fire helt nye, bioenergibaserte “nærvarmesystem”. I Amersfoort ga satsingene på solenergi (både solvarme og solceller) resultat klart over forventningene, mens enøk-kravene til bebyggelsen i Nieuwland bare sånn omtrent ble innfridd. Kanskje er satsinger satsinger på nye energikilder vel så lette å “selge” som satsinger på energisparing? Det er ikke vanskelig å tenke seg én grunn til det: bytte av energibærere (og særlig av kildene bak disse) krever stort sett mindre av brukerne enn tekniske enøk-tiltak, og mye mindre enn afferdsmessige enøk-tiltak. Det kan imidlertid tenkes nok en grunn. Det danske energieksperteren Niels I. Meyer har (med beklagelse) sagt at “energy conservation is unsexy”. Med andre ord: det er ikke samme *schwung* over, og kanskje ikke så lett å skape begeistring for, de mange små sparetiltakene som de nye energikildene, gjerne knyttet til nye, store og synlige anlegg.

Konsekvensene for Stavanger er ikke åpenbare. Meyers uttalelse falt med beklagelse, fordi den mest miljøvennlige energien er den som *ikke* brukes. De fysiske forutsetningene for å ta i bruk nye, fornøybare energikilder på Jæren kan ikke helt måle seg med dem en har på Samso eller i Småland, og det kan f.t. heller ikke de økonomiske rammevilkårene. Men utbygging av kollektive varmeforsyningsanlegg (basert på varmepumper eller bioenergi) til erstatning for direktevirkende strøm er i høy grad en aktuell problemstilling for Stavanger. For en kommune som vil vise veg mot en bærekraftig framtid, kan symbol-, utviklings- eller demonstrasjonseffekten av en satsing på solenergi - som i Amersfoort - også være interessant. Det er nemlig denne, ennå oftest uønsomme, energikilden som vil måtte dra det meste av lasset *globalt* i et bærekraftig framtidsscenario. Om slike satsinger kan utløse et ekstra *engasjement* hos aktuelle aktører som hjelper til å overvinne de økonomiske hindringene, vil de havne lenger opp på en prioriteringsliste enn en ren kostnads/nytteanalyse skulle tilsi.

Hvilke virkemiddel virker?

De 14 kommunene har som nevnt både hatt ulike forutsetninger og ulike ambisjoner, og hver av dem har brukt flere virkemiddel for å nå dem. Selv der det har vært en viss likhet i målsettingene og i graden av suksess, har virkemidlene aldri vært helt de samme.
Materialet gir derfor ikke anledning til bastante konklusjoner om hva som fører til suksess - men likevel til noen tentattive. Det kan være hensiktsmessig å se henholdsvis på de satsingene som gjelder stasjonær energibruk ute i lokalsamfunnet, kommunenes eget energiforbruk og transporten.

Stasjonært energiforbruk i lokalsamfunnet

Der det gjelder nye utbyggingsområder ligger det til rette for at kommunen utnytter de makttidene den har. Jo flere som brukes, desto lenger kan en. I denne situasjonen er det oftest ikke mulig å satse på medvirkning fra beboernes side, siden de ennå er ukjente. (Det finnes unntak, for eksempel *Gartensiedlung Weissenburg* i Münster, der en forening av interesserte beboere fantes allerede forut for planprosessen).

De øvrige satsingene som er omtalt har i større grad dreidd seg om energibruken i (og evt. energiforsyningen til) eksisterende bebyggelse. Her har kommunen mer begrensede makttid til rådighet og kan t.o.m. finne det galt å bruke dem (Samsø har f.eks. avstått fra å *kreve* tilslutning til fjernvarme i landsbyene). I så fall må kommunen og dens medspillere - f.eks. e-verk eller enøk-senter - *vekke engasjement og interesse* for energisparing eller nye energiformer blant innbyggerne.

Dette har en i stor grad lyktes med både på Samsø, i Borlänge, i Toftlund, i noen av boligområdene i Albertslund og i deler av Växjö der det er etablert nye nærvarmeanlegg. Felles for alle disse er at *direkte, muntlig kommunikasjon med og mellom innbyggerne* har spilt en stor rolle. Det har i de fleste tilfellene skjedd på flere plan, fra folkemøter til individuelle husbesøk. Svenska Naturskyddsföreningens evaluering av de første årenes arbeid med “Fossilbränslefritt Växjö” understreker betydningen av dette sterkt, og lar en kommunal tjenestemann oppsummere kommunens erfaring : “Vi har kastat bort pengar på massutskick. Man måste bearbeta människor direkt. Det räcker inte med utskick”.

Felles er også at disse kommunene har gjort utradisjonelle grep som har bidratt til å gjøre energi og miljø til samtaleemne i lokalsamfunnet. I Toftlund, Växjö og på Samsø har et enkelt uttrykt og svært høyt ambisjonsnivå ("Brundtlandby Toftlund", “Fossilbränslefritt Växjö”, “Vedvarende Energi-Ø”) i seg selv hatt noe av denne funksjonen. I Toftlund ble den kraftig forsterket ved at alle ble tildelt “karakter” for energiforbruket sitt. I Borlänge har “sportstiltak” (“la oss se om vi kan redusere energiforbruket med 15 % på ett minutt”) spilt en rolle. I Albertslund er
beboerforeningene gitt et særlig ansvar for LA 21-arbeidet, og noen av dem har - med en “kulturøkologisk” tilnærming - lyktes svært godt i å dra i gang både diskusjon og handling på det helt lokale planet.

