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Abstract An Informed Path Planning (IPP)
algorithm for multiple agents is presented.
It can be used to efficiently utilize available
agents when surveying large areas, when to-
tal coverage is unattainable. Internally the al-
gorithm has a Probability Hypothesis Den-
sity (PHD) representation, inspired by modern
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multi-target tracking methods, to represent
unseen objects. Using the PHD, the expected
number of observed objects is optimized. In a
sequential manner, each agent maximizes the
number of observed new targets, taking into
account the probability of undetected objects
due to previous agents’ actions and the prob-
ability of detection, which yields a scalable al-
gorithm. Algorithm properties are evaluated in
simulations, and shown to outperform a greedy
base line method. The algorithm is also evalu-
ated by applying it to a sea ice tracking prob-
lem, using two datasets collected in the Arctic,
with reasonable results. An implementation is
provided under an Open Source license.

Keywords path planning · target tracking ·
probability hypothesis density · phd · multi-
agent

1 Introduction

In a multitude of applications and with grow-
ing utility, Unmanned Aerial System (uas)
agents have been successfully deployed in
reconnaissance missions. Traditionally, these
agents are either controlled manually (then
known as Remotely Piloted Aerial Systems
(rpass)), or their search is automated based
on one of several available search pat-
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terns (IAMSAR 2010). While the sensor pay-
load may vary, the arguably most common sen-
sor type is the optical camera. With more or
less effort, detections can be extracted for in-
formation value far beyond that of the raw
imagery. Though sometimes adversarial, the
search is often one-sided, and the detections
of an agent simply depend on how the agent
moves, its Field-of-View (fov) and its detec-
tion resolution. These detections, created of-
fline or online during flight, can be trans-
formed to geodetic coordinates and further
processed. By comparing detections with pre-
existing ones from the region and attempting
to associate the new detections with the old, it
is possible to hypothesize around further prop-
erties such as velocity and long-term trajecto-
ries, using tracking algorithms.

When planning future flights, this informa-
tion can be exploited to propose flight paths
which aspire to be more rewarding than the
non-informed search patterns. These paths can
be followed by a pilot or autonomously — al-
though even in autonomous mode it is common
for a pilot to be in the decision loop, confirm-
ing flight routes before execution. As an ex-
ample from our background; given rough data
from, e.g., satellite imagery, ships operating in
ice-infested waters could launch uas agents to
improve the accuracy and recency of sea ice
tracking around the ship. This has the poten-
tial to raise the level of safety and improve the
availability of such waters for transportation
routes. The map would provide a better idea
of where the sea ice concentrations are higher,
allowing the priority to be on those areas.

The level of reward from a given flightpath
is, obviously, a question of the definition of re-
ward. Different rewards will yield different op-
timal paths and some will be better suited for
some missions than others. A contribution of
this article is to discuss the choice of a reward
function formed using a concept which is of
central importance to several recent advances
in target tracking.

In the past decade, target tracking and
Multiple Target Tracking (mtt) has seen the

exploration of the Probability Hypothesis Den-
sity (phd). Defined as the density of the ex-
pected number of targets, we propose that the
phd is a natural candidate to form the base of
a reward-function for Informed Path-Planning
(ipp). Using this measure in ipp, paths can be
generated to maximize the expected number of
targets to be observed during the full duration
of all agent’s flights, i.e., the integral of the
previously unobserved phd over the observed
region. Further, we derive an approximation
which enables and justifies sequential compu-
tation of the paths of multiple agents, reducing
the complexity of computation and implemen-
tation.

In short, the contributions of this article
are:

– a novel phd based reward function for ipp;
– a decoupled approximative reward func-

tion for the approximately static case that
allows for computationally efficient multi-
agent ipp;

– an algorithm description for the practical
implementation of the above mentioned re-
ward function;

– a suggestion of how to solve the optimiza-
tion problem by sampling full path propos-
als; and

– a description of how to apply the method
in an actual application, which is also used
to evaluate the method.

In Sect. 3 we begin with presenting the phd
— how it is obtained and how it can be seen
as a natural interface between a tracker and
a path planner. In Sect. 4, we introduce how
to incorporate this measure into a path plan-
ner. Implementation considerations are pre-
sented in Sect. 5. In Sect. 6, we present two
real-world scenarios where sea ice objects are
tracked off the coast of Svalbard, and flight
plans are created for a number of reconnoiter-
ing missions with multiple uass. Finally, dis-
cussion and concluding remarks are presented
in Sect. 7 and Sect. 8 respectively.
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2 Background

Here we provide a background to the article,
including some of the terminology used in the
article and a detailed formulation of the prob-
lem addressed.

2.1 Terminology and Notation

In this article, a set of agents A 3 a is consid-
ered, where the α’th agent in the ordered set
is referred to as aα. Variables associated with
specific agents are subscripted with a or aα,
although this subscript may be dropped when
speaking generally.

