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1 INTRODUCTION 

Abandoned mines and mine tailings can cause long term environmental problems, such 
as acid mine drainage (AMD) and release of heavy metals in the environment. AMD is 
released from (underground) mines and mine tailings when sulphide minerals are 
exposed to water and oxygen and get oxidised. This oxidation process produces 
sulphuric acid, which dissolves heavy metals, such as Cu, Zn and As, in the rock and 
makes the drainage water both toxic and acidic. The resulting AMD can have a range of 
negative effects on, in particular, aquatic flora and fauna. When the pH of the acidic 
drainage water increases, e.g. through dilution with non acidic surface or groundwater, 
this leads to the precipitation of iron minerals such as iron sulphates, iron hydroxides 
and iron oxides. The accumulation of these precipitates cause a distinctive red staining 
of soil and rocks around AMD drainage (Fig.1). 
 

   
Figure 1. Drainage and accumulation of iron precipitates around entrances near Nye Sulitjelma 
at ca 550 m altitude (left) and near Sulitjelma at ca 200 m altitude (right). 
 
Since some of the most common precipitated minerals associated with AMD have 
distinctive spectral absorption features, remote sensing can be an efficient method to 
identify, map and monitor the locations of abandoned mines and mine tailings and the 
extent of AMD (Richter et al., 2008). It can complement conventional methods (through 
chemical analysis of soil/water samples) as it can put the findings in a more regional 
context and provide a better overview of quantities, sources and drainage pathways. 
 
Several studies have investigated the use of satellite, airborne and ground-based remote 
sensing to detect and quantify geological materials (e.g. van der Meer et al., 2012; Sun 
et al., 2017), monitor environmental impacts (e.g. He et al., 2009), and mapping mine 
waste and AMD (Riaza et al., 2011; Kopačková et al., 2012; Mielke et al., 2014). The 
satellite data most frequently used for mineral remote sensing are multispectral ASTER 
data and hyperspectral Hyperion (decommissioned in 2017) data as these satellites 
include bands in the short wave infrared (SWIR) part of the spectrum. The SWIR bands 
are particularly useful for the discrimination of alteration minerals, such as those 
associated with AMD, which have only minor spectral differences in the visible to near 
infrared (VNIR) range. The spatial resolution of the ASTER and Hyperion data is 30 m 
(15 m for ASTER VNIR bands), which can make it challenging to detect smaller scale 
features. Airborne remote sensing from manned and unmanned aircrafts (Kopačková, 
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2012; Jackisch et al., 2018) is normally used to obtain higher spatial resolution in order 
to detect smaller features. However, in August 2014, the WorldView-3 satellite was 
launched by Digital Globe Inc. This commercial satellite includes 8 VNIR bands at 2 m 
spatial resolution, and 8 SWIR bands at 7.5 m spatial resolution, a significant 
improvement in both spatial and spectral resolution relative to the ASTER data and 
therefore well suited to distinguish different minerals at a smaller scale (Sun et al., 
2017). 
 
There has been mining activity at thousands of locations throughout Norway and there 
exist many abandoned mines (Miljødirektoratet, 2017a), often relatively small and in 
alpine environments. Mapping and monitoring of many of the smaller mining areas is 
limited (Miljødirektoratet, 2017b) and AMD from smaller mining areas is not well 
known. 
 
The objective of this case study is to investigate to what extent WorldView3 VNIR and 
SWIR bands can be used to identify and map the spatial distribution of the mine 
tailings, the sources and pathways of acid mine drainage, and their impact on the 
vegetation. This case study is part of the EU Interreg Nord project ‘REmote SEnsing 
supporting surveillance and operation of Mines (RESEM)’, which aims to identify 
suitable remote sensing methods to help improve the design of mining structures and 
minimize the risks and environmental impact of mining in Arctic environments. 
 
The case study will investigate the area around Sulitjelma in northern Norway, an area 
rich in sulphide deposits which have been mined for copper and zinc from 1886 to 1991. 
Since mine closure, minerals have been leaching from the abandoned mines and from 
deposited mine tailings and waste rock, and contaminated water runs into the nearby 
lake.  As a company has expressed interest in reopening the mines, research into 
regional monitoring methods to identify and monitor mine related contamination, and 
the results of potential rehabilitation efforts is therefore highly relevant.  
 

2 SITE DESCRIPTION 

Sultitjelma is located in a mountainous region east of Bodø in northern Norway, at 
N67.1341 and E16.0849 (Fig. 2). Langvatnet, the main lake and lowest point in the area, 
lies at about 130 m altitude, while mining took place in the mountains around the lake 
up to altitudes of at least 800 m. The area is rich in sulphide deposits which have been 
mined for copper and zinc from 1886 to 1991. The mining was carried out mostly 
undergound in 18 different locations around Sulitjelma and Langvatnet (Fig. 2). In 
addition, there have been extensive exploration activities at ca 130 locations. This 
activity resulted in many but relatively small mine tailings scattered around the 
mountains.  
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spectral differences in the VNIR range. Previously, mineral detection and mapping was 
mostly done using ASTER satellite images; the ASTER data include similar SWIR 
bands, but at a lower spatial resolution of 30 m. 
 