Det er en vanlig erfaring i Norge at tilbud om økonomisk støtte til enøk har begrenset effekt, og at det samme gjelder informasjon, men at *kombinasjonen* av rådgivning og økonomisk støtte gir effekt. Av de nevnte kommunene er det bare Toftlund som - med betydelig hell - har gitt både rådgivning og “særtilbud” om økonomisk støtte til mange og som en egen pakke, da med betydelig hell. På Samsø har en imidlertid kunnet gi råd supplert med informasjon om danske statlige støttetilbud (både til enøk og til alternative energikilder) som sammenliknet med norske er nokså fristende. I Borlänge har en gitt råd med “no cure - no pay”-garanti. Og i Växjö har tilbud om tilslutning til fjernvarme stått på egne økonomiske bein, dvs. at det har vært en billigere løsning for dem som har fått tilbudet enn å bruke strøm.

Kommunens virksomhet

To av kommunene i utvalget - Langå og Saarbrücken - er med hovedsakelig på grunn av deres satsinger på å reducere energiforbruket internt i kommunen. Begge har nådd store resultat, med delvis ulike virkemiddel.

Felles for dem erlikevel at enøk-arbeidet har vært svært klart og tydelig forankret på høyt nivå. I den store kommunen, Saarbrücken, ga bystyret uttrykk for dette ved å innrette en egen energiavdeling i administrasjonen med vide fullmakter og oppgaven å beskrive energikonsekvensene av alle forslag som legges fram for bystyret. I den mindre kommunen, Langå, har det personlige engasjementet til borgmesteren (som i Danmark kombine ren ordførerrollen med noen av de norske rådmannens funksjoner) spilt en stor rolle, samtidig som vide fullmakter er gitt til en engasjert person i administrasjonen - bygningsinspektøren.

Felles for kommunene er også at enøk-arbeidet har pågått stedig og uavbrutt gjennom om lag 20 år. I Saarbrücken har det kanskje vært drevet mer *planmessig* enn i Langå - i den forstand at bygningene er gjennomgått én etter én, etter oppsatte lister. I Langå har
tidspunkt og rekkefølge for de bygningsmessige enøk-tiltakene i noe større grad blitt bestemt av når det var ledige penger og når det likevel skulle utføres vedlikehold eller ombygninger. Etter 20 år kan effekten bli nokså lik - da er det meste gjennomgått uansett. Begge kommunene har, i tillegg til oppvarming, lagt stor vekt på å redusere forbruket av strøm til ventilasjon, belysning og apparater. Begge har mer nylig innført sentral regulering av temperaturen i hele bygningmassen, uten at effekten av dette ennå er kjent.

Begge kommunene stimulerer de enkelte avdelingene økonomisk til å spare energi gjennom atferdsendringer, om enn etter ulike modeller. Langå har også forsøkt på andre måter å motivere de ansatte til egen innsats, men med begrenset respons unntatt hos vaktmestre, som dermed har fått rollen som "enøk-ambassadører". Det er ukjent i hvilken grad dette har vært gjort i Saarbrücken. (Derimot finnes gode eksempler fra svenske kommuner på at det har vært mulig å oppnå betydelige enøk-gevinster ved å spille på engasjementet hos "ildsjeler" blant ansatte både i skoler, barnehager og eldredomsorgan. Skolene i Nieuwland i Amersfoort er et annet eksempel på at "alles innsats" kan gi imponerende resultat).

På ett punkt skiller Saarbrücken seg klart fra Langå: I Saarbrücken skjer en jevnlig og detaljert rapportering av energiforbruket i alle bygg, og de samlede resultatene formidles opp til høyeste hold i kommunen. I Langå er det faktisk ingen som vet akkurat hvor mye energi kommunen bruker - bare strømforbruket sjekkes, og det bare etter at kommunen begynte å delta i en konkurranse. Det kan likevel gå bra i en liten kommune der bygningsinspektøren med egne øyne og gjennom samtaler med vaktmestre kan danne seg et løpende oppdatert inntrykk av hvor det er noe galt med energiforbruket og hvor det er gevinster å hente. For Stavanger er nok Saarbrückens - eller Albertslunds - modell med jevnlig og fullstendig rapportering sterkt å anbefale.

Lærdommene: sørg for tydelig politisk og administrativ forankring av enøk-satsingen; jobb langsiktig; se helhetlig på alle deler av energiforbruket; ansvarliggjør brukerne; og sørg for rapportering, kan synes banale. Likevel er de ikke mer banale enn at neppe noen norsk kommune kan matche de resultatene som er nådd i Langå eller i Saarbrücken.

Mobilt energiforbruk

Når vi ser bort fra bytte av energibærere i biler, kan de fleste av tiltakene som kommuner i utvalget vårt har tatt i bruk for å minske trafikkens energiforbruk deles i fem grupper:

(1) Fysisk planlegging som minsker avstandene mellom hjem, arbeidsplasser, service mm.

(2) Tiltak som gjør det mer attraktivt å gå og (spesielt) sykle - særlig infrastrukturtiltak og trafikkreguleringer som favoriserer syklister, men også informasjon, tilbud om bysykler/tjenestesykler mm.

(3) Bedre og/eller billigere kollektivtransport.
(4) Tiltak som gjør det mindre attraktivt å bruke bil (lave fartsgrenser, bilfrie gater, bysentra sperret for gjennomkjøring, førre/dyrere parkeringsplasser, kommunal tjenestereisepolitikk, bildeling som alternativ til bileie - hvilket medfører at folk opplever den fulle kostnaden ved hver kjørte kilometer).

(5) Tiltak som minsker energiforbruket per kjørt kilometer med bil (opplæring i “myk kjørestil”).

