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1 INTRODUCTION

Abandoned mines and mine tailings can cause long term environmental problems, such
as acid mine drainage (AMD) and release of heavy metals in the environment. AMD is
released from (underground) mines and mine tailings when sulphide minerals are
exposed to water and oxygen and get oxidised. This oxidation process produces
sulphuric acid, which dissolves heavy metals, such as Cu, Zn and As, in the rock and
makes the drainage water both toxic and acidic. The resulting AMD can have a range of
negative effects on, in particular, aquatic flora and fauna. When the pH of the acidic
drainage water increases, e.g. through dilution with non acidic surface or groundwater,
this leads to the precipitation of iron minerals such as iron sulphates, iron hydroxides
and iron oxides. The accumulation of these precipitates cause a distinctive red staining
of soil and rocks around AMD drainage (Fig.1).
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Figure 1. Drainage and accumulation of iron precipitates around entrances near Nye Sulitjelma
at ca 550 m altitude (left) and near Sulitjelma at ca 200 m altitude (right).

Since some of the most common precipitated minerals associated with AMD have
distinctive spectral absorption features, remote sensing can be an efficient method to
identify, map and monitor the locations of abandoned mines and mine tailings and the
extent of AMD (Richter et al., 2008). It can complement conventional methods (through
chemical analysis of soil/water samples) as it can put the findings in a more regional
context and provide a better overview of quantities, sources and drainage pathways.

Several studies have investigated the use of satellite, airborne and ground-based remote
sensing to detect and quantify geological materials (e.g. van der Meer et al., 2012; Sun
et al., 2017), monitor environmental impacts (e.g. He et al., 2009), and mapping mine
waste and AMD (Riaza et al., 2011; Kopackova et al., 2012; Mielke et al., 2014). The
satellite data most frequently used for mineral remote sensing are multispectral ASTER
data and hyperspectral Hyperion (decommissioned in 2017) data as these satellites
include bands in the short wave infrared (SWIR) part of the spectrum. The SWIR bands
are particularly useful for the discrimination of alteration minerals, such as those
associated with AMD, which have only minor spectral differences in the visible to near
infrared (VNIR) range. The spatial resolution of the ASTER and Hyperion data is 30 m
(15 m for ASTER VNIR bands), which can make it challenging to detect smaller scale
features. Airborne remote sensing from manned and unmanned aircrafts (Kopackova,



2012; Jackisch et al., 2018) is normally used to obtain higher spatial resolution in order
to detect smaller features. However, in August 2014, the WorldView-3 satellite was
launched by Digital Globe Inc. This commercial satellite includes 8 VNIR bands at 2 m
spatial resolution, and 8 SWIR bands at 7.5 m spatial resolution, a significant
improvement in both spatial and spectral resolution relative to the ASTER data and
therefore well suited to distinguish different minerals at a smaller scale (Sun et al.,
2017).

There has been mining activity at thousands of locations throughout Norway and there
exist many abandoned mines (Miljedirektoratet, 2017a), often relatively small and in
alpine environments. Mapping and monitoring of many of the smaller mining areas is
limited (Miljedirektoratet, 2017b) and AMD from smaller mining areas is not well
known.

The objective of this case study is to investigate to what extent WorldView3 VNIR and
SWIR bands can be used to identify and map the spatial distribution of the mine
tailings, the sources and pathways of acid mine drainage, and their impact on the
vegetation. This case study is part of the EU Interreg Nord project ‘REmote SEnsing
supporting surveillance and operation of Mines (RESEM)’, which aims to identify
suitable remote sensing methods to help improve the design of mining structures and
minimize the risks and environmental impact of mining in Arctic environments.

The case study will investigate the area around Sulitjelma in northern Norway, an area
rich in sulphide deposits which have been mined for copper and zinc from 1886 to 1991.
Since mine closure, minerals have been leaching from the abandoned mines and from
deposited mine tailings and waste rock, and contaminated water runs into the nearby
lake. As a company has expressed interest in reopening the mines, research into
regional monitoring methods to identify and monitor mine related contamination, and
the results of potential rehabilitation efforts is therefore highly relevant.

2 SITE DESCRIPTION

Sultitjelma is located in a mountainous region east of Bode in northern Norway, at
N67.1341 and E16.0849 (Fig. 2). Langvatnet, the main lake and lowest point in the area,
lies at about 130 m altitude, while mining took place in the mountains around the lake
up to altitudes of at least 800 m. The area is rich in sulphide deposits which have been
mined for copper and zinc from 1886 to 1991. The mining was carried out mostly
undergound in 18 different locations around Sulitjelma and Langvatnet (Fig. 2). In
addition, there have been extensive exploration activities at ca 130 locations. This
activity resulted in many but relatively small mine tailings scattered around the
mountains.
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Figure 2. Location of Sulitjelma in Norway (left), and a topographic map of the area around
Sulitjelma with the main ore deposits (modified after Kvennas et al., 2015).

