A. Bergheim¹⁾, P.M. Hølland²⁾, P. Krogedal²⁾, A. B. Fjermedal²⁾ & V. Crampton²⁾

Effects of oxygen deficit on post-smolt salmon. Trial II

Report RF - 2005/ 056

¹⁾ RF-Akvamiljø, ²⁾ EWOS Innovation, Dirdal

Rev.no:	00	Date:	05 April 2005
Project number:	P 715	1694	
Project title:	Oksyg	genforsøl	< Laks
Project Leader:	Asbjø	rn Bergh	eim
Client(s):	EWO	S	
Research program:	Skatte	Funn	
ISBN:	82-490)-0354-3	
Distribution restriction:	Open		

www.rf.no /rf-akvamiljo

© This document may only be reproduced with the permission of RF-Akvamiljø or the client. RF - Rogaland Research has a certified Quality System in compliance with the standard NS - EN ISO 9001

Preface

The study at EWOS Innovation in Dirdal was conducted as collaboration between EWOS Innovation and Rogaland Research. Tests of the effects of dissolved oxygen (DO) deficit on salmon post-smolt are a vital part of the on-going R&D project involving EWOS Innovation – OxSeaVision (OSV) – RF. The reported study was carried out at high summer temperature (mainly ca. 15 °C) – unlike the formerly reported study conducted at 8 – 9 °C.

In the present project, Leif Pedersen, Marianne Gjesdal and Kristian Rage at Dirdal have played an important role in collecting data, inspecting measuring equipment, etc. throughout the sampling period. Per Arne Oftedal conducted the set-up of technical facilities prior to sampling. Besides, Dr. Viv Crampton, research manager at EWOS Innovation, is an important decision maker, especially in the planning process.

Generally, the authors have been involved in all project stages. Anne Brit Fjermedal, has been the local day-to-day head of the project.

The project was financially supported by EWOS and Nor. Res. Board (SkatteFUNN – based project). Per Hølland was project manager of the SkatteFUNN project (No. 24123).

Åge Molversmyr, senior research scientist at RF, has quality ensured the report.

Stavanger, 05 April 2005

Asbjørn Bergheim, project leader (BF)

Contents

1	SUMMARY1
2	INTRODUCTION
3	MATERIAL AND METHODS
	3.1 Experimental set-up
	3.2 Measuring program
4	RESULTS 8
	4.1 Temperature and dissolved oxygen
	4.2 Fish growth and feed utilisation
	4.3 Sexual maturation
	4.4 Ventilation frequency
5	DISCUSSION
6	CONCLUSION
7	REFERENCES
8	APPENDIX

1 Summary

Performance of post-smolt Atlantic salmon was studied in tanks at four different levels of dissolved oxygen (DO) at 15 - 16 °C: 60 %, 75 %, 90 % and diurnally fluctuating between 60 and 90 % of saturation. Due to some technical problems, the fish stock in tanks representing the lowest DO group (pre-set: 60 %) experienced an overall average DO level of 66 - 67 % of saturation. After the 56-day test period, the fish was subject to a 2-month recovery phase without any oxygen deficit and lower temperature (10 - 12 °C). The trial was a follow-up of the DO deficit project performed at EWOS Innovation Dirdal in 2002 at lower temperature.

Salmon of 2.5 - 3 kg was stocked in 3 m³ tanks in July 2004 at a density of 35 - 40 kg per m³. Commercial extruded feed was fed to satiation and lost feed was collected in the individual tank.

A decreased growth rate and feed utilisation was observed with reduced DO level but the falling trend was not statistically proved. The obvious reason for the lacking significance was a highly varying performance among tanks within the different DO groups. This seemed to be partly due to varying sexual maturation, from 3 to 22 % in the individual tank, reducing the feed utilisation in several tanks irrespective of DO levels. In some tanks, there were also episodic problems to control the DO concentration. In the control group (90% of DO saturation) representing "optimum" rearing conditions, the fish performance was quite poorer than expected.

In the low DO group, the growth rate (SGR) was 40 - 50% lower and the feed conversion ration (FCR) ca. 30% higher compared with in the other groups. The feed quantity consumed in this group (low DO) was correspondingly reduced. During the succeeding recovery phase, the fish performance in the Low DO group was still poorer than at higher DO levels. The mortality rate was below 0.5% in all four groups.

Gill ventilation frequency, indicating respiratory stress, was found to increase significantly at low and fluctuating DO levels compared with at stable DO levels above 75% of saturation. A slight increase was also observed when reducing DO saturation from 90% to 75%, from ca. 60 to 65 - 70 opercular movements per minute (60% DO and fluctuating DO: 78 – 87 movements per min).

This trial will be repeated studying effects on younger post-smolt salmon (1 - 2 kg) of decreased DO concentrations in the range 95 to 65% of saturation at the same temperature level.

2 Introduction

Water temperature, dissolved oxygen concentration (DO) and photoperiod are potentially influencing on feed intake, metabolic rate and energy expenditure, and thus, on growth in fish (e.g. Brett, 1979). In salmonids, the link between DO and growth rate/feed consumption is well documented for juvenile rainbow trout (Pedersen, 1987) and young Pacific salmon (Brett and Blackburn, 1981), while there is limited available information of 'critical' DO levels for Atlantic salmon. Buentello *et al.* (2000) has estimated the optimal temperature – DO combinations for feed consumption, feed conversion efficiency and growth of channel catfish.

The basic connection between ambient DO and growth rate is described by Jobling (1993), Figure 1. When the level of DO is low, feed intake may be suppressed probably due to the fact that reduced oxygen availability would be unable to support the high energy demands of well-fed fish. At low DO, the reduced feed intake would obviously have consequences for growth. Therefore, it is highly important to determine the critical level of DO at which feed intake and growth become affected in farmed fish species.

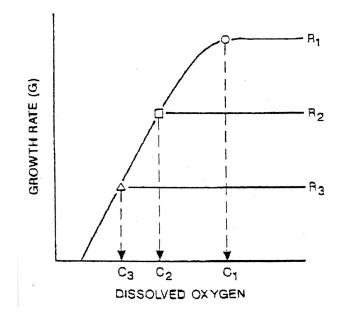
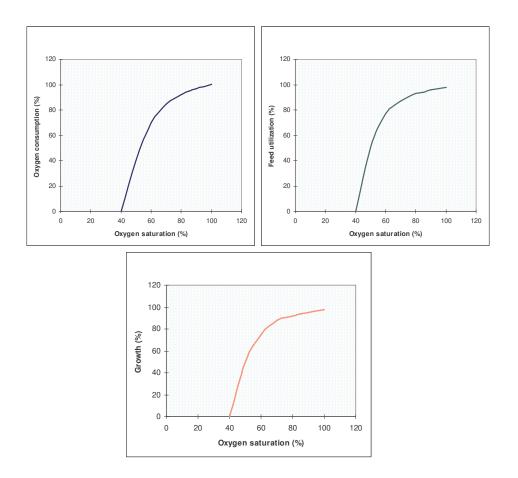
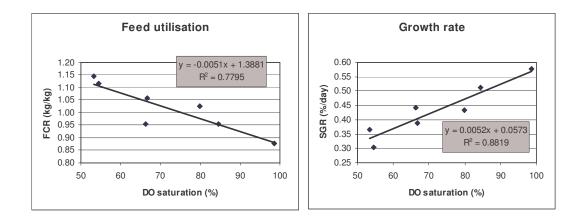



Figure 1. Influence of level of dissolved oxygen (DO) upon growth rate of fish fed three different feed levels (R₁: high, R₂: intermediate, R₃: low feeding rate), Jobling (1993). C₁, C₂, C₃: critical levels of DO required for the maintenance of maximum growth at high, intermediate and low feeding rates, respectively

In an elucidative experiment, metabolic rate, feed utilisation and growth rate in rainbow trout of 100 g were studied within the DO range 4 - 12 mg/L at 15 °C (Pedersen, 1985

& 1987, Figure 2). The critical level of DO for feed intake (appetite) was about 6 mg/L (ca. 60 % of saturation), while the critical level for growth rate and feed utilisation was about 7 mg/L (ca. 70 % of saturation) for fish fed maximum ration. Regarding assimilation of energy and excretion rate of ammonia ($NH_4 + NH_3$) no relation to DO was found.

At 50 % of DO saturation (5 mg/L), the growth rate (SGR) of rainbow trout is only half of the rate at DO above 70 % (7 mg/L), while the feed utilisation is 44 % lower (FCR: 1.56 and 1.08 kg/kg, respectively, Figure 2). In other words, this study indicates that DO in tanks stocked with rainbow trout should be kept above 70 - 80 % of saturation at optimal temperature in order to utilise the growth potential.


Figure 2. Oxygen consumption (a), feed utilisation (b) and growth rate (c) at maximum feed ration in rainbow trout (fish size: 100 g, temperature: 15 °C) in the following DO range: 4, 5, 6, 7, 8.5, 10 and 12 mg/L (40 – 120 % of saturation). Source: Pedersen (1985, 1987)

A few studies have been carried out to assess the effects of reduced DO on post-smolt Atlantic salmon. The lower limit for optimal growth of adult salmon in tanks has been reported to be 6 mg/L at temperature below 10 °C (Berg & Danielsberg (1993). Seymour *et al.* (1992) demonstrated 20 % reduced growth in tanks stocked with salmon (0.5 - 1.5 kg) when the frequency of low DO concentrations in the range 4 - 6 mg/L turned 10 % (8 - 10 °C, sampling time: 6 months).

Seland & Berg (1993) reported unaffected growth rate and feed conversion ratio (FCR) in salmon of 170 - 850 g exposed to short-term DO drops from 7 - 8 mg/L (ca. 75 % of saturation at 8 - 9 °C) down to 2 - 3 mg/L (< 25%). The DO drops were repeated 2 - 3 times during one week, each drop lasting for 6 - 8 hrs (< 5 mg/L for 3 - 6 hrs).

In another study, no negative effects were reported on growth, mortality, FCR or oxygen consumption in salmon at DO fluctuations of 4 - 13 mg/L during a 126 day period. Throughout the period, DO concentrations below 6 mg/L were rare (Forsberg & Bergheim, 1996).

The presented project is a follow-up of a trial studying the effects of reduced DO concentrations (50 – 100 % of saturation) on adult Atlantic salmon at relatively low temperature (8 – 9 °C), Bergheim et al. 2002. The first study (Trial I) clearly indicated reduced growth and feed utilisation even at moderate DO deficit (Figure 3).

Figure 3. Feed utilisation (FCR) and growth (g) in post-smolt Atlantic salmon exposed to four levels of DO concentrations at low temperature (8 – 9 °C). Test period: 24 April – 17 June 2002. EWOS Innovation Dirdal

Justification

The objectives of the described study were the following:

• To obtain basic knowledge of the relation between DO level and feed utilisation and growth in post-smolt Atlantic salmon at *summer temperature*

- To contribute to improved insight of stress reactions at decreased DO concentrations
- To estimate critical DO concentrations of salmon where oxygen addition is recommendable

3 Material and methods

3.1 Experimental set-up

The fish test was performed in the new Research Hall at EWOS Innovation in Dirdal during two phases:

Test phase: 24/25 August – 19/20 October 2004 (56 days), different DO levels (15-16 °C)

Recovery phase: 19/20 October – 20/21 December 2004 (62 days), 90 – 100 % DO saturation, (10 - 12 °C)

Fish tanks

The facilities of the new Research Hall are described by Hølland and Bergheim (2005). Introduction of the energy system allows a temperature range from 8 to 16 °C in the tanks.