The agents observe and report observations
from a region around their current position —
their fov. A target, located at position x, is
observed with probability p̄d,a (x) by agent a,
if and only if x is within the fov Sa (xa) of
agent a at position xa. This can be expressed
with a varying probability of detection,

pd,a (x) =
{
p̄d,a (x) , x ∈ Sa (xa)
0, otherwise.

(1)

Trajectories are represented as discrete se-
ries of waypoint coordinates Pk,0:K,a. These
paths, for all agents, are included in the set
Pk,0:K . Their respective subscripts indicate the
paths start at time k, and contains positions
for each discretized timestep k + κ, ∀κ ∈
[0, . . . ,K] where K is the planning horizon.
Unless needed, the leading k index may be
dropped and assumed to be the start of the
plan (i.e. “now”). For distinct times κ, the set
of coordinates of all agents is denoted Pk,κ.

2.2 Problem Formulation

In ipp, the main objective for path planning is
to maximize a reward function under certain
constraints — mathematically formulated as
the following high-level equation:

P∗ = arg max
P∈Ψ

I (P) s.t. c (P) ≤ β (2)

where Ψ is the set of possible and permissible
trajectories for one or more agents; I (P) is the
information quality measure along the trajec-
tory P; c (P) is the cost associated with the
path, and β is the budget constraint. The limi-
tations of Ψ can also include, e.g., geographical
constraints (geofencing), velocity limits (max-
imum/minimum distance between consecutive
points) as well as other constraints.

Seeking to maximize the expected value of
a probabilistic reward function R we let, for a
set of discretized trajectories P0:K ,

I (P0:K) = E [R (P0:K)] . (3)

In our application, P0 — the starting points of
all agents — is predetermined although this is
not a necessary requirement.

In particular, this objective function is tai-
lored for a scenario in which we have a finite
amount of flight time for one or more agents,
and we wish to propose a flight plan based on
the available tracking information. Using the
phd as the basis for the reward function we
seek to maximize the expected number of tar-
gets detected by the agents throughout a fixed
flight-time. Relevantly, this measure is a cen-
tral part of recent advances in mtt, as de-
scribed in Sect. 3. While there are numerous
performance metrics available for path plan-
ning, we argue that its availability along with
its property of maximizing the number of de-
tected targets — or equivalently, minimizing
the number of undetected targets — makes it
a compelling choice in many scenarios.

A visual illustration of the effect on the
phd of unobserved targets from observing a
part of a region is given in Fig. 1. The residual
phd describes a lower expected number of un-
detected targets than the surrounding region,
and is thus seen as a seemingly cut-out region.
The optimal set of paths that minimize the un-
observed phd will also maximize the cut-out
volume. Another, more formal, illustration of
the effect of an observation is given in Sect. 4.1
and Fig. 2.



4 Jonatan Olofsson et al.

Fig. 1 phd of expected number of undetected tar-
gets as affected by a single observation

2.3 Related work

This article combines ideas from two ma-
jor fields: Multiple Target Tracking and In-
formed Path-Planning, both with major bod-
ies of available literature.

2.3.1 The Probability Hypothesis Density

The use of the phd (Winter and Stein 1993)
for mtt was popularized in mtt in the early
00’s by Mahler (Mahler and Zajic 2001; Mahler
2003), who made it central in his deriva-
tion of the phd filter. This filter has since
been thoroughly expanded into several im-
plementations (Sidenbladh 2003; Vo and Ma
2006; Pasha et al. 2006) and variants for
e.g. tracking of extended targets (Granström
and Lundquist 2012). Mahler (2007b) provides
the foundations for notable related algorithms
of mtt which — at least originally (Streit
2017) — were derived using Finite Set Statis-
tics (fisst). These include, in order of ap-
pearance, the phd filter (Mahler and Zajic
2001), the Cardinalized Probability Hypothe-
sis Density (cphd) filter (Mahler 2006, 2007a;
Vo et al. 2006), the Multiple-Target Multi-
Bernoulli (MeMBer) (Mahler 2007b), and

Cardinality-Balanced Multiple-Target Multi-
Bernoulli (CBMeMBer) (Vo et al. 2009,
2007). Later, the δ-Generalized Labeled Multi-
Bernoulli (δ-glmb) (Vo and Vo 2013; Vo et al.
2014) was introduced as a fisst variant of
the Multiple Hypothesis Tracker (mht) fil-
ter (Brekke and Chitre 2018; Williams 2015;
Olofsson et al. 2017a; Reid 1979), eventu-
ally resulting in its simplified relative, the
Labeled Multi-Bernoulli (lmb)-filter (Reuter
et al. 2014). While none of the latter filters
directly manipulate the phd as the phd filter,
it remains easily extractable as all the relevant
statistics are tracked. With sufficient assump-
tions, in particular regarding existence proba-
bilities, the phd could in theory be extracted
from any mtt algorithm.

2.3.2 Informed Path Planning

ipp and the related field of adaptive sam-
pling (Fiorelli et al. 2006) has been studied us-
ing a multitude of approaches, in varying level
of detail of constraints and different measures
of path quality. The goal is to generate trajec-
tories for movable sensing agents, to maximize
the value of the sampled data. Unlike Coverage
Path-Planning (cpp) (Galceran and Carreras
2013), paths from ipp do not aim to cover the
entire region, but is limited to maximizing the
gain given a restricted budget.