Table 1: Band set of WorldView 3 

8 Multispectral Bands wavelengths 8 SWIR Bands wavelengths 
Coastal:  400 - 450 nm SWIR-1:  1195 - 1225 nm  
Blue:  450 - 510 nm SWIR-2:  1550 - 1590 nm 
Green:  510 - 580 nm SWIR-3:  1640 - 1680 nm  
Yellow:  585 - 625 nm SWIR-4: 1710 - 1750 nm  
Red:  630 - 690 nm SWIR-5: 2145 - 2185 nm 
Red Edge:  705 - 745 nm SWIR-6: 2185 - 2225 nm 
Near-IR1:  770 - 895 nm SWIR-7: 2235 - 2285 nm 
Near-IR2:  860 - 1040 nm SWIR-8: 2295 - 2365 nm  

3.2 SATELLITE DATA PROCESSING 

3.2.1 PRE-PROCESSING 

The WorldView-3 data was delivered as level 2A, standard, for the VNIR bands and 
level 3D, orthorectified, for the SWIR bands. Both datasets were acquired at 22nd July 
2017, 13:55 pm local time. Level 2A and 3D products are already corrected for 
radiometric and sensor distortions. Data (pre)processing and analysis was carried out 
using QGIS, OrfeoToolBox, Semi-Automatic Classification Plugin, and python 3 
scripts. Data preprocessing is carried out according to Kuester et al. (2016) and Sun et 
al. (2017) and included the following steps: 1. Radiometric calibration to convert the 
digital numbers into top-of-atmosphere (TOA) spectral radiance; 2. Conversion from 
TOA spectral radiance to TOA spectral reflectance by correcting for solar irradiance 
and solar angle; 3. Conversion to top-of-canopy (TOC) spectral reflectance by 
correcting for the effect of the atmosphere using a simple atmospheric correction model; 
and 4. Creating masks for vegetation, snow, clouds and water. 
 
Both level 2A and 3D data were first converted to TOA spectral radiance L according to 
following equation: 
 

ܮ   (1) ൌ ܰܫܣܩ ൈ ܰܦ ൈ ௔௕௦஼௔௟ி௔௖௧௢௥

௘௙௙௘௖௧௜௩௘஻௔௡ௗ௪௜ௗ௧௛
൅  ܶܧܵܨܨܱ

 
Where L is at sensor radiance in (W m-2 sr-1 m-1), absCalFactor and 
effectiveBandwidth (m) are found in the .IMD file and GAIN and OFFSET values are 
found in Digital Globe’s technical note ‘Radiometric Use of WorldView-3 Imagery’ by 
Kuestner (2016). 
 
The TOA radiance was then converted into TOA reflectance, (TOA)�according to 
equation 2: 
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ሻఒܣሺܱܶߩ    (2) ൌ
௅ഊௗ

మగ

ாഊ௖௢௦ఏೄ
 

 
Where L is the at-sensor radiance for spectral band , d is the Earth-Sun distance in 
astronomical units; E is the band-averaged solar exoatmospheric irradiance; and S is 
the solar zenith angle (Kuestner, 2016). 
 
Further atmospheric correction and conversion to top-of-canopy (TOC) reflectance was 
carried out using the OrfeoToolBox, which uses the 6S radiative transfer model to 
model the effect of the atmosphere.  
 
For the VNIR dataset, a vegetation mask was created based on the Normalised 
Difference Vegetation Index (NDVI), which gives and indication of greenness, using a 
threshold value of >0.5. The NDVI was calculated based on the standard equation, 
using band 7, near-IR1, for NIR, and band 5 for red: 
 

ܫܸܦܰ   (3) ൌ ேூோି௥௘ௗ	

ேூோା௥௘ௗ
 

 
A snow and cloud mask was created based on band 1 with a threshold value of 0.4. A 
water mask was created based on zero values in red and NIR bands 5-8. The vegetation, 
snow and cloud, and water masks were then combined into one final mask. 
 
Ideally, the two datasets, VNIR and SWIR data, should be stacked and analysed 
together. However, the two datasets were delivered with different levels of 
orthorectification (level 2A is projected to a constant base elevation, while level 3D is 
orthorectified with a DEM), which causes an offset between the datasets. Due to the 
limited time available for this case study, it was decided to analyse the datasets 
separately. Further orthorectification to the same level, resampling to the same spatial 
resolution and joint analysis was not possible within this project and will be done at a 
later stage. 
 

3.2.2 ANALYSIS – ALTERATION INFORMATION EXTRACTION 

There are a number of analytical techniques to extract spectral features from 
multispectral data. When lacking in situ data, mineral indices or simple band ratios can 
be applied to enhance certain spectral features (e.g. Sun et al., 2017). In addition, 
techniques to enhance the variation in a dataset, such as principal component analysis 
(PCA), can be used to emphasize spectral differences. If, however, in situ data is 
available and mineral spectra are known, techniques such as spectral angle mapping 
(SAM), spectral feature fitting (SFF) or spectral mixture analysis (SMA) can be used to 
detect and map the probability of presence of certain minerals (Kopačková, 2014, and 
references herein). In this study, only limited in situ data was available, and we 
investigated to what extent simple band ratios, mineral indices and PCA analysis with 
thresholds can be used to extract information on abandoned mines and mine tailings. 
 