Eighteen circular tanks of 2.0 m diameter and 1.15 m water depth (water volume: 3,000 L) were used. The tanks were supplied seawater (27 - 30 ppt salinity, ca. 8.5 °C temperature) pumped from 90 m depth. A flow of 40 L/min per tank was kept throughout the period which corresponded to a specific flow above 0.3 L/kg · min. The DO level of inlet water to the tanks was ca. 100 % of saturation and oxygen was supplied by diffusors placed on the tank bottom (system: GasX II from OxSeaVision). Initially, the flow rate was adjusted to the DO consumption in the tanks based on a PLC control system. Four DO concentrations were kept: 66-67 %, 75 %, 90 % and diurnally fluctuating DO between 90 and 60 % of saturation. The tank arrangement was the following:

High DO group	(90 % of saturation):	Tank No. 1, 5, 11 (3 replicates)
Medium DO group	(75 % of saturation):	Tank No. 3, 10, 13, 17 (4 replicates)
Low DO group	(66 % of saturation):	Tank No. 6, 8, 16 (3 replicates)
Fluctuating DO group (8 replicates)	(90 – 60 % of saturation)	: Tank No. 2, 4, 7, 9, 12, 14, 15, 18

From stocking in late July, temperature was gradually increased to 14 - 15 °C at the time of project start, kept around 16°C throughout the test phase and then reduced to 10 - 12 °C in the recovery phase.

The tanks are equipped with a system which separates lost feed and faeces, and collects the lost feed pellets (system: Hølland Teknologi).

Fish stock

About 700 adult salmon of the AquaGen strain were stocked in the tanks in July 2004 (Week 29). The eggs were delivered from Erfjord Stamfisk in January 2002 and became smolt in spring 2003. All fish were individually marked at time of stocking (pit tag). Until individual weighing and length measuring on 24 August, the temperature was gradually increased by about one degree per week and the DO concentration was kept stable at about 90% of saturation. The stocking density at start was 37 - 40 individuals with a mean weight of 2.5 - 2.8 kg (94 - 113 kg, i.e. 31 - 38 kg per m³) and at the end of the trial in December: a mean weight of 3.0 - 3.8 kg, a biomass per tank of 115 - 149 kg corresponding to a density of 38 - 50 kg per m³.

The feed applied was EWOS pyramid ytelse (37/40 prt/oil, GE 26.8 MJ/kg) and EWOS pyramid kvalitet (40/30 prt/oil, GE 24.4 MJ/kg). These are commercial products from EWOS Norway. EWOS pyramid kvalitet was fed to all tanks apart from four tanks at diurnally varying DO level.

Feed consumed per tank was calculated as follows:

Feed consumed (kg) = Supplied feed – Lost feed, where

supplied feed was calculated as feed quantity (kg) put in the automat less the residual feed after 14 days, while lost feed was the totally collected feed loss (kg) during 14 days (daily collected). In practice, the daily number of lost pellets is counted per tank and feed loss is then calculated based on the weight of 20 dry pellets.

3.2 Measuring program

The protocol is briefly described in Table 1.

Oxygen, temperature and salinity

DO and temperature in each tank were monitored continually (system: Visual Control Centre), readings were logged twice a minute (30 sec intervals). DO sensors (type: SensorX) were calibrated once a month (calibration in air). In the inlet water, salinity was measured daily (system: Aanderaa Instruments, Display Unit 3017/Sensor Unit 3210).

Flow

The flow rate of each tank was adjusted to 40 L/min twice (reading the flow meter), on 24-25 August and on 19-20 October. The rate was stable throughout the period (constant water pressure).

Fish stock, feeding routine etc

Individual fish weight (1 g) and length (fork length, 0.5 cm) was measured at start (24 Aug), at the end of the trial stage (19/20 Oct) and at the end of the recovery phase (20/21 Dec). Fish were anaesthetised using Aqui-S (clove oil) at start and in the intermediary sampling. At the final sampling, fish were killed and individual weight of bled fish was measured (UBW: body weight of bled, ungutted fish). Then, gonads were weighed (g) and sex determined.

Table 1. Sampling program of the oxygen deficit project (Part II) at EWOS Innovation Dirdal 24/25 August – 20/21 December 2004). Trial phase: 24/25 Aug – 19/20 Oct, Recovery phase: 19/20 Oct – 20/21 Dec.

Parameter	Sampling point	Frequency
Water quality:		
Temperature (°C)	Inlet water	Daily
DO (mg/L)	In each tank	Continuous
Salinity (ppt)	Inlet water	Daily
Water flow (L/min)	Inlet each tank	Adjusted 24-25 August &
		19-20 October
Fish stock:		
Individual size, weight	Each tank	24-25 August, 19-20
(g) & length (cm)		October & 20-21 December
Mortality		Daily
Feed rate, g/day	Each tank	Fortnightly
Feed loss	Outlet each tank	Daily

Respiration frequency

Respiration frequency of three individuals per tank was measured three times, on 10 September, 24 September and on 6 October. The readings were carried out through the inspection window based on a method described by Fivelstad *et al.* (2003): the time consumed of 25 respiratory cycles (mouth or operculum movements) measured by a stop watch. The results are expressed as respiratory cycles per minute.

Sexual maturation

The occurrence of sexually matured fish was examined at slaughtering on 20-21 December. In matured fish, the gonads were weighed (GW) and the gonadosomatic index (GSI) was calculated:

 $GSI = (GW/UBW)^* 100$, where UBW is body weight of bled, ungutted fish

Statistical testing

Student's t-Test (TTEST, Microsoft Excel) was applied for probability testing of differences between fish performance (SGR, FCR, maturation) and ventilation frequency of the four DO groups.

4 Results

4.1 Temperature and dissolved oxygen

Temperature turned 15 °C on 4 September, gradually increased to 16 °C towards the end of the month and then stayed stable (± 0.2 °C) till 15 October (Figure 1).

Daily means and standard deviations of DO are presented for some tanks (Figure 2-5), while overall means, standard deviations and max – means are presented for all tanks in Table 2. The period with controlled DO levels was defined from 1 September till 15 October. Due to technical faults, such as power failure, temporary deviations were observed outside the acceptable range, i.e. in Tank 1 and 11. In most tanks, however, the pre-set DO level stayed relatively stable throughout the period. Due to technical problems, the mean DO concentrations in the Low DO tanks, pre-set 60 % of saturation, were 66 – 67 % of saturation. For the other DO groups, included the DO fluctuating group, the overall means did not deviate more than 2 % of saturation from pre-set level. Daily means and max – min are also presented in Appendix.

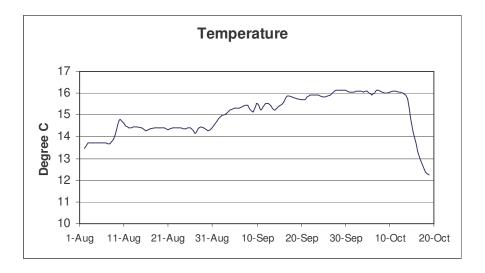


Figure 1. Daily average temperature (°C), Research Hall, EWOS Innovation Dirdal, August – October 2004

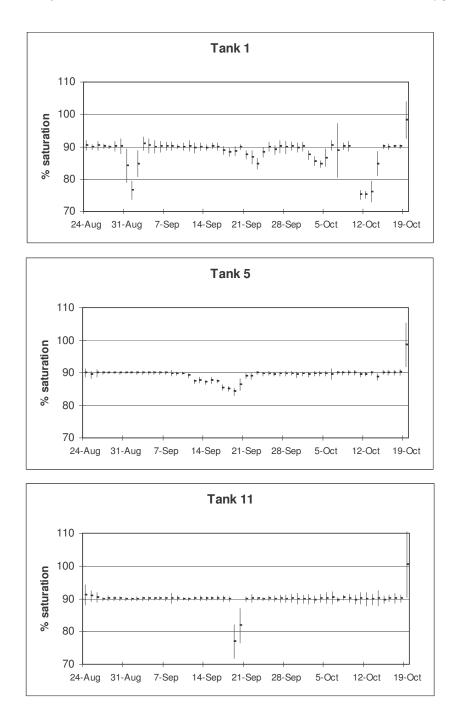
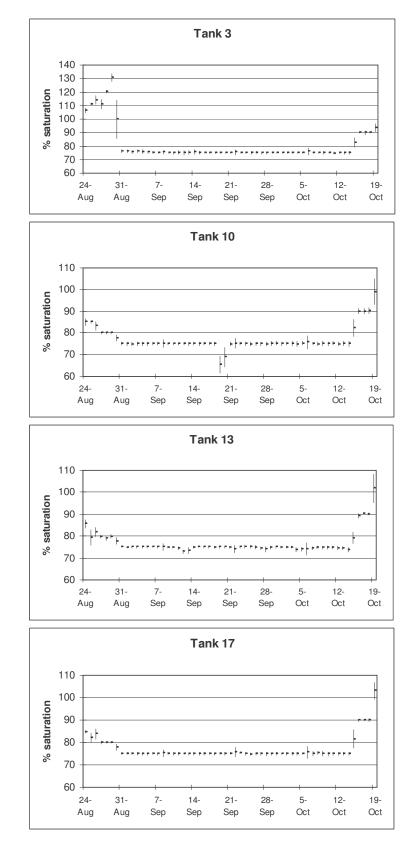
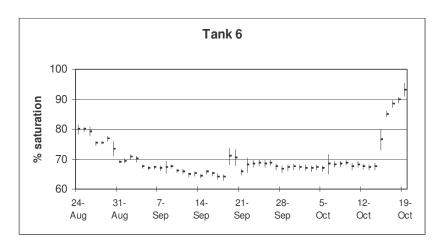
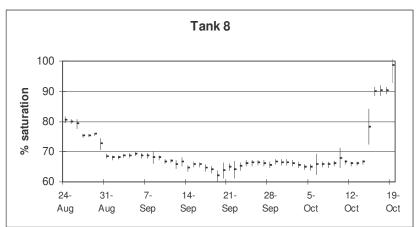





Figure 2. Daily DO means and standard deviations (S.D.) in tanks representing High DO level (90 % of saturation). EWOS Innovation Dirdal, 24 Aug. – 19 Oct. 2004 (DO was adjusted step-wise 24 – 31 Aug. and 15 – 17 Oct.)