I tillegg kommer enkelte tiltak, for eksempel arbeidsreiseplanlegging i samarbeid med bedrifter, som tar opp elementer av både (2) (3) og (4), og transportrådgivning, som kan dekke både kollektivtransport, sykkelmuligheter, bildeling, kjørestil og mer.

Om vi ser både på personbilens andel av reisene og på utviklingen i denne, er det nok Freiburg, Veenendaal og Münster, i den rekkefølgen, som har lyktes best med sin mobilitetspolittikk.

Freiburgs suksess bygger på en kraftfull satsing både på strategi (2), (3) og (4), og på de fleste mulige tiltak innenfor hver av disse: både store investeringer i sykkelveger og trafikkreguleringer som prioriterer sykkeltrafikken; både hurtig og hyppig og billig kollektivtransport; både 30 km/t fartsgrense og bilfritt, sperret sentrum og dyr parkering.

Veenendaals suksess bygger på en kombinasjon av strategiene (1), (2) og (4). Her har en hatt særlige forutsetninger for å drive effektiv fysisk planlegging, ettersom mer enn halve byen er bygd i løpet av de siste 30 åra. Det er satset forholdsvis lite på kollektivtransport inntil sentrum, men det er satset forholdsvis lite på kollektivtransport, mens spørret sentrum og dyr parkering.

Münster satser i dag sterkt på strategi (1), men byens struktur taler ikke for at en historisk har lyktes spesielt godt med den. Derimot har en satset svært sterkt og allsidig på (2), i de siste åra også på (3) og i betydelig grad på (4), om enn ikke fullt så kraftfullt som i Freiburg.

De to andre kommunene som er med i utvalget først og fremst på grunn av sin mobilitetspolitikk har så langt oppnådd mer begrensede suksesser. Både Karlstad og (mye tidligere) Lund har oppnådd store reduksjoner i biltrafikken i sentrum gjennom tiltak av type (4). Slike tiltak er imidlertid ikke brutt i særlig grad utenfor sentrum, bortsett fra etablering av bilpooler, som ennå ikke har fått kvantitativ betydning, men har en lovende utvikling i Lund. Begge satser på tiltak av type (2), med moderat suksess. Begge satser også på tiltak av type (3), foreløpig helt uten suksess i Karlstad (der det først og fremst har vært snakk om økning av rutetilbudet) og med beskjedne forventninger til suksess i Lund (der store infrastrukturtiltak inngår). Begge satser på og har høye forventninger til tiltak av type (5). Det er en strategi som har vist et betydelig potensiale på individnivå, men ennå ikke i bredden. (Det kan nevnes at det også satses sterkt på denne strategien på nasjonalt plan i Nederland - “Het nieuwe rijden”).

Skal det trekkes noen forsøksvis konklusjon av erfaringene så langt, må det være at det kreves en forholdsvis sterk dosering av “pisk” (restriksjoner på bilismen, type 4) i
kombinasjon med “gulrøttene” (satsinger på sykkel og kollektivtransport, type 2 og/eller 3) for å nå langt. Også debatten om, og de beskjedne forventningene til, trafikkplanen for Albertslund illustrerer dette.

“Gulrøttene” kan, alt etter byens egenart, bestå nesten ensidig av sykkeltiltak eller en kombinasjon av sykkeltiltak med god og billig kollektivtransport. I Stavangers tilfelle - som er en langt mer spredt by enn Veenendaal - er det nokså klart at det siste også må til, men balansepunktet mellom sykkelsatsing og kollektivsatsing er ikke opplagt: Münster viser at det er mulig å oppnå en høy sykkelandel også i en relativt spredt by. For å få dette til trengs ikke bare store investeringer i sykkeleverge som sådanne, men en overordnet trafikkplanlegging på sykkelens premisser, med sans for detaljene.

Når det gjelder kollektivtrafikken, er de eneste eksemplene i vår samling på at den har økt sin andel av reisene markert Freiburg og Münster. I begge byene har det skjedd etter gjennom en kraftig kvalitetsheving og innføring av svært gunstige universalbilletter - effektene av det siste er det delvis mulig å skille ut i begge byer, og i begge tilfeller har det betydd mye, men langtfra alt. Litt flere avganger med ellers passe langsomme busser til samme pris, som i Karlstad, forslår ikke. Det har vært en vanlig oppfatning blant norske transportforskere at pris betyr lite sammenliknet med komfort, hastighet og hyppighet, når det gjelder å få folk til å la bilenstå. Erfaringer fra kommuner som ikke er med i vårt utvalg, som har innført gratis buss med stor tilstrømning av tidligere bilister som resultat - for eksempel Hasselt i Belgia og Ockelbo i Sverige - er med på å problematisere det synet. Sannheten er nok at alle delene er viktige.

Gitt at ikke en gang Freiburg har klart mer enn å stabilisere omfanget av bilbruken, er det neppe til å komme fra at dersom Stavanger vil redusere den i det lange løpet blir det nødvendig både med en forholdsvis sterk dosering av restriktive tiltak og med et sett av gulrøtter som i alle fall ved første blikk kan være kostbare: førsteklasses og billig kollektivtransport og førsteklasses sykkelinfrastruktur. Det erfaringene fra så vel Freiburg som Münster og Veenendaal ellers forteller, er at suksess oppnås ved å forfølge en klar, klart uttalt og klart forankret mobilitetspolitisk linje over lang tid.
8 Referanser

Flugsrud, Ketil et.al, The Norwegian emission Inventory documentation of methodology and data for estimating emissions of greenhouse gases, and long-range transboundary air pollutants, rapport 2000/1, Statistisk sentralbyrå, Oslo, 2000

Flugsrud, Ketil og Haakonsen, Gisle, Utslipp av klimagasser i norske kommuner – En gjennomgang av datakvaliteten i utslippsregnskapet, rapport 2000/54, Statistisk sentralbyrå, Oslo, 2000

Hille, John 1995: Sustainable Norway - Probing the Limits and Equity of Environmental Space. Prosjekt Alternativ Framtid/ForUM, Oslo.