Sun et al., (2017) proposed, amongst others, the following index: 
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Fe-OH index = (SWIR-3/SWIR-7) * (SWIR-3/SWIR-1) 
 
In addition, band ratios VNIR-5/VNIR-3, VNIR-8/VNIR-6, SWIR-1/SWIR-3, and 
SWIR-3/SWIR-7 were investigated. PCA analysis was carried out on both VNIR band 
set and the SWIR band set separately. Results of the analysis were visually compared to 
the data, and to photos and field notes taken at known locations in the field. 
 

3.3 IN SITU HYPERSPECTRAL DATA COLLECTION AND 
PROCESSING 

Ground-based hyperspectral imaging, using a Rikola hyperspectral camera (500-
900nm), was carried out from 28-31 July 2017 to collect in situ measurements of mine 
waste, vegetation and soil in contaminated areas and healthy alpine vegetation. The 
camera was programmed to collect 39 bands between 500-900 nm (visible to NIR) with 
spectral widths of 10-15 nm, covering the full spectrum. The Rikola camera was placed 
on a tripod and measurements were taken straight down, at nadir position, to avoid any 
directional influence and make it easier to compare with satellite data. Prior to each 
measurement, a dark background image was collected and an image of 3 grey 
reflectance panels (Fig. 3).  
 

     
Figure 3. Set-up for in situ hyperspectral measurements with Rikola camera (left). Reflectance 
calibration panels (right).  
 
Pre-processing of the data included camera calibration and dark background subtraction 
to convert the raw data to radiance, image band coregistration, and empirical line 
calibration using the grey reflectance panels to convert radiance to reflectance. Spectral 
data of target objects were obtained by manually outlining the object of interest (soil, 
plant etc.) and calculating the average reflectance values. The in situ hyperspectral data 
was used to extract spectral characteristics in the VNIR range from different plant 
species, moss and different types of waste rocks for end member determination and 
validation.  
 



7 

4 RESULTS AND DISCUSSION 

4.1 IN SITU HYPERSPECTRAL DATA 

Figure 4 shows the spectra of selected objects, including two types of sedges (Carex 
species), which are some of very few plants that grow on iron crusted soils in this area. 
Figure 5 shows some examples of the surface and objects measured with the 
hyperspectral camera. 
 

   
Figure 4. Examples of different spectra from vegetation growing in contaminated areas, iron 
crusted soil, soil with dark moss, and a small stream with iron precipitation. 
 

   
Figure 5. Examples of surfaces measured. Sedge growing on iron crusted soil (left), mine 
tailings (right). 
 
The spectra from iron crusted rocks and mine tailings (red waste) show a sharp peak 
around 650 nm (red) and a broad peak around 760 nm. The spectra are used to identify 
which bands or spectral ranges in the VNIR range can be used to distinguish different 
objects of interest. At a later stage, these spectra can also be used as part of supervised 
classification and spectral matching methods (such as SAM, SFF, SMA; see 4.2.2), but 
this could not be achieved within this study. 
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1/SWIR-3, with a threshold of 0.75. Yellow arrows give the location and direction of the photos 
in Fig. 8. 
 

   
Figure 8. Two photos taken along the yellow arrows in Fig. 7. Bottom left: View to the east; 
bottom right: view to the northwest. 
 

   
Figure 9. The 2 photos are taken along the yellow arrows in Fig. 10. Left: View to the west; 
right: view to the east. 
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5 CONCLUSIONS 

This report presents the results of a preliminary analysis of WorldView-3 VNIR and 
SWIR satellite data to map mine tailings and AMD drainage patterns. The results in 5.2 
show that even simple band ratios combined with thresholding can give a good first 
overview of the areas that most likely contain mine tailings and/or iron mineral 
precipitation associated with AMD. 
 
The results in this study indicate that the VNIR bands can also be used to create an 
overview map of mine tailings and AMD. Particularly VNIR-6, which is associated with 
a minor peak in the iron crust spectrum, is useful. This suggests that the freely available 
Sentinel-2 satellite data, which includes a red edge band, band 6, with a similar spectral 
range as WorldView-3 VNIR-6, could be used for the mapping of mine tailings and 
AMD. The spatial resolution of Sentinel-2 is, however, lower at 10-20 m. For smaller 
mining areas it may therefore be necessary to purchase higher resolution commercial 
satellite data or use airborne or droneborne multispectral or hyperspectral imaging. 
 
Combining VNIR and SWIR data and using more advanced methods such as SAM or 
SMA, is expected to further improve detection and mapping of mine tailings and AMD. 
For the latter, spectral data from either in situ or laboratory measurements, or spectral 
libraries are needed. 
 
Similar methods can be used to detect problems with e.g. vegetation health, or map 
biomass as index for biodiversity (possible link to groundwater upwelling). 
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