Figure 3. Daily DO means and standard deviations (SD) in tanks representing Medium DO level (75 % of saturation). EWOS Innovation Dirdal, 24 Aug. – 19 Oct. 2004

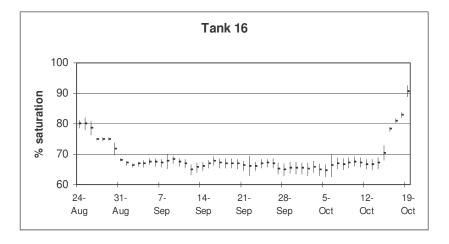


Figure 4. Daily DO means and standard deviations (S.D.) in tanks representing Low DO level (60 % of saturation). EWOS Innovation Dirdal, 24 Aug. – 19 Oct. 2004 (DO was adjusted step-wise 24 – 31 Aug. and 15 – 17 Oct.)

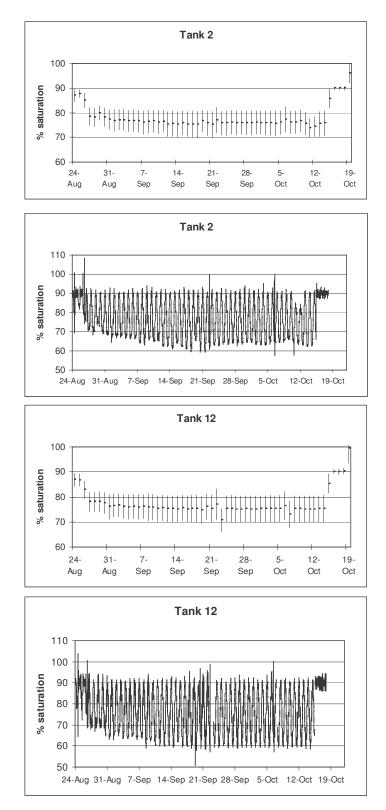


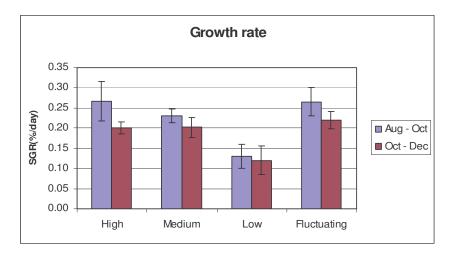
Figure 5. Daily DO means, S.D. and diurnal variations in two tanks with Fluctuating levels (90 - 60% of saturation). EWOS Innovation Dirdal, Aug – Oct. 2004 (DO was adjusted step-wise 24 – 31 Aug. and 15 – 17 Oct.)

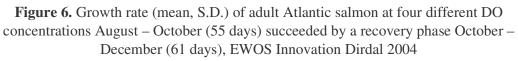
DO Group	Tank	Mean,	S.D.,	Max – min,
	No.	%	%	%
High	1	87.9	5.3	112 - 60
(pre-set: 90 %)	5	89.0	2.1	100 - 77
	11	89.5	4.0	122 - 55
Medium	3	75.2	2.1	100 - 66
(pre-set: 75 %)	10	74.7	3.2	102 - 49
	13	74.7	1.8	101 - 67
	17	75.0	1.6	100 - 63
Low	6	67.3	2.9	102 - 58
(pre-set: 60 %)	8	66.2	3.0	118 - 49
	16	66.5	3.5	99 - 56
Fluctuating	2	75.9	9.5	100 - 58
(pre-set:	4	76.6	8.9	100 - 58
90 - 60 %)	7	76.1	9.3	100 - 43
	9	75.3	10.3	103 - 42
	12	75.3	10.4	100 - 51
	14	76.2	9.6	100 - 58
	15	74.7	10.3	101 - 49
	18	75.0	11.0	110 - 51

Table 2. DO means, S.D. and max – min in 18 tanks with four pre-set DO levels, EWOS Innovation Dirdal, 1 September – 15 October 2004. Unit: % of DO saturation

4.2 Fish growth and feed utilisation

Within the different DO groups there were considerable fluctuations between tanks (Figure 6 - 9, Appendix).


The mean SGR and FCR were the following:


Group	SGR, %/day	FCR, kg/kg
90 % DO saturation	0.27 (0.19)	1.41 (1.50)
75 % DO saturation:	0.24 (0.20)	1.39 (1.48)
66 % DO saturation:	0.13 (0.13)	1.94 (1.80)
Fluctuating DO saturation:	0.25 (0.21)	1.29 (1.45)
(): 2 nd period (October – Decen	nber)	

The Low DO group demonstrated a noticeably lower growth rate and feed utilisation compared to the three other groups. However, no significant differences were found (p>0.05) between any group during the two periods, August – October and October – December, due to the high variation between tanks within groups. This in-group variation is also demonstrated in Figure 9 (DO fluctuating group not included). The growth rate was similar in the High, Medium and Fluctuating DO groups (0.24 - 0.27, 0.19 - 0.21 %/day).

Only three individuals died throughout the test phase (one in Tank 4, 14 and 16), no mortality was observed in the recovery phase.

An overall high feed conversion ratio was calculated. In the High, Medium and Fluctuating DO groups, the FCR was 1.3 - 1.4 in the first period (Aug – Oct) which increased by 0.09 - 0.15 in the succeeding recovery phase. In the Low DO group, the FCR found was 40 - 50% higher compared with the other groups and remained 20 - 25% higher during the recovery phase. The fluctuating FCR was in accordance with the feed quantity consumed (Figure 7 - 8). No significant differences were however observed (p> 0.05).

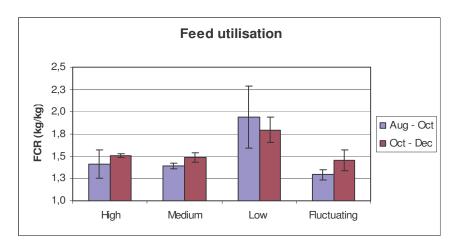
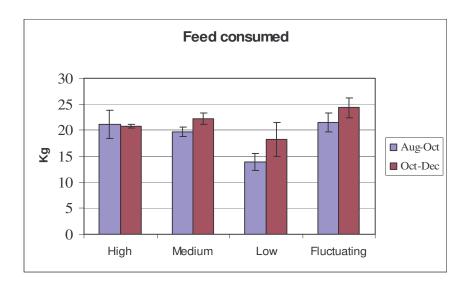
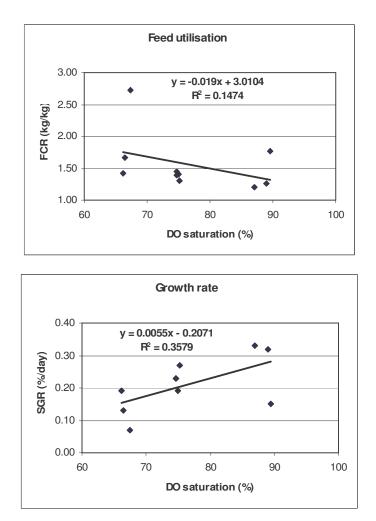



Figure 7. Feed conversion ratio (mean, S.D.) of adult Atlantic salmon at four different DO concentrations August – October (55 days) succeeded by a recovery phase October – December (61 days), EWOS Innovation Dirdal 2004

Figure 8. Feed consumed (mean, S.D.) by adult Atlantic salmon at four different DO concentrations August – October (55 days) succeeded by a recovery phase October – December (61 days), EWOS Innovation Dirdal 2004

4.3 Sexual maturation


The occurrence of sexually matured fish varied highly from one tank to another, e.g. 1 - 8 matured fish per tank within the Fluctuating DO group. 89% of all matured fish were males (GSI: 2.5 - 8.3), 11% were females (GSI: 11.0 - 21.2). 7.2 - 13.3% of the fish stock within the four DO groups was sexually matured (Figure 10) but no statistical differences were indicated (p > 0.05).

4.4 Ventilation frequency

The gill ventilation frequency indicated clear effects of reduced DO concentration (Figure 11):

High DO group:	59 – 62 move	ements/min
Medium DO group:	66 – 74	"
Low DO group:	81 - 87	"
Fluctuating DO group:	78 - 82	"

The fish stock of the High DO group had significantly lower V_f compared to the three other groups (High vs. Medium: p< 0.05, High vs. Low/Fluctuating: p< 0.01). The V_f of the Medium DO group was significantly lower compared to the Low/Fluctuating groups (p< 0.01).

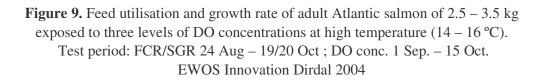
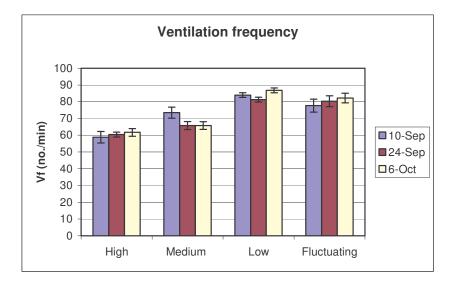



Figure 10. Frequency of sexual maturation (mean, S.D.) of adult Atlantic salmon of 2.5 – 3.5 kg exposed to four levels of DO concentrations at high temperature (14 – 16 °C). EWOS Innovation Dirdal, 20-21 December 2004

Figure 11. Gill ventilation frequency (V_f) of adult Atlantic salmon at four DO concentration levels, EWOS Innovation Dirdal, September – October 2004

5 Discussion

Fish performance in all DO groups was generally poor. At 14°C, a mean daily growth rate of about 0.75 %/day is expected for adult salmon of 3 kg (Forsberg, 1996). However, a considerable seasonal variation is found in land-based farms: in autumn (August – October) the relative growth rate ("growth index") from several Norwegian farms was reported to be 70 – 100% of expected mean growth throughout the year (Forsberg, op. cit). Anyway, the growth rate in the present study was expected to be at least 0.5 %/day at "optimal" rearing conditions (SGR High DO group: 0.27 %/day). At moderate DO deficit (75% of saturation) and diurnally fluctuating DO (90 – 60% of saturation), the growth rate was at the same level (0.24 – 0.25%/day). One reason for the low growth rate is probably the high temperature (15 – 16 °C), outside the valid temperature range of the growth model (4 - 14 °C). According to this model, the observed growth in the recovery phase (SGR: 0.13 – 0.21%/day, 10 – 12 °C) was still far below the expected growth rate for October – December.

There was no observed growth suppression in the Fluctuating DO group compared to the High DO group. Similar results are observed at low temperature (8 ± 0.5 °C, Forsberg and Bergheim, 1996) for adult salmon but are a somewhat surprising finding at this temperature level. The growth rate was almost reduced by 50% in the Low DO group compared to other groups and remained lower (ca. 35% less) during the recovery phase.

According to Jobling (1993), the reduced oxygen availability in the Low DO group (66 – 67% of saturation) was probably insufficient to support the high energy demand of well-fed fish and thus reduced the appetite. Levels of DO limiting feed intake in fish are usually between 50 and 70% of saturation, with values for salmonids being towards the top end of the range (Jobling, 1995). In this study, the "critical" DO limit allowing for maximum growth rate seems to be in the range 67 - 75% of saturation (5.5 – 6.3 mg/L). The "critical" DO limit in the former study (Bergheim *et al.* 2002) indicated a somewhat higher concentration even at lower temperature. This confusing result might partly be due to the large variation among tanks within the same DO group, especially in the High and Low DO groups (no significant differences indicated). Both physiological adaptation to low DO levels (Foss *et al.* 2002) and increased hypoxia tolerance in larger fish (Shepard, 1955) might be influencing factors.

