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Abstract

A large variety of severe medical conditions involve alterations in microvascular circulation.

Hence, measurements or simulation of circulation and perfusion has considerable clinical

value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical

planning. However, the accuracy of traditional tracer kinetic one-compartment models is

limited due to scale dependency. As a remedy, we propose a scale invariant mathematical

framework for simulating whole brain perfusion. The suggested framework is based on a

segmentation of anatomical geometry down to imaging voxel resolution. Large vessels

in the arterial and venous network are identified from time-of-flight (ToF) and quantitative

susceptibility mapping (QSM). Macro-scale flow in the large-vessel-network is accurately

modelled using the Hagen-Poiseuille equation, whereas capillary flow is treated as two-

compartment porous media flow. Macro-scale flow is coupled with micro-scale flow by a

spatially distributing support function in the terminal endings. Perfusion is defined as the

transition of fluid from the arterial to the venous compartment. We demonstrate a whole

brain simulation of tracer propagation on a realistic geometric model of the human brain,

where the model comprises distinct areas of grey and white matter, as well as large vessels

in the arterial and venous vascular network. Our proposed framework is an accurate and

viable alternative to traditional compartment models, with high relevance for simulation

of brain perfusion and also for restoration of field parameters in clinical brain perfusion

applications.
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Author summary

An accurate simulation of blood-flow in the human brain can be used for improved diag-

nostics and assignment of personalized treatment regimes. However, current algorithms

are limited to simulation of blood flow within tumours only, and in terms of parameter

estimation, traditional compartment models have limited accuracy due to lack of spatial

connectivity within the models. As a remedy, we propose a data-driven computational

fluid dynamics model where the geometric domains for simulation are defined from

state-of-the art MR acquisitions enabling a segmentation of large arteries and veins. In the

capillary tissue we apply a two-compartment porous media model, where the perfusion is

pressure-driven and is defined as the transition of blood from arterial to venous side. In

addition, we propose a model for dealing with the intermediate scale problem where the

vessels are undetectable and the flow does not adhere to requirements of porous media

flow. For this scale, we propose a support function distributing the fluid in a nearby region

around the vessel terminals. Combining these elements, we have developed a novel full

human brain blood-flow simulator.

Introduction

Applying traditional compartment models to in vivo hemodynamic measurements provides

clinically valuable parameters in a wide range of medical conditions, e.g. Alzheimer disease

[1], stroke [2, 3] or cancer [4, 5]. In these approaches, a pharmacokinetic compartment model

is fitted to tracer evolution time curves from perfusion acquisitions to extract estimates of

physiological parameters. The methodology is applied to entire organs, or regional- or voxel-

wise, depending on the application.

In the case of tracer-based measurements of brain hemodynamics, cerebral blood flow

(CBF, or perfusion), cerebral blood volume (CBV), and mean transit time (MTT) are com-

monly extracted parameters from one-compartment (1C) models. However, a fundamental

drawback of these methods has been previously pointed out: determining CBF from tradi-

tional 1C models is scale dependent, hence the results depend on discretization level [6–8]. In

[9] it was demonstrated that 1C models are prone to substantial errors when applied to smaller

computational units connected in space instead of entire organs. This implies that measure-

ments of perfusion on different discretization scales can provide considerably varying results

depending on the choice of imaging device and post-processing software. The major reason

for scale dependency of traditional 1C models is the lack of spatial connectivity in the model,

hence allowing for repeated counts of the same fluid volume when applying the model to spa-

tially connected units.

Recognition of the deficiencies of traditional compartment models has led to the develop-

ment of multiscale, continuous blood flow models. Such models are highly relevant for

improved understanding of the conditions affecting both global blood flow and microrheology

in disease states, such as, e.g. cerebral aneurysms and sickle cell anemia [10]. Treatment of

patients, such as by means of neurosurgery, may also benefit from individualized models that

describe complex geometrical phenotypes [11]. Multiscale blood flow models may also con-

tribute to a better understanding of angiogenesis and interstitial flow in simulated tumor

microvascular networks, thus providing a more comprehensive and descriptive model for

drug delivery [12–15].

A challenging topic within multiscale flow models is the precise mathematical formulation

of perfusion within a continuous flow model. A model of perfusion should be in accordance
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with the physiological interpretation of perfusion being considered as a feeding arterial flow of

oxygenated blood into the tissue or an organ. As a solution, we adopt a continuous flow model

in which perfusion is regarded as the volume flux of oxygenated blood, which transits from

arterial to the venous side in a two-compartment (2C) model [16–19]. This understanding of

perfusion is both mathematically strict and physiologically sound.

