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Abstract
Assimilation of a sequence of linearly dependent data vectors, {dl}Ll=1 such that {dl = BldL}L−1

l=1 , is considered for a
parameter estimation problem. Such a data sequence can occur, for example, in the context of multilevel data assimilation.
Since some information is used several times when linearly dependent data vectors are assimilated, the associated data-error
covariances must be modified. I develop a condition that the modified covariances must satisfy in order to sample correctly
from the posterior probability density function of the uncertain parameter in the linear-Gaussian case. It is shown that this
condition is a generalization of the well-known condition that must be satisfied when assimilating the same data vector
multiple times. I also briefly discuss some qualitative and computational issues related to practical use of the developed
condition.

Keywords Ensemble-based methods · Linearly dependent data vectors · Generalized MDA condition

1 Introduction

Consider a parameter estimation problem defined by d =
g (m) + η, where d denotes the data vector, g the forward-
model operator, m the unknown parameter vector and η a
realization of the measurement error. The Bayesian frame-
work for parameter estimation includes uncertainty quan-
tification as an integral part. Markov-chain Monte Carlo
(MCMC) methods can sample correctly from the poste-
rior probability density function (PDF) for the parameter
vector also for nonlinear problems, but are prohibitively
computationally expensive for many realistic problems,
such as reservoir history matching. Ensemble-based meth-
ods, such as the ensemble Kalman filter (EnKF) [4] and
the ensemble smoother (ES) [12], sample correctly from the
posterior PDF when the forward-model operator is linear,
the prior PDF is Gaussian and the ensemble size approaches
infinity (linear-Gaussian case). In the general case, these
methods can be seen as computationally tractable, approx-
imate alternatives to MCMC methods. A practical disad-
vantage of the EnKF with respect to the ES for nonlinear
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parameter estimation problems is that it requires a rerun
of the forward simulator from initial time to the current
assimilation time to avoid statistical inconsistencies [18].
If such reruns are performed, however, the EnKF can be
expected to outperform the ES, at least for weakly nonlinear
problems [5, 6].

The nonlinearity of the reservoir history matching
problem has triggered the development of popular data
assimilation (DA) methods such as iterative ES [1] and
ES with multiple data assimilations (ES-MDA) [3]. As
shown in [15], ES-MDA is related to annealed importance
sampling [14]. With ES-MDA, d is assimilatedL times (L is
a predetermined number), and a compensation for utilizing
the same information L times must then be devised. In
assimilation cycle no. l, the original data-error covariance
matrix, C, is therefore replaced by an inflated data-error
covariance matrix, αlC, where αl > 1.

The motivation for introducing methods such as the ES-
MDA is to better handle nonlinearities by taking L smaller
steps instead of a single large step. Still, it is highly desirable
for any ensemble-based method to sample correctly from
the posterior PDF in the linear-Gaussian case. If the
inflation coefficients {αl}Ll=1 satisfy a certain equation—
termed the MDA condition in this paper—the ES-MDA will
sample correctly in the linear-Gaussian case [3].

I consider assimilation of multiple linearly dependent
data vectors, which can be seen as a generalization of MDA.
To illustrate this, let {dl}Ll=1 denote a sequence of linearly
dependent data vectors to be assimilated, that is, {dl =
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BldL}L−1
l=1 , where {Bl}L−1

l=1 denotes a sequence of matrices.
In the special case when {Bl = IL}L−1

l=1 , where IL denotes
the identity matrix, all L data vectors equal dL. Hence,
MDA is a special case of assimilation of multiple linearly
dependent data vectors. In addition to being of interest as
a generalization of MDA, assimilation of multiple linearly
dependent data vectors occur, for example, in the context of
multilevel data assimilation (see the Appendix).

In this paper, I develop a condition that any data
assimilation method has to fulfill in order to sample
correctly in the linear-Gaussian case when multiple linearly
dependent data vectors are assimilated. This condition
reduces to the MDA condition in the special case where
all the involved data vectors are identical. While MDA
utilizes exactly the same information multiple times, the
situation is more subtle when considering the generalization
to assimilation of multiple linearly dependent data vectors.
Clearly, part of, but not necessarily all of, the available
information is used multiple times. For this reason, and to
emphasize the relation to MDA, I denote assimilation of
multiple linearly dependent data vectors partially multiple
data assimilation (PMDA). The condition that has to be
fulfilled in order to sample correctly in the linear-Gaussian
case when multiple linearly dependent data vectors are
assimilated will be denoted the PMDA condition.