Based on EWOS experience with this kind of test set-up at fully oxygen saturated water, salmon at this body weight should obtain lower FCR. According to an internal energy consumption model, the dietary energy level should allow for a FCR of 1.09 when fed EWOS pyramid kvalitet and 0.93 when fed EWOS pyramid ytelse, throughout the trial. Obviously, the fluctuating and partly high sexual maturation frequency (3 - 22 %) in individual tanks) both increased the overall FCR and reduced the conformity vs. DO level. The strongly reduced feed intake in the Low DO group clearly indicated that the reduced oxygen availability suppressed the appetite of the fish (Jobling, 1993).

Generally, fish will try to compensate for limiting DO concentration by increasing the respiratory volume (gill ventilation frequency and opercular amplitude, e.g. Jones, 1964). "Moderate" short-term hypoxia conditions (ca. 41% DO saturation) provoked an increase in the ventilation frequency in rainbow trout followed by respiratory alkalosis

(Thomas and Hughes, 1982). In Atlantic salmon, ventilation frequency has been applied to study response of increased carbon dioxide (hypercapnia) and ammonia concentrations (Fivelstad *et al.* 2003, Knoph, 1996). In the present study, carbon dioxide and ammonia were not measured but based on calculations of expected excretion and tank flow the concentrations were below harmful levels.

The ventilation frequency (V_f) increased gradually from High DO to Medium and Low/Fluctuating DO levels. From an expected "normal" level of ca. 60 movements/min of adult salmon at high temperature (90 % DO saturation, i.e. normoxia/mild hypoxia), V_f increased to 78 – 87 movements/min at more severe hypoxia (66 % DO saturation) and at diurnally fluctuating norm- and hypoxia (90 – 60 % DO saturation). The monitoring of V_f took place before midday (9 – 11 am) when the DO concentration in the Fluctuating DO tanks was low, between 60 – 70 % of saturation. There were no signs of reduced V_f in this group throughout the period indicating lack of physiological adaptation to the fluctuated diurnal DO concentrations. In this group, additional V_f monitoring in the afternoon should have been carried out to clarify the diurnal V_f range.

Despite little available literature, the obtained results generally match other findings describing growth of adult Atlantic salmon at different DO concentrations. Berg & Danielsberg (1990) reported a 30 % decrease in growth rate in Atlantic salmon of 1 - 2 kg at temperature above 10 - 12 °C when DO of the tank outlet water was permanently reduced from 8 - 9 mg/L (> 90 % of saturation) to 5 - 6 mg/L (50 - 60 % of saturation) over 6 months. In the first reported study, a correspondingly reduced SGR was found (from ca. 0.5 to 0.35 %/day) over the same DO range (Bergheim *et al.* 2002).

6 Conclusion

- At high summer temperature, reduced and diurnally fluctuating DO concentrations in the range 90 to 60% of saturation caused reduced growth and feed utilisation in adult Atlantic salmon
- The decreased fish performance was not significant due to high variation among replicate tanks, e.g. because of occurrence of sexual maturation
- Gill respiration frequency increased significantly with reduced DO concentration indicating stressing conditions at moderately hypoxia and high temperature
- Another high temperature reduced DO concentration trial will be conducted with smaller post-smolt salmon

7 References

Berg, A. & A. Danielsberg. 1990. Effect of different oxygen levels and stocking densities on growth of adult Atlantic salmon (*Salmo salar* L.). Paper for World Aquaculture 1990, Halifax, Canada.

Bergheim, A., Gausen, M., Næss, A., Fjermedal, A. M., Hølland, P. M. & Å. Molversmyr. 2002. Effects of oxygen deficit on post-smolt salmon. Trial I. *Report RF*-2002/307. 25 p.

Buentello, J. A., Gatlin III, D. M. & W. H. Neill. 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (*Ictalurus punctatus*). *Aquaculture*, 182, 339-352.

Brett, J. R. 1979. Environmental factors and growth, pp. 599-675. In: *Fish Physiology*, *Vol. VIII* (eds. W. S. Hoar, D. J. Randall and J. R. Brett). Academic Press, New York.

Brett, J. R. & J. M. Blackburn. 1981. Oxygen requirements for growth of young coho (*Oncorhynchus kisutch*) and sockey (*O. nerka*) salmon at 15 °C. *Can. J. Fish. Aquat. Sci.* 38, 399-404.

Fivelstad, S., Olsen, A. B., Åsgård, T., Baeverfjord, G., Rasmussen, T., Vindheim, T. & S. Stefansson. 2003. Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (*Salmo salar* L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. *Aquaculture*, 215, 301-319.

Forsberg, O.I. 1996. Empirical investigations on growth of post-smolt Atlantic salmon (*Salmo salar* L.) in land-based farms. Evidence of photoperiodic influence. *Aquaculture*, 133, 235-248.

Forsberg, O. I. & A. Bergheim. 1996. The impact of constant and fluctuating oxygen concentrations and two water consumption rates on post-smolt Atlantic salmon production parameters. *Aquacultural Engineering*, 15, 327-347.

Foss, A., Evensen, T. H. & V. Øiestad. 2002. Effects of hypoxia and hyperoxia on growth and food conversion efficiency in the spotted wolffish *Anarhichas minor* (Olafsen). *Aquaculture Research*, 33, 437-444.

Hølland, P. & A. Bergheim. 2005. Construction of a state-of-the-art research facility at EWOS Innovation Dirdal 2003 – 04. Objectives, facilities, application. Report from EWOS Innovation (In press).

Jobling, M. 1993. Fish Bioenergetics. Chapman and Hall, London. 309 p.

Jobling, M. 1995. The influence of environmental temperature on growth and conversion efficiency in fish. Causes of observed variations in fish growth. *ICES CM* P4, 1-25.

Jones, J. R. E. 1964. Fish and River Pollution. Butterworth, London. 203 p.

Knoph, M. B. 1996. Gill ventilation frequency and mortality of Atlantic salmon (*Salmo salar* L.) exposed to high ammonia levels in seawater. *Water Research*, 30, 837-842.

Pedersen, L. C. 1985. Iltindhold hæves ved vækstforsøg. Nyt fra Forsøgsdambruget. Ferskvandsfiskeribladet, 83 (12): 313-319 (In Danish)

Pedersen, L. C. 1987. Energy budget for juvenile rainbow trout at various oxygen concentrations. *Aquaculture*, 62, 289-298.

Seland, A. & A. Berg. 1993. Sub-acute effects of oxygen drops in landbased farms. *In:* (H. Reinertsen, L.A. Dahle, L. Jørgensen & K. Tvinnereim, eds.). *Fish Farming Technology*, p. 375 - 381. Proceedings of the 1st Int. Conf. on Fish Farming Technology held in Trondheim, Norway 9 - 12 August 1993. 482 p.

Seymour, A. E., Forsberg, O.I. & J. P. Aabel. 1992. The effect of various stocking densities, low water use and two oxygen levels on production of adult Atlantic salmon (*Salmo salar* L.) in landbased tanks. *Report RF*-193/92. 29p.

Shepard, M. P. 1955. Resistance and tolerance of young speckled trout (*Salvelinus fontinalis*) to oxygen lack, with special reference to low oxygen acclimation. *J. Fish. Res. Bd. Canada*, 12, 387-433.

Thomas, S. & G. M. Hughes. 1982. A study of the effects of hypoxia on acid-base status of rainbow trout blood using an extracorporeal blood circulation. *Respiratory Physiology*, 49, 371-382.

8 Appendix

Daily DO concentrations in Tanks, EWOS Innovation Dirdal 2004.

Group: High DO Level (preset level: 90% of saturation 2 Sep – 14 Oct). Unit: % of saturation

Date	Tank	: 1		Tank	ank 5		Tank	: 11	
	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min
24-Aug	90	111	84	90	100	81	91	108	82
25-Aug	90	93	87	89	95	80	91	103	83
26-Aug	90	108	84	90	96	79	90	102	81
27-Aug	90	94	87	90	93	87	90	92	88
28-Aug	90	93	88	90	92	87	90	94	88
29-Aug	90	99	83	90	92	87	90	94	87
30-Aug	90	102	81	90	92	88	90	93	87
31-Aug	84	106	69	90	91	88	90	93	88
1-Sep	76	88	67	90	92	87	90	94	87
2-Sep	85	110	74	90	92	87	90	93	86
3-Sep	91	101	83	90	93	88	90	93	87
4-Sep	90	100	80	90	92	88	90	94	86
5-Sep	90	98	80	90	92	87	90	93	87
6-Sep	90	97	80	90	93	87	90	93	89
7-Sep	90	96	82	90	93	87	90	93	87
8-Sep	90	100	81	90	94	85	90	97	82
9-Sep	90	93	85	90	92	86	90	95	87
10-Sep	90	94	82	90	91	88	90	92	89
11-Sep	90	100	82	89	94	86	90	93	87
12-Sep	90	96	83	87	90	85	90	93	88
13-Sep	90	97	83	88	92	84	90	95	87
14-Sep	90	94	83	87	90	85	90	94	87
15-Sep	90	94	85	88	91	83	90	95	87
16-Sep	90	96	83	87	90	85	90	94	87
17-Sep	89	94	81	85	88	80	90	95	87
18-Sep	88	95	83	85	88	83	90	93	87
19-Sep	89	95	82	84	90	77	77	94	55
20-Sep	90	94	86	86	92	80	82	114	67
21-Sep	87	93	82	89	91	84	90	94	87
22-Sep	87	100	77	89	99	84	90	98	84
23-Sep	85	90	78	90	92	87	90	94	89
24-Sep	88	100	83	90	92	87	90	92	88
25-Sep	90	98	84	90	92	86	90	93	86
26-Sep	89	97	82	90	93	86	90	94	85
20-Sep 27-Sep	90	98	81	90	92	86	90	97	85
28-Sep	90	105	80	90	93	86	90	97	86
29-Sep	90	97	83	90	92	84	90	96	84
30-Sep	90	97	84	89	94	86	90	102	84
1-Oct	90	98	84	90	93	86	90	97	84
2-Oct	87	96	82	89	93	84	90	98	82
3-Oct	86	92	79	90	93	85	90	97	84
4-Oct	85	92 90	81	90	93	86	90	96	82
4-0ct 5-0ct	83	108	77	90	93 93	80 86	90 90	102	82 84
6-Oct	90	108	76	90	100	80 77	90 90	102	84 75
7-Oct	90	112	70 84	90	92	87	90 90	93	86
8-Oct	91	96	84 85	90	92 92	87 87	90 90	95 95	80 86
0-001	90	90	00	90	92	0/	90	73	00

Group: High DO Level cont.