I/S ØkoAnalyse 1996: Miljøbelastningen ved familiens aktiviteter. Forbrugerstyrelsen, København.

IPCC, Aviation and the Global Atmosphere, Intergovernmental Panel on Climate Change, 1999

Olsen, Arne, Larsen Tor, Analyse av samfunns- og miljøkostnader ved bygging av anlegg for energigjenvinning av restavfall i IVAR-regionen, NOAS kompetansesenter as, Stavanger 1999

Tokle, Trude, Tønnesen, Jens, Enlid, Elin, Status for energibruk, energibærere og CO₂-utslipp for den norske bygningsmassen, Teknisk rapport, Sintef energiforskning, Trondheim 1999

Statistisk sentralbyrå: Lastebilundersøkelsen, http://www.ssb.no/emner/10/12/20/lbunasj/tab-2001-02-21-09.html

Statistisk sentralbyrå: Nordmenns ferievaner 1998, http://www.ssb.no/emner/00/02/20/ferie/rapp_9933/

Statistikk for Stavanger: http://statistikk.stavanger.kommune.no/

Statistisk sentralbyrå 1981: Ressursregnskap (Statistiske analyser nr. 46). Statistisk sentralbyrå, Oslo.

Statistisk sentralbyrå: Forbruksundersøkelsen 1999, http://www.ssb.no/emner/05/02/fbu/

Statistisk sentralbyrå: Nøkkeltall for kommunene, http://www.ssb.no/kommuner/
Endringer i direkte og indirekte energiforbruk i Norge fra 1992 til 1998

Nedenfor gjennomgås de momentene som har gitt grunnlag for å justere Hilles (1995) anslag over norsk direkte og indirekte energiforbruk i 1992 (gjengitt i tab. 1 i hvovedteksten) og som dermed danner grunnlag for tallene i tab. 2.

Matvarer:
I Hille (1995) ble energiforbruket bak det norske forbruket av matvarer og nytelsesmiddel anslått slik tab. 1 viser.

1. Direkte energiforbruk i norsk jordbruk og ved produksjon av kapital- og innsatsvarer til norsk jordbruk	35
2. Hjemmemarkedskap av energiforbruket i norsk fiske + produksjon av kapital- og innsatsvarer til dette	2
3. Energiforbruk bak importerte matvarer og nytelsesmiddel	10
4. Energiforbruk i norsk nærings- og nytelsesmiddelindustri som produserer for hjemmemarkedet og til produksjon av kapital- og innsatsvarer for denne industrien, inkl. emballasje	24
5. Energiforbruk til innenlands distribusjon av nærings- og nytelsesmiddel (leietransport)	11
6. Markedsføring, inkludert egentrafikk i regi av varehandelsbedrifter	15
SUM	97

Av disse faktorene hvilte nr. 1 og 4, som utgjør 60 % av totalen, på sikrest grunn. Den første var basert på en detaljert prosessanalyse av norsk jordbruk som riktignok skrev seg fra 1980, men der utviklinga i flere av de sentrale faktorene etter 1980 kunne kontrolleres, og ikke ga grunn til å anta noen vesentlig netto endring. Energiforbruket i den hjemmemarkedsorienterte norske nærings- og nytelsesmiddelindustrien (som vil si alt unntatt fiskeforedling) kan leses direkte ut av statistikken, og selv om pålagene for produksjon av emballasje og for andre innsats- og kapitalvarer er mer usikre, er størrelsesordenen sikker. Faktor nr. 5 bygger blant annet på statistikk som viser hvor stor andel av lastebil- og jernbanetransporten i landet som gjaldt matvarer (for sjøtransport fantes ingen slik statistikk). Faktor nr. 6 er basert på statistikk over det
totale energiforbruket i norsk varehandel, der andelen som kunne tilskrives handel med nærings- og nytelsesmiddel er anslått til ca. 47 %. Dette er betydelig mer enn nærings- og nytelsesmidlenes andel av omsetningen eller dagligvarehandelens andel av sysselsettingen, men berettiget ut fra at disse varene er vesentlig mer energikrevende å distribuere, oppbevare og markedsføre enn de fleste andre. Størrelsesordenen av nr. 5 og 6 var nok riktig - pluss/minus 3-4 PJ i hvert av tilfellene.

Den virkelig store relative usikkerheten gjaldt nr. 2 og 3. Andelen av det direkte og indirekte energiforbruket i norske fiskerier som gjaldt produksjon for hjemmemarkedet ble anslått til 10 %, som kan være mye for høyt eller lavt. Dette påvirker imidlertid knapt sluttsummen. Viktigere er usikkerheten knyttet til energiforbruket bak importerte matvarer. Dette bygger på svært enkle antakelser. Arealet som brukes i utlandet til å producere nærings- og nytelsesmiddel som Norge importerer, ble anslått til vel 40 % av Norges eget fulldyrka areal (dette tallet er nokså sikkert). Det ble antatt at energiforbruket i den utenlandske produksjonen (fram til varene forlater gårdenene) var halvparten så stort per arealenhet som i Norge. (Det er en rekke grunner til å anta at det er lavere, bl.a. at forbruket av kunstgjødsel per mål er mye lavere i de fleste land vi importerer fra enn i Norge, og at vi hovedsakelig innfører planteprodukt, slik at energiforbruket knyttet til husdyrhold i norsk klima faller bort). Dette førte til et anslag på 7,5 PJ for energiforbruket ved produksjon av jordbruksvarer som Norge importerer. Men vi importerer en del av disse i foredelt tilstand. Energiforbruket til foredling av dem vi importerer i foredelt tilstand ble anslått til 2-3 PJ, hvorav raffinering av sukker alene, på noenlunde sikker grunn, ble anslått til ca. 1 PJ. Det ble ikke lagt til noe for transport av utenlandske matvarer fram til norsk grense. Siden bunkring av skip i utenriksfart normalt holdes utenfor regnskapet over et lands sluttforbruk av energi, ble energiforbruket ved skipstransport av varer vi importerer i det hele tatt holdt utenfor regnskapet over indirekte energiforbruk på sluttbruksnivå, men tatt med ved beregningene av primært energiforbruk.