The main emphasis in the paper is on the derivation of
the PMDA condition, leading up to the main result, (19) and
(20), and on the relation to the MDA condition, but I will
also briefly discuss practical use of the PMDA condition.
More work in this direction is, however, required, but that
should preferably be performed when applying the PMDA
condition to a nonlinear model in a real application with
linearly dependent data vectors, which is outside the scope
of the current paper.

I first (Section 2.1) consider the standard linear-Gaussian
case with a single data vector, and write up expressions for
the mean and covariance of the (Gaussian) posterior PDF.
Next (Section 2.2), I introduce multiple data vectors, and
write up expressions for the mean and covariance of the
posterior PDF for that variant of the linear-Gaussian case. I
also derive some expressions that will serve as a common
starting point for the sketch of the derivation of the well-
known MDA condition, where the data vectors are identical
(Section 3), and for the derivation of the novel PMDA
condition, where the data vectors are linearly dependent
(Section 4). In addition to the derivation of the PMDA
condition, Section 4 also discusses its practical use.

Finally, my motivation for deriving the PMDA condition
for linearly dependent data vectors stems from my interest
in multilevel data assimilation. I therefore provide a brief
motivation for multilevel data assimilation in the Appendix,
where I also point out the connection to linearly dependent
data vectors.

2 Linear-Gaussian case

In [2, Section 4.1 and Section 4.2], the authors gave two
alternative derivations of the MDA condition in the setting
of a joint parameter-state estimation problem, both assum-
ing equal inflation coefficients. The derivation in [2, Section
4.2] is sample based, and explicitly shows that one needs
to resample the measurement perturbations in each update
cycle to obtain the correct posterior. This derivation was
later generalized to allow for unequal inflation coeffi-
cients [3] in the setting of a parameter estimation problem.
The derivation in [2, Section 4.1] utilizes only the Kalman
filter equations and linear algebra.

The purpose of Section 2 is to facilitate a unified deriva-
tion of the MDA condition (Section 3) and the PMDA
condition (Section 4). The main steps in the analy-
sis of the linear-Gaussian case in Sections 2, 3, and 4
follow those in [2, Section 4.1], but in the setting of a param-
eter estimation problem, and allowing for unequal modifi-
cation of the data-error covariances in the different update
cycles.

2.1 Single data vector andmodel operator

Consider a Bayesian parameter estimation problem with
parameter, m ∈ R

M , data vector dL ∈ R
NL and linear

forward operator GL ∈ R
NL×M . Assume that the prior PDF

isN
(
mpr, Cpr

)
and the data-error PDF isN (0, CL), where

N denotes the multi-Gaussian distribution. It is well known
(see, e.g., [16, Chap. 3.2.2]) that the posterior PDF is then
N

(
mpo, Cpo

)
, where

Cpo =
(
C−1
pr + GT

LC−1
L GL

)−1
, (1)

mpo = Cpo

(
C−1
pr mpr + GT

LC−1
L dL

)
. (2)

2.2 Multiple data vectors andmodel operators

Let {dl ∈ R
Nl }Ll=1 denote a sequence of data vectors

with data-error covariance matrices {Cl}Ll=1, and {Gl ∈
R

Nl×M }Ll=1 a sequence of linear forward operators, such
that dl and Glm denote data and simulated output for entry
number l, respectively. Furthermore, let N� = ∑L

l=1 Nl ,
and define the quantities δ ∈ R

N� , � ∈ R
N�×M , and

� ∈ R
N�×N� , by

δ =
⎛

⎜
⎝

d1
...

dL

⎞

⎟
⎠ , � =

⎛

⎜
⎝

G1
...

GL

⎞

⎟
⎠ , � =

⎛

⎜
⎝

C1 . . . 0
...

. . .
...