Date	Tank 1			Tank 5			Tank 11			
	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	
9-Oct	90	100	84	90	94	87	90	102	85	
10-Oct	86	101	68	90	94	86	90	98	84	
11-Oct	75	81	71	90	92	85	90	102	81	
12-Oct	75	82	71	90	92	85	90	102	82	
13-Oct	76	110	60	90	92	85	90	103	83	
14-Oct	85	97	72	89	93	84	90	122	81	
15-Oct	90	94	86	90	93	86	90	97	85	
16-Oct	90	95	83	90	93	86	90	95	86	
17-Oct	90	93	86	90	93	86	90	100	84	
18-Oct	90	94	86	90	96	83	90	97	85	
19-Oct	98	135	88	99	148	88	100	212	88	

Daily DO concentrations in Tanks, EWOS Innovation Dirdal 2004.

Group: Medium DO Level (preset level: 75% of saturation 2 Sep – 14 Oct). Unit: % of saturation

24-Aug 106 117 97 85 93 65 86 93 77 85 88 25-Aug 111 117 107 85 87 82 79 93 51 82 88 26-Aug 114 135 98 83 98 76 82 100 72 84 10 27-Aug 111 124 517 80 83 78 80 82 73 80 84 74 80 83 28-Aug 121 126 117 80 83 77 80 84 74 80 83 30-Aug 99 148 72 75 80 72 75 78 72 75 77 73 75 77 73 75 77 73 75 77 73 75 77 75 77 75 77 75 77 75 77	te	x 3	ate	Tank 10	Tank 13	Tank 17
25-Aug 111 117 107 85 87 82 79 93 51 82 83 26-Aug 114 135 98 83 98 76 82 100 72 84 100 27-Aug 111 123 95 80 83 78 80 82 73 80 83 28-Aug 121 126 117 80 83 77 80 84 74 80 83 30-Aug 99 148 72 78 82 73 78 84 72 78 83 75 77 1-Sep 76 83 70 75 79 71 75 78 73 75 77 73 75 77 73 75 77 73 75 77 73 75 77 73 75 77 73 75 77 75 77 73	1	Max Mi		Mean Max Min	Mean Max Min	Mean Max Min
26-Aug 114 135 98 83 98 76 82 100 72 84 100 27-Aug 111 123 95 80 83 78 80 82 73 80 83 28-Aug 121 126 117 80 83 77 80 84 74 80 83 30-Aug 99 148 72 78 82 73 78 84 72 78 83 31-Aug 76 83 70 75 77 77 78 75 77 75 77 75 77 75 77 75 77 73 75 77 73 75 77 73 75 77 73 75 77 73 75 77 73 75 76 77 73 75 77 73 75 76 72 75 77 73 75 <	-Aug	117 97	4-Aug	85 93 65	86 93 77	85 88 81
27-Aug 111 123 95 80 83 78 80 82 73 80 83 28-Aug 121 126 117 80 83 78 79 84 74 80 83 29-Aug 131 145 117 80 83 77 80 84 74 80 83 30-Aug 99 148 72 78 82 73 78 84 72 78 83 31-Aug 76 83 70 75 79 71 75 78 72 75 77 1-Sep 76 85 72 75 79 71 75 78 72 75 77 3-Sep 76 81 72 75 81 71 75 78 72 75 77 73 75 77 74 85 77 70 75 77 75 77 75 77 75 77 75 77 75 77 75	-Aug	117 107	5-Aug	85 87 82	79 93 51	82 88 64
28-Aug 121 126 117 80 83 78 79 84 74 80 83 29-Aug 131 145 117 80 83 77 80 84 74 80 83 30-Aug 79 14 75 78 72 75 77 77 78 75 77 77 78 75 77 75 77	-Aug	135 98	6-Aug	83 98 76	82 100 72	84 107 77
29-Aug 131 145 117 80 83 77 80 84 74 80 83 30-Aug 99 148 72 78 82 73 78 84 72 78 83 31-Aug 76 83 70 75 79 71 75 78 73 75 77 1-Sep 76 85 71 75 78 71 75 78 73 75 77 3-Sep 76 85 72 75 79 71 75 78 72 75 77 3-Sep 76 86 70 75 79 71 75 77 73 75 77 3-Sep 76 86 71 75 79 71 75 77 73 76 72 75 77 75 77 73 76 72 75 78 77 7	-Aug	123 95	7-Aug	80 83 78	80 82 73	80 83 76
30-Aug 99 148 72 78 82 73 78 84 72 78 83 31-Aug 76 83 72 75 80 72 75 78 72 75 77 75 77 1-Sep 76 83 70 75 79 71 75 78 73 75 77 2-Sep 75 85 71 75 79 71 75 78 72 75 77 3-Sep 76 81 72 75 79 71 75 77 73 75 77 6-Sep 75 80 71 75 77 73 75 77 70 75 77 73 75 77 73 75 77 73 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75	-Aug	126 117	8-Aug	80 83 78	79 84 74	80 82 77
31-Aug 76 83 72 75 80 72 75 78 72 75 77 1-Sep 76 83 70 75 79 71 75 78 73 75 77 2-Sep 75 85 71 75 78 71 75 78 73 75 77 3-Sep 76 85 72 75 79 71 75 78 72 75 77 4-Sep 76 81 72 75 77 71 75 77 73 75 77 75 77 72 75 77 75 77 72 75 77 73 75 76 72 75 77 73 75 76 72 75 77 73 75 76 77 76 75 77 72 75 76 72 75 76 75 77	-Aug	145 117	9-Aug	80 83 77	80 84 74	80 82 77
1-Sep 76 83 70 75 79 71 75 78 73 75 74 2-Sep 75 85 71 75 78 71 75 79 73 75 77 3-Sep 76 85 72 75 79 71 75 80 73 75 77 4-Sep 76 81 72 75 81 71 75 77 73 75 77 5-Sep 76 81 73 75 79 71 75 77 73 75 76 77 73 75 76 72 75 77 73 75 76 72 75 77 78 72 75 77 70 75 76 72 75 77 70 75 77 70 75 76 72 75 78 72 75 76 77 72	-Aug	148 72	0-Aug	78 82 73	78 84 72	78 82 73
2. Sep 75 85 71 75 78 71 75 79 73 75 74 3. Sep 76 85 72 75 79 71 75 80 73 75 77 4. Sep 76 81 72 75 79 71 75 78 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 72 75 77 73 75 76 77 72 75 77 72 75 77 72 75 77 72 75 78 74 78 72 75 78 74 78 72 75 78 74 75 77 72 75 88 75	-Aug	83 72	1-Aug	75 80 72	75 78 72	75 77 74
3-Sep 76 85 72 75 79 71 75 80 73 75 74 4-Sep 76 86 70 75 79 71 75 78 72 75 77 5-Sep 76 81 72 75 81 71 75 77 72 75 77 6-Sep 75 80 71 75 79 71 75 77 73 75 77 7-Sep 75 80 71 75 77 73 75 76 72 75 77 73 75 76 72 75 77 73 75 76 72 75 77 73 75 76 72 75 77 73 75 76 72 75 77 73 75 76 72 75 76 72 75 76 72 75 76 72 75 77 72 75 77 72 75 77 72 75 <t< td=""><td>-Sep</td><td>83 70</td><td>1-Sep</td><td>75 79 71</td><td>75 78 73</td><td>75 78 72</td></t<>	-Sep	83 70	1-Sep	75 79 71	75 78 73	75 78 72
4-Sep 76 86 70 75 79 71 75 78 72 75 77 5-Sep 76 81 72 75 81 71 75 77 72 75 77 6-Sep 75 81 73 75 79 71 75 77 73 75 77 7-Sep 75 80 71 75 77 73 75 77 72 75 77 75 77 8-Sep 75 80 71 77 97 71 75 77 72 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 72 75 78 72 75 78 72 75 78 74 78 72 75 78 74 78 72 75 77 73 75 <t< td=""><td>2-Sep</td><td>85 71</td><td>2-Sep</td><td>75 78 71</td><td>75 79 73</td><td>75 78 73</td></t<>	2-Sep	85 71	2-Sep	75 78 71	75 79 73	75 78 73
5-Sep 76 81 72 75 81 71 75 77 72 75 77 6-Sep 75 81 73 75 79 71 75 77 73 75 77 7-Sep 75 80 71 75 79 72 75 77 73 75 77 9-Sep 75 80 71 77 73 75 76 72 75 77 10-Sep 75 80 71 77 92 67 75 77 72 75 77 11-Sep 75 85 69 77 91 67 74 78 72 75 78 13-Sep 75 84 69 76 92 65 73 81 68 75 77 72 75 78 72 75 78 72 75 78 72 75 78 <td>3-Sep</td> <td>85 72</td> <td>3-Sep</td> <td>75 79 71</td> <td>75 80 73</td> <td>75 78 73</td>	3-Sep	85 72	3-Sep	75 79 71	75 80 73	75 78 73
6-Sep 75 81 73 75 79 71 75 77 73 75 77 7-Sep 75 80 71 75 79 72 75 77 72 75 77 72 75 77 8-Sep 75 80 71 75 77 73 75 76 72 75 77 9-Sep 75 80 71 77 79 267 75 77 72 75 78 10-Sep 75 85 69 76 92 65 73 76 68 75 78 13-Sep 75 84 68 76 92 64 75 78 72 75 78 14-Sep 75 78 72 76 91 65 75 78 72 75 78 14-Sep 75 78 72 76 91 6	-Sep	86 70	4-Sep	75 79 71	75 78 72	75 78 72
7.Sep 75 80 71 75 79 72 75 77 72 75 77 8-Sep 75 80 69 75 81 66 75 77 70 75 77 9-Sep 75 80 71 77 72 75 77 70 75 77 10-Sep 75 80 71 77 92 67 75 77 72 75 77 11-Sep 75 85 69 77 91 67 74 78 72 75 88 12-Sep 75 84 69 76 92 65 73 81 68 75 77 72 75 78 13-Sep 75 78 70 77 92 66 75 77 72 75 78 14-Sep 75 78 72 76 93 62 75 77 72 75 78 15-Sep 75 77 73	j-Sep	81 72	5-Sep	75 81 71	75 77 72	75 77 73
8-Sep 75 80 69 75 81 66 75 77 70 75 79 9-Sep 75 80 71 75 77 73 75 76 72 75 77 10-Sep 75 80 71 77 92 67 75 77 72 75 78 11-Sep 75 85 69 77 91 67 74 78 72 75 78 13-Sep 75 84 69 76 92 65 73 81 68 75 78 14-Sep 75 84 70 77 92 66 75 77 72 75 74 15-Sep 75 79 72 76 93 62 75 78 72 75 74 16-Sep 75 77 72 76 93 62 75 77	-Sep	81 73	6-Sep	75 79 71	75 77 73	75 78 73
8-Sep 75 80 69 75 81 66 75 77 70 75 79 9-Sep 75 80 71 75 77 73 75 76 72 75 77 10-Sep 75 80 71 77 92 67 75 77 72 75 77 11-Sep 75 85 69 77 91 67 74 78 72 75 88 12-Sep 75 84 69 76 92 65 73 81 68 75 78 14-Sep 75 84 68 76 92 66 75 77 72 75 78 15-Sep 75 79 72 76 91 65 75 78 72 75 78 16-Sep 75 77 72 76 93 62 75 77 73 75 74 19-Sep 75 77 72 76 96	~	80 71	<u>^</u>	75 79 72	75 77 72	75 78 73
10-Sep 75 80 71 77 92 67 75 77 72 75 78 11-Sep 75 85 69 77 91 67 74 78 72 75 86 12-Sep 75 85 70 76 92 65 73 76 68 75 77 13-Sep 75 84 69 76 92 65 73 81 68 75 78 14-Sep 75 84 68 76 92 66 75 77 72 75 78 15-Sep 75 81 70 77 92 66 75 77 72 75 78 16-Sep 75 77 72 76 91 65 75 78 71 75 77 72 75 77 72 75 77 72 75 77 71 75 77 71 75 77 71 75 77 71 75 7	3-Sep	80 69	8-Sep	75 81 66	75 77 70	75 79 71
11-Sep 75 85 69 77 91 67 74 78 72 75 88 12-Sep 75 85 70 76 92 65 73 76 68 75 78 13-Sep 75 84 69 76 92 65 73 81 68 75 78 14-Sep 75 84 68 76 92 64 75 78 72 75 78 15-Sep 75 81 70 77 92 66 75 77 72 75 78 16-Sep 75 77 72 76 93 62 75 78 71 75 76 18-Sep 75 77 72 76 96 62 75 77 71 75 76 19-Sep 75 77 73 67 99 57 75 77 71 75 76 20-Sep 75 79 71 75 76)-Sep	80 71	9-Sep	75 77 73	75 76 72	75 78 73
12-Sep 75 85 70 76 92 65 73 76 68 75 78 13-Sep 75 84 69 76 92 65 73 81 68 75 78 14-Sep 75 84 68 76 92 64 75 78 72 75 78 15-Sep 75 81 70 77 92 66 75 77 72 75 78 16-Sep 75 77 72 76 91 65 75 78 72 75 78 18-Sep 75 77 72 76 96 62 75 78 71 75 77 72 75 77 73 75 77 73 75 77 73 75 77 73 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 72 <td>)-Sep</td> <td>80 71</td> <td>0-Sep</td> <td>77 92 67</td> <td>75 77 72</td> <td>75 79 70</td>)-Sep	80 71	0-Sep	77 92 67	75 77 72	75 79 70