The vascular system is a geometrically highly complex tubular network connecting vessels

at different spatial scales. One particular challenge of whole brain simulation of perfusion is

how to connect flow on the various scales, ranging from the carotid artery lumen with diame-

ter close to 6 mm [20] down to capillaries with diameters of approximately 6 μm [21]. A suit-

able continuum model for flow simulations is expected to care for both tissue inhomogeneity

and anisotropy, with the inconvenience of requiring a large number of unknown modelling

parameters. One common approach is therefore to represent the vessels as an inexpensive 1D

flow model coupled with a 3D continuum model for the brain tissue [19, 22–24]. The simple

geometry of a 1D model reduces the number of required modelling parameters, while the vas-

cular geometry can be observed in dedicated MR acquisitions. However, well-posedness and

stability of the solution at the interface between the 1D and 3D model is challenging [22, 23].

In the current work, we address this problem by introducing a local flow distribution region

where interface conditions are governed by a mass conserving, smooth support function,

hence ensuring stability of the system.

Methods

The workflow of our proposed method for whole brain simulation is schematically shown in

Fig 1. Three dedicated MR acquisitions together with their appropriate data reconstruction

and data post-processing are used to create the data-driven geometry: (i) A T1-weighted ana-

tomical 3D data set used for segmenting white and grey matter, (ii) a time-of-flight (ToF)

acquisition for identifying larger arteries, and (iii) a quantitative susceptibility map (QSM),

which allows to extract larger veins. In the macro-scale network of arteries and veins we model

the flow according to the Hagen-Poiseuille equation [25]. However, the brain also contains a

large number of micro-scale capillaries, not recognizeable in space by any in vivo imaging

device. So far, as a solution to this limitation, flow in capillaries is frequently modelled as

porous media flow according to Darcy’s law [16, 17, 19]. We couple macro-scale Hagen-Poi-

seuille flow in large vessels with micro-scale Darcy flow in the capillaries by a set of locally dis-

tributing source terminals, hence providing a complete linear system, which is solved for node

pressure values within the vascular network and voxel pressure values within the brain tissue.

Finally, fluid flux obtained from the pressure gradient is used to simulate tracer transport,

leading to an in-silico model of combined whole brain perfusion and tracer evolution. For

the remaining, we make the assumption that our data represents healthy human brain tissue

with an intact blood-brain barrier. Hence, no leakage of tracer into the extravascular space is

expected, and one can exclusively model the tracer in the vascular space [26]. In the following,

we carefully address individual processing steps.

Data sets used for simulation

The purpose of the numerical simulations is twofold. First, by examples to illustrate working

principles of our algorithm, and secondly, to demonstrate scale invariance. With this in mind,

we have chosen the geometry of a frog tongue as example data [27]. This data set exhibits a

realistic vascular geometry. Practically, the data set was scanned from a written source [27].

Preprocessing steps included semi-automatic segmentation of each of the vascular networks.

Length of the tongue was measured to be 35 mm, and field of view (FOV) was set accordingly.
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As an approximation we consider the data to be almost two-dimensional. The tongue is also

stretched between the nails pinning it to the surface, leading to a deformed geometry com-

pared to a unprepared frog tongue. A visualization of the arterial and venous network, as well

as the tongue tissue is shown in Fig 2. Input data can be found in Supporting Information S1–

S3 Data. Furthermore, we used a full human brain for simulation of flow. Acquisition parame-

ters and postprocessing steps of these data are described in the following.

MR acquisitions. Magnetic resonance (MR) imaging of a healthy male subject (age 26

years) was carried out at the Jena University Hospital (Jena, Germany) on a 3T MR system

equipped with a 12 channel-phased-array receive head coil (Siemens Healthineers, Erlangen,

Germany). Consent was not obtained because data were analyzed anonymously. A 3D,

whole-head, T1-weighted MRI data set was collected by applying a magnetization-prepared

rapid gradient echo (MP-RAGE) sequence (echo time TE = 3.24 ms, bandwidth BW = 200

Hz/px, repetition time TR = 2530 ms, inversion time TI = 1100 ms, flip angle FA = 9˚, acquisi-

tion matrix = 320×240×224, voxel size = 0.8 mm×0.8 mm× 0.8 mm, acquisition time

TA = 12:00 min:sec) for whole brain parcellation.

Image information about the cerebral arterial vessels was collected by performing a multi-

slab time-of-flight (ToF) MR angiography (MRA) [28] with a single echo, 3D gradient-echo

Fig 1. Workflow of algorithm for whole brain flow simulation. A FreeSurfer segmentation of the T1-weighted

acquisition is used to define a brain mask from the union of white and grey matter. The ToF and QSM images were

used to segment arteries and veins, respectively. Within the vascular network the flow is implemented according to the

Hagen-Poiseuille equation. Flow in the brain is represented by Darcy flow, and coupled with Hagen-Poiseuille flow in

the vascular tree using locally distributing source terminals. The resulting linear system is solved for the pressure. Flux

is directly proportional to the pressure drop, and is used to compute tracer transport as a function of time. Finally, the

workflow provides an in-silico model of whole brain perfusion and indicator dilution.

https://doi.org/10.1371/journal.pcbi.1007073.g001
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sequence (TE = 4.16 ms, BW = 180 Hz/px, TR = 23 ms, ramped FA = 20˚ [TONE pulse with

20˚ and TONE ratio 2:1] [29], acquisition matrix per slab = 448×346×64, voxel size = 0.49

mm×0.49 mm× 0.49 mm, TA = 32:57 min:sec). Signal saturation due to slow flowing arterial

blood was reduced by acquiring six slabs with a slab overlapping factor of -20% [30]. Venous

contamination in the ToF data was reduced by using additional venous saturation pulses.