0 . . . CL

⎞

⎟
⎠ . (3)

Consider a Bayesian parameter estimation problem with
forward operator �, data vector δ, prior PDF N

(
mpr, Cpr

)
,
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and data-error PDF N (0, �). The posterior PDF for m is
then N (mmu, Cmu), where

Cmu =
(
C−1
pr + F

)−1
, (4)

mmu = Cmu

(
C−1
pr mpr + f

)
, (5)

and where F
def= �T �−1� and f

def= �T �−1δ. Comparing
(4) and (5) with (1) and (2), respectively, it is seen that

Cmu = Cpo ⇔ F = GT
LC−1

L GL, (6)

mmu = mpo ⇔ f = GT
LC−1

L dL, (7)

where (7) assumes that (6) is fulfilled.
Inserting from (3) into the definitions for F and f gives

F =
L∑

l=1

GT
l C−1

l Gl, (8)

f =
L∑

l=1

GT
l C−1

l dl . (9)

Jointly, (6), (7), (8), and (9) serve as a common starting point
for the sketch of the derivation of the well-known MDA
condition, where the data vectors are identical (Section 3),
and for the derivation of the novel PMDA condition, where
the data vectors are linearly dependent (Section 4).

3Multiple data assimilation—MDA
condition

In [2] and [3], the authors considered L assimilations of
the same data vector with an inflated data-error covariance
matrix in each assimilation cycle. In the linear-Gaussian
case, this situation can be described by (3) with the
following additional definitions,

dl = dL

Gl = GL

Cl = CL

⎫
⎬

⎭
; l ∈ [1, L], (10)

and then inflating the data-error covariances by Cl → αlCl ,
where αl > 1; l ∈ [1, L]. The inflated assembled data-error
covariance for MDA can then be written

�
[1,L]
MDA =

⎛

⎜
⎝

α1C1 . . . 0
...

. . .
...

0 . . . αLCL

⎞

⎟
⎠ . (11)

For reasons that will become evident in Section 4.1.3, I
have not substituted CL for Cl , and I have introduced
a superscript on �MDA indicating the involved diagonal
blocks.

Note that the inflated covariance, αlCl , is the true
covariance of the stretched measurement perturbation in dl .

Inserting (10) (i.e., with inflated covariances) in (8) and (9),
it is straightforward to show (see also [2] and [3]) that

F = sGT
LC−1

L GL, (12)

f = sGT
LC−1

L dL, (13)

where s
def= ∑L

l=1 α−1
l . From (6), (7), (12), and (13), it is

evident that Cmu = Cpo and mmu = mpo iff

s = 1. (14)

Hence, MDA with inflated data-error covariance matrices
yields the correct posterior mean and covariance matrix for
m iff the MDA condition, (14), is satisfied. As commented
in [3], there are infinitely many sequences {αl}Ll=1 that
satisfies (14).

4Multiple linearly dependent data
vectors—PMDA condition

Consider the case where data vectors as well as forward
models are linearly dependent,

dl = BldL

Gl = BlGL

}
; l ∈ [1, L], (15)

where BL equals the identity matrix, IL. It follows that
Cl = BlCLBT

l ; l ∈ [1, L]. Since the data vectors
{dl}Ll=1 are dependent, use of the entire sequence as data
requires some modification of {Cl}Ll=1. Inspired by the use
of inflated covariance matrices in Section 3, one could
replace the expression for Cl by αlBlCLBT

l . Inserting the
latter expression and (15) into (8) and (9) yields

F = GT
L

(
L∑

l=1

α−1
l BT

l

(
BlCLBT

l

)−1
Bl

)

GL, (16)

f = GT
L

(
L∑

l=1

α−1
l BT

l

(
BlCLBT

l

)−1
Bl

)

dL. (17)

From (6), (7), (16), and (17), it follows that Cmu = Cpo and
mmu = mpo iff

L∑

l=1

α−1
l BT

l

(
BlCLBT

l

)−1
Bl = C−1

L . (18)

In general, there is, however, no sequence {αl}Ll=1 that
satisfies this matrix equation.

Replacing the inflation of covariances, Cl → αlCl =
α
1/2
l Clα

1/2
l , by Cl → �

1/2
l Cl�

T/2
l

def= AlClA
T
l , where �l

is an Nl × Nl matrix, leads to (18) being replaced by the
PMDA condition
L∑

l=1

BT
l

(
(AlBl) CL (AlBl)

T
)−1

Bl = C−1
L . (19)
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Since the PMDA condition reduces to the MDA condition
when {Bl = IL}Ll=1 and {Al = α

1/2
l IL}Ll=1, it is a gener-

alization of the latter. The transformed data-error covariance
with multiple linearly dependent data vectors becomes

�PMDA = A�AT =
⎛

⎜
⎝

A1C1A
T
1 . . . 0

...
. . .