13-Sep 75 84 69 76 92 65 73 81 68 75 74 14-Sep 75 84 68 76 92 64 75 78 72 75 74 15-Sep 75 81 70 77 92 66 75 77 72 75 74 16-Sep 75 79 72 76 91 65 75 78 72 75 78 16-Sep 75 77 72 76 93 62 75 77 72 75 78 18-Sep 75 77 72 76 96 62 75 77 73 75 77 19-Sep 75 77 73 67 99 57 75 77 71 75 88 21-Sep 75 79 71 72 89 64 75 77 72 75 76 22-Sep 75 80 71 75 80	-Sep	85 69	1-Sep	77 91 67	74 78 72	75 80 71
14-Sep 75 84 68 76 92 64 75 78 72 75 78 15-Sep 75 81 70 77 92 66 75 77 72 75 78 16-Sep 75 79 72 76 91 65 75 78 72 75 78 16-Sep 75 77 72 76 93 62 75 77 72 75 78 18-Sep 75 77 72 69 97 43 75 77 73 75 78 19-Sep 75 77 73 67 99 57 75 77 71 75 78 20-Sep 75 79 72 76 91 62 75 77 71 75 78 71 75 76 92 76 92 76 92 76 92 75 77 71 75 76 77 71 75 76 77 7	2-Sep	85 70	2-Sep	76 92 65	73 76 68	75 78 73
15-Sep 75 81 70 77 92 66 75 77 72 75 78 16-Sep 75 79 72 76 91 65 75 78 72 75 78 17-Sep 75 78 72 76 93 62 75 77 72 75 78 18-Sep 75 77 72 69 96 62 75 77 73 75 78 19-Sep 75 77 73 67 99 57 75 77 71 75 78 20-Sep 75 79 72 76 91 62 75 77 71 75 76 21-Sep 75 78 71 72 89 64 75 77 72 75 76 22-Sep 75 79 71 75 78 71 75 79 71 75 76 24-Sep 75 79 71 75 80	3-Sep	84 69	3-Sep	76 92 65	73 81 68	75 78 72
16-Sep 75 79 72 76 91 65 75 78 72 75 88 17-Sep 75 77 72 76 93 62 75 77 72 75 78 18-Sep 75 78 72 76 96 62 75 78 71 75 78 19-Sep 75 77 72 69 97 43 75 77 73 75 78 20-Sep 75 77 73 67 99 57 77 71 75 88 21-Sep 75 79 72 76 91 62 75 77 71 75 76 22-Sep 75 78 71 72 89 64 75 77 72 75 76 23-Sep 75 79 71 75 80 70 75 79 70 <t< td=""><td>-Sep</td><td>84 68</td><td>4-Sep</td><td>76 92 64</td><td>75 78 72</td><td>75 78 72</td></t<>	-Sep	84 68	4-Sep	76 92 64	75 78 72	75 78 72
17-Sep757772769362757772757818-Sep757872699662757871757819-Sep757772699743757773757820-Sep757773679957757771758021-Sep757972769162757771757622-Sep75100707710062749769769723-Sep757971757871757971757824-Sep757971758070757970757726-Sep758071758070757971757827-Sep757871758069747870757926-Sep757871758069747870757929-Sep757973758068757871757530-Sep75797375807175777275763-Oct7579737580717577727576 <td< td=""><td>j-Sep</td><td>81 70</td><td>5-Sep</td><td>77 92 66</td><td>75 77 72</td><td>75 78 72</td></td<>	j-Sep	81 70	5-Sep	77 92 66	75 77 72	75 78 72
18-Sep 75 78 72 76 96 62 75 78 71 75 78 19-Sep 75 77 72 69 97 43 75 77 73 75 77 73 75 77 73 75 77 71 75 78 71 75 78 71 75 78 71 75 77 73 75 77 71 75 77 71 75 78 71 75 78 71 75 78 71 75 77 71 75 78 71 75 77 71 75 78 71 75 77 71 75 78 71 75 77 71 75 78 71 75 77 71 75 78 71 75 77 71 75 78 71 75 78 71 75 78 71 75 78 71 75 80 70 75 79 70 75 79	-Sep	79 72	6-Sep	76 91 65	75 78 72	75 80 72
19-Sep 75 77 72 69 97 43 75 77 73 75 78 20-Sep 75 77 73 67 99 57 75 77 71 75 80 21-Sep 75 79 72 76 91 62 75 77 71 75 76 22-Sep 75 100 70 77 100 62 74 97 69 76 97 22-Sep 75 78 71 72 89 64 75 77 72 75 76 23-Sep 75 79 71 75 78 71 75 77 72 75 76 24-Sep 75 79 71 75 80 70 75 79 71 75 76 25-Sep 75 80 71 75 80 70 75 80 70 75 88 27-Sep 75 80 71 75 80	/-Sep	77 72	7-Sep	76 93 62	75 77 72	75 78 72
20-Sep 75 77 73 67 99 57 75 77 71 75 88 21-Sep 75 79 72 76 91 62 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 76 77 71 75 76 77 72 75 76 77 71 75 76 77 71 75 76 77 77 75 76 77 77	3-Sep	78 72	8-Sep	76 96 62	75 78 71	75 78 71
21-Sep 75 79 72 76 91 62 75 77 71 75 79 22-Sep 75 100 70 77 100 62 74 97 69 76 97 23-Sep 75 78 71 72 89 64 75 77 72 75 76 97 24-Sep 75 79 71 75 78 71 75 79 71 75 76 25-Sep 75 83 71 75 80 70 75 79 70 75 79 26-Sep 75 80 71 75 80 71 75 80 70 75 79 75 79 27-Sep 75 80 71 75 80 69 74 78 69 75 79 75 88 28-Sep 75 78 71 75 81 69 75 79 71 75 75 75 79)-Sep	77 72	9-Sep	69 97 43	75 77 73	75 78 73
22-Sep 75 100 70 77 100 62 74 97 69 76 97 23-Sep 75 78 71 72 89 64 75 77 72 75 76 24-Sep 75 79 71 75 78 71 75 79 71 75 78 25-Sep 75 83 71 75 80 70 75 79 70 75 77 26-Sep 75 80 72 75 80 71 75 80 70 75 79 70 75 79 26-Sep 75 80 71 75 80 71 75 80 70 75 79 75 79 27-Sep 75 80 71 75 80 69 74 78 69 75 79 75 88 28-Sep 75 78 71 75 81 69 75 79 71 75 79)-Sep	77 73	20-Sep	67 99 57	75 77 71	75 80 72
23-Sep 75 78 71 72 89 64 75 77 72 75 76 24-Sep 75 79 71 75 78 71 75 79 71 75 78 25-Sep 75 83 71 75 80 70 75 79 70 75 77 26-Sep 75 80 72 75 80 71 75 80 70 75 79 70 75 77 26-Sep 75 80 71 75 80 71 75 80 70 75 79 70 75 79 27-Sep 75 80 71 75 80 69 74 78 70 75 81 28-Sep 75 78 71 75 81 69 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 72 75 7	-Sep	79 72	21-Sep	76 91 62	75 77 71	75 79 72
24-Sep 75 79 71 75 78 71 75 79 71 75 78 25-Sep 75 83 71 75 80 70 75 79 70 75 77 26-Sep 75 80 72 75 80 71 75 80 70 75 80 70 75 79 70 75 77 26-Sep 75 80 71 75 80 71 75 80 70 75 79 70 75 79 70 27-Sep 75 80 71 75 80 69 74 78 70 75 88 28-Sep 75 78 71 75 81 69 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 </td <td>2-Sep</td> <td>100 70</td> <td>22-Sep</td> <td>77 100 62</td> <td>74 97 69</td> <td>76 97 67</td>	2-Sep	100 70	22-Sep	77 100 62	74 97 69	76 97 67
25-Sep 75 83 71 75 80 70 75 79 70 75 77 26-Sep 75 80 72 75 80 71 75 80 70 75 79 70 75 77 26-Sep 75 80 71 75 80 70 75 79 70 75 79 79 27-Sep 75 80 71 75 80 69 74 78 70 75 88 28-Sep 75 78 71 75 81 69 74 78 69 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 77 71 75 77 71 75 77	3-Sep	78 71	23-Sep	72 89 64	75 77 72	75 76 74
26-Sep 75 80 72 75 80 71 75 80 70 75 79 27-Sep 75 80 71 75 80 69 74 78 70 75 83 28-Sep 75 78 71 75 80 69 74 78 69 75 79 29-Sep 75 78 71 75 81 69 75 79 71 75 79 30-Sep 75 79 73 75 80 68 75 78 72 75 79 71 75 79 1-Oct 75 78 72 75 80 68 75 77 71 75 77 1-Oct 75 78 72 75 78 71 75 77 71 75 77 2-Oct 75 78 72 75 80 6	-Sep	79 71	24-Sep	75 78 71	75 79 71	75 78 72
26-Sep 75 80 72 75 80 71 75 80 70 75 79 27-Sep 75 80 71 75 80 69 74 78 70 75 83 28-Sep 75 78 71 75 80 69 74 78 69 75 79 29-Sep 75 78 71 75 81 69 75 79 71 75 79 30-Sep 75 79 73 75 80 68 75 78 72 75 79 71 75 79 1-Oct 75 78 72 75 80 71 75 77 71 75 77 1-Oct 75 78 72 75 78 71 75 77 71 75 77 2-Oct 75 78 72 75 80 6	<u>^</u>	83 71	~	75 80 70	75 79 70	75 77 72
28-Sep 75 78 71 75 80 69 74 78 69 75 79 79 79 79 79 73 75 81 69 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 76 77 71 75 76 77 72 75 80 70 75 <th< td=""><td>~</td><td>80 72</td><td><u>^</u></td><td>75 80 71</td><td>75 80 70</td><td>75 79 72</td></th<>	~	80 72	<u>^</u>	75 80 71	75 80 70	75 79 72
28-Sep 75 78 71 75 80 69 74 78 69 75 79 79 79 79 79 73 75 81 69 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 79 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 76 77 71 75 76 77 72 75 80 70 75 <th< td=""><td>'-Sep</td><td>80 71</td><td>27-Sep</td><td>75 80 69</td><td>74 78 70</td><td>75 81 72</td></th<>	'-Sep	80 71	27-Sep	75 80 69	74 78 70	75 81 72
29-Sep 75 78 71 75 81 69 75 79 71 75 79 75 80 68 75 78 72 75 79 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 71 75 77 72 75 80 71 75 77 72 75 80 74 77 70 75 77 72 75 77 72 75 77 72 75 77 <th< td=""><td>3-Sep</td><td>78 71</td><td>28-Sep</td><td>75 80 69</td><td>74 78 69</td><td>75 79 71</td></th<>	3-Sep	78 71	28-Sep	75 80 69	74 78 69	75 79 71
30-Sep 75 79 73 75 80 68 75 78 72 75 79 1-Oct 75 78 72 75 80 71 75 77 71 75 77 2-Oct 75 79 72 75 78 71 75 77 72 75 80 3-Oct 75 78 72 75 80 69 75 77 72 75 80 4-Oct 75 79 73 75 81 68 74 77 70 75 77 5-Oct 75 79 71 75 80 70 74 77 70 75 77)-Sep	78 71	29-Sep	75 81 69	75 79 71	75 79 72
1-Oct 75 78 72 75 80 71 75 77 71 75 77 2-Oct 75 79 72 75 78 71 75 77 72 75 80 3-Oct 75 78 72 75 80 69 75 77 72 75 80 4-Oct 75 79 73 75 81 68 74 77 70 75 77 5-Oct 75 79 71 75 80 70 74 77 70 75 77		79 73		75 80 68	75 78 72	75 79 72
3-Oct 75 78 72 75 80 69 75 77 72 75 79 4-Oct 75 79 73 75 81 68 74 77 70 75 77 5-Oct 75 79 71 75 80 70 74 77 70 75 77	<u>^</u>	78 72	~			75 77 72
4-Oct 75 79 73 75 81 68 74 77 70 75 77 5-Oct 75 79 71 75 80 70 74 77 70 75 77	2-Oct	79 72	2-Oct	75 78 71	75 77 72	75 80 72
5-Oct 75 79 71 75 80 70 74 77 70 75 7	3-Oct	78 72	3-Oct	75 80 69		75 79 71
	l-Oct	79 73	4-Oct	75 81 68		75 77 71
	5-Oct	79 71	5-Oct	75 80 70	74 77 70	75 77 71
6-Oct 76 100 66 76 101 57 74 101 67 76 100	5-Oct	100 66	6-Oct		74 101 67	76 100 63
7-Oct 75 78 71 75 79 71 74 77 71 75 8	7-Oct	78 71	7-Oct	75 79 71	74 77 71	75 81 68
8-Oct 75 81 71 75 81 71 75 78 71 75 79	3-Oct	81 71	8-Oct	75 81 71	75 78 71	75 79 73