To assess the cerebral venous vasculature, quantitative susceptibility mapping (QSM) was

performed [31, 32]. For this purpose, data were acquired with a 3D, dual-echo gradient-echo

sequence with flow compensation in all three spatial directions of the second echo (ToF-SWI

sequence) [33]. The acquisition parameters included TE1 = 3.38 ms, BW1 = 272 Hz/px,

TE2 = 24.7 ms, BW2 = 80 Hz/px, TR = 34 ms, acquisition matrix = 448×350×256, voxel

size = 0.49 mm×0.49 mm×0.60 resulting in an acquisition time of 32:57 min:sec. The phase

information of the second echo of the ToF-SWI sequence was used to compute magnetic sus-

ceptibility maps while applying sophisticated harmonic artefact reduction for phase data with

variable radii (V-SHARP, 10 spherical kernels with radii ranging from 0.49 mm to 4.9 mm,

regularization parameter [TSVD]: 0.05) [34, 35] for background field removal and homogene-

ity enabled incremental dipole inversion (HEIDI) [36] for field-to-susceptibility inversion.

Finally, all three different contrasts were brought into a unified space with a common voxel

size of 0.49 mm isotropic by linear registration, both the MP-RAGE and magnetic susceptibil-

ity maps to the ToF MRA data. Original input data can be found in Supporting Information

Fig 2. Geometry of a frog tongue with segmentation labels from dark to bright: Background (black), arterial

network (red), venous network (blue), and tongue tissue (white). The sharp corners of the tongue tissue occur when

the tongue is pinned down to the surface prior to imaging. The arterial input and venous outlet are in the bottom of

the picture.

https://doi.org/10.1371/journal.pcbi.1007073.g002
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S4–S7 Data. Shown pictures of the frog tongue and the human brain example were rescaled at

double resolution and smoothed by anisotropic diffusion for visualization purposes.

Detection of brain tissue. FreeSurfer v6.0 (recon-all) was used to create a whole

brain parcellation from the high-resolution T1-weighted dataset [37]. Masks of white and grey

matter were extracted from the FreeSurfer parcellation. A brain mask was generated as the

union of white and grey matter. These segmented data sets defined the geometry in the numer-

ical example of whole brain perfusion. Porous media flow was applied only within the brain

mask.

Detection of arterial and venous networks. The vessel detection procedure was split into

two consecutive workflows, see Fig 3 for an overview. In the first workflow we create a con-

nected, binary network. In a second workflow, we identify graph parameters, e.g. leafs, medial

axes, nodes and edges. In the next, we describe the two workflows in more detail.

Detection of a connected, binary network. The ToF and QSM data were used for identi-

fying arteries and veins, respectively (cfr. the workflow in Fig 3A–3C, where we have used an

example image for demonstration purposes). Adaptive thresholding of each of these maps

indicated most probable locations for vessels, resulting in a set of NR disconnected components

[
NR
i¼1Ri. The largest structure R1 is referred to as the root structure, while remaining structures

are referred to as satellite structures (cfr. Fig 3B). Now, assume the components in [
NR
i¼1Ri are

sorted in descending order according to shortest Euclidean distance to the root structure. To

overcome the problem that adaptive thresholding does not guarantee 3D connectivity, we

solved the eikonal equation

jrTj ¼ 1=S; x 2 O

TðxÞ ¼ 0; x 2 R1

ð1Þ

for the arrival time field T : O! R, T� 0 and where O is the domain corresponding to the

field-of-view (FOV). Eq (1) was solved by fast marching [38]. Backpropagation in the arrival

time field provides the shortest path to the root from any point, given the velocity S : O! R,

S� 0. Using S equal to the ToF or QSM data facilitates a backpropagation along high intensity

structures strongly associated with the path of arteries and veins, respectively. Backpropagation

Fig 3. Automatic detection of vascular networks is divided into two consecutive workflows. (I) In the first part, (A) a connected, binary

mask of the vascular network is generated from the input image (i.e. the ToF or the QSM in the case of a real application), here represented as a

synthetic image demonstrating a small network of vessels. (B) Segmentation by adaptive thresholding creates a first approximation to the

vascular network. However, due to local dropout in the signal, the segmented map also contains a satellite structure disconnected from the root

structure. Computing the distance function around the root structure with the image itself as a speed function generates a favorable map which

can be used for backtracing from the satellite structure to the root structure. This procedure generates a most probable path connecting these

two structures (green path). (C) End points of the resulting, connected vascular network are either root points or leafs. (II) In the second part,

from the connected network in (I), we identify leafs, root points, the skeleton, as well as network nodes. (D) Computing a distance function

around the binary segmentation generates a map