Fra 1992 til 1998 kan vi konstatere følgende endringer i størrelser som inngår i grunnlaget for tab. A.2:

- Importen av matvarer har økt noe; spesielt gjelder dette frukt, grønnemakker og foredlede matvarer. En nyere analyse av areaalbruken bak Norges import av jordbruksvarer, med 1998 som referanseår (Hille 2000) viser imidlertid at dette bare utgjør marginalt mer enn det som ble lagt til grunn for 1992. (Tallet for 1998 er 4,0 mill. d.a - i tillegg kommer 1,3 mill. d.a som brukes til å dyrke bomull for norsk forbruk). Det er neppe grunn til å øke det i utgangspunktet usikre anslaget på 7,5 PJ for energiforbruket ved utenlandsjordbruksproduksjon for norsk forbruk. Derimot er det grunn til å tro at det i utgangspunktet forsiktige anslaget på 1,5 PJ til utenlandsk bearbeiding av matvarer for norsk forbruk, utenom sukkeraffinering,
bør økes. Det er klart at utenlandsk næringsmiddelindustri i denne perioden har kapret markedsandeler fra norsk, hvilket er en delforklaring på at energiforbruket i den hjemlige industrien har gått ned (neste punkt). Mellom 1992 og 1998 økte f.eks. importen av bearbeidde kornvarer fra 84.000 til 111.000 tonn, av konserverte grønnsaker fra 30.000 til 40.000 tonn, av gruppen "tilberedte matvarer, ikke ellers nevnt" - som omfatter noen av de mest foredlede - fra 17.000 til 28.000 tonn, og av alkoholholdige drikkevarer fra 37 til 55 millioner liter.

- Det direkte energiforbruket i norsk næringsmiddelindustri, eksklusive fiskeforedling, utgjorde i 1992 16 PJ. I 1998 var dette falt til 13,2 PJ ifølge Energiregnskapet. (Litt av energiforbruket i fiskeforedling skjer for det norske markedet, men dette antas for enkelhets skyld å bli oppveid av den delen av energiforbruket i annen næringsmiddelindustri, spesielt meierier, som skjer for eksport.) Eventuelle endringer i energiforbruket til produksjon av kapital- og innsatsvarer for denne industrien (som for 1992 ble anslått til 8 PJ, herav 5 PJ for emballasje) er ikke vurdert. Dermed bør 4. faktor i tab. 2 reduseres med ca. 3 PJ.

- Innenlands transportarbeid med matvarer og fôr per lastebil har økt markert, fra 1,8 milliarder tonnkm i 1993 til 3,0 mrd tonnkm i 1998 (SSB: Lastebilundersøkelsen). Dette alene skulle tilsli en økning i energiforbruket til distribusjon av matvarer innenlands på 5-6 PJ.

Legger vi inn bare en beskjeden økning av energiforbruket til utenlandsk næringsmiddelindustri som produserer for norsk forbruk, tilsier disse momentene til sammen at summen på 97 PJ fra 1992 bør økes med ca. 8 PJ netto, til 105 PJ i 1998 (23,7 GJ per capita).

En detaljert dansk studie (ØkoAnalyse 1996) kom til sammenlikning fram til at energiforbruket bak matvareforbruket til en familie på fire i Danmark utgjorde litt over 65 GJ årlig, eller 16,3 GJ per person. Dersom energiforbruk til kapitalvarer var inkludert i den danske analysen, hadde tallet trolig økt til 19-20 GJ per person. Sannsynligvis med det som er funnet for Norge er i virkeligheten godt når en tar i
betraktning 1) at den danske modellfamilien inkluderte en jente i skolealder og ett barn av uspesifisert kjønn i barnehagealder: m.a.o. var barn overrepresentert i forhold til deres andel i totalbefolkningen og 2) at forbruket av kapital- og innsatsvarer per enhet av produksjonen i dansk jordbruk er noe lavere enn i norsk, samtidig som gjennomsnittlige transportavstander er kortere.

Klær og sko:
I tillegg kommer forbruket av skotøy. Her har jeg ikke funnet noen relevant prosessanalyse. En amerikansk IO-analyse indikerer imidlertid at energiforbruket per verdienhet av skotøyproduksjonen er svært lik den per verdienhet av klesproduksjonen. Verdien av vår import av skotøy var i 1998 temmelig nøyaktig 20 % av verdien av klesimporten. Krevde klesforbruket i 1998 13-14 PJ, er det ut fra dette rimelig å tro at klær og sko til sammen krevde noe over 16 PJ.

Til dette skal så legges energiforbruket i varehandelen med klær og sko, som for 1992 ble anslått å utgjøre 3 PJ av et totalt energiforbruk i varehandelen på 32 PJ. Totalen har seinere økt til 37 PJ, og volumveksten i klesforbruket gjør det ikke usannsynlig at denne bransjen har fulgt minst proporsjonalt med.