Broadly, the problem can be split into the
studies of i) the optimization algorithm yield-
ing the actual paths; and ii) the reward func-
tion against which the paths are scored to de-
termine optimality.

In (Hollinger and Sukhatme 2014), a
survey is presented as well as three pro-
posed sampling-based algorithms for optimiz-
ing a general reward function. The approach
is inspired by point-to-point planning algo-
rithms (where starting points, endpoints and
obstacles are known), such as the asymp-
totically optimal Rapidly-exploring Random
Tree* (rrt*), but expands to more generic
budgetary constraints such as time, fuel, or en-
ergy.
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In Skoglar (2012), methods are explored to
maximize the information gain (i.e. minimiz-
ing the covariance) in a gridded map of infor-
mation filters. While the optimization routine
employed limits the planning horizon, the mea-
sure itself could potentially be used similarly
to the phd measure proposed in this article.

In (Singh et al. 2009), the recursive-greedy
path planning of (Chekuri and Pál 2005) is
extended to multiple agents through sequen-
tialization.

Using the phd for path planning is not an
entirely novel idea in itself — Dames (2017)
introduced a distributed phd-based planning
algorithm in which each agent locally moves
towards the phd maximum within its own
Voronoi-cell. The article is expanded with a
3D example in (Dames 2019). Instead of ap-
plying the phd filter, our approach allows for
a more flexible choice of tracking algorithm —
we use the lmb filter, but the planning need
only that the phd can be extracted from the
tracker.

Further, unlike (Dames 2017, 2019), this
article takes a centralized planning approach
which finds not only destination points but a
list of waypoints for the entire flight path of
each agent. This also includes taking into ac-
count the effects the other agents will have on
a joint reward function throughout their re-
spective flight path.

3 Target Tracking and the Probability
Hypothesis Density

The modern field of target tracking has
evolved from signal filtering theory pioneered
during World War II (Wiener 1965). Through
a series of evolutionary steps it has seen the
development of the indisputably significant
Kalman filter (Kalman 1960) and later the
Particle Filter (Gordon et al. 1993). Further, it
has extended into the exploration of scenarios
with sensors that can detect multiple sources
yet not distinguish their identities, giving rise
to the subfield of mtt.

3.1 Bayesian Multi-Target Tracking and the
Probability Hypothesis Density

In Bayesian tracking, efforts are focused on
finding a tractable solution to the general
Bayesian recursion (Mahler and Zajic 2001):

πt|t−1 (xt|z1:t−1) =∫
ft|t−1 (xt|xt−1)πt−1 (xt−1|z1:t−1)dxt−1

(4a)

πt|t (xt|z1:t) =
gt (zt|xt)πt|t−1 (xt|z1:t−1)∫
gt (zt|xt)πt|t−1 (xt|z1:t−1) dx

(4b)

with f and g being the predictive distribu-
tion and measurement likelihood, respectively,
and πt|t−1 (πt|t) is the target state Probability
Density Function (pdf) for time t given data
up until time t − 1 (t). zt is the set of mea-
surements at time t, and z1:t that of all those
registered up until time t. For practical appli-
cations, the generalized formulation of (4) is
altered according to simplifying assumptions
to form the various tracking algorithms, such
as the prevalent Kalman filter.

The same formulation can be even further
generalized to the mtt case by reconceptualiz-
ing the meaning of the involved terms (Mahler
and Zajic 2001). Mahler’s fisst concept of a
multi-target pdf means that the involved vari-
ables come to represent distributions of sets
of targets and reports — Random Finite Sets
(rfss). These probabilistic sets can not only
express the uncertainty in the tracking of the
individual targets, but also the uncertainty of
the existence of each target.

This extension of pdfs raises the question
of the interpretation of its moments. The defi-
nition of the first moment employed in fisst is
known as the phd (Winter and Stein 1993) and
corresponds in each point to the density of ex-
pected set objects at that point. This density,
v(x), is normally integrated over a region S,
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giving the expected number of objects within
that region:

V (S) = E [|X ∩ S|] =
∫
S

v(x)dx (5)

where X is the set of all targets, stochastic in
content and cardinality. This set may or may
not be explicitly known, as the measure here
is the set’s expected cardinality. The intersec-
tion operator indicates the windowing of each
target’s phd with the region of interest.

Among the mtt algorithms, the phd fil-
ter (Mahler and Zajic 2001; Vo and Ma
2006) and its subsequent extensions in par-
ticular incorporate this measure directly into
its core. Other algorithms, such as the δ-
glmb (Vo et al. 2014), mht (Reid 1979) and
the lmb (Reuter et al. 2014) filters, stores its
state as a more classical target-list. Contrary
to the phd filter, those filters do not gener-
ally implicitly consider non-detected targets,
so this may have to be modeled and added as
per

vt = v†t + vnt (6)

for the tracker-generated phd v†t and the
model for non-detected target, vnt . The com-
parative values of the tracked and modeled
phd expressed in (6) can be used to balance
between exploration and exploitation in the re-
gion of interest.