...
0 . . . ALCLAT

L

⎞

⎟
⎠ , (20)

where A = diag (A1 . . . AL), and where one should recall
that {Cl = BlCLBT

l }Ll=1. Note that the transformed covari-
ance, AlClA

T
l , is the true covariance of the transformed

measurement perturbation in dl .

4.1 Specification of {Al }Ll=1

There are more scalar unknowns in the PMDA condition
than there are scalar equations, which allows for free spec-
ification of some of the unknown before the PMDA con-
dition is invoked to determine the remaining unknowns. In
this section, a certain choice will be made regarding which
unknowns that will be specified freely. I emphasize that
this particular choice, while advantageous for the present
exposition, is certainly not mandatory when applying the
PMDA condition.

4.1.1 Existence

It is not clear if there exist solutions of (19) that will
ensure that all the diagonal blocks in �PMDA become proper
covariance matrices, that is symmetric and positive semi-
definite. It is easy to show that they are symmetric, so the
real issue is positive semi-definiteness. Before discussing
this issue for the PMDA condition, it is perhaps useful to
reiterate the condition ensuring that all the diagonal blocks
in �MDA become positive semi-definite. To this end, the
MDA condition will be expressed in a form dictated by what
is advantageous for the discussion of the PMDA condition.

MDA condition The MDA condition can be reformulated as

λLCLλL =
(

C−1
L −

L−1∑

l=1

(λlCLλl)
−1

)−1

, (21)

where λ
def= α1/2. It is evident that for {λlCLλl}Ll=1 to

be positive semi-definite, {λl}Ll=1 must be real numbers.
One may select {λl}L−1

l=1 such that {λlCLλl}L−1
l=1 become

positive semi-definite, but then λL cannot be selected
freely since (21) must be satisfied. To ensure that λLCLλL

becomes positive semi-definite, it is therefore necessary
to further restrict the selection of {λl}L−1

l=1 . Cancelling
out CL from (21), it is evident that λL becomes a real
number iff {λl}L−1

l=1 is a sequence of real numbers fulfilling
∑L−1

l=1 λ−2
l < 1.

PMDA condition Since BL = IL, (19) can be reformulated
as

ALCLAT
L =

(

C−1
L −

L−1∑

l=1

BT
l

(
AlClA

T
l

)−1
Bl

)−1

. (22)

The situation is similar as for the MDA condition in that one
can select {Al}L−1

l=1 such that {AlClAl}L−1
l=1 become positive

semi-definite, while AL cannot be selected freely since (22)
must be satisfied. But the situation also differs from that of
the MDA condition in that it is not possible to cancel out CL

from (22). This contributes to making it very challenging
to derive a condition that the matrices in {Al}L−1

l=1 should
satisfy to ensure that ALCLAT

L becomes positive semi-
definite. The issue is, of course, important, and researchers
applying the PMDA condition will have to consider it for
their particular application (i.e., when CL and {Bl}L−1

l=1
are fully specified), but it is beyond the scope of this
paper.

4.1.2 Computation of ALCLAT
L

Defining the matrix sequence {Xl}L−1
l=1 by

Xl = CLBT
l

(
AlClA

T
l

)−1
Bl, (23)

and rearranging the right-hand side of (22), one may write

ALCLAT
L = (IL − QL)−1 CL, (24)

where QL
def= ∑L−1

l=1 Xl . Calculating ALCLAT
L thus entails

the inversion of the NL × NL-matrix IL − QL, in addition
to inversion of L − 1 matrices of dimension {Nl}L−1

l=1 in
order to calculate {Xl}L−1

l=1 . Altogether, this constitutes a
computationally challenging task for large NL.

To alleviate the computational burden in a practical
application of the PMDA condition to a nonlinear problem
where NL is large, it is an option to utilize approximate
matrix factorization for the matrix inversions. It is also an
option to use truncated Neumann series to approximately
evaluate (IL − QL)−1 if ‖QL‖ < 1. (Here ‖·‖ denotes
an operator norm.) Obviously, invoking such options will
result in only approximately correct sampling in the linear-
Gaussian case.

