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Abstract In this paper, we derive upscaled equations for modeling biofilm growth in porous
media. The resulting macro-scale mathematical models consider permeable multi-species
biofilm including water flow, transport, detachment and reactions. The biofilm is composed
of extracellular polymeric substances (EPS), water, active bacteria and dead bacteria. The
free flow is described by the Stokes and continuity equations and the water flux inside the
biofilm by the Brinkman and continuity equations. The nutrients are transported in the water
phase by convection and diffusion. This pore-scale model includes variations of the biofilm
composition and size due to reproduction of bacteria, production of EPS, death of bacteria
and shear forces. The model includes a water-biofilm interface between the free flow and the
biofilm. Homogenization techniques are applied to obtain upscaled models in a thin channel
and a tube, by investigating the limit as the ratio of the aperture to the length ε of both
geometries approaches to zero. As ε gets smaller, we obtain that the percentage of biofilm
coverage area over time predicted by the pore-scale model approaches the one obtained
using the effective equations, which shows a correspondence between both models. The two
derived porosity-permeability relations are compared to two empirical relations from the
literature. The resulting numerical computations are presented to compare the outcome of
the effective (upscaled) models for the two mentioned geometries.
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List of Symbols
a Coverage area
B Relative porosity
Bc Critical point
c Nutrient concentration
d Biofilm height
D Nutrient diffusion coefficient
E Integration coefficient
f +, f − Positive and negative cuts
F, G Integration coefficients
h Dependent variable: biofilm height (channel)
H, Hδ Non- and regularized set-valued Heaviside graphs
i Imaginary number
I Identity matrix
JJJ Nutrient flux
Jν Bessel function of order ν of first kind
k Biofilm permeability
kB, kK , kn Monod-half nutrient velocity coefficients
kres Bacterial decay rate coefficient
kstr Stress coefficient
K Permeability
l Half height of the channel
L Channel/Tube length
M Matrix (derivatives of water velocity)
p Pressure
Pe Péclet number
qqq Water velocity
rrr Vector (cylindrical coordinates)
r Radial coordinate
R Reaction term
S Tangential shear stress
t, T Time and final time
uuu Velocity of the biomass
v Darcy velocity
V Integration coefficient
w Dependent variable: biofilm height (tube)
W Integration coefficient
xxx Vector (Cartesian coordinates)
x Cartesian coordinate
X Integration coefficient
y Cartesian coordinate
Y Yield coefficient
Yν Bessel function of order ν of second kind
z Cartesian/Cylindrical coordinate

Greek symbols
Γ Domain boundary
δ Small regularization parameter
ε , ε Dimensionless aspect ratio (channel and tube)
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ζ Tolerance
η Experimental determined parameter
θ Volume fraction
Θ Dependent variable: biofilm height and porosity (tube)
κ Effective permeability
λ Dependent variable: biofilm permeability and porosity
µ Water viscosity
µB, µK , µn Maximum rates of nutrient utilization
ννν Unitary normal vector (interface)
νn Interface velocity
ξ Dependent variable: biofilm permeability and porosity (tube)
Ξ Space region
ρ Density
% Tube radius
Σ Sum of reaction terms
τττ Unitary tangential vector
υυυ Unitary normal vector (wall)
φ Porosity of porous medium
ϕ Angular coordinate
Φ Growth velocity potential
χ General variable
ω Width (channel)
Ω Spatial domain
Subscripts/superscripts
a Active bacteria
B Biodegradation microbe
b Biofilm
crit Critical
C Channel
d Dead bacteria
i Input
ib Input biofilm domain
iw Input water domain
K Biobarrier-forming microbe
l Lower
m Middle
O Initial
ob Output biofilm domain
ow Output water domain
e EPS
re f Reference value
r r-component
s Wall
T Tube
u Up
w Water
wb Water-biofilm (interface)
y y-component
z z-component
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0 Lowest order term (asymptotic expansion)
˜ Dimensionless parameter/variable (channel)
¯ Dimensionless parameter/variable (tube)
Abbreviations
EPS Extracellular polymeric substance
MEOR Microbial enhanced oil recovery

1 Introduction

Biofilms are sessile communities of bacteria housed in a self-produced adhesive matrix
consisting of extracellular polymeric substances (EPS), including polysaccharides, proteins,
lipids and DNA (Aggarwal et al. 2015). The proportion of EPS in biofilms is 50% to 90% of
the total organic matter (Donlan 2002; Vu et al. 2009). Water is by far the largest component
of the matrix, giving biofilms the nickname ‘stiff water’ (Flemming and Wingender 2010).
Biofilms provoke chronic bacterial infection, infection on medical devices, deterioration of
water quality and the contamination of food (Kokare et al. 2009). On the other hand, biofilms
can be used for wastewater treatment and bioenergy production (Miranda et al. 2017). In
microbial enhanced oil recovery (MEOR), one of the strategies is selective plugging, where
bacteria are used to form biofilm in highly permeable zones to diverge the water flow
and extract the oil located in low-permeability zones (Raiders et al. 1989). In wastewater
treatment, one of the strategies consists of using biofilms to break down compounds which
are not desirable to discharge into the natural environment (Capdeville and Rols 1992).

Two of the motivations to derive upscaled models are to accurately describe the average
behavior of the system with relatively low computational effort compared to fully detailed
calculations starting at the microscale (van Noorden et al. 2010) and to determine effective
parameters (Helmig et al. 2002). The values of these effective parameters can be determined
using known values from pore-scale experiments. Recent works have been carried out to
derive upscaled models, e.g., Collis et al. (2017) obtained a mathematical model describing
macroscopic tumor growth, transport of drug and nutrient through homogenization and Jin
and Chen (2019) upscaled a pore-scale model for primary fluid recovery and showed that
the macroscopic equation for the water flux is fundamentally different from Darcys’ law. We
also refer to Peszynska et al. (2016) where the authors upscale a pore-scale model for biofilm
growth and compare to experimental results and Schulz (2019) where the author derives
effective quantities for a permeable biofilm in a perforated domain. In contrast to Schulz
(2019), we consider different pore geometries and a multi-component biofilm.

The present work builds on Landa et al. (2019), where a pore-scale model is discussed.
The model includes permeable biofilm and evolution of different biofilm components: ac-
tive bacteria, dead bacteria and EPS. The importance of including biofilm permeability
is underlined by the fact that the dominated mechanism of nutrient transport within some
biofilms is convection (Lewandowski and Beyenal 2003). This mathematical model is based
on laboratory experiments performed by Liu et al. (2019), where the biofilm was grown
in micro-channels. Here we upscale this pore-scale model to derive effective equations, by
investigating the limit as the ratio of the height to the length of the micro-channel approaches
to zero.

In this general context, the objective of the research reported in the present article is to
obtain core-scale models (also known as Darcy-scale or macro-scale models) for permeable
biofilm in two different pore geometries: a thin channel and a tube. The motivation for
choosing these two geometries is because experiments are performed in the laboratory in
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Fig. 1: Conceptual pore-scale model showing the processes for the biofilm dynamics.

micro-channels (Liu et al. 2019) and tubes (Bott and Miller 1983), they may represent a
fracture in a core sample (Bringedal et al. 2015) and some porous media can be modeled as
a stack of micro-tubes or micro-channels (van Noorden et al. 2010).

To summarize, the novel aspect in this work is the derivation of core-scale models
from a pore-scale model for a biofilm which is permeable to the flow and has a variable
(in time and space) height. The fluid flow in the biofilm is modeled by the Brinkman
equation, whereas in the remaining pore space the Stokes model is adopted. This is done for
two different geometries. We derive analytical expressions for the upscaled quantities and
provide numerical simulations for the upscaled models in both cases.

The structure of this paper is as follows. In Section 2, we describe the pore-scale biofilm
model. In Section 3, we present the dimensionless pore-scale biofilm model. In Section. 4,
we perform formal homogenization on the model equations and obtain upscaled equations.
In Section 5, we compare the upscaled models with the upscaled model of van Noorden
et al. (2010) and with the well-known core-scale model of Chen-Charpentier et al. (2009).
We compare the derived porosity-permeability relations to empirical porosity-permeability
relations from the literature. Also, we perform numerical simulations in the upscaled models
and we compare the results for the biofilm height and nutrient concentration for the two
different effective models. Finally, in Section 6 we present the conclusions.

2 Pore-scale model

The pore-scalemathematical model considered here follows ideas fromAlpkvist andKlapper
(2007) ,van Noorden et al. (2010) and Deng et al. (2013). A detailed description of this model
can be found in Landa et al. (2019), where a comparison of laboratory measurements and
numerical simulations is also presented.

The biofilm has four components: water, EPS, active and dead bacteria ( j = {w,e,a,d}).
Let θ j and ρj denote the volume fraction and the density of component j. The sum of
volume fractions is constraint to 1 (θw + θe + θa + θd = 1). Given that biofilms are mostly
water (Flemming and Wingender 2010), we assume that the volume fraction of water θw is
constant. The biomass phases and water are assumed to be incompressible (∂t ρj = 0) and
the biofilm layer is attached to the pore walls. Fig. 1 shows schematically the phenomena
considered for the biofilm formation.