20 PJ framstår som et rimelig anslag for energiforbruket bak vårt forbruk av klær og skotøy i 1998.

Bolig:

Det direkte energiforbruket i boliger i 1998 var 163 PJ. Dette tallet framkommer ved å ta utgangspunkt i Energiregnskapets tall for energiforbruket i husholdninger (223 PJ) og trekke fra forbruket av bensin og autodiesel, som til sammen utgjorde 60 PJ og hører til under transport. Innføres temperaturkorreksjon (som for 1992) øker tallet for 1998 til ca. 166 PJ.

En nyere livsløpsanalyse av norsk “gjennomsnitts-“ enebolig (Borchsenius 1999) indikerer betydelig lavere energiforbruk til produksjon og vedlikehold enn det som ble forutsatt i Hille (1995). Borchsenius kommer til et energiforbruk på ca. 500 GJ for bygging av eneboligen pluss vedlikehold/rehabilering gjennom et livsløp på 60 år, mens Hille implisitt kom til ca. 800 GJ for et gjennomsnitt av alle boligtyper. Blokkleiligheter i gjennomsnitt noe mer energikrevende å bygge enn eneboliger, men dette forklarer bare en liten del av avviket. Det synes derimot hovedsakelig å bero på snevrere avgrensninger hos Borchsenius, bl.a. at energiforbruk på byggeplassen og til markedsføring av byggevarer er utelatt, og at det samme (som vanlig) gjelder produksjon av kapitalvarer som kreves til de ulike leddene i produksjonskjeden. Om alle elementene var regnet inn og hensyn tatt til blokkbebyggelse, er det trolig at Borchsenius hadde kommet ut med et tall av samme størrelsesorden som denne forfatteren.

Den årlige boligbygginga i Norge, som i Hille (1995) ble stipulert til 27.000 enheter per år, har så langt holdt seg noe lavere (20.000 boliger ble igangsatt i 1998, 25.000 i 2000). Det er likevel ennå ikke klar grunn til å fravike 27.000 som et langsiktig sannsynlig nivå, og dermed heller ikke til å endre tallet for indirekte energiforbruk til bolig.

Møbler og husholdningsutstyr:

Forbruket av møbler, inkludert tepper, ble for 1992 anslått til ca. 200.000 tonn, og det tilsvarende energiforbruket, eksklusive markedsføring, til ca. 3,5 PJ. Importen av møbler og deler økte fra 100.000 tonn i 1992 til 167.000 tonn i 1998 (SSB,
Utenrikshandel etter transportmåte). Den norske møbelproduksjonen for hjemmemarkedet har i samme tidsrom trolig vært noenlunde stabil eller økt litt (vurdert ut fra denne industriens bruttoproduksjonsverdi fratrukket eksportverdien, ifølge SSBs Industristatistikk hhv. Utenrikshandelstatistikk). Antar vi at møbelforbruken økte med 40% (fra 200.000 til 280.000 tonn totalt) tilsier det at tallet på 3,5 PJ bør økes til 4,9 PJ.

<table>
<thead>
<tr>
<th></th>
<th>1991</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaskemaskiner</td>
<td>123</td>
<td>161</td>
</tr>
<tr>
<td>Oppvaskmaskiner</td>
<td>55</td>
<td>107</td>
</tr>
<tr>
<td>Frysebokser og –skap</td>
<td>69</td>
<td>82</td>
</tr>
<tr>
<td>Kjøleskap/kombiskap</td>
<td>139</td>
<td>180</td>
</tr>
</tbody>
</table>

Importen av husholdningstekstiler, som ble anslått å kreve ca. 5 PJ, er lite endret fra 1992 til 1998. Anslaget for energiforbruk per tonn til produksjon av tekstiler synes å stå seg, jfr. det som er sagt under “klær og sko”.

Importen av en del andre varer som inngår i kategorien “møbler og husholdningsutstyr” (verktøy til hus og hage, kjøkkenutstyr, dekketøy, reingjøringsmiddel og -utstyr mmm.) har økt merkbart.

Gitt økningen i forbruket av møbler og hvitevarer, er det rimelig grunn til å tro at det også har vært en viss økning i energiforbruket til markedsføring av disse, som for 1992 ble anslått å kreve 2 PJ. M.a.o. at denne kategorien tar sin andel av veksten i energiforbruket til norske varehandelsbedrifter fra 32 til 37 PJ.

Et grovt anslag kan være at energiforbruket til husholdningsutstyr bør økes fra 17,5 til 21 PJ.

Helse:

Det direkte energiforbruket til produksjon av private helse- og sosialtjenester var ifølge Energiønskapet 3,5 PJ i 1992. Ifølge samme kilde var det litt lavere i 1998 (3,2 PJ). Differansen mellom 3,5 PJ og de 6 PJ som vises i tab. 1 var et helt skjønnsmessig anslag for å ta høyde for (1) kapital- og innsatsvarer bak produksjonen av disse tjenestene og (2) privat forbruk av legemiddel, medisinsk og ortopedisk utstyr. Forbruket av

Transport:

Direkte energiforbruk til persontransport ble i 1992 anslått til 107 PJ. Til dette ble lagt 1 PJ som et størrelsesordenanslag for husholdningens direkte forbruk av godstransporttjenester. De 107 PJ var sammensatt som vist i tab. A 3:

<table>
<thead>
<tr>
<th>Privatbil og motorsykkel</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offentlig landtransport</td>
<td>8</td>
</tr>
<tr>
<td>Passasjertransport med skip</td>
<td>6</td>
</tr>
<tr>
<td>Flytransport</td>
<td>29</td>
</tr>
<tr>
<td>Avrundingsfeil</td>
<td>-1</td>
</tr>
<tr>
<td>SUM</td>
<td>107</td>
</tr>
</tbody>
</table>

Husholdningenes forbruk av bensin og diesel (som svarer til energiforbruket til privatbiler og motorsykker, pluss mindre mengder til lystbåter) var ifølge Energiregnskapet noe lavere i 1998 enn i 1992, nemlig 59,6 PJ. Energiforbruket til offentlig landstransport var - når 50 % av jernbanenes forbruk tilskrives persontransport - på 8,4 PJ.