A hundred years of copper and zinc mining in the alpine environment around
Sulitjelma, in northern Norway, has resulted in significant heavy metal (Cu, Zn, As)
contamination of Langvatnet due to AMD from the abandoned mine tunnels and
deposited mine tailings.

It was estimated that more than 10 million tons of fine-grained processed waste (waste
material from the metal extraction process in the smelter) was deposited in and around
Langvatnet during operation of the mines and smelter. In addition, smaller amounts of
mine tailings and waste rock were deposited around the mine entrances. Surface and
groundwater draining from the mines and tailings supplied large amounts of Cu and Zn
to Langvatnet; the annual supply of Cu and Zn to Langvatnet in 1991 was estimated at
ca 50 tonnes of Cu and 47 tones of Zn.

After closure of the mines in 1991, many of the shafts and tunnels were filled with
water in order to reduce the oxidation and leaching processes and reduce both the
acidity of the surface and ground waters draining into Langvatnet, and the amount of Cu
and Zn added.

3 DATA AND METHODS

3.1 SATELLITE DATA

A cloudless WorldView-3 satellite image was acquired on 22nd July 2017. The data
was provided by ESA through their Third Party Mission Scheme. WorldView-3 is a
commercial satellite by Digital Globe Inc. launched in August 2014, which includes 8
visible to near infrared (VNIR) bands at 2 m spatial resolution, and 8 short wave
infrared (SWIR) bands at 7.5 m spatial resolution (Table 1). The SWIR bands are
particularly useful for the discrimination of alteration minerals, which have only minor



spectral differences in the VNIR range. Previously, mineral detection and mapping was
mostly done using ASTER satellite images; the ASTER data include similar SWIR
bands, but at a lower spatial resolution of 30 m.

Table 1: Band set of WorldView 3

8 Multispectral Bands  wavelengths 8 SWIR Bands wavelengths

Coastal: 400 - 450 nm SWIR-1: 1195 - 1225 nm
Blue: 450 - 510 nm SWIR-2: 1550 - 1590 nm
Green: 510 - 580 nm SWIR-3: 1640 - 1680 nm
Yellow: 585 - 625 nm SWIR-4: 1710 - 1750 nm
Red: 630 - 690 nm SWIR-5: 2145 -2185 nm
Red Edge: 705 - 745 nm SWIR-6: 2185 -2225 nm
Near-IR1: 770 - 895 nm SWIR-7: 2235 -2285 nm
Near-IR2: 860 - 1040 nm SWIR-8: 2295 - 2365 nm

3.2 SATELLITE DATA PROCESSING

3.2.1 PRE-PROCESSING

The WorldView-3 data was delivered as level 2A, standard, for the VNIR bands and
level 3D, orthorectified, for the SWIR bands. Both datasets were acquired at 22" July
2017, 13:55 pm local time. Level 2A and 3D products are already corrected for
radiometric and sensor distortions. Data (pre)processing and analysis was carried out
using QGIS, OrfeoToolBox, Semi-Automatic Classification Plugin, and python 3
scripts. Data preprocessing is carried out according to Kuester et al. (2016) and Sun et
al. (2017) and included the following steps: 1. Radiometric calibration to convert the
digital numbers into top-of-atmosphere (TOA) spectral radiance; 2. Conversion from
TOA spectral radiance to TOA spectral reflectance by correcting for solar irradiance
and solar angle; 3. Conversion to top-of-canopy (TOC) spectral reflectance by
correcting for the effect of the atmosphere using a simple atmospheric correction model,
and 4. Creating masks for vegetation, snow, clouds and water.

Both level 2A and 3D data were first converted to TOA spectral radiance L according to
following equation:

absCalFactor

(1) L = GAIN x DN x : 4+ OFFSET
ef fectiveBandwidth

Where L is at sensor radiance in (W m? sr' um'), absCalFactor and

effectiveBandwidth (um) are found in the .IMD file and GAIN and OFFSET values are
found in Digital Globe’s technical note ‘Radiometric Use of WorldView-3 Imagery’ by
Kuestner (2016).

The TOA radiance was then converted into TOA reflectance, p(TOA),[1 according to
equation 2:
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(2) p(TOA), = Eycosfs

Where L, is the at-sensor radiance for spectral band A, d is the Earth-Sun distance in
astronomical units; E, is the band-averaged solar exoatmospheric irradiance; and & is
the solar zenith angle (Kuestner, 2016).

Further atmospheric correction and conversion to top-of-canopy (TOC) reflectance was
carried out using the OrfeoToolBox, which uses the 6S radiative transfer model to
model the effect of the atmosphere.