When observing a region S, for which a
phd has been constructed, the expected num-
ber of observed targets is

E [|Xobs|] =
∫
v (x) · pd (x) dx (7)

for a sensor with probability of detection
pd (x). Conversely, the expected number of un-
detected targets after a single observation is
given by

E [|X \ Xobs|] =
∫
v (x) (1− pd (x)) dx. (8)

By extension, the expected number of tar-
gets to be missed despite multiple observations

g ∈ G (and respective probability of detection
pd,g (x)) is

E [|X \ Xobs|]=
∫
v (x)·

[∏
g

(1− pd,g (x))
]
dx.

(9)

Observations g may or may not be from sepa-
rate agents.

4 Informed Path Planning

Given limited resources, we seek to maximize
the expected number of targets detected by the
agents, using the phd as foundation.

When studying this measure more closely,
and consider that multiple agents observe the
region on potentially multiple occasions, the
question arises which agent or observation con-
tributes with what. Given the optimization ob-
jective, this question has an intrinsic depen-
dency on the order of the observations as, given
equal probability of detection, most targets are
likely to be first detected on the first viewing.
Plans are hypothetical however, and if the first
observation is skipped due to change of plans,
the seminal higher score would instead be at-
tributed to another agent first to observe the
region. In this section, we seek to formulate
and approximately decouple this dependency
in the agents’ path plannings and formulate
sequential reward functions where agents, in
ordered turn, commit to paths that optimize
the remaining reward. This allows us to formu-
late the reward as a sum of the contributions
of each agent:

R (P0:K) =
∑
a∈A

Ra (P0:K,a) (10)

where Ra is the reward obtained by agent a
over its path P0:K,a.
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4.1 Complete reward function

Importantly, (10) is a submodular func-
tion (Krause and Guestrin 2011), mean-
ing that for two example paths q and w,
I (Pq+w) ≤ I (Pq) + I (Pw), i.e.: The reward
for executing both paths will be less than or
equal to that of their individual execution, as
the reward gain is less if any of the targets de-
tected in an observation has been previously
observed by another agent.

To begin formulating our proposed reward,
we introduce ρ (x), which represents the re-
ward density at the point x given the set of all
observations G. Each observation has a detec-
tion probability pd,g (x). As we are only inter-
ested in disjoint detections, we note that the
number of individual detected targets is gov-
erned by the inclusion-exclusion principle:

ρ (x) = v (x)
|G|∑
i=1

(−1)i−1 ∑
Γ⊂G,|Γ |=i

∏
g∈Γ

pd,g


(11)

where the alternating negative sign ensures
targets are only counted once (compare: |A| ∪
|B| = |A|+ |B| − |A| ∩ |B|).

If observations are assumed to be sequen-
tial, the value added from each observation can
be seen by rearrangement of (11) to recursive
form (Chen 2014):

$0 = 0 (12a)

$i (x) = pd,ai (x)
(

1−
i−1∑
κ=1

$κ (x)
)

(12b)

ρ (x) = v (x)
|G|∑
i=1

$i (x), (12c)

where$i is the probability that a target is first
observed by observation i.

The interpretation of (12) is that only re-
ports from previously undetected targets will
add to the reward function, i.e. the reward of
an agent’s path is only dependent on the yet
undetected targets. Note however that there is

an inherent dependency introduced by the or-
dering of G, not only in time but also against
simultaneous observations by other agents.

In the time dimension, running all agents
in parallel, we seek to expand R into separate
parts for each timestep:

R (Pk,0:K) =
K∑
κ=0

R (Pk,κ|v̄k,κ), (13)

where v̄k,κ is the phd of yet unobserved tar-
gets, extracted at time k but affected by all
agents following their planned paths up un-
til planning time k + κ, Pk,0:κ. Notably, this
formulation retains the (causal) submodular-
ity property through the conditioning of R on
v̄k,κ.

Here we limit the discussion to vk+κ =
vk ∀κ ∈ [0, . . . ,K], i.e. the environment is
assumed static for the duration of the plan al-
lowing us to drop the k index unless needed.
Treating all agents jointly, the unobserved phd
can then be recursively defined as

v̄0 = vk (14a)

v̄κ+1 = v̄κ ·
∏
a∈A

(1− pd,a (x))

= v̄κ · (1− pd (x))A. (14b)

With this definition, using the multi-object
exponential notation as above, we define

R (Pk,κ|v̄k,κ)=
∫ [(

1− (1− pd (x))A
)
·v̄κ
]
dx

(14c)

to obtain the desired reward function. The
parts of the original phd v that these quan-
tities represent are visualized for a single ob-
servation in Fig. 2. In the example underlying
Fig. 2, the observed region has a uniform prob-
ability of detection. This yields a phd of un-
observed targets that is, within the fov, sim-
ply a downscaled version of the full phd. Non-
uniform probabilities of detection will yield a
more complex shape.
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4.2 Agent Decoupled Reward Function