We consider two different pore geometries: a tube in cylindrical coordinates rrr = (r,ϕ,z)
and a thin channel in Cartesian coordinates xxx = (x,y,z). The z direction is taken along the
length L of the tube and thin channel (see Figs. 2 and 6). In the first case, the pore has
circular cross-section and in the second a rectangular one. In both cases, the length is much
larger than the cross-sectional aperture. In both cases, we assume a certain symmetry. For
the cylindrical pore we assume that the processes are radially symmetric, hence there is
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Fig. 2: Pore of radius % and length L in cylindrical coordinates.

no angular dependence (see Fig. 2). For the thin channel, there are no changes in the x
direction, i.e., the width of the channel, so it can be reduced to a two-dimensional strip
(see Fig. 6). This assumption is based on experiments, showing that when the width of the
channel is much smaller than its height, the growth of the biofilm occurs only at the upper
and lower walls along the channel (Liu et al., 2019). We present in detail the upscaling
of the model equations on the tube geometry. The upscaling on the channel geometry is
shown in Appendix A. Fig. 2 shows the different domains, boundaries and interface in the
pore with tubular geometry. We consider a thin tube of radius % and length L. We denote
the biofilm height by d which only depends on z and time as a result of the symmetry
assumption. The domain is occupied by the water ΩT ,w(t) = {rrr | r ∈ [0, %− d(z,t)), ϕ ∈
[0,2π), z ∈ (0,L)} and biofilm ΩT ,b(t) = {rrr | r ∈ (%− d(z,t), %), ϕ ∈ [0,2π), z ∈ (0,L)} phases
with the biofilm located along the tube wall ΓT ,s = {rrr | r = %, ϕ ∈ [0,2π), z ∈ (0,L)}. Clearly
r = %− d(z,t) separates the water and biofilm regions. The water domain has three boundary
parts: the inflow ΓT ,iw(t) = {rrr | r ∈ [0, %− d(z,t)), ϕ ∈ [0,2π), z = 0}, the outflow ΓT ,ow(t) =
{rrr | r ∈ [0, %− d(z,t)), ϕ ∈ [0,2π), z = L} and the interface between the water and the biofilm
ΓT ,wb(t) = {rrr | r = %− d(z,t), ϕ ∈ [0,2π), z ∈ (0,L)}. Similarly, for the biofilm we have the
inflow ΓT ,ib(t) = {rrr | r ∈ (%− d(z,t), %), ϕ ∈ [0,2π), z = 0} and outflow ΓT ,ob(t) = {rrr | r ∈
(%− d(z,t), %), ϕ ∈ [0,2π) z = L} boundary parts, the water-biofilm interface ΓT ,wb(t) and
the solid tube wall ΓT ,s . Although the tube is a three-dimensional domain, recalling the
rotational symmetry, we only write the r- and z-components of the vectors in order to reduce
the length of the mathematical expressions.

The unit normal ννν pointing into the biofilm and the normal velocity of the interface νn
can be written in terms of the biofilm height d as (van Noorden et al., 2010)

ννν = (1,∂zd)T
/√

1+ (∂zd)2, νn = −∂td
/√

1+ (∂zd)2 at ΓT ,wb(t). (1a,b)

Thewater flux outside the biofilmΩT ,w(t) is described by the Stokes and continuity equations

µ∆qqqw = ∇pw, ∇···qqqw = 0 in ΩT ,w(t) (2a,b)

while the water flux inside the biofilm ΩT ,b(t) is described by the Brinkman and continuity
equations

(µ/θw)∆qqqb −(µ/k)qqqb = ∇pb, ∇···qqqb = 0 in ΩT ,b(t). (3a,b)

Here pw and pb are the water pressures and qqqw and qqqb are the water velocities in the water
domain and biofilm domain respectively; µ is the water viscosity (constant, not dependent on
biofilm species) and k is the permeability of the biofilm (assumed isotropic). The Brinkman
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model can be derived by upscaling assuming that the volume of the porous medium skeleton
is much smaller than the volume of the reference cell (Hornung, 1997). As biofilms are
mostly water, then the Brinkman model is a good choice to model water flux inside biofilms.
At the interface ΓT ,wb(t) one has the continuity of the velocity and of the normal stress tensor

qqqw = qqqb, ννν ···
[
µ
(
∇qqqw +∇qqqTw

)
− Ipw

]
= ννν ···

[
(µ/θw)

(
∇qqqb +∇qqqTb

)
− Ipb

]
at ΓT ,wb(t) (4a,b)

where I is the identity matrix. At the wall ΓT ,s we consider the no-slip boundary condition
qqqb = 000.

To model the nutrient transport and consumption, we let cα (α ∈ {w,b}) stand for the
nutrient concentration in water or biofilm (mass per total volume of biofilm) respectively
and D is the nutrient diffusion coefficient in water. Then, the nutrients in the water ΩT ,w(t)
satisfy the convection-diffusion equation

∂tcw +∇··· JJJw = 0, JJJw = −D∇cw +qqqwcw in ΩT ,w(t) (5a,b)

and in the biofilm ΩT ,b(t) satisfy the convection-diffusion-reaction equation

∂t (θwcb)+∇··· JJJb = Rb, JJJb = −θwD∇cb +qqqbcb in ΩT ,b(t) (6a,b)

where JJJw and JJJb are the nutrient flux outside and inside the biofilm respectively. Further at
ΓT ,wb(t) we impose the mass conservation and continuity of nutrient concentration

(JJJb − JJJw) ···ννν = νn(θwcb − cw), cb = cw at ΓT ,wb(t). (7a,b)

At the solid wall ΓT ,s the normal flux is υυυ ··· JJJb = 0, where υυυ is the normal vector at the pore
wall. The reaction term Rb for the consumption of nutrients is given by

Rb = −µnθaρacb/(kn + cb) in ΩT ,b(t) (8)

where µn is the maximum rate of nutrient consumption and kn is the Monod-half nutrient
velocity coefficient.

The movement of the biomass components θi inΩT ,b(t) due to reproduction, production
of EPS and death of active bacteria can be modeled as a Darcy flow (Alpkvist and Klapper,
2007). We denote by uuu the velocity of the biomass andΦ the growth velocity potential. Then,
we consider the following equations (Alpkvist and Klapper, 2007; Landa et al., 2019)

uuu = −∇Φ, ∇···uuu = (1− θw)−1
Σi (Ri/ρi), i ∈ {e,a,d} in ΩT ,b(t). (9a,b)

The growth velocity potential is set to zero Φ = 0 at the interface ΓT ,wb(t) and homogeneous
Neumann boundary condition υυυ ··· ∇Φ = 0 on the wall ΓT ,s .

For each of the biomass components θi in ΩT ,b(t), we impose mass conservation (Alp-
kvist and Klapper, 2007)

ρi∂tθi + ρi∇··· (θiuuu) = Ri, i ∈ {e,a,d} in ΩT ,b(t) (10)

and Neumann condition ννν ··· ∇θi = 0 at the interface ΓT ,wb(t) and υυυ ··· ∇θi = 0 on the wall ΓT ,s .
The reaction terms for the biomass components are given by

Rd = kresθaρa, Re = −YeRb, Ra = −YaRb − kresθaρa in ΩT ,b(t) (11a,b,c)

where Ye and Ya are yield coefficients and kres is the bacterial decay rate.
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The water-biofilm interface changes in time due to changes inside the biofilm and the
water flux provoking detachment of components which is known as erosion. Thus, the normal
velocity of the interface ΓT ,wb(t) is given by (van Noorden et al., 2010)

νn =


f +(ννν ···uuu), d = %
ννν ···uuu+ kstrS, 0 < d < %
0, d = 0

at ΓT ,wb(t) (12)

where f +(x) = max(0,x). Here kstr is the stress coefficient and S is the tangential shear
stress, given by (van Noorden et al., 2010)

S = | |(I−ννννννT )µ(∇qqqw +∇qqqTw)ννν | | at ΓT ,wb(t). (13)

Advanced numerical schemes are necessary to solve this mathematical model as it involves
a moving interface. When the pore is clogged, the active bacteria keep dying, consuming
nutrients and producing EPS which leads to changes in the volume fractions of biomass
components. In this model we ensure that the biofilm-water interface does not overlap by
taking the positive cut f + when d = %. This pore-scale model can be extended to consider
more complex systems. For example, one can add different kind of nutrients, different active
bacteria species in the biofilm or bacterial attachment.

3 Non-dimensional model

Before seeking an effectivemodel, we bring themathematical equations to a non-dimensional
form. To this aim, we introduce the reference time tre f , length Lre f , radius %re f , water
velocity qre f = Lre f /tre f , biomass velocity ure f , pressure pre f and concentration cre f . The
thin tube is characterized by the ratio of its radius to the length ε = %re f /Lre f , which is
called the dimensionless aspect ratio. We define dimensionless coordinates and time as
r̄ = r/%re f , z̄ = z/Lre f and t̄ = t/tre f . The non-dimensional biofilm height is given by d̄ =
d/%re f . The non-dimensional unit normal (1) is given by ν̄̄ν̄ν(r̄, z̄) = (1,ε∂z̄ d̄)T /

√
1+ (ε∂z̄ d̄)2.

We notice that a factor of ε appears in the second component of the non-dimensional unit
normal, as a result of the transformation of the coordinates

∂zd =
1

Lre f

∂

∂ z̄

(
%re f

d
%re f

)
=

1
Lre f

∂

∂ z̄
(%re f d̄) = ε∂z̄ d̄.

Note thatwe have omitted the dependence of the vector variables on ϕ (ν̄̄ν̄ν(r̄,ϕ, z̄)= ν̄̄ν̄ν(r̄, z̄)). This
is justified by our assumption of the radial symmetry. The non-dimensional nutrient concen-
trations and densities are given by c̄w = cw/cre f , c̄b = cb/cre f and ρ̄i = ρi/cre f (i ∈ {e,a,d}).
The water velocities are given by q̄̄q̄qw(r̄, z̄) = (q̄w,r̄ , q̄w,z̄)T = (qw,r/(εqre f ),qw,z/qre f )T

and q̄̄q̄qb(r̄, z̄) = (q̄b,r̄ , q̄b,z̄)T = (qb,r/(εqre f ),qb,z/qre f )T . The biomass velocity is given by
ū̄ūu(r̄, z̄) = (ūr̄ , ūz̄)T = (ur/(εure f ),uz/ure f )T . We assume that the velocities in the radial di-
rection are of the order ρre f /tre f (see van Noorden et al., 2010). Hence, they scale by 1/ε
when compared to the longitudinal velocities. The biomass volume fractions are dimen-
sionless; therefore, in the non-dimensional model we simply define θ̄i = θi, i ∈ {w,e,a,d}.
Finally, the pressures and growth velocity potential become p̄w = pw/pre f , p̄b = pb/pre f ,
Φ̄ = Φ/(ε2ure f Lre f ). We observe that the growth velocity potential Φ is scaled by 1/ε2 in
order to have the biomass velocities in the radial direction of the order ρre f /tre f (see van
Noorden et al., 2010). We define the following dimensionless parameters Pe = qre f Lre f /D,
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µ̄n = tre f µn, k̄n = kn/cre f , k̄ = k/%2
re f , µ̄ = µLre f qre f /(%2

re f pre f ), k̄str = pre f kstr/ure f
and k̄res = tre f kres . The domains and boundaries are scaled accordingly.