4.1.3 Selection of {Al }L−1
l=1

There are altogether
∑L−1

l=1 N2
l elements in the matrices

{Al}L−1
l=1 , and it is not clear how to use all these degrees of

freedom optimally, for example with respect to the existence
issue discussed in Section 4.1.1. Specifying

∑L−1
l=1 N2

l

numbers is also manually cumbersome for all but small
problems. It can therefore be of interest to consider a
reduction of the degrees of freedom.
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Simplistic alternative If one lets {Al = α
1/2
l Il}L−1

l=1 , the
manual selection is no more cumbersome than with the
MDA condition, and one may write

�PMDA =
(

�
[1,L−1]
MDA 0
0 (IL − QL)−1 CL

)
, (25)

where the matrix sequence {Xl}L−1
l=1 is now given by

Xl = α−1
l CLBT

l C−1
l Bl . (26)

Hence, the first L− 1 diagonal blocks are inflated as for the
MDA condition, while the PMDA condition is resolved by
calculating block number L.

It is perhaps useful to illustrate the simplistic alternative
with a small, simple example. To this end, let L = 2,
N1 = 1, N2 = 2, C2 = I2 ∈ R

2×2, and let B1 = 1
2 (1, 1),

that is, B1 is the arithmetic averaging operator on R
2 (see

Appendix A.2 for why averaging operators are relevant). It
follows that

(I2 − Q2)
−1 C2 = α1

α1 − 1

(
1 − 1

2α1
1

2α1
1

2α1
1 − 1

2α1

)

, (27)

which is a proper covariance matrix iff α1 > 1, that is, if C1

is inflated.
Finally, I will briefly discuss what needs to be considered

when specifying {αl}L−1
l=1 for the simplistic alternative

in general. Selecting large entries in {αl}L−1
l=1 will be

beneficial with respect to the existence issue, since
(IL − QL)−1 CL ≈ CL for large αl’s. It would also
facilitate use of a truncated Neumann series to approximate
(IL − QL)−1. Selecting too large αl’s would, however,
result in QL ≈ 0, and

�−1
PMDA ≈

(
0 0
0 C−1

L

)
, (28)

so that only dL would influence the estimation results. In
that case there would be no point in including {dl}L−1

l=1 and
the corresponding forward-model sequence in the modeling.
Further investigations into these issues should be conducted
for each application separately, and such investigations are
beyond the scope of this paper.
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Appendix A: Multilevel data
assimilation—motivation

Multilevel data assimilation has two main components;
multilevel simulations and multilevel data. I briefly motivate
use of multilevel simulations (Appendix A.1) and multilevel
data (Appendix A.2), and point out that multilevel data
vectors is a special case of linearly dependent data vectors.

A.1 Multilevel simulations

Statistical sampling quality and computational cost of
ensemble-based methods both increase with ensemble size.
To alleviate negative sampling effects of using a small or
moderately large ensemble, localization [11] is routinely
applied for field cases. It can, however, be challenging to
design proper localization regions for porous-media flow
problems. Alternative methods for alleviating effects of
sampling errors, which can also be used in conjunction with
localization, thereby making localization less challenging,
has started to appear. One type of methods performs forward
simulations on a single coarsened grid [7, 13] or on a
multilevel sequence of coarsened temporal [10] or spatial [8,
9] grids. Another alternative is to perform most of the
forward simulations with a linearized forward model [17].
The main idea behind all these methods is to allow for
a substantially larger ensemble size (thereby increasing
sampling quality) without increasing the total computational
cost. Roughly speaking, numerical accuracy in the forward
simulations is traded for statistical accuracy in the final
results.

A.2 Multilevel data

Various types of spatial data appear in many areas of
geoscience, for example, rainfall and temperature in climate
and land-use models and inverted seismic data in reservoir
modeling. When spatial data are applied with a numerical
simulator, some kind of averaging has already taken place
since subgrid variations in the data are not represented.
When spatial data are used in conjunction with multilevel
simulations, multilevel averaging of the observed data, that
is the data vector on the finest level, will take place in
order for the averaged data to “fit” the simulated output
at grids of multiple scales. Clearly, the elements in the
resulting sequence of data at different scales will not
be independent. With arithmetic averaging of data from
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one scale to the next coarser scale, there will be linear
dependencies between data vectors at the different scales,
and rank (B1) < rank (B2) < · · · < rank (BL).

The PMDA condition derived in Section 4 (and the MDA
condition derived in Section 3) builds on the assumption that
� is block diagonal (see (3)). Use of the PMDA condition
in the context of assimilation of multilevel data therefore
requires that the data-error vectors in the different assimila-
tion cycles are uncorrelated. This is the same requirement as
with use of the MDA condition when performing multiple
data assimilation (see the first paragraph of Section 2).
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