Date	Tank 3		Tank	Tank 10		Tank 13			Tank 17			
	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean 1	Max	Min
9-Oct	75	81	70	75	82	71	75	79	71	75	82	71
10-Oct	75	82	72	75	81	70	75	78	71	75	79	71
11-Oct	75	80	71	75	81	70	75	77	71	75	78	71
12-Oct	75	79	71	75	79	68	75	78	70	75	79	71
13-Oct	75	79	69	75	81	69	74	78	71	75	79	72
14-Oct	75	80	69	75	81	70	74	79	70	75	79	71
15-Oct	83	93	72	83	93	71	80	88	72	82	98	74
16-Oct	90	94	85	90	96	84	89	94	83	90	92	87
17-Oct	90	99	85	90	95	85	90	92	88	90	91	88
18-Oct	90	95	86	90	100	81	90	94	88	90	93	87
19-Oct	94	113	89	99	140	87	102	178	88	103	113	87

Group: Medium DO Level cont.

Daily DO concentrations in Tanks, EWOS Innovation Dirdal 2004.

Group: Low DO Level (preset level: 60% of saturation 2 Sep – 14 Oct). Unit: % of saturation

Date	Tank	6		Tank 8			Tank	16	
	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min
24-Aug	80	99	67	80	92	75	80	89	75
25-Aug	80	83	75	80	84	78	80	92	67
26-Aug	79	94	66	79	93	74	79	100	71
27-Aug	75	80	72	75	78	73	75	76	74
28-Aug	75	78	74	75	77	73	75	80	72
29-Aug	77	80	74	76	78	73	75	80	72
30-Aug	73	80	67	72	81	67	72	82	66
31-Aug	69	72	67	68	75	67	68	71	66
1-Sep	69	71	65	68	73	64	67	71	63
2-Sep	71	74	68	68	71	67	66	69	63
3-Sep	70	74	66	69	71	66	67	70	63
4-Sep	68	71	65	69		66	67	71	63
5-Sep	67	69	64	69		67	68		64
6-Sep	67	69	64	69		65	67		63
7-Sep	67	70	63	69		66	67		63
8-Sep	67	70	61	68	71	62	67	73	60
9-Sep	68	69	64	68		64	68	73	63
10-Sep	66	69	62	67	69	62	67		63
11-Sep	66	68	61	67		63	67		62
12-Sep	65	67	62	66		60	65		60
13-Sep	65	68	61	67		63	66		60
14-Sep	64	67	62	64		60	66		62
15-Sep	66	69	62	66		61	67		62
16-Sep	65	68	63	66		62	68		64
17-Sep	64	67	60	65		59	67		63
18-Sep	64	67	61	64		59	67		63
19-Sep	71	80	61	62		49	67		63
20-Sep	71	80	63	64		57	67		62
21-Sep	66	70	62	65		61	66		62
22-Sep	68	97	58	64		59	66		56
23-Sep	68	73	64	65		59	66		62
24-Sep	69	72	64	66		62	67		62
25-Sep	68	72	64	66		62	67		62
26-Sep	69	73	65	66		63	67		63
27-Sep	67	72	64	66		61	65		60
28-Sep	67	70	60	66		61	65		59
29-Sep	67	70	64	67		62	66		60
30-Sep	67	70	63	66		61	65		59
1-Oct	67	70	64	66		62	65		59
2-Oct	67	70	62	66		61	65		57
3-Oct	67	70	63	66		61	66		61
4-Oct	67	70	64	65		61	65		59
5-Oct	67	70	62	65		59	65		58
6-Oct	68	102	58	66		56	66		56
7-Oct	68	73	63	66		60	67		60
8-Oct	68	72	64	66		61	67		60
5.000	00	12	51	50	0)	01	07	, r	00

Group: Low DO Level cont.

Date	Tank	6		Tank	8		Tank 16			
	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	
9-Oct	69	72	65	66	69	63	67	77	62	
10-Oct	68	72	62	68	118	60	68	74	63	
11-Oct	68	71	64	67	69	64	67	74	62	
12-Oct	68	71	63	66	68	63	67	74	62	
13-Oct	67	70	64	66	68	63	67	75	62	
14-Oct	68	71	62	67	70	63	67	74	61	
15-Oct	77	86	67	79	95	65	71	78	66	
16-Oct	85	88	82	90	97	84	78	80	75	
17-Oct	88	92	85	90	103	86	81	83	77	
18-Oct	90	94	83	90	96	87	83	86	79	
19-Oct	93	109	87	99	136	88	91	101	84	

Daily DO concentrations in Tanks, EWOS Innovation Dirdal 2004.

Group: Fluctuating DO Level (preset level: 90 - 60 % of saturation 2 Sep - 14 Oct). Unit: % of saturation

Date	Tank 2			Tank	4		Tank	Tank 7			Tank 9		
	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	
24-Aug	106	117	97	87	96	64	87	92	72	87	95	67	
25-Aug	111	117	107	87		77	87			87			
26-Aug	114	135	98	84		79	85			84		75	
27-Aug	111	123	95	80		74	81			78			
28-Aug	121	126	117	83		80	84			80			
29-Aug	131	145	117	85		80	85			81			
30-Aug	99	148	72	79		72	81			78		69	
31-Aug	76	83	72	76		70	78			77		67	
1-Sep	76	83	70	78		69	78			77		66	
2-Sep	75	85	71	78		69	78			77		67	
3-Sep	76	85	72	78		69	78			77			
4-Sep	76	86	70	78		69	78			77		68	
5-Sep	76	81	72	77		69	78			77		67	
6-Sep	75	81	73	77		69	77		68	77		66	
7-Sep	75	80	71	77		67	77			77		66	
8-Sep	75	80	69	77		65	77		66	76			
9-Sep	75	80	71	77		67	78			77		67	
10-Sep	75	80	71	76		67	77			76			
11-Sep	75	85	69	77		65	77		67	76		64	
12-Sep	75	85	70	76		64	76			75			
12-Sep	75	84	69	76		64	76			76		62	
14-Sep	75	84	68	76		64	76			75		61	
15-Sep	75	81	70	77		66	77			76		64	
16-Sep	75	79	72	76		64	76		65	75		62	
17-Sep	75	77	72	76		63	76			74		60	
18-Sep	75	78	72	75		63	76			74		60	
19-Sep	75	77	72	80		70	69			71		42	
20-Sep	75	77	73	76		62	67			75		59	
20 Sep 21-Sep	75	79	72	76		64	76		62	75		59	
22-Sep	75	100	70	77		62	77			76		59	
23-Sep	75	78	71	76		66	72			70		59	
23 Sep 24-Sep	75	79	71	76		66	76			75		59	
25-Sep	75	83	71	77		66	76		64	75		59	
26-Sep	75	80	72	77	99	65	76		64	75		59	
20 Sep 27-Sep	75	80	71	76		66	76		65	75		60	
28-Sep	75	78	71	76		65	76			75			
29-Sep	75	78	71	76		67	76			75			
30-Sep	75	79	73	78		68	76			75			
1-Oct	75	78	72	77		66	77			75			
2-Oct	75	79	72	76		65	76			75			
3-Oct	75	78	72	76		65	76			75			
4-Oct	75	79	73	76		65	76			75			
5-Oct	75	79	71	70		66	76			75			
6-Oct	76	100	66	78		60	77			76		55	
7-Oct	75	78	71	77		67	75			70			
8-Oct	75	81	71	77		66	77		65	75			
0-001	15	01	/ 1		71	00	//	71	05	13	74	37	

Date	Tank 2			Tank 4	ļ	Tank 7			Tank 9			
	Mean N	lax 1	Min	Mean N	/lax 1	Min	Mean 1	Max	Min	Mean N	/lax N	⁄lin
9-Oct	77	92	66	77	91	68	77	92	66	75	94	60
10-Oct	76	91	58	76	94	58	76	92	59	75	96	60
11-Oct	74	85	64	76	93	65	76	92	66	75	95	59
12-Oct	74	90	63	76	96	66	76	94	64	75	97	59
13-Oct	75	92	62	76	92	65	76	93	64	75	92	59
14-Oct	76	91	63	76	92	64	76	93	62	75	96	59
15-Oct	86	95	66	86	94	68	86	93	66	85	93	65
16-Oct	90	94	87	90	95	86	90	94	87	90	95	86
17-Oct	90	93	87	90	93	86	90	94	86	90	93	87
18-Oct	90	95	86	90	96	84	90	96	85	90	93	87
19-Oct	96	118	87	97	176	89	99	118	88	99	178	88

Group: Fluctuating DO Level *cont*.