In this way, the dimensionless system of equations for the water flux (2-4) is given by

1
r̄
∂r̄

(
r̄ q̄w,r̄

)
+ ∂z̄ q̄w,z̄ = 0 in Ω̄T ,w(t̄), (14)

µ̄

[
1
r̄
∂r̄

(
r̄∂r̄ q̄w,r̄

)
+ ε2∂2

z̄ q̄w,r̄ −
q̄w,r̄
r̄2

]
= ε−2∂r̄ p̄w in Ω̄T ,w(t̄), (15)

µ̄

[
1
r̄
∂r̄

(
r̄∂r̄ q̄w,z̄

)
+ ε2∂2

z̄ q̄w,z̄

]
= ∂z̄ p̄w in Ω̄T ,w(t̄), (16)

1
r̄
∂r̄

(
r̄ q̄b,r̄

)
+ ∂z̄ q̄b,z̄ = 0 in Ω̄T ,b(t̄), (17)

µ̄

θ̄w

[
1
r̄
∂r̄ (r̄∂r̄ q̄b,r̄ )+ ε2∂2

z̄ q̄b,r̄ −
q̄b,r̄
r̄2

]
=
µ̄

k̄
q̄b,r̄ + ε−2∂r̄ p̄b in Ω̄T ,b(t̄), (18)

µ̄

θ̄w

[
1
r̄
∂r̄

(
r̄∂r̄ q̄b,z̄

)
+ ε2∂2

z̄ q̄b,z̄

]
=
µ̄

k̄
q̄b,z̄ + ∂z̄ p̄b in Ω̄T ,b(t̄), (19)

2µ̄∂r̄ q̄w,r̄ − ε−2 p̄w −2
µ̄

θ̄w
∂r̄ q̄b,r̄ + ε−2 p̄b = ∂z̄ d̄

[
µ̄

θ̄w

(
∂r̄ q̄b,z̄ + ε2∂z̄ q̄b,r̄

)
− µ̄

(
∂r̄ q̄w,z̄ + ε2∂z̄ q̄w,r̄

) ]
at Γ̄T ,wb(t̄), (20)

µ̄
(
∂r̄ q̄w,z̄ + ε2∂z̄ q̄w,r̄

)
= ∂z̄ d̄

(
2ε2 µ̄

θ̄w
∂z̄ q̄b,z̄

− p̄b −2ε2 µ̄∂z̄ q̄w,z̄ + p̄w

)
+

µ̄

θ̄w

(
∂r̄ q̄b,z̄ + ε2∂z̄ q̄b,r̄

)
at Γ̄T ,wb(t̄), (21)

(q̄w,r̄ , q̄w,z̄) = (q̄b,r̄ , q̄b,z̄) at Γ̄T ,wb(t̄), (22)
(q̄b,r̄ , q̄b,z̄) = (0, 0) on Γ̄T ,s (23)

where (14-16) are the dimensionless Stokes and continuity equations, (17-19) are the di-
mensionless Brinkman and continuity equations, (20-22) are the dimensionless interface
conditions and (23) is the dimensionless condition on the wall.
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The dimensionless equations for the transport of nutrients (5-7) in the water and biofilm
are given by

∂t̄ c̄w −
1
Pe

[
ε−2

r̄
∂r̄ (r̄∂r̄ c̄w)+ ∂2

z̄ c̄w

]
+

1
r̄
∂r̄ (r̄ q̄w,r̄ c̄w)+ ∂z̄(q̄w,z̄ c̄w) = 0 in Ω̄T ,w(t̄), (24)

∂t̄ (θ̄w c̄b)−
θ̄w
Pe

[
ε−2

r̄
∂r̄ (r̄∂r̄ c̄b)+ ∂2

z̄ c̄b

]
+

1
r̄
∂r̄ (r̄ q̄b,r̄ c̄b)+ ∂z̄(q̄b,z̄ c̄b) = R̄bin Ω̄T ,b(t̄), (25)

−
ε−2

Pe
(∂r̄ c̄w − θ̄w∂r̄ c̄b)− (c̄b q̄b,r̄ − c̄w q̄w,r̄ )+ ∂t̄ d̄(θ̄w c̄b − c̄w)

+
∂z̄ d̄
Pe
(∂z̄ c̄w − θ̄w∂z̄ c̄b)+ ∂z̄ d̄(c̄b q̄b,z̄ − c̄w q̄w,z̄) = 0 at Γ̄T ,wb(t̄), (26)

c̄b = c̄wat Γ̄T ,wb(t̄), (27)
∂r̄ c̄b = 0 on Γ̄T ,s (28)

where (24) is the dimensionless transport equation of nutrients in the water domain, (25)
is the dimensionless transport equation of nutrients in the biofilm domain, (26-27) are the
dimensionless coupling conditions at the interface and (28) is the dimensionless condition
on the wall. The dimensionless reaction rate (8) for the consumption of nutrients is given by
R̄b = −µ̄n θ̄a ρ̄a c̄b/(k̄n + c̄b).

The equations for the growth velocity potential (9) become

ure f
qre f

[
1
r̄
∂r̄ (r̄ ūr̄ )+ ∂z̄ ūz̄

]
= Σ̄ in Ω̄T ,b(t̄), (29)

(ūr̄ , ūz̄) = −(∂r̄ Φ̄,ε2∂z̄Φ̄) in Ω̄T ,b(t̄), (30)
Φ̄ = 0 at Γ̄T ,wb(t̄), (31)

∂r̄ Φ̄ = 0 on Γ̄T ,s (32)

where (29-30) are the dimensionless equations for the biomass growth velocity potential,
(31) is the dimensionless reference potential at the interface and (32) is the dimensionless
condition on the wall. We define the dimensionless sum of the biomass reaction terms as
Σ̄ = (1− θ̄w)−1[(Ye ρ̄a/ρ̄e +Ya)µ̄n θ̄a c̄b/(k̄n + c̄b)+ (ρ̄a/ρ̄d −1)k̄res θ̄a].

The equations for the biomass components (10) become

∂t̄ θ̄e +
ure f
qre f
(ūr̄∂r̄ θ̄e + ūz̄∂z̄ θ̄e) = Ye µ̄n θ̄a

ρ̄a
ρ̄e

c̄b
k̄n + c̄b

− θ̄eΣ̄ in Ω̄T ,b(t̄), (33)

∂t̄ θ̄a +
ure f
qre f
(ūr̄∂r̄ θ̄a + ūz̄∂z̄ θ̄a) = Ya µ̄n θ̄a

c̄b
k̄n + c̄b

− k̄res θ̄a − θ̄aΣ̄ in Ω̄T ,b(t̄), (34)

∂t̄ θ̄d +
ure f
qre f
(ūr̄∂r̄ θ̄d + ūz̄∂z̄ θ̄d) = k̄res

ρ̄a
ρ̄d
θ̄a − θ̄d Σ̄ in Ω̄T ,b(t̄), (35)

−∂r̄ θ̄i + ε∂z̄ d̄∂z̄ θ̄i = 0 i ∈ {e,a,d} at Γ̄T ,wb(t̄), (36)
∂r̄ θ̄i = 0 i ∈ {e,a,d} on Γ̄T ,s (37)

where (33-35) are the dimensionless conservation of mass equations for the biomass com-
ponents, (36) is the dimensionless condition at the interface and (37) is the dimensionless
condition on the wall.
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The dimensionless biofilm height (12) is given by

∂t̄ d̄ =


f −((−ūr̄ − ∂z̄ d̄ūz̄)ure f /qre f ), d̄ = 1
(−ūr̄ − ∂z̄ d̄ūz̄)ure f /qre f −

√
1+ (ε∂z̄ d̄)2ε k̄str S̄, 0 < d̄ < 1

0, d̄ = 0
at Γ̄T ,wb(t̄) (38)

where f − is the negative cut ( f −(x) :=min(0,x)). The dimensionless tangential shear stress
(13) is given by

S̄ = | |(I− ν̄̄ν̄νν̄̄ν̄νT )µ̄(M̄+ M̄T )ν̄̄ν̄ν | | at Γ̄T ,wb(t̄) (39)

where the matrix M̄ is given by

M̄ =

(
∂r̄ q̄w,r̄ ε∂z̄ q̄w,r̄

ε−1∂r̄ q̄w,z̄ ∂z̄ q̄w,z̄

)
at Γ̄T ,wb(t̄). (40)

4 Upscaling

The pore-scale mathematical model describes the biofilm formation in a three-dimensional
domain. Under some model assumptions, when the length of the tube is much larger than its
radius, it is possible to reduce the dimensionality of the problem from three to one dimension,
letting the aspect ratio ε approach to zero. We perform a formal asymptotic expansion of the
variables depending on ε, namely p̄w , p̄b , c̄w , c̄b , q̄̄q̄qw , q̄̄q̄qb , ū̄ūu, Φ̄, θ̄w , θ̄e, θ̄a, θ̄d and d̄. For
all except d̄ we assume χ̄(r̄̄r̄r, t̄) = χ̄0(r̄̄r̄r, t̄)+ ε χ̄1(r̄̄r̄r, t̄)+O(ε2). The corresponding asymptotic
expansion of d is d̄(z̄, t̄) = d̄0(z̄, t̄)+ εd̄1(z̄, t̄)+O(ε2). In van Noorden et al. (2010), Kumar
et al. (2014) and Bringedal et al. (2015), the authors present upscaled models of pore-
scale mathematical models for reactive flows. Following the same ideas, we can obtain the
corresponding upscaled model in the tube pore geometry.

We define the average water velocity 〈q̄〉 as the following integral

〈q̄〉(z̄, t̄) = 〈q̄w〉(z̄, t̄)+ 〈q̄b〉(z̄, t̄) =
1
π

ˆ 2π

0

(ˆ 1−d̄0

0
qw,z̄,0r̄dr̄ +

ˆ 1

1−d̄0

qb,z̄,0r̄dr̄
)
dϕ. (41)

Notice that we divide by the cross-sectional area of the tube. We consider the following
spatial regions in the tube:

Ξ̄w = {r̄̄r̄r | 0 ≤ r̄ ≤ 1− d̄ ∧ 0 ≤ ϕ < 2π ∧ z1 ≤ z̄ ≤ z1 + δz},

Ξ̄b = {r̄̄r̄r | 1− d̄ ≤ r̄ ≤ 1 ∧ 0 ≤ ϕ < 2π ∧ z1 ≤ z̄ ≤ z1 + δz}.