The recursion in (13) and (14) notably de-
pends on the full solution Pk,0:K of paths for
all agents. For an optimization solver, this
translates to a significant increase of the search
space for each additional agent, which in many
cases will make the problem tractable for only
a small number of agents. To reduce the di-
mensionality of the optimization problem and
simplify the implementation, we seek to decou-
ple the planning of each agent’s path P0:K,a
from the others’. For this, we return to the or-
dering of the observations implied in (12) and
posit that each agent’s full path is rewarded in
consecutive sequential order. Some of the im-
plications of this have already been noted, such
that the reward becomes less for subsequent
observations, making the reward conditioned
on the order that the paths are planned. The
ordering entails that the path planning for the
set of agents can be made sequentially while
maintaining a recursive description of the un-
observed phd:

v̄1
(−1) (x) = vk (x) (15a)
v̄α(−1) (x) = v̄α−1

K (x) (15b)
v̄ακ (x) = v̄ακ−1 (x) · (1− pd,aα,κ (x))

(15c)

V̄ ακ (S) =
∫
S

v̄ακ (w) dw (15d)

Rα
(
P0:K,a|v̄α−1

K

)
=

K∑
κ=0

V̄ ακ (Saα (Pκ,aα))

(15e)

R (P0:K) =
|A|∑
α=1

Rα
(
P0:K,aα |v̄α−1

K

)
.

(15f)

where v̄ακ is the unobserved phd prior to ob-
servations by agent α at time κ.

The equations can be described as follows:

– (15a) — initial phd;
– (15b) — next agent’s initial phd;

Fig. 2 Parts of the phd corresponding to used sym-
bols

– (15c) — next unobserved phd (next
timestep);

– (15d) — expected number of targets within
fov;

– (15e) — agent’s total reward; and
– (15f) — total reward.

As indicated by the conditioning in (15f),
the full path is now optimized based on the
phd of targets unobserved after the previous
agent has committed to its path. This allows
the optimization routine to parallelize by gen-
erating independent samples of the agent’s full
path which can be scored and ordered accord-
ing to the reward function. A pseudocode im-
plementation of (15) is exemplified in Alg. 1.
The optimization step in the algorithm is fur-
ther discussed in Sect. 5.2.

Algorithm 1 Sequential PHD Path Sampling
v̄ (x)← v (x)
for a ∈ A do
Pa0:K ← arg maxP∈Ψ E [R (P|v̄)] s.t. c (P) ≤ β
v̄ (x)← v̄ (x)

∏K

κ=0 (1− pd,a,Pκ (x))
end for

5 Implementation

To demonstrate the practical application of
the planner reward function proposed in
Sect. 4, a tracker and a proof of concept plan-
ner were implemented1. The planner is a ge-
netic algorithm with Monte Carlo-generated

1 The lmb tracker used is available as Free and
Open Source Software (foss) at https://github.
com/jonatanolofsson/clmb. The planner described
in this chapter is available at https://github.com/
jonatanolofsson/phdplanner.

https://github.com/jonatanolofsson/clmb
https://github.com/jonatanolofsson/clmb
https://github.com/jonatanolofsson/phdplanner
https://github.com/jonatanolofsson/phdplanner
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proposal paths, but more elaborate algorithms
can be found in, e.g., (Hollinger and Sukhatme
2014). This section details practical consider-
ations of the implementation.

The tracker and planning algorithms are
implemented in C++, with a Python interface
using the pybind11 library. Parallelization of
the C++ algorithms is implemented using the
OpenMP API.

5.1 Coordinate Systems and PHD Sampling

In the implementation of the path planning,
we assume the phd to be sampled in an
axis-aligned Cartesian region. In our exam-
ples in Sect. 6, this translates to a latitude-
longitude aligned gridded linearization of the
observed area. After the latitude-longitude
area has been selected, the tracked targets in
that region are selected and transformed, along
with the region and all the reports, into a
Cartesian North-East (ne) system with ori-
gin in the region centerpoint. Monte Carlo-
integration is then performed by sampling Ns
points from each targets’ positional distribu-
tion. The points from each target ` ∈ L is
then binned into a square grid, where r`/Ns is
added to the value of each cell for each point
that falls within that bin, making the total
added value by all points

∑
`∈L r`.

The grid cells in the sample implementa-
tion represent an area which approximates a
single observation scan, such that the step-
size for each planning step is one cell in ei-
ther direction. A finer grid, paired with more
elaborate fov calculations and step generation
would provide a better estimate of the final
path reward, but would also extend the com-
plexity and memory requirements of the algo-
rithm significantly which, in the intended ap-
plication, is undesirable.

5.2 Sampling Paths

In a Monte Carlo-based path planning, a cen-
tral piece is the generation of samples from the

set of valid paths. This set should be tailored to
the application to take, e.g., turn-rate restric-
tions into account. In this specific application,
this set is that of all paths of exactly K steps
to neighboring cells.