Når det gjelder båt- og flyeiser kan vi ikke basere oss på Energiregnskapets tall, da forbruket av drivstoff til skip ikke fordeles mellom gods- og passasjertrafikk, mens salget av flydrivstoff i Norge ikke uten videre gjenspeiler forbruket ved transport av nordmenn, tre fjerdedeler av hvis flyging skjer til, fra eller i utlandet.

Når det gjelder flyreiser vet vi at omfanget av innenlandstrafikken i 1998 var ca. 50 % større enn i 1992, nemlig 4,242 mrd. pkm. Omfanget av charterreiser til/fra utlandet kan anslås til 5,3 mrd. pkm. Tallet på pasasjerer på paketurer med charterfly var vel 763.000 og gjennomsnittlig reiselengde tur/retur kan anslås til ca. 6800 km ut fra fordelingen på destinasjoner (SSB, Samferdeselstatistikk 1998). Det gir 5,2 mrd. pkm. I tillegg til de som deltok på paketurer, var det 171.000 ankommande og avreiste pasasjerer i utenlands chartertrafikk på norske flyplasser. Disse inkluderer både nordmenn og utlendinger. De som kom til og reiste fra Dagali og Fagernes (20.000) var trolig overveiende utlendinger. Antas 50 % av de resterende å være nordmenn og deres gjennomsnittlige reiselengde én veg å være 1300 km, blir det ytterligere 0,1 mrd. pkm, som er grunnlaget for å anslå totalen til 5,3 mrd. pkm.

Lundli og Vestby (1999) oppgir energiforbruket per pkm ved innenlands reiser til 2,92 MJ/pkm, ved utenlands charterreiser til 1,53 MJ/pkm og ved utenlands rutefly til 2,40 MJ/pkm. Totalt gir dette et energiforbruk ved flyreiser på 39,9 PJ.

Til disse tallene bør legges en andel av det direkte energiforbruket i det som kalles “Tjenester i tilknytning til transport” i statistikken. Disse hadde i 1998 et energiforbruk på 3,4 PJ ifølge Energiforskningskapet. Antas 50 % av dette å gjelde persontransport, blir det 1,7 PJ.

Det totale direkte energiforbruket ved persontransport blir dermed som vist i tab. A4.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Privatbil, motorsykkel</td>
<td>59,6</td>
</tr>
<tr>
<td>Offentlig landtransport</td>
<td>8,4</td>
</tr>
<tr>
<td>Båt</td>
<td>7,9</td>
</tr>
<tr>
<td>Fly</td>
<td>39,9</td>
</tr>
<tr>
<td>Støttetjenester</td>
<td>1,7</td>
</tr>
<tr>
<td>SUM</td>
<td>117,5</td>
</tr>
</tbody>
</table>
Med samme påslag som tidligere for privat forbruk av godstransport, vil vi anslå det (semi-)direkte forbruket av energi til transport til (avrundet) 117 PJ i 1998.

Mulige endringer i energiforbruket til vedlikehold og til produksjon av transportinfrastruktur er ikke vurdert. Tallet på 28 PJ for indirekte forbruk til transport økes med 3 PJ til 31 PJ.

Post- og teletjenester:

Trykksaker:

Forbruket (målt i tonn) noenlunde stabilt. Tallet på 6 PJ blir stående for 1998.

Fritidsvarer og -tjenester ellers:

<table>
<thead>
<tr>
<th>Elektroniske apparat:</th>
<th>1992</th>
<th>1998</th>
<th>Økning, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>- radioapparat (1000 stk)</td>
<td>640</td>
<td>870</td>
<td>36</td>
</tr>
<tr>
<td>- fjernsyn (1000 stk)</td>
<td>259</td>
<td>403</td>
<td>56</td>
</tr>
<tr>
<td>- videospillere (1000 stk)</td>
<td>108</td>
<td>196</td>
<td>81</td>
</tr>
<tr>
<td>- datamaskiner og –enheter (1000 stk.)*</td>
<td>853</td>
<td>2714</td>
<td>218</td>
</tr>
<tr>
<td>Fotoapparat (1000 stk)</td>
<td>219</td>
<td>614</td>
<td>180</td>
</tr>
<tr>
<td>Fotoutstyr (tonn)</td>
<td>7743</td>
<td>7103</td>
<td>-8</td>
</tr>
<tr>
<td>Leketøy, selskapsspill, julepynt mm. (tonn)</td>
<td>11151</td>
<td>15307</td>
<td>37</td>
</tr>
<tr>
<td>Fritidsbåter (stk)**</td>
<td>ca. 10.000</td>
<td>22522</td>
<td>100+</td>
</tr>
<tr>
<td>Sportsutstyr (tonn)***</td>
<td>3724</td>
<td>7516</td>
<td>102</td>
</tr>
<tr>
<td>Musikkinstrument, CD’er, video- og lydbånd mm (mill. kr)</td>
<td>1652</td>
<td>2428</td>
<td>47</td>
</tr>
<tr>
<td>Snittblomster (tonn)</td>
<td>2346</td>
<td>3663</td>
<td>56</td>
</tr>
</tbody>
</table>

* Det er selvsagt ikke alle disse som inngår i det private forbruket eller som kan betraktes som “fritidsutstyr”. Men veksten i privatmarkedet har trolig vært relativt større enn i totalen!