These regions are a disk of radius 1− d̄ and a ring of thickness d̄ respectively; both of length
δz. Integrating (14) and (17) over the previous regions and using the Gauss’s theorem, we
obtain

0 =
ˆ
Ξ̄w

∇̄ ··· q̄̄q̄qwdV̄ +
ˆ
Ξ̄b

∇̄ ··· q̄̄q̄qbdV̄ = 2π
ˆ z1+δz

z1

(1− d̄)q̄̄q̄qw ··· ν̄̄ν̄ν
��
r̄=1−d̄dz̄

+2π
ˆ 1−d̄

0

(
q̄w,z̄

��
z̄=z1+δz

− q̄w,z̄
��
z̄=z1

)
r̄dr̄ −2π

ˆ z1+δz

z1

[
(1− d̄)q̄̄q̄qb ··· ν̄̄ν̄ν

��
r̄=1−d̄ + q̄̄q̄qb ··· ν̄̄ν̄ν

��
r̄=1

]
dz̄

+2π
ˆ 1

1−d̄

(
q̄b,z̄

��
z̄=z1+δz

− q̄b,z̄
��
z̄=z1

)
r̄dr̄ .
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Recalling the no-slip condition for the water flux on the wall (23) and the continuity of fluxes
at the interface (22), the previous equation becomes

ˆ 1−d̄

0

(
q̄w,z̄

��
z̄=z1+δz

− q̄w,z̄
��
z̄=z1

)
r̄dr̄ +

ˆ 1

1−d̄

(
q̄b,z̄

��
z̄=z1+δz

− q̄b,z̄
��
z̄=z1

)
r̄dr̄ = 0.

Dividing the previous equation by δz and in the limit where δz approach to zero, we obtain
for the lowest-order terms in ε

∂z̄ 〈q̄〉 = ∂z̄ 〈q̄w〉(z̄, t̄)+ ∂z̄ 〈q̄b〉(z̄, t̄) = 0

where we use the definition of the average water velocity 〈q̄〉 (41).

The lowest order terms in the Stokes model (14-16) lead to

∂r̄ (r̄ q̄w,r̄ ,0)/r̄ + ∂z̄ q̄w,z̄,0 = 0, ∂r̄ p̄w,0 = 0, µ̄∂r̄ (r̄∂r̄ q̄w,z̄,0)/r̄ = ∂z̄ p̄w,0. (42a,b,c)

From (42b), we conclude that p̄w,0 does not depend on the r̄ coordinate. Analogously, for
the Brinkman model (17-19), the lower-order terms in ε give

∂r̄ (r̄ q̄b,r̄ ,0)/r̄ + ∂z̄ q̄b,z̄,0 = 0, ∂r̄ p̄b,0 = 0, µ̄∂r̄ (r̄∂r̄ q̄b,z̄,0)/(r̄ θ̄w)− µ̄q̄b,z̄,0/k̄ = ∂z̄ p̄b,0.
(43a,b,c)

From (43b), we conclude that p̄b,0 also does not depend on the r̄ coordinate. Since neither
p̄w,0 nor p̄b,0 depend on the r̄ coordinate and from the lowest order terms in (20) we have that
p̄w,0 = p̄b,0 at the biofilm-water interface, we obtain that p̄w,0(z̄, t̄) = p̄b,0(z̄, t̄) = p̄0(z̄, t̄). We
turn our attention to equations (42c) and (43c). It is possible to find solutions for qw,z̄,0 and
qb,z̄,0 integrating twice with respect to r̄ both equations and in addition using the symmetry,
interface and boundary conditions (21-23). After integration, we get

q̄w,z̄,0 = (r̄2/4+E)∂z̄ p̄0/µ̄, q̄b,z̄,0 = (FJ0(ξr̄)+GY0(−ξr̄)− k̄)∂z̄ p̄0/µ̄ (44a,b)

where ξ = i
√
θ̄w/k̄, i is the imaginary number and Jν(z̄) andYν(z̄) are the Bessel functions of

order ν of first and second kind respectively (see Olver, 2012). The Bessel functions appear
naturally when solving elliptic equations in cylindrical coordinates and are widely used in
various areas such as nuclear physics, acoustics and hydrodynamics (Korenev, 2002). The
coefficients appearing in (44) are

E =
2wθ̄w[J0(ξ)Y0(−ξw)− J0(ξw)Y0(−ξ)]+ ξ k̄[J0(ξw)Y1(−ξw)+Y0(−ξw)J1(ξw)]

4[ξJ0(ξ)Y1(−ξw)+ ξY0(−ξ)J1(ξw)]

−
ξ(4k̄ +w2)[J0(ξ)Y1(−ξw)+Y0(−ξ)J1(ξw)]

4[ξJ0(ξ)Y1(−ξw)+ ξY0(−ξ)J1(ξw)]
,

F =
2k̄ξY1(−ξw)+wθ̄wY0(−ξ)

2[ξJ0(ξ)Y1(−ξw)+ ξY0(−ξ)J1(ξw)]
, G =

2k̄ξJ1(ξw)+wθ̄w J0(ξ)

2[ξJ0(ξ)Y1(−ξw)+ ξY0(−ξ)J1(ξw)]

where w = 1− d̄0. We remark that most of the mathematical commercial software include
Bessel functions; therefore, it is easy to use the above expression. Although the Bessel
functions are evaluated with complex numbers, both fluxes qw,z̄,0 and qb,z̄,0 are real numbers.
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To obtain the water velocity defined in (41), we integrate (44) as follows

〈q̄〉 =
∂z̄ p̄0
πµ̄

ˆ 2π

0

{ˆ 1−d̄0

0
[r̄2/4+E]r̄dr̄ +

ˆ 1

1−d̄0

[
FJ0 (r̄ξ)+GY0 (−r̄ξ)− k̄

]
r̄dr̄

}
dϕ

= 2{w4/16+Ew2/2− ξ−1[FY1(−ξ)−GJ1(ξ)−FwY1(−wξ)+GwJ1(wξ)]

−k̄(1−w2)/2}∂z̄ p̄0/µ̄

= −κT (d̄0)∂z̄p0/µ̄.

This gives the Darcy’s law 〈q̄〉 = −κT (d̄0)∂z̄p0/µ̄, where κT (d̄0) is the effective permeability
given by

κT (d̄0) = −
w4

8
−w2E +

2[FY1(−ξ)−GJ1(ξ)−FwY1(−wξ)+GwJ1(wξ)]

ξ
+ k̄(1−w2)

which changes according to the biofilm height (w = 1− d̄0).

The growth velocity potential equations (29) and (30) for the lower-order terms in ε are

ure f [∂r̄ (r̄ ūr̄ ,0)/r̄ + ∂z̄ ūz̄,0]/qre f = Σ̄0, ūr̄ ,0 = −∂r̄ Φ̄0, ūz̄,0 = 0 (45a,b,c)

where the boundary conditions for the interface (31) becomes Φ̄0 = 0 and wall (32) becomes
∂r̄ Φ̄0 = 0.

In dimensionless form, the volume fraction equations (33-35) are

∂t̄ θ̄i +ure f (ūr̄∂r̄ θ̄i + ūz̄∂z̄ θ̄i)/qre f = R̄i − θ̄i Σ̄, i = {e,a,d}. (46)

We focus on biofilms where the biomass components change slightly along the r̄ direction,
resulting in the approximation θ̄i,0(r̄, z̄, t̄) = θ̄i,0(z̄, t̄). Using (45c), the lower-order terms in
(46) are ∂t̄ θ̄i,0 = R̄i,0 − θ̄i,0Σ̄0.

Integrating (45a) over r̄ (ūz̄,0 = 0 from (45c)), we get an expression for ūr̄ ,0 which cannot
fulfill both conditions at the same time: ūr̄ ,0 = 0 on the wall and ūr̄ ,0 < ∞ when r̄ = 0. For
the channel, the solution is a function such that fulfills the homogeneous Dirichlet condition
on the wall and is equal to (qre f /ure f )Σ̄0 when the channel is clogged. Then, we consider
the following expression for the radial biomass velocity

ūr̄ ,0 =
qre f
ure f
Σ̄0(r̄2 −1) (47)

where the squared dependence on the radius honors the radial geometry, as it is shown for
the nutrients below.

For the nutrients, integrating (24) and (25) over r̄ and ϕ yields

2π
ˆ 1−d̄

0

{
∂t̄ c̄w −

1
Pe

[
ε−2 1

r̄
∂r̄ (r̄∂r̄ c̄w)+ ∂2

z̄ c̄w

]
+

1
r̄
∂r̄ (r̄ q̄w,r̄ c̄w)+ ∂z̄(q̄w,z̄ c̄w)

}
r̄dr̄ = 0,

2π
ˆ 1

1−d̄

{
∂t̄ (θ̄w c̄b)−

θ̄w
Pe

[
ε−2 1

r̄
∂r̄ (r̄∂r̄ c̄b)+ ∂2

z̄ c̄b

]
+

1
r̄
∂r̄ (r̄ q̄b,r̄ c̄b)+ ∂z̄(q̄b,z̄ c̄b)

+µ̄n θ̄a ρ̄a
c̄b

k̄n + c̄b

}
r̄dr̄ = 0.
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Interchanging the integration and the differentiation operators, these equations become

∂t̄

(ˆ 1−d̄

0
c̄w r̄dr̄

)
+ ∂t̄ d̄(r̄ c̄w)

��
r̄=1−d̄ − ∂z̄

[ˆ 1−d̄

0

(
1
Pe
∂z̄ c̄w − q̄w,z̄ c̄w

)
r̄dr̄

]
−∂z̄ d̄

(
1
Pe

r̄∂z̄ c̄w − r̄ q̄w,z̄ c̄w

)����
r̄=1−d̄

−

(
1

ε2Pe
r̄∂r̄ c̄w − r̄ q̄w,r̄ c̄w

)����
r̄=1−d̄

= 0,

∂t̄

(ˆ 1

1−d̄
θ̄w c̄b r̄dr̄

)
− θ̄w∂t̄ d̄(c̄b r̄)

��
r̄=1−d̄ − ∂z̄

[ˆ 1

1−d̄

(
θ̄w
Pe
∂z̄ c̄b − q̄b,z̄ c̄b

)
r̄dr̄

]
+∂z̄ d̄

(
θ̄w
Pe

r̄∂z̄ c̄b − r̄ q̄b,z̄ c̄b

)����
r̄=1−d̄

−

(
θ̄w

ε2Pe
r̄∂r̄ c̄b − r̄ q̄b,r̄ c̄b

)����
r̄=1

+

(
θ̄w

ε2Pe
r̄∂r̄ c̄b − r̄ q̄b,r̄ c̄b

)����
r̄=1−d̄

+ µ̄n ρ̄a θ̄a

ˆ 1

1−d̄

c̄b
k̄n + c̄b

r̄dr̄ = 0.