To generate random samples from this set,
we sample informative points −→xS from the re-
maining unobserved phd, and fly straight to-
wards that point until the point is reached, or
the step-limit is reached. If there are steps re-
maining, a new point is sampled and the pro-
cess repeated.

The normalized unobserved phd is chosen
as the point proposal distribution, gridding S
into cells Si:

−→xS ∼
vακ (x)∫

S
vακ (x) dx

∼=
V ακ (Sx) δc (x)∑

i V
α
κ (Si)

. (16)

In the approximation expressed in (16), Sx is
the cell in which the x is located and δc (x) =∑
i δci (x) is the sum of Dirac delta func-

tions centered around the cell centerpoints.
The Dirac delta sum makes the probability
distribution of −→xS nonzero at the cell center-
points only. The values at those centerpoints
correspond to the phd integrated over the area
of that cell. The values of this discrete distri-
bution can be stored as an array, making its
Cumulative Distribution Function (cdf) rele-
vantly easily invertible for sampling.

Each sampled point adds to the generated
path by, for each time step, moving the agent
to an adjacent valid cell’s centerpoint towards
the sampled point. The resulting proposal path
can be scored according to (15d).

After generating NP proposal paths, the
highest scoring path is selected as the proposed
flight path for that agent, and the resulting re-
maining unobserved phd is used for the plan-
ning of the next agent’s path.

This Monte Carlo algorithm can be uti-
lized as the first step of a genetic algo-
rithm (Mitchell 1996). This is an easy-to-
implement optimization routine which com-
bines existing “generations” of a population
of solutions — favoring high scoring solutions
— to create new, potentially better, solutions.
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Experiments, however, showed that generat-
ing a larger initial population far outperformed
— performance-wise and reward-wise — any
benefits of breeding subsequent generations,
though this may be subject to future improve-
ments.

In Sect. 6 we also, in addition to the
Monte Carlo-algorithm, compare results with
a “greedy” agent, which instead of randomly
sampling informative points always heads for
the maximum point in the unobserved phd.

5.3 Simulated Tests

To quantify the benefit of the proposed op-
timization measure in a controlled environ-
ment, a simulation was set up in which 40
reports were uniformly randomly distributed
in a 200 × 200 m2 area. A covariance of 302 ·
I2 m2 was associated with each of the reports,
which were then fed to the lmb tracker. The
phd from the tracker, static in the simula-
tion, forms the background of Fig. 3, where
also the resulting paths are overlaid. The fig-
ure shows the randomly distributed set of
tracked targets, and the paths generated by
the Monte Carlo (blue) and greedy (orange)
path-generation respectively. The resulting re-
wards were also compared to that of a lawn-
mower pattern search. For a fair comparison,
all agents were set to start from the lower
left corner. The lawnmower agent was mov-
ing bottom-to-top, left-to-right. Note the be-
haviour that with no modeling of undetected
targets, the planning focuses solely on recon-
firming the existing targets.

In Fig. 4, the expected number of detec-
tions for the generated paths were compared.
In this scenario, each agent operated inde-
pendently with individual accumulation of ex-
pected target detections. The results show that
even with simple optimization routines, such
as described in this section, the proposed mea-
sure quickly outperforms the baseline lawn-
mower pattern in terms of the expected num-
ber of detected targets. In this simulated envi-
ronment, the greedy path-generation generally

Fig. 3 Paths generated by Monte Carlo (blue) and
greedy (orange) algorithms. The value of the phd is
given as background, and measurement centerpoints
as red marks

Fig. 4 Individual accumulation of expected target
detections

performs similarly to the Monte Carlo one. On
a 2015 laptop, 200, 000 Monte Carlo paths of
1000 steps were constructed and evaluated in
approximately 13 s (approx. 64 µs per path),
whereas the greedy method — generating only
a single path — required 0.5 ms.
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Fig. 5 Example of a radar scan from the tri sensor,
with brighter areas of sea ice and an overlaid illustra-
tion of the radial nature of its raw measurements

6 Applications

In this section we describe how the proposed
methods were applied to maximize the num-
ber of future sea ice detections based on two
separate real-world datasets, and the consid-
erations that come with different types of
data. Both datasets were captured by the
fjord Kongsfjorden, Svalbard, where ice breaks
off the nearby glaciers and flows towards the
ocean. The data was collected in an ongoing ef-
fort to study and predict sea ice movements in
order to, e.g., protect ships and permanent in-
stallments in the Arctic. The Terrestrial Radar
Interferometer (tri) image in Fig. 5 gives a
general overview of the area, as observed by
a tri sensor placed in Kongsfjorden during a
2018 field campaign. The dataset recorded by
this sensor is used in the first application, but
the area also roughly corresponds to the area
surveyed in the 2017 uas flights used in the
second application. In each scenario, we wish
to send out two additional sensors carried by
uas agents to provide additional data to be
registered in the map.