***Gjelder de typene sportsutyr der importen blir registrert i tonn. Av ski og skøyer registreres antall par, slik at disse faller utenfor.

Energiforbruket til produksjon av fritidsvarer (unntatt trykksaker) ble for 1992 anslått til ca. 6 PJ, og energiforbruket til markedsføring i Norge til 3 PJ - i alt 9 PJ. Det er grunn til å tro at en tilsvarende beregning for 1998 hadde økt det første tallet med minst 50 %, og det andre noe mindre.

Det direkte energiforbruket til produksjon av tjenester i denne kategorien - dvs. private utdanningstjenester pluss “fritid, kultur og sport” - var i 1992 4,2 PJ ifølge Energieregnskapet. Dette ble temperaturkorrigert til 4,5 PJ. Det ble gjort et helt skjønnsmessig påslag på 1,5 PJ for innsats- og kapitalvarer til produksjon av slike tjenester, slik at totalen ble 6 PJ. I 1998 var det direkte energiforbruket i disse sektorene økt til 6,0 PJ, som bør temperaturkorrigeres til 6,1-6,2 PJ. Det er rimelig å tro at det totale energiforbruket til produksjon av private utdanningstjenester og fritidstjenester da lå på ca. 8 PJ.

For energiforbruket bak fritidsvarer og -tjenester til sammen i 1998, skulle 20 PJ være et fornuftig anslag.
Hotell- og restauranttjenester:

Det direkte energiforbruket til leverandører av slike tjenester i Norge har ifølge Energiregnskapet økt med 10 % fra 1992-98, til 5,6 PJ. Med uendret energiforbruk til innsats- og kapitalvarer i disse næringene skulle det tilsi at tallet på 7 PJ i tab. 1 ble økt til 7,5 PJ. Nordmenns betydelige netto import av overnattings- og serveringstjenester ble ikke tatt med i vurderingen i Hille (1995). Dette har stor betydning, særlig men ikke bare for energiforbruket til hotelltjenester (som trolig utgjør broprarten av summen for hoteller og restauranter). I 1998 var det vel 16 millioner overnattinger ved norske hotell, hvorav utlendinger sto for 5,2 millioner (SSB, Hotellstatistikk 1998). Samme år hadde nordmenn på feriereiser i utlandet alene 20 millioner overnattinger, hvorav ca. 60 % (12 millioner) på hotell (SSB, Nordmenns ferievaner 1998). Dette tallet omfatter ikke turer med 3 eller færre overnattinger, og det omfatter heller ikke forretningsreiser.25 Medregnet disse, var tallet på hotellovernattinger av nordmenn i utlandet trolig nærere 20 millioner - om ikke mer - hvilket innebærer at tallet på hotellovernattinger av nordmenn var om lag dobbelt så stort som tallet på overnattinger i Norge. Selv om hotell i utlandet av klimatiske grunner kan ha et noe lavere energiforbruk per overnatting enn i Norge, er det rimelig å tro at denne posten bør økes til minst 10 PJ for å ta hensyn til den skive utvekslingen.

Andre varer og tjenester:

Energiforbruket til produksjon av finanstjenester og “andre tjenester” var etter Energiregnskapet for 1992 til sammen ca. 7 PJ, hvorav halvparten reint skjønnsmessig ble antatt å gjelde privat forbruk av slike tjenester. Etter Energiregnskapet for 1998 var

25 Energibruk knyttet til forretningsreiser er strengt talt en innsatsvare ved produksjon av noe annet (er det en skoprodusent som drar på forretningsreise, er dette del av det indirekte energiforbruket knyttet til sko). I Hille (1995) betraktet imidlertid alle personreiser, og opphold under disse, som del av det private sluttforbruket.
det tilsvarende energiforbruket 10,5 PJ; til dette bør legges energiforbruk til kapital- og
innsatsvarer, som trolig hever tallet til mellom 12 og 13 PJ. Opprettholdes antakelsen
om at 50 % av disse tjenestene er rettet mot privatmarkedet, tilsier dette at
energiforbruket bør økes til ca. 6 PJ, og summen av energiforbruk til andre varer og
tjenester til minst 10 PJ.

Frivillige organisasjoner:

Energiforbruket til “Medlemskapsorganisasjoner” i 1998 utgjorde 4,4 PJ ifølge SSBs
Energiregnskap. Dette omfattet bare elektrisitet og fyringsolje; deres forbruk av
transportoljer må være gjemt andre steder i regnskapet, for eksempel under “annen
tjenesteaktivitet”. Totalen bør da utgjøre nærmere 5 PJ, om ikke mer. Forskjellen fra de
cia. 2 PJ i 1992 er neppe helt reell - dette er et område der statistikken hviler på nokså
usikker grunn - men det er ikke grunnlag for å mene at den var dårligere i 1998 enn i

Forvaltning:

Det direkte energiforbruket til forvaltningen, som i statistikken for 1992 ble oppgitt til
45,6 PJ og temperaturkorrigert til 47 PJ, var ifølge Energiregnskapet for 1992 bare 39
PJ. Litt av reduksjonen skyldes faktisk lavere forbruk i Forsvaret, noe skyldes trolig
omvurderinger.

Det indirekte forbruket, hvorav enn vesentlig del knytter seg til byggeaktivitet, skal
trolig økes fra 18 til ca. 20 PJ.