Daily DO concentrations in Tanks, EWOS Innovation Dirdal 2004.

Group: Fluctuating DO Level (preset level: 90 - 60 % of saturation 2 Sep - 14 Oct). Unit: % of saturation

Date	Tank 12	Tank 14	Tank 15	Tank 18		
	Mean Max Min	Mean Max Min	Mean Max Min	Mean Max Min		
24-Aug	87 104 65	87 91 77	87 94 76	87 95 77		
25-Aug	87 94 72	87 97 65	86 95 69	87 99 64		
26-Aug	83 100 68	83 100 73	82 100 68	82 121 68		
27-Aug	78 95 68	78 92 70	78 91 68	72 95 62		
28-Aug	78 92 67	78 93 69	78 93 68	64 67 61		
29-Aug	78 94 67	79 93 69	78 93 68	64 67 61		
30-Aug	78 94 65	78 91 70	77 92 65	64 67 62		
31-Aug	76 94 63	78 92 70	75 91 64	66 73 62		
1-Sep	76 92 63	78 90 67	76 91 64	70 95 61		
2-Sep	77 92 65	78 91 70	76 93 64	75 92 60		
3-Sep	76 92 64	79 92 72	76 91 65	75 96 62		
4-Sep	76 92 64	78 91 70	76 93 64	75 94 61		
5-Sep	76 92 65	79 91 72	75 92 62	75 95 62		
6-Sep	76 91 63	78 93 70	75 92 60	76 99 62		
7-Sep	76 92 64	78 92 67	75 92 58	76 93 60		
8-Sep	76 92 59	77 93 65	75 93 56	75 99 57		
9-Sep	76 94 62	78 91 69	75 92 60	76 94 63		
10-Sep	75 91 60	77 91 68	75 92 59	75 93 60		
11-Sep	76 92 60	77 92 66	75 91 57	75 99 58		
12-Sep	75 92 60	76 93 63	75 89 59	75 100 59		
13-Sep	75 92 60	76 93 63	75 89 59	75 103 60		
14-Sep	75 93 59	76 91 63	75 91 58	75 96 59		
15-Sep	76 93 62	76 92 65	75 89 60	75 95 59		
16-Sep	75 91 59	76 91 63	75 92 59	75 96 59		
17-Sep	75 93 60	76 93 63	75 91 60	75 96 59		
18-Sep	75 95 59	76 92 63	75 89 60	75 95 59		
19-Sep	75 93 51	76 91 63	75 91 60	75 96 59		
20-Sep	76 96 59	75 91 59	74 89 58	75 95 57		
21-Sep	76 94 58	75 93 60	74 87 59	75 95 59		
22-Sep	76 99 57	76 97 59	74 98 55	76 97 55		
23-Sep	71 90 60	72 89 63	70 88 58	70 89 60		
24-Sep	75 91 59	76 92 62	74 90 59	75 99 60		
25-Sep	75 92 60	76 91 62	75 89 58	75 95 59		
26-Sep	75 91 59	76 91 63	74 89 59	74 105 58		
27-Sep	75 92 60	76 92 62	74 90 59	75 103 59		
28-Sep	75 93 59	75 94 59	74 91 57	75 99 57		
29-Sep	75 94 60	75 93 60	75 93 58	75 100 58		
30-Sep	75 92 60	75 92 59	75 95 57	74 97 58		
1-Oct	75 93 59	75 92 62	75 93 58	75 92 59		
2-Oct	75 93 60	75 95 60	75 96 59	75 96 59		
3-Oct	75 92 60	75 93 61	75 94 59	75 96 58		
4-Oct	75 91 60	75 92 59	75 91 57	75 95 60		
5-Oct	75 94 59	75 92 62	75 94 58	75 94 58		
6-Oct	76 100 57	77 100 58	76 101 49	76 100 51		
7-Oct	73 92 59	77 93 64	74 90 59	76 94 60		
8-Oct	75 92 60	75 93 62	74 89 58	75 104 58		

Date	Tank	12		Tank 1	4	Tank 15			Tank 18			
	Mean	Max	Min	Mean N	/lax N	/lin	Mean N	/lax]	Min	Mean M	Max N	⁄lin
9-Oct	75	92	59	76	94	63	74	90	57	75	106	57
10-Oct	75	91	59	76	93	61	74	91	59	75	97	59
11-Oct	75	92	59	76	92	63	74	89	59	75	97	58
12-Oct	75	93	60	76	92	62	74	87	58	75	110	59
13-Oct	75	92	59	76	92	63	75	91	58	75	102	58
14-Oct	75	93	58	76	91	63	75	92	57	75	93	57
15-Oct	85	93	65	81	101	69	78	100	64	79	98	65
16-Oct	90	93	86	90	93	88	90	97	87	90	100	82
17-Oct	90	95	86	90	93	88	90	93	86	90	102	84
18-Oct	90	98	85	90	92	88	90	92	88	90	97	88
19-Oct	100	138	87	104	120	88	103	162	81	104	118	89

Group: Fluctuating DO Level *cont*.

RF-Akvamiljø

Effects of oxygen deficit

Growth, feed utilisation and mortality of adult Atlantic salmon at four levels of DO concentrations, EWOS Innovation Dirdal 25 August – 19/20
October 2004. *: dead fish not included

Fish group		Start tria	l		End tri	al		Biomass	Feed	SGR,	FCR,	Mortality,
DO level	Tank No.	Date	No.	Mean	Date	No.	Mean	increase, kg	supplied, kg	%/day	kg/kg	No.
			fish	weight, g		fish	weight, g					
90% of	1	25/08	37	2534	19/10	37	3099	20.919	25.181	0.37	1.20	0
saturation	5	25/08	38	2614	19/10	38	3099	18.454	23.190	0.31	1.26	0
	11	25/08	38	2587	19/10	38	2810	8.471	14.991	0.15	1.77	0
75% of	3	25/08	38	2733	19/10	38	3184	17.134	22.268	0.28	1.30	0
saturation	10	25/08	40	2817	19/10	40	3192	14.980	21.780	0.23	1.45	0
	13	25/08	38	2687	19/10	38	3084	15.072	21.010	0.25	1.39	0
	17	25/08	38	2796	20/10	38	3136	12.927	18.185	0.21	1.41	0
60% of	6	25/08	38	2776	19/10	38	2890	4.343	11.865	0.07	2.73	0
saturation	8	25/08	38	2815	19/10	38	3142	12.406	17.563	0.20	1.42	0
	16	25/08	38	2756	20/10	37	2955	4.605*	12.398	0.12	1.66	1
Fluctuating	2	25/08	37	2833	19/10	37	3430	22.082	25.128	0.35	1.14	?
concentration	4	25/08	38	2730	19/10	37	3211	15.060*	22.458	0.29	1.21	1
(diurnal:	7	25/08	36	2686	19/10	36	3326	23.042	27.727	0.39	1.20	0
60-90%)	9	25/08	38	2724	19/10	38	3130	15.404	20.449	0.25	1.33	0
	12	25/08	38	2778	19/10	38	3123	13.100	18.167	0.21	1.39	0
	14	25/08	38	2678	19/10	37	3005	9.424*	17.165	0.21	1.42	1
	15	25/08	39	2735	19/10	39	3229	19.243	23.277	0.30	1.21	0
	18	25/08	38	2790	20/10	38	3113	12.260	17.479	0.20	1.43	0

Effects of oxygen deficit

RF-Akvamiljø

Growth, feed utilisation and mortality of adult Atlantic salmon at four levels of DO concentrations, EWOS Innovation Dirdal 19/20 October – 20/21 December 2004. *: dead fish not included

Fish group		Start tria	al		End tri	al		Biomass	Feed	SGR,	FCR,	Mortality,
DO level	Tank No.	Date	No.	Mean	Date	No.	Mean	increase, kg	supplied, kg	%/day	kg/kg	No.
			fish	weight, g		fish	weight, g					
90% of	1	19/10	37	3099	20/12	37	3436	13.462	20.765	0.18	1.54	0
saturation	5	19/10	38	3099	20/12	38	3486	14.700	21.485	0.19	1.46	0
	11	19/10	38	2810	21/12	38	3161	13.346	20.216	0.19	1.51	0
75% of	3	19/10	38	3184	20/12	38	3632	17.033	24.832	0.21	1.46	0
saturation	10	19/10	40	3192	21/12	40	3581	15.559	23.842	0.18	1.53	0
	13	19/10	38	3084	21/12	38	3590	19.262	25.923	0.24	1.35	0
	17	20/10	38	3136	21/12	38	3483	13.182	20.958	0.17	1.59	0
60% of	6	19/10	38	2890	20/12	38	3037	5.556	11.095	0.08	2.00	0
saturation	8	19/10	38	3142	20/12	38	-	-	-	-	-	0
	16	20/10	37	2955	21/12	37	3302	12.833	20.356	0.18	1.59	0
Fluctuating	2	19/10	37	3430	20/12	37	3801	13.754	24.932	0.17	1.81	0
concentration	4	19/10	37	3211	20/12	37	3773	20.790	25.270	0.26	1.22	0
(diurnal:	7	19/10	36	3326	20/12	36	-	-	-	-	-	0
60-90%)	9	19/10	38	3130	20/12	38	3607	18.133	26.518	0.23	1.46	0
	12	19/10	38	3123	21/12	38	3524	15.258	19.635	0.19	1.29	0
	14	19/10	37	3005	21/12	37	3326	11.876	20.502	0.16	1.73	0
	15	19/10	39	3229	21/12	39	3813	22.790	29.776	0.26	1.31	0
	18	20/10	38	3113	21/12	38	3508	14.993	19.897	0.19	1.33	0