In both applications, the detections were
tracked in an lmb tracker as detailed in (Olof-

Tracker ippphd

uas agents

vn

Fig. 6 Path planning system overview

sson et al. 2017b). The phd was extracted from
the tracker at the latest timestep and used for
the generation of path proposals, as illustrated
in Fig. 6. The model for the density of unob-
served targets, vn, is added to the phd of the
tracker and forwarded to the ipp module. The
result of the planning can then be given either
directly to the agents (uas agents in this ex-
ample) or to pilots for confirmation and ex-
ecution. The observations performed by the
agents by following the proposed path is fed
back to the tracker, thereby closing the loop
and using the data to update or propose later
paths.

In both applications, the phd is considered
static with respect to the planning timeline,
and the static equations from Sect. 4 were ap-
plied. The Monte Carlo path-generation are in
both cases compared to the greedy search ex-
plained in Sect. 5.2, as an additional example
of how the measure can be employed.

6.1 Terrestrial Radar Interferometer Dataset

The first dataset is part of a long-term mon-
itoring effort with a tri monitoring primar-
ily sea ice drift in the fjord. The dataset was
gathered in spring 2018, with images taken in
15 minute intervals. The data from the radar
scans is used to form a tracking map of the
region. The radar is located at the red dot in
Fig. 5, and images are detected in a range-
angle coordinate system.

The raw data from the tri was trans-
formed to geocoded Cartesian images with
5m× 5m resolution. The series of images were
then processed using the OpenCV mog2 back-
ground subtractor (Zivkovic 2004) and ex-
tracted from regions with a threshold of a
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minimum of 10 connected pixels. Uniformly
across the scanned region, each detection was
assigned a covariance of 302 m2 · I2 to form
Gaussianly distributed reports. The phd was
sampled with a gridsize of 200 m× 200 m, giv-
ing a 100× 100 grid.

From repeated observation of the whole re-
gion, tracks were formed with an lmb tracker,
with tracking data shown in Fig. 7. In Fig. 8,
plans are shown for two collaborative agents.
Agent 0 (green) will start its observations
at coordinates (4000, 4000) whereas agent 1
(blue) will begin at (5000, 30). Both agents
will make observations for 600 timesteps. The
same scenario was also run using greedy path-
generation, displayed in Fig. 9. Notably, using
the greedy path-generation, the storage order
and max-search algorithm is visible in planned
paths, as it yields straight vertical paths with
a tendency to ignore gains from visiting nearby
neighbors. This is because equivalently valued
maxima are selected in order bottom-to-top,
left-to-right, mirroring the order the elements
are stored in memory.

For the two sets of collaborating agents re-
spectively — the Monte Carlo agents and the
greedy agents — cumulative rewards are com-
pared in Fig. 10. The cumulative rewards show
that the majority of the observational value is
attributed to the first agent, leaving less to the
second agent. In this scenario, the agents coop-
erate, adding to a common expected number of
observed targets. The Monte Carlo optimiza-
tion was run with 1, 000, 000 path proposals
per agent at a cost of approximately 40 µs per
path (giving a total of approximately 85 s in
total), whereas the greedy path was generated
in approximately 0.1 s per path (0.2 s in total).

6.2 Fixed-wing UAS dataset

The second dataset was recorded during a
campaign in 2017, using the Cryowing Scout
fixed wing uas developed by Norut. In the
first run — plotted in Fig. 11 — one agent
flew a fixed pattern predefined by the pilot us-
ing manual waypoints. The observations made

Fig. 7 Sea ice objects, represented by uniquely col-
ored squres, were tracked using an lmb tracker

Fig. 8 Monte Carlo planning for two agents the tri
dataset

during this flights forms one of the bases for
the total phd of the region. To emphasize the
modeling possibilities available in the proposed
measure through vn, we also add a simulated
flow of sea ice, running from the north-east cor-
ner of the region to the west. In Fig. 11, this is
visible as a higher density of targets expected
in the shown area.

Apart from optical imagery, the flight data
includes position data, as well as fov. The
data from which the tracking estimate is con-
structed is recorded from a downwards facing
camera, with images taken every third second
of the flight. Together with speed of flight, fov
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Fig. 9 Greedy path planning for two agents the tri
dataset

Fig. 10 Cumulative rewards for the two sets of col-
laborative agents in the tri dataset

and mission altitude, this entails that a de-
tected object is within fov for an approximate
maximum of three frames. The object detec-
tion algorithm is performed online and the re-
sults stored in a SQL database from which the
flight can be replayed.

The tracking from this dataset is severely
hampered by the limited time an object is
within view and the lack of revisits. This makes
velocity estimates of the sea ice objects very
uncertain. This limits the temporal persistence
of the value of the observations, prompting

Fig. 11 Data collection flight pass with resulting
phd and model for the phd of undetected targets

for faster use of the data. Further, the limited
fov significantly increases the dependency on
the model for undetected targets, as most of
the region is out of view most of the time,
and was only partially observed in the initial
flight. Fig. 11 shows the flight-path for the
initial data-collection together with the mod-
eled stream. The planned paths using Monte
Carlo and greedy path-generation is displayed
in Fig. 12 and Fig. 13 respectively — each for
two collaborative agents. The path planned for
the two agents are optimized sequentially. Sim-
ilarly to the tri example, the greedy equiva-
lent of the scenario in Fig. 12 shows a less ran-
dom behaviour, albeit arguably with a lesser
diversification to compensate for uncertainties
in the model. Just as in the tri application,
the Monte Carlo optimization was run with
1, 000, 000 path proposals per agent at a cost
of approximately 40 µs per path (in this sce-
nario, 85 s in total), whereas the greedy path
was generated in approximately 0.1 s per path
(0.2 s in total).