The lower order terms in the equations for the conservation of nutrients (24) and (25)
are ∂r̄ (r̄∂r̄ c̄w,0) = 0 and ∂r̄ (r̄∂r̄ c̄b,0) = 0 respectively. The interface coupling condition (27)
becomes c̄w,0 = c̄b,0 while the boundary condition on the wall (28) becomes ∂r̄ c̄b,0 = 0.
From these equations we conclude that c̄w,0 and c̄b,0 do not depend on r , yielding c̄w,0(z̄, t̄) =
c̄b,0(z̄, t̄) = c̄0(z̄, t̄). Then, using the aforementioned results, the equations for the nutrients can
be written as

1
2
∂t̄ [c̄0(1− d̄0)

2]− ∂z̄

[
(1− d̄0)

2

2Pe
∂z̄ c̄0

]
+ ∂z̄

(
c̄0

ˆ 1−d̄0

0
q̄w,r̄ ,0r̄dr̄

)
= 0,

1
2
∂t̄ {θ̄w c̄0[1−(1− d̄0)

2]} − ∂z̄

[
1−(1− d̄0)

2

2Pe
θ̄w∂z̄ c̄0

]
+ ∂z̄

(
c̄0

ˆ 1

1−d̄0

q̄b,z̄,0r̄dr̄
)

+
1−(1− d̄0)

2

2
µ̄n ρ̄a θ̄a,0

c̄0

k̄n + c̄0
= 0

where we use the interface condition (26). Then, adding both previous equations we finally
obtain

∂t̄ [c̄0ΘT (d̄0, θ̄w)]+ ∂z̄

[
c̄0〈q̄〉 −

ΘT (d̄0, θ̄w)

Pe
∂z̄ c̄0

]
= −[1−(1− d̄0)

2]µ̄n θ̄a,0 ρ̄a
c̄0

k̄n + c̄0

where we define ΘT (d̄0, θ̄w) as

ΘT (d̄0, θ̄w) = (1− d̄0)
2 + θ̄w[1−(1− d̄0)

2].

We focus on the water-biofilm interface (38):

∂t̄ d̄ =


f −(ure f (−ūr̄ − ∂z̄ d̄ūz̄)/qre f ), d̄ = 1,
ure f (−ūr̄ − ∂z̄ d̄ūz̄)/qre f −

√
1+ (ε∂z̄ d̄)2ε k̄str S̄, 0 < d̄ < 1,

0, d̄ = 0.
(48)
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Following van Noorden et al. (2010), we regularize the formulation of (48). First we let H0
and H1 be the set-valued Heaviside graphs

H0(d̄) =

{0}, d̄ < 0,
[0,1], d̄ = 0,
{1}, d̄ > 0,

H1(d̄) =

{1}, d̄ < 1,
[0,1], d̄ = 1,
{0}, d̄ > 1,

(49)

where we set H0(d̄ = 0) = 0 and H1(d̄ = 1) = 0. Observe that this choice guarantees that ∂t̄ d̄
never becomes negative whenever d̄ = 0 and positive when d̄ = 1. Then, (48) is written as

∂t̄ d̄ ∈ H0(d̄)H1(d̄)
{
ure f (−ūr̄ − ∂z̄ d̄ūz̄)/qre f −

√
1+ (ε∂z̄ d̄)2ε k̄str µ̄| |(I− ν̄̄ν̄νν̄̄ν̄νT )(M̄+ M̄T )ν̄̄ν̄ν | |

}
+[1−H1(d̄)] f −(ure f (−ūr̄ − ∂z̄ d̄ūz̄)/qre f ). (50)

For practical calculations, the multi-valued functions are replaced by regularized Heaviside
functions, defined by

Hδ,0(d̄) =


0, d̄ < 0,
d̄/δ, d̄ ∈ [0,δ],
1, d̄ > δ,

Hδ,1(d̄) =


1, d̄ < 1,
(1+ δ− d̄)/δ, d̄ ∈ [1,1+ δ],
0, d̄ > 1+ δ,

(51)

where δ is a small regularization parameter. Then, we can write (50) as

∂t̄ d̄ = Hδ,0(d̄)Hδ,1(d̄)ure f (−ūr̄ − ∂z̄ d̄ūz̄)/qre f + [1−Hδ,1(d̄)] f −(ure f (−ūr̄ − ∂z̄ d̄ūz̄)/qre f )

−Hδ,0(d̄)Hδ,1(d̄)
√

1+ (ε∂z̄ d̄)2ε k̄str µ̄| |(I− ν̄̄ν̄νν̄̄ν̄νT )(M̄+ M̄T )ν̄̄ν̄ν | |. (52)

Using (39-40, 45c, 47) for the lower-order terms we have

∂t̄ d̄0 = Hδ,0(d̄0)Hδ,1(d̄0){[1−(1− d̄0)
2]Σ̄0 − k̄str µ̄|∂r̄ q̄w,z̄,0 |}+ [1−Hδ,1(d̄0)] f −(Σ̄0). (53)

Using (44a), we obtain

∂t̄ d̄0 = Hδ,0(d̄0)Hδ,1(d̄0){[1−(1− d̄0)
2]Σ̄0 − k̄str (1− d̄0)|∂z̄ p̄0 |/2}+ [1−Hδ,1(d̄0)] f −(Σ̄0).

The original model is obtained when passing δ to zero (van Duijn and Pop, 2004), obtaining
finally

∂t̄ d̄0 =


f −(Σ̄0), d̄0 = 1,
−k̄str (1− d̄0)|∂z̄ p̄0 |/2+ [1−(1− d̄0)

2]Σ̄0, 0 < d̄0 < 1,
0, d̄0 = 0.

5 Discussion and comparison with other biofilm models

The extension from a channel (tube) to a porous medium is done by considering a stack of
channels (tubes) of void space and solid material (van Noorden et al., 2010), where we denote
by φ the porosity of the porousmedium.As Steefel and Lichtner (1994) and vanNoorden et al.
(2010), we assume that all tubes have the same diameter and are equally separated. Therefore,
multiplying the upscaled model equations by φ, the corresponding core-scale mathematical
models are obtained. Table 2 shows the core-scale equations of the van Noorden model
(van Noorden et al., 2010), the porous medium formed by channels and the porous medium
formed by tubes, where v = φq is the Darcy velocity. The van Noorden model accounts for
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Table 2: Core-scale equations for the achannel, btube and cvan Noorden models

Name Upscaled equation

Darcya v = −φκC (d)∂zp/µ, ∂zv = 0
Darcyb v = −φκT (d)∂zp/µ, ∂zv = 0
Darcyc v = −φ(1− d)3∂zp/3µ, ∂zv = 0
Nutrientsa ∂t [φcΘC ]+ ∂z[cv−φΘC∂zc/Pe] = −dφρaθaµnc/(kn + c)
Nutrientsb ∂t [φcΘT ]+ ∂z[cv−φΘT ∂zc/Pe] = −[1−(1− d)2]φρaθaµnc/(kn + c)
Nutrientsc ∂t (φc)+ ∂z(cv−φ∂zc/Pe) = −dφρaµnc/(kn + c)

Heighta ∂td =


f −(Σ), d = 1
−kstr (1− d)|∂zp|+ dΣ, 0 < d < 1
0, d = 0

Heightb ∂td =


f −(Σ), d = 1
−kstr (1− d)|∂zp|/2+ [1−(1− d)2]Σ, 0 < d < 1
0, d = 0

Heightc ∂td =


f −(Σ), d = 1
−kstr (1− d)|∂zp|+ dΣ, 0 < d < 1
0, d = 0

Bacteriaa,b ∂tθa = Yaµnθac/(kn + c)− kresθa − θaΣ
EPSa,b ∂tθe = (ρa/ρe)Yeµnθac/(kn + c)− θeΣ
Deada,b ∂tθd = ρakresθa/ρd − θdΣ
Reactionsa,b Σ = (1− θw)−1[(Yeρa/ρe +Ya)θaµnc/(kn + c)+ (ρa/ρd −1)kresθa]
Reactionsc Σ = Yaµnc/(kn + c)− kres .

water flux, transport of nutrients and bacteria, bacterial attachment, detachment of biomass
due to erosion, growth of biomass due to nutrient consumption and death of bacteria. In
our model we do not include transport of bacteria and bacterial attachment. The reason
is because the pore-scale model was built based on laboratory experiments, where only
nutrients were continuously injected after inoculation of bacteria and biofilm re-attachment
was not observed (Landa et al., 2019). For the details of the upscaling on the thin channel
domain, see Appendix A.

From Table 2, we observe that for the Darcy flow, the permeability is different for the
three models. A discussion of these relations is given below in this Section. We observe
that the channel and tube models include the effects of the biofilm porosity and thickness
on the transport of nutrients. For the van Noorden model the nutrient consumption depends
on the biofilm height while for the channel and tube model the nutrient consumption also
depends on the volume fraction of active bacteria. Comparing the tube and channel model,
we observe a different function of the biofilm height, due to the cylindrical geometry. For
the biofilm height, the difference between the van Noorden and channel model is on the Σ
term, where for the van Noorden model the total sum of reactions accounts for bacterial
reproduction and decay, while in the channel structure it also accounts for EPS. Finally, for
the bacterial, EPS and dead bacterial volume fractions, the model equations are the same for
the channel and tube models, while for the van Noorden model the active bacterial volume
fraction is constant with value 1.
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Table 3: Core-scale equations for the model comparison (Chen-Charpentier et al., 2009)

Name Equation

Darcy v = −K∂zp, ∂zv = 0
Nutrients ∂tc+ ∂z(cv−D∂zc) = R
Porosity φ = φO(1− θB − θK )
Permeability K = KO(φ/φO)

η

Component B ∂tθB = YBµBθBc/(kB + c)− kresθB
Component K ∂tθK = YK µKθKc/(kK + c)− kresθK
Reactions R = −µBθBc/(kB + c)− µKθKc/(kK + c)

In van Noorden et al. (2010), the authors compared their upscaled model with a well-
known macro-scale model by Taylor and Jaffe (1990), where a mathematical model for
an impermeable single-species biofilm including flow, transport and reactions is built. We
compare the two derived upscaled models with a macro-scale model by Chen-Charpentier
et al. (2009), where a mathematical model for impermeable multi-species biofilm including
water flow, transport of nutrients and reactions is built (Table 3). In this model the authors
considered a biofilm formed by two bacterial specieswhich consume nutrients, reproduce and
die. The porosity of the core decreases as the biofilm grows which decreases the permeability
of the core.