For the VNIR dataset, a vegetation mask was created based on the Normalised
Difference Vegetation Index (NDVI), which gives and indication of greenness, using a
threshold value of >0.5. The NDVI was calculated based on the standard equation,
using band 7, near-IR1, for NIR, and band 5 for red:

NIR-red
NIR+red

3) NDVI =

A snow and cloud mask was created based on band 1 with a threshold value of 0.4. A
water mask was created based on zero values in red and NIR bands 5-8. The vegetation,
snow and cloud, and water masks were then combined into one final mask.

Ideally, the two datasets, VNIR and SWIR data, should be stacked and analysed
together. However, the two datasets were delivered with different levels of
orthorectification (level 2A is projected to a constant base elevation, while level 3D is
orthorectified with a DEM), which causes an offset between the datasets. Due to the
limited time available for this case study, it was decided to analyse the datasets
separately. Further orthorectification to the same level, resampling to the same spatial
resolution and joint analysis was not possible within this project and will be done at a
later stage.

3.2.2 ANALYSIS — ALTERATION INFORMATION EXTRACTION

There are a number of analytical techniques to extract spectral features from
multispectral data. When lacking in situ data, mineral indices or simple band ratios can
be applied to enhance certain spectral features (e.g. Sun et al.,, 2017). In addition,
techniques to enhance the variation in a dataset, such as principal component analysis
(PCA), can be used to emphasize spectral differences. If, however, in situ data is
available and mineral spectra are known, techniques such as spectral angle mapping
(SAM), spectral feature fitting (SFF) or spectral mixture analysis (SMA) can be used to
detect and map the probability of presence of certain minerals (Kopackova, 2014, and
references herein). In this study, only limited in situ data was available, and we
investigated to what extent simple band ratios, mineral indices and PCA analysis with
thresholds can be used to extract information on abandoned mines and mine tailings.

Sun et al., (2017) proposed, amongst others, the following index:



Fe-OH index = (SWIR-3/SWIR-7) * (SWIR-3/SWIR-1)

In addition, band ratios VNIR-5/VNIR-3, VNIR-8/VNIR-6, SWIR-1/SWIR-3, and
SWIR-3/SWIR-7 were investigated. PCA analysis was carried out on both VNIR band
set and the SWIR band set separately. Results of the analysis were visually compared to
the data, and to photos and field notes taken at known locations in the field.

3.3 IN SITU HYPERSPECTRAL DATA COLLECTION AND
PROCESSING

Ground-based hyperspectral imaging, using a Rikola hyperspectral camera (500-
900nm), was carried out from 28-31 July 2017 to collect in situ measurements of mine
waste, vegetation and soil in contaminated areas and healthy alpine vegetation. The
camera was programmed to collect 39 bands between 500-900 nm (visible to NIR) with
spectral widths of 10-15 nm, covering the full spectrum. The Rikola camera was placed
on a tripod and measurements were taken straight down, at nadir position, to avoid any
directional influence and make it easier to compare with satellite data. Prior to each
measurement, a dark background image was collected and an image of 3 grey
reflectance panels (Fig. 3).

Figure 3. Set-up for in situ hyperspectral measurements with Rikola camera (left). Reflectance
calibration panels (right).

Pre-processing of the data included camera calibration and dark background subtraction
to convert the raw data to radiance, image band coregistration, and empirical line
calibration using the grey reflectance panels to convert radiance to reflectance. Spectral
data of target objects were obtained by manually outlining the object of interest (soil,
plant etc.) and calculating the average reflectance values. The in situ hyperspectral data
was used to extract spectral characteristics in the VNIR range from different plant
species, moss and different types of waste rocks for end member determination and
validation.



4 RESULTS AND DISCUSSION

4.1 IN SITU HYPERSPECTRAL DATA

Figure 4 shows the spectra of selected objects, including two types of sedges (Carex
species), which are some of very few plants that grow on iron crusted soils in this area.
Figure 5 shows some examples of the surface and objects measured with the
hyperspectral camera.

35 25

]

==red waste ﬁ—red waste
===fine sedge / ==red waste
~ =red waste é—black moss
/ red stream
==sedge
9 ===red stream+soil
=
0 0

500 600 700 800 900 500 600 700
wavelength (nm) wavelength (nm)

w
o

N

a
N
o

IN)

=]
-
o

reflectance (%)

PN
a

reflectance (%)

[
o

-
o

o

800 900

Figure 4. Examples of different spectra from vegetation growing in contaminated areas, iron
crusted soil, soil with dark moss, and a small stream with iron precipitation.
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Figure 5. Examples of surfaces measured. Sedge growing on iron crusted soil (left), mine
tailings (right).