The cumulative rewards for both path-
generation approaches are compared in
Fig. 14. The gain in cumulative reward in
a collaborative effort of multiple agents is,
compared to the first application in Fig. 10,
more evident in this kind of map, where the
phd is more spread out.
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Fig. 12 Monte Carlo path-generation for two agents
in the uas dataset

Fig. 13 Greedy path-generation for two agents in
the uas dataset

7 Discussion

Interesting insights can often be found at the
intersection between research fields. While the
fields of path planning and target tracking are
closely related and naturally combinable, new
findings in one can be continuously synergized
with that of the other. The phd can provide
a new common language between the fields
and, when augmented with a model for un-
detected targets, a natural way to express a
map of the trade-off between exploration and
exploitation.

The phd as a measure is further of partic-
ular interest, as it is an integral part of the

Fig. 14 Cumulative reward for two sets of collabo-
rating agents in the uas dataset, using Monte Carlo
and greedy path-generation respectively

emerging family of rfs tracking algorithms.
The two applications demonstrate the possibil-
ities of the measure for practical purposes, and
the implementation shows that even a simple
planner can outperform the uninformed case
when given a limited time. For many applica-
tions, a simple greedy planner may give suf-
ficient behaviour, especially when speed is an
important factor. It will, however, likely fall
out of grace as more constraints are added to
the problem, as it lacks the tools to accom-
modate more than the simplest of constraints.
While the Monte Carlo-solver performs signif-
icantly slower in the examples, its speed is
tunable — at the cost of path quality — and
can even be gracefully terminated after a given
per-agent time-limit.

The use of a phd measure proposed in this
article was presented for the static cases of
ipp. The decoupling presented provides a way
to efficiently scale the planning to multiple
agents, but also has an additive property in
that should — say — only the three best out
of four plans be carried out, the measure and
the optimized paths will still be valid for those
three agents.
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It is worthy of note that the measure solely
optimizes the expected number of detected
targets. Other measures may, e.g., better take
into consideration the fact that additional in-
formation, such as velocity and other not di-
rectly observable states, will require revisits
and additional measurements over time, some-
thing that is partially discouraged in order to
maximize the number of detections. However,
unlike e.g. Dames (2019), the exploration is ex-
haustive given enough flight time as the flight
plan does not merely stop at the maximum
but continues to search less weighted areas.
This can be summarized as a difference be-
tween short-term planning (e.g. Dames (2019))
and long-term planning (as used in this arti-
cle). Just like how, e.g., Model Predictive Con-
trol (mpc) is applied, the long-term plans can
always be converted to short-term plans by
truncation whereas the opposite conversion of
course is impossible. Short-term solutions thus
trades any claim on global optimality against
computational benefits.

Weighted combinations of different mea-
sures can provide a calibratable trade-off to
suit applications. The combination of other
measures and the application of other opti-
mization routines is a natural extension of this
work in future research. So too is the applica-
tion of the algorithm in more dynamic envi-
ronments and simulations, and the more gen-
eral question of applying phd-based planning
in a dynamic environment. This would, e.g., in-
clude research on how often plans would need
to be updated with respect to different target
dynamics and agility.

8 Conclusion

A method for multi-agent Informed Path-
Planning (ipp) has been presented. It can be
used to better utilize available resources in
surveillance situations, in particular situations
where exhaustive coverage of the surveillance
region is unrealistic. An example use case is sea
ice monitoring using Unmanned Aerial Sys-
tems (uass) in the Arctic — a scenario which

was used to exemplify the algorithm through
two separate experimental datasets.

The proposed algorithm internally uses a
Probability Hypothesis Density (phd) repre-
sentation, found in modern Multiple Target
Tracking (mtt) methods, of unobserved tar-
gets. Approximations have been derived that
allows for the phd to be sequentially updated
per agent, taking into consideration proba-
bilities of targets being observed by previous
agents as well as the probability of detection
of each agent’s sensor. This gives an algorithm
that scales well with the number of agents
used. An outline of the implementation has
been presented in the article, and reference
given to a Free and Open Source Software
(foss) implementation available online.

The ipp algorithm has been evaluated in
simulations, where it is shown to outperform
both a greedy base line implementation and
a classic lawn mover search pattern, when it
comes to the expected number of observed tar-
gets. Furthermore, the method is shown to pro-
duce reasonable search paths when applied to
experimental data from two different measure-
ment campaigns in the Arctic region outside of
Svalbard.
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