In Table 3, K is the permeability, θB, µB, kB, θK , µK and kK are the volume fractions,
maximum rates of nutrient utilization and Monod-half nutrient velocity coefficients of the
contaminant-degradingmicrobe and the strong biofilm-formingmicrobe respectively, φO and
KO the clean surface porosity and initial permeability respectively and η an experimentally
determined parameter. In Chen-Charpentier et al. (2009), the porosity decreases as the
component concentrations increases. In our models, the porosity in the porous medium
decreases as the biofilm height increases. However, in Chen-Charpentier et al. (2009) the
authors do not include the detachment effects. The permeability in both tube and channel
models have different functions as a result of the different geometries and also because
of the water flow inside the biofilm. Notice that there is a quartic function of the biofilm
height in one of the permeability terms in the porous medium formed by tubes, as proposed
in Suchomel at al. (1998) and Mostafa and van Geel (2007). Unlike the equation for the
transport of nutrients in the Chen-Charpentier et al. (2009) model, the channel and tube
models include the effects of the biofilm porosity and thickness.

Porosity-permeability relations for evolving pore space is an active research field (see
Hommel et al. (2018) for a review of these relations and Schulz et al. (2019) for a recent study
providing porosity-permeability relations depending only on the underlying pore geometry).
Thullner et al. (2002) present the following relation which includes the biofilm permeability
k

K = KO

[(
φ−φcrit
φO −φcrit

)η
+ k

]
1

1+ k
(54)



18 David Landa-Marbán1,2 et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of initial to reduce porosity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

ti
o

 o
f 

in
it
ia

l 
to

 r
e

d
u

c
e

 p
e

rm
e

a
b

ili
ty

Fig. 3: Ratio of initial to reduce permeability of different porosity-permeability relations for
two different biofilm permeability values k.

where φcrit is the critical porosity at which the permeability becomes zero. Vandevivere
(1995) proposed the following relation of permeability and porosity for a plugging model

K = KO[exp(−0.5(B/Bc)
2)]

(
φ

φO

)2
+ [1− exp(−0.5(B/Bc)

2)]
k

1−[(1− k/KO)φ/φO]
(55)

where B is a relative porosity given by B = 1−φ/φO and Bc is the critical point where biofilm
begins to detach and form plugs. Fig. 3 shows our derived porosity-permeability relations,
the one derived by van Noorden and the two proposed relations by Thullner and Vandevivere
for different values of biofilm permeability. The values of parameters are φcrit = 0, η = 1.76,
Bc = 0.1 (Hommel et al., 2018) and θw = 0.1. For a biofilm with high permeability k = 10−1,
we observe a faster reduction of permeability for Vandevivere. As the biofilm permeability
k decreases, we observe that the van Noorden et al. (2010) model represents the limit case
in the channel model for impermeable biofilms. In general, we observe different behaviors
of the relations as the porosity decreases.

We perform numerical simulations considering both effective models (channel and tube)
to compare the biofilm height over time. We consider two different porous media of length
L = 0.1 m: the first one has pores formed by thin channels of height 2l = 0.2 mm and the
second ones with tubes of diameter 2% = 0.2 mm. For the inlet boundary, we set pi = 2 Pa.
The injected nutrient concentration is ci = 1 kg m−3. The porosity Φ is set to 0.4. Recalling
that biofilms are mostly composed by water, we set the water volume fraction in the biofilm
equal to 90%. We set the initial EPS and active bacterial volume fraction equal to 5%; thus
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Table 4: Model parameters for the numerical studies

Name Description Value References

µ Water viscosity 10−3 Pa s Well-known
ρw Water density 103 kg m−3 Well-known
µn Maximum growth rate 1.1×10−5 s−1 Alpkvist and Klapper (2007)
kn Monod-half velocity 10−4 kg m−3 Alpkvist and Klapper (2007)
ρe EPS density 60 kg m−3 Alpkvist and Klapper (2007)
ρa Bacterial density 60 kg m−3 Alpkvist and Klapper (2007)
ρd Dead bacterial density 60 kg m−3 Alpkvist and Klapper (2007)
D Nutrient diffusion 1.7×10−9 m2 s−1 Duddu et al. (2009)
Ya Bacterial growth yield 0.553 Duddu et al. (2009)
Ye EPS growth yield 0.447 Duddu et al. (2009)
kres Bacterial decay rate 3.5×10−6 s−1 Duddu et al. (2009)
k Biofilm permeability 10−9 m2 Deng et al. (2013)
kstr Stress coefficient 2.6×10−10m (Pa s)−1 Landa et al. (2019)

the initial dead bacterial volume fraction is 0. In Table 4, the values of parameters for the
numerical simulations are presented.

We implement the model equations in the commercial software COMSOL Multiphysics
(COMSOL 5.2a, Comsol Inc, Burlington, MA, www.comsol.com). A decoupled finite el-
ement algorithm is used to solve the mathematical model equations. Firstly, we solve for
the pressure and concentration. Then, we compute the volume fractions and biofilm height.
We iterate between both steps until the difference between successive values of the solution
drops below a given tolerance ζ . We perform numerical simulations and we compare the
results of the two upscaled mathematical models.

To check if there is a correspondence between the pore-scale and upscaled models as ε
is close to zero, numerical simulations can be done for both models to compare the average
solution of one of the variables. Fig. 4 compares the upscaled model with the pore-scale
model in the channel for different values of ε, where the percentage of biofilm on the whole
domain is plotted over time. We called this coverage area a and for the channel and tube is
given by

aC (t) =


1
lL

Lˆ

0

d(z,t)dz
 100, aT (t) =

1−
1
%2L

Lˆ

0

(%− d(z,t))2dz
 100 (56)

respectively.
For all numerical simulations, we fix the value of the height of the channel 2l, where

we set the initial biofilm height as d = l/5. Then, the length of the channel is changed
accordingly to match the value of ε. We observe that the coverage area in the pore-scale
simulations approaches the one computed from the upscaled model as ε gets smaller.

Fig. 5a shows the biofilm height along the length for both porous media for an injected
nutrient concentration of ci = 0.1 kgm−3 (ci/kn = 103). Initially, the left part (0< z < L/2) has
a biofilm height of d = l/2 (d = %/2 for the tubular pores) while the right part (L > z > L/2)
has a height of d = l/4 (d = %/4 for the tubular pores). This initial condition is given to
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Fig. 4: Percentage of biofilmcoverage area over time for the upscaledmodel and for decreasing
values of epsilon.

study the biofilm development after clogging. We observe that the biofilm keeps growing
even though the left part of the pore is clogged. This result cannot be observed using the
van Noorden model because the water flux stops once the channel is clogged. Fig. 5b shows
the biofilm coverage area for different ratios of injected nutrients and Monod-half nutrient
velocity coefficient. Initially, the biofilm height is d = 0.1l for the tubular pores and d = 0.19l
for the channel pores. This initial condition is given to study the biofilm development in both
porous media for the same initial biofilm coverage area. We observe that the biofilm grows
faster in the tubes when we inject enough nutrients and it grows faster in the channels when
we lower the injected nutrient concentration. To give a physical explanation of this result,
let us consider the case when the biofilm thickness is half value of the aperture (d=0.5).
Then, 50% of the cross-sectional area is biofilm for the channel while 75% for the tube. This
implies that in the tube the biofilm needs to consume more nutrients to have this thickness
in comparison to the channel.

6 Conclusions

In this work, we upscale a mathematical model for permeable biofilm considering a thin
channel and tubular pore geometries. The upscaled models differ mainly in the effective
permeability terms which are functions of the biofilm height. As ε gets smaller, we obtain
that the percentage of biofilm coverage area over time predicted by the pore-scale model
approaches the one obtained using the effective equations, which shows a correspondence
between both models. After comparing with the model proposed by van Noorden et al.
(2010), it is possible to derive this model as a particular case of the channel model. The
derived upscaled models and the Chen-Charpentier et al. (2009) model are very similar.
In this manner, the upscaling provides additional support for this model. The numerical
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Fig. 5: Biofilm height (a) and coverage area (b) in the porous medium formed by channels
and tubes.

simulations show a faster increase in coverage area in the porous medium formed by tubes
than the one formed by channels when a large nutrient concentration is injected (ci/kn = 104).
These two upscaled models could be used to model porous media where the geometries of
the fractures are similar to thin channels or tubes. To validate the core-scale upscaled models,
designed laboratory experiments are necessary which is the subject of our future research.
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Appendix A: Upscaling of the mathematical model in a thin channel

In Section 4, we show with details how to obtain the upscaled model equations in a tube.
Following the same ideas, in this appendix we show how to upscale the model equations in
a channel. We consider a thin channel with height 2l, width w and length L. When the width
is much smaller than the height, experiments show that the growing of the biofilm occurs
only in the upper and lower walls along the channel (Liu et al., 2019). Therefore, we can
model the biofilm in the thin channel in a two-dimensional domain. Fig. 6 shows the different
domains, boundaries and interface in the rectangular geometry. To achieve non-dimensional
quantities, we use the reference values defined in Section 4 (tre f , Lre f , qre f , ure f , pre f and
cre f ), where we consider the height of the channel lre f instead of the radius of the tube
%re f . We define dimensionless coordinates and time as ỹ = y/lre f , z̃ = z/Lre f and t̃ = t/tre f .
The thin channel is characterized by the ratio of its height to the length ε = lre f /Lre f . All
dimensionless variables and quantities are analogously defined as in Section 3, where we use
lre f instead of %re f and we denote the dimensionless variables with ˜ instead of .̄



22 David Landa-Marbán1,2 et al.

ΓC;ib(t)

ΓC;iw(t)

ΓC;s

ΓC;s

ΓC;ow(t)

ΓC;ob(t)

z

y ΓC;wb(t)

ΩC;b(t)

ΩC;w(t)

d(z; t)
qb

τ

ν

qw

qb ΩC;b(t)

ΓC;wb(t)

ΓC;ob(t)

ΓC;ib(t)

(0; l; L)

(0;−l; L)