The spectra from iron crusted rocks and mine tailings (red waste) show a sharp peak
around 650 nm (red) and a broad peak around 760 nm. The spectra are used to identify
which bands or spectral ranges in the VNIR range can be used to distinguish different
objects of interest. At a later stage, these spectra can also be used as part of supervised
classification and spectral matching methods (such as SAM, SFF, SMA; see 4.2.2), but
this could not be achieved within this study.



4.2 WORLDVIEW-3 SATELLITE DATA

Figure 6 shows the WorldView-3 VNIR and SWIR images of the area between
Sulitjelma, at the lake Langvatnet, and the Nye Sulitjelma mines in the mountains above
Sulitjelma.

For the VNIR band set, the best results were obtained with the band ratio VNIR-
8/VNIR-6 (Figs. 7-10). This is related to the observation that the peak of the iron crust
spectra is located around 760 nm (Fig. 4), and VNIR-6 band is the narrow band closest
to this peak. Figure 7 shows that the mine tailings near the Nye Sulitjelma mines, iron
crusted rocks along the AMD drainage, and the gravel area around the processing plant
are clearly outlined. The gravel road from Sulitjelma into the mountains to the Nye
Sulitjelma mines is also partially highlighted in red. This is to be expected as the gravel
surface is crushed country rock; the crushing has increased the exposed surface area and
weathering processes can also lead to some degree of iron crust formation depending on
the country rock’s mineralogy. However, the asphalt road in Fig. 10 and some of the
rocky outcrops in the mountains (Fig. 7) are also outlined in red, indicating some degree
of overestimation, but without ground data for validation it is difficult to say to what
extent. Iron crusts do also form naturally through weathering of iron rich rocks.

Figure 6. WorldView-3 VNIR image with bands 5, 3, and 2, and 2.5 m spatial resolution
showing the area around Sulitjelma, with Langvatnet and the abandoned processing plant in the
bottom left, the road up to the mines at Nye Sulitjelma and some of the mining areas with mine
tailing (reddish colour top right). Bottom image is the WorldView-3 SWIR image with bands 1,
3, and 7, and a spatial resolution of 7.5 m. Blue-ish colours indicate bare rock and mine tailings,
reddish is vegetation.

For the SWIR band set, the band ratio SWIR-1/SWIR-3 gives the best results, similar to
VNIR-8/VNIR-6 (Figs. 7-10). This band ratio is based on the observation that ferrous
ions have an absorption feature in the wavelengths of SWIR-1 (Sun et al., 2017). Also
here there appears some overestimation in areas with bare rock, but without obvious
mine tailings, which could be related to weathering. The SWIR-1/SWIR-3 band ratio
gives better results than the Fe-OH index.
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the result from the band ratio VNIR-8/VNIR-6, with a threshold at 0.9. Bottom: WorldView-3
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1/SWIR-3, with a threshold of 0.75. Yellow arrows give the location and direction of the photos
in Fig. 8.

Figure 8. Two photos taken along the yellow arrows in Fig. 7. Bottom left: View to the east;
bottom right: view to the northwest.
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Figure 9. The 2 photos are taken along the yellow arrows in Fig. 10. Left: View to the west;
right: view to the east.
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Figure 10. Another example mapping mine tailings around the western part of Langvatnet, west
of Sulitjelma. Same band combinations and band ratios as in Figs. 6 and 7. Yellow arrows
indicate the location and direction of the photos in Fig. 9.
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5 CONCLUSIONS

This report presents the results of a preliminary analysis of WorldView-3 VNIR and
SWIR satellite data to map mine tailings and AMD drainage patterns. The results in 5.2
show that even simple band ratios combined with thresholding can give a good first
overview of the areas that most likely contain mine tailings and/or iron mineral
precipitation associated with AMD.

The results in this study indicate that the VNIR bands can also be used to create an
overview map of mine tailings and AMD. Particularly VNIR-6, which is associated with
a minor peak in the iron crust spectrum, is useful. This suggests that the freely available
Sentinel-2 satellite data, which includes a red edge band, band 6, with a similar spectral
range as WorldView-3 VNIR-6, could be used for the mapping of mine tailings and
AMD. The spatial resolution of Sentinel-2 is, however, lower at 10-20 m. For smaller
mining areas it may therefore be necessary to purchase higher resolution commercial
satellite data or use airborne or droneborne multispectral or hyperspectral imaging.

Combining VNIR and SWIR data and using more advanced methods such as SAM or
SMA, is expected to further improve detection and mapping of mine tailings and AMD.
For the latter, spectral data from either in situ or laboratory measurements, or spectral
libraries are needed.

Similar methods can be used to detect problems with e.g. vegetation health, or map
biomass as index for biodiversity (possible link to groundwater upwelling).
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