(0; l; 0)

(0;−l; 0)

x
y

d(z; t) υ

υ

w
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The dimensionless system of equations for the water flux is given by

∂ỹ q̃w,ỹ + ∂z̃ q̃w,z̃ = 0 in Ω̃C ,w(t̃), (57)

µ̃(ε2∂2
z̃ q̃w,ỹ + ∂2

ỹ q̃w,ỹ) = ε−2∂ỹ p̃w in Ω̃C ,w(t̃), (58)

µ̃ε2∂2
z̃ q̃w,z̃ + ∂2

ỹ q̃w,z̃ = ∂z̃ p̃w in Ω̃C ,w(t̃), (59)

∂ỹ q̃b,ỹ + ∂z̃ q̃b,z̃ = 0 in Ω̃C ,b(t̃), (60)
µ̃

θ̃w
(ε2∂2

z̃ q̃b,ỹ + ∂2
ỹ q̃b,ỹ) = ε−2∂ỹ p̃b +

µ̃

k̃
q̃b,ỹ in Ω̃C ,b(t̃), (61)

µ̃

θ̃w
(ε2∂2

z̃ q̃b,z̃ + ∂2
ỹ q̃b,z̃) = ∂z̃ p̃b +

µ̃

k̃
q̃b,z̃ in Ω̃C ,b(t̃), (62)

2µ̄∂ȳ q̄w,ȳ − ε−2 p̄w −2
µ̄

θ̄w
∂ȳ q̄b,ȳ + ε−2 p̄b = ∂z̄ d̄

[
µ̄

θ̄w

(
∂ȳ q̄b,z̄ + ε2∂z̄ q̄b,ȳ

)
− µ̄

(
∂ȳ q̄w,z̄ + ε2∂z̄ q̄w,ȳ

) ]
at Γ̃C ,wb(t̃), (63)

µ̄
(
∂ȳ q̄w,z̄ + ε2∂z̄ q̄w,ȳ

)
= ∂z̄ d̄

(
2ε2 µ̄

θ̄w
∂z̄ q̄b,z̄ − p̄b

−2ε2 µ̄∂z̄ q̄w,z̄ + p̄w

)
+

µ̄

θ̄w

(
∂ȳ q̄b,z̄ + ε2∂z̄ q̄b,ȳ

)
at Γ̃C ,wb(t̃), (64)

(q̃w,ỹ, q̃w,z̃) = (q̃b,ỹ, q̃b,z̃) at Γ̃C ,wb(t̃), (65)
(q̃b,ỹ, q̃b,z̃) = (0, 0) on Γ̃C ,s . (66)
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The equations for the nutrients become

∂t̃ c̃w −
1
Pe
(ε−2∂2

ỹ c̃w + ∂2
z̃ c̃w)+ ∂ỹ(q̃w,ỹ c̃w)+ ∂z̃(q̃w,z̃ c̃w) = 0 in Ω̃C ,w(t̃), (67)

∂t̃ (θ̃w c̃b)−
θ̃w
Pe
(ε−2∂2

ỹ c̃b + ∂2
z̃ c̃b)+ ∂ỹ(q̃b,ỹ c̃b)+ ∂z̃(q̃b,z̃ c̃b) = R̃b in Ω̃C ,b(t̃), (68)

−
1

Peε2 (∂ỹ c̃w − θ̃w∂ỹ c̃b)− (c̃b q̃b,ỹ − c̃w q̃w,ỹ)+ ∂t̃ d̃(θ̃w c̃b − c̃w)

+
∂z̃ d̃
Pe
(∂z̃ c̃w − θ̃w∂z̃ c̃b)+ ∂z̃ d̃(c̃b q̃b,z̃ − c̃w q̃w,z̃) = 0 at Γ̃C ,wb(t̃), (69)

c̃b = c̃w at Γ̃C ,wb(t̃), (70)
∂ỹ c̃b = 0 on Γ̃C ,s (71)

where R̃b = −µ̃n θ̃a ρ̃a c̃b/(k̃n + c̃b).

The dimensionless equations for the growth velocity potential are given by
ure f
qre f
(∂ỹ ũỹ + ∂z̃ ũz̃) = Σ̃ in Ω̃C ,b(t̃), (72)

(ũỹ, ũz̃) = −(∂ỹΦ̃,ε2∂z̃Φ̃) in Ω̃C ,b(t̃), (73)
Φ̃ = 0 at Γ̃C ,wb(t̃), (74)

∂ỹΦ̃ = 0 on Γ̃C ,s (75)

where Σ̃ = (1− θ̃w)−1[(Ye ρ̃a/ρ̃e +Ya)µ̃n θ̃a c̃b/(k̃n + c̃b)+ (ρ̃a/ρ̃d −1)k̃res θ̃a].

The equations for the biomass components become

∂t̃ θ̃e +
ure f
qre f
(ũỹ∂z̃ θ̃e + ũz̃∂ỹ θ̃e) = Ye µ̃n θ̃a

ρ̃a
ρ̃e

c̃b
k̃n + c̃b

− θ̃eΣ̃ in Ω̃C ,b(t̃), (76)

∂t̃ θ̃a +
ure f
qre f
(ũỹ∂z̃ θ̃a + ũz̃∂ỹ θ̃a) = Ya µ̃n θ̃a

c̃b
k̃n + c̃b

− k̃res θ̃a − θ̃aΣ̃ in Ω̃C ,b(t̃), (77)

∂t̃ θ̃d +
ure f
qre f
(ũỹ∂z̃ θ̃d + ũz̃∂ỹ θ̃d) = k̃res

ρ̃a
ρ̃d
θ̃a − θ̃d Σ̃ in Ω̃C ,b(t̃), (78)

−∂ỹ θ̃i + ε∂z̃ d̃∂z̃ θ̃i = 0 i ∈ {e,a,d} at Γ̃C ,wb(t̃), (79)
∂ỹ θ̃i = 0 i ∈ {e,a,d} on Γ̃C ,s . (80)

For the biofilm height we have

∂t̃ d̃ =


f −((ũỹ − ∂z̃ d̃ũz̃)ure f /qre f ), d̃ = 1
−
√

1+ (ε∂z̃ d̃)2ε k̃str S̃+ (ũỹ − ∂z̃ d̃ũz̃)ure f /qre f , 0 < d̃ < 1
0, d̃ = 0

at Γ̃C ,wb(t̃) (81)

where

S̃ = | |(I− ν̃̃ν̃νν̃̃ν̃νT )µ̃(M̃+ M̃T )ν̃̃ν̃νε | | at Γ̃C ,wb(t̃) (82)

and

M̃ =

(
∂ỹ q̃w,ỹ ε∂z̃ q̃w,ỹ

ε−1∂ỹ q̃w,z̃ ∂z̃ q̃w,z̃

)
at Γ̃C ,wb(t̃). (83)
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We define the average water velocity 〈q̃〉 as the following integral

〈q̃〉(z̃, t̃) = 〈q̃w〉(z̃, t̃)+ 〈q̃b〉(z̃, t̃) =
1
2

(ˆ 1−d̃0

−(1−d̃0)
q̃w,z̃,0d ỹ+

ˆ −(1−d̃0)

−1
q̃b,z̃,0d ỹ+

ˆ 1

1−d̃0

q̃b,z̃,0d ỹ
)
.

(84)
We define the following space regions in the channel

Ξ̃u = {x̃̃x̃x | 1− d̃ ≤ ỹ ≤ 1 ∧ z1 ≤ z̃ ≤ z1 + δz},

Ξ̃m = {x̃̃x̃x | | ỹ | ≤ 1− d̃ ∧ z1 ≤ z̃ ≤ z1 + δz},

Ξ̃l = {x̃̃x̃x | −1 ≤ ỹ ≤ −(1− d̃) ∧ z1 ≤ z̃ ≤ z1 + δz}.

Integrating (57) and (60) over the previous regions and using the Gauss’s theorem yield

0 =
ˆ
Ξ̃u

∇̃ ··· q̃̃q̃qbdṼ +
ˆ
Ξ̃m

∇̃ ··· q̃̃q̃qwdṼ +
ˆ
Ξ̃l

∇̃ ··· q̃̃q̃qbdṼ

= 2
ˆ z1+δz

z1

q̃̃q̃qw ··· ν̃̃ν̃ν
��
ỹ=1−d̃dz̃+

ˆ 1−d̃

−(1−d̃)

(
q̃w,z̃

��
z̃=z1+δz

− q̃w,z̃
��
z̃=z1

)
d ỹ

−

ˆ z1+δz

z1

(
q̃̃q̃qb ··· ν̃̃ν̃ν

��
ỹ=−(1−d̃) + q̃̃q̃qb ··· ν̃̃ν̃ν

��
ỹ=−1

)
dz̃+
ˆ −(1−d̃)
−1

(
q̃b,z̃

��
z̃=z1+δz

− q̃b,z̃
��
z̃=z1

)
d ỹ

−

ˆ z1+δz

z1

(
q̃̃q̃qb ··· ν̃̃ν̃ν

��
ỹ=1 + q̃̃q̃qb ··· ν̃̃ν̃ν

��
ỹ=1−d̃

)
dz̃+
ˆ 1

1−d̃

(
q̃b,z̃

��
z̃=z1+δz

− q̃b,z̃
��
z̃=z1

)
d ỹ.

Recalling the no-slip condition for the water flux on the wall (66) and the continuity of
fluxes at the interface (65), the previous equation becomes

ˆ 1−d̃

−(1−d̃)

(
q̃w,z̃

��
z̃=z1+δz

− q̃w,z̃
��
z̃=z1

)
d ỹ+
ˆ −(1−d̃)
−1

(
q̃b,z̃

��
z̃=z1+δz

− q̃b,z̃
��
z̃=z1

)
d ỹ

+

ˆ 1

1−d̃

(
q̃b,z̃

��
z̃=z1+δz

− q̃b,z̃
��
z̃=z1

)
d ỹ = 0.

Dividing the previous equation by δz and letting δz approach zero, we obtain for the
lowest-order terms in ε

∂z̃ 〈q̃〉 = ∂z̃ 〈q̃w〉(z̃, t̃)+ ∂z̃ 〈q̃b〉(z̃, t̃) = 0

where we use the definition of the water velocity 〈q̃〉 (84).

The lowest order terms in the Stokes model (57-59) lead to

∂ỹ q̃w,ỹ,0 + ∂z̃ q̃w,z̃,0 = 0, ∂ỹ p̃w,0 = 0, µ̃∂2
ỹ q̃w,z̃,0 = ∂z̃ p̃w,0. (85a,b,c)

From (85b), we conclude that p̃w,0 does not depend on the ỹ coordinate. Analogously, for
the Brinkman model (60-62), the lower-order terms in ε give

∂ỹ q̃b,ỹ,0 + ∂z̃ q̃b,z̃,0 = 0, ∂ỹ p̃b,0 = 0, µ̃∂2
y q̃b,z̃,0/θ̃w − µ̃q̃b,z̃,0/k̃ = ∂z̃ p̃b,0. (86a,b,c)

From (86b), we obtain that p̃b,0 does not depend on the ỹ coordinate and from the lowest
order terms in (63) we conclude that p̃w,0(z̃, t̃) = p̃b,0(z̃, t̃) = p̃0(z̃, t̃). Integrating twice (85)
and (86) with respect to ỹ and using the symmetry, interface and boundary conditions
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(64-66)

q̃w,z̃,0 =
(
ỹ2

2
+V

)
∂z̃ p̃0
µ̃

, q̃b,z̃,0 =
(
Weỹλ + Xe−ỹλ − k̃

) ∂z̃ p̃0
µ̃

, (87a,b)

where λ =
√
θ̃w/k̃ and the coefficients are given by

V = −
( h

2

2 + k̃)(e−d̃0λ + ed̃0λ)−
√

k̃ θ̃wh(e−d̃0λ − ed̃0λ)−2k̃

e−d̃0λ + ed̃0λ
,

W =
k̃ehλ −

√
k̃ θ̃wheλ

e−d̃0λ + ed̃0λ
, X =

k̃e−hλ +
√

k̃ θ̃whe−λ

e−d̃0λ + ed̃0λ

where h = 1− d̃0.

To obtain the water velocity defined in (84), we integrate (87) as follows

〈q̃〉 =
∂z̃ p̃0
2µ̃

[ˆ 1−d̃0

−(1−d̃0)

(
ỹ2

2
+V

)
d ỹ+2

ˆ −(1−d̃0)

−1

(
Weỹλ + Xe−ỹλ − k̃

)
d ỹ

]

=


λ3

6
+Vλ+

We−λ
(
ed̃0λ −1

)
− Xeλ

(
e−d̃0λ −1

)
λ

− k̃ d̃0


∂z̃ p̃0
µ̃

= −
κC (d̃0)

µ̃
∂z̃ p̃0.

This is the Darcy’s law 〈q̃〉 = −κC (d̃0)∂z̃ p̃0/µ̃, where κC (d̃0) is the effective permeability
given by

κC (d̃0) = −
λ3

6
−λV −

We−λ
(
ed̃0λ −1

)
− Xeλ

(
e−d̃0λ −1

)
λ

+ k̃ d̃0.

The growth velocity potential equations (72) and (73) for the lower-order terms in ε are

ure f (∂ỹ ũỹ,0 + ∂z̃ ũz̃,0)/qre f = Σ̃0, ũỹ,0 = −∂ỹΦ̃0, ũz̃,0 = 0 (88)

where the conditions at the interface (74) becomes Φ̃0 = 0 and wall (75) becomes ∂ỹΦ̃0 = 0.

In dimensionless form, the volume fraction equations (76-78) are

∂t̃ θ̃i +ure f (ũỹ∂ỹ θ̃i + ũz̃∂z̃ θ̃i)/qre f = R̃i − θ̃i Σ̃ (89)

with i = {e,a,d}. We focus on biofilms where the biomass components change slightly
along the ỹ direction, resulting in the approximation θ̃i,0(ỹ, z̃, t̃) = θ̃i,0(z̃, t̃). Using (88c), the
lower-order terms in (89) are

∂t̃ θ̃i,0 = R̃i,0 − θ̃i,0Σ̃0. (90)

Integrating (88a) over ỹ and using the boundary conditions (74-75) one gets

ũỹ,0 = qre f Σ̃0(ỹ+1)/ure f . (91)
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For the nutrients, integrating (67) and (68) yields
ˆ 1−d̃

−(1−d̃)

[
∂t̃ c̃w −

1
Pe

(
ε−2∂2

ỹ c̃w + ∂2
z̃ c̃w

)
+ ∂ỹ(q̃w,ỹ c̃w)+ ∂z̃(q̃w,z̃ c̃w)

]
d ỹ = 0,

2
ˆ −(1−d̃)
−1

[
∂t̃ (θ̃w c̃b)−

θ̃w
Pe

(
ε−2∂2

ỹ c̃b + ∂2
z̃ c̃b

)
+ ∂ỹ(q̃b,ỹ c̃b)+ ∂z̃(q̃b,z̃ c̃b)

+µ̃n θ̃a ρ̃a
c̃b

k̃n + c̃b

]
d ỹ = 0.

Interchanging the integration and the differentiation operators, these equations become

∂t̃

(ˆ 1−d̃

−(1−d̃)
c̃wd ỹ

)
+2∂t̃ d̃c̃w

��
ỹ=−(1−d̃) − ∂z̃

[ˆ 1−d̃)

−(1−d̃)

(
1
Pe
∂z̃ c̃w − q̃w,z̃ c̃w

)
d ỹ

]
(92)

−2∂z̃ d̃
(

1
Pe
∂z̃ c̃w − q̃w,z̃ c̃w

)����
ỹ=−(1−d̃)

−2
(

1
ε2Pe

∂ỹ c̃w − q̃w,ỹ c̃w

) ����
ỹ=−(1−d̃)

= 0,

2∂t̃
(ˆ −(1−d̃)
−1

θ̃w c̃bd ỹ
)
−2θ̃w∂t̃ d̃c̃b

��
ỹ=−(1−d̃)

−2∂z̃

[ˆ −(1−d̃)
−1

(
θ̃w
Pe
∂z̃ c̃b − q̃b,z̃ c̃b

)
d ỹ

]
+2∂z̃ d̃

(
θ̃w
Pe
∂z̃ c̃b − q̃b,z̃ c̃b

)����
ỹ=−(1−d̃)

(93)

+2
(
θ̃w

ε2Pe
∂ỹ c̃b − q̃b,ỹ c̃b

) ����
ỹ=−(1−d̃)

+2µ̃n ρ̃a
ˆ −(1−d̃)
−1

θ̃a
c̃b

k̃n + c̃b
d ỹ = 0.

Next, the lower order terms in the equations for the conservation of nutrients (67-68) are
∂2
ỹ c̃w,0 = 0 and ∂2

ỹ c̃b,0 = 0. The interface coupling condition (70) becomes c̃b,0 = c̃w,0 while
the boundary condition on the wall (71) becomes ∂ỹ c̃b,0 = 0. The symmetry in ỹ implies
that both nutrient concentrations do not depend on ỹ, resulting in
c̃w,0(z̃, t̃) = c̃b,0(z̃, t̃) = c̃0(z̃, t̃). Using the aforementioned results, both equations (92) and
(93) can be written as

∂t̃ [c̃0(2−2d̃0)]− ∂z̃

(
2−2d̃0
Pe

∂z̃ c̃0

)
+ ∂z̃

(
c̃0

ˆ 1−d̃0

−(1−d̃0)
q̃w,z̃,0d ỹ

)
= 0,

∂t̃ (2d̃0θ̃w c̃0)− ∂z̃

(
2d̃0

θ̃w
Pe
∂z̃ c̃0

)
+ ∂z̃

(
c̃0

ˆ −(1−d̃0)

−1
q̃b,z̃,0d ỹ

)
+2d̃0 µ̃n ρ̃a θ̃a,0

c̃0

k̃n + c̃0
= 0

where we use the interface condition (69). Then, adding both equations we finally obtain

∂t̃ [c̃0ΘC (d̃0, θ̃w)]+ ∂z̃

[
c̃0〈q̃〉 −

ΘC (d̃0, θ̃w)

Pe
∂z̃ c̃0

]
= −d̃0 µ̃n θ̃a,0 ρ̃a

c̃0

k̃n + c̃0

where we define ΘC (d̃0, θ̃w) as

ΘC (d̃0, θ̃w) = 1− d̃0 + θ̃w d̃0.
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We focus on the water-biofilm interface (81):

∂t̃ d̃ =


f −((ũỹ − ∂z̃ d̃ũz̃)ure f /qre f ), d̃ = 1,
−
√

1+ (ε∂z̃ d̃)2ε k̃str µ̃S̃+ (ũỹ − ∂z̃ d̃ũz̃)ure f /qre f , 0 < d̃ < 1,
0, d̃ = 0.

Using the set-valued Heaviside graphs (49), we can write the previous equations as

∂t̃ d̃ ∈ H0(d̃)H1(d̃)
{
−

√
1+ (ε∂z̃ d̃)2ε k̃str µ̃| |(I− ν̃̃ν̃νν̃̃ν̃νT )(M̃+ M̃T )ν̃̃ν̃ν | | (94)

+[ũỹ − ∂z̃ d̃ũz̃]ure f /qre f

}
+ [1−H1(d̃)] f −((ũỹ − ∂z̃ d̃ũz̃)ure f /qre f ).

Using the regularized Heaviside functions (51), we can write (94) as

∂t̃ d̃ = Hδ,0(d̃)Hδ,1(d̃)
{
−

√
1+ (ε∂z̃ d̃)2ε k̃str µ̃| |(I− ν̃̃ν̃νν̃̃ν̃νT )(M̃+ M̃T )ν̃̃ν̃ν | |

+[ũỹ − ∂z̃ d̃ũz̃]ure f /qre f

}
+ [1−Hδ,1(d̃)] f −((ũỹ − ∂z̃ d̃ũz̃)ure f /qre f ).

Using (82-83, 87a, 88a, 91), for the lower-order terms in ε we have

∂t̃ d̃0 = Hδ,0(d̃0)Hδ,1(d̃0)[−k̃str (1− d̃0)|∂z̃ p̃0 |+ d̃0Σ̃0]+ [1−Hδ,1(d̃0)] f −(Σ̃0).

Letting δ go to zero in order to return to the non-regularized formulation, we get

∂t̃ d̃0 =


f −(Σ̃0) d̃0 = 1,
−k̃str (1− d̃0)|∂z̃ p̃0 |+ d̃0Σ̃0, 0 < d̃0 < 1,
0, d̃0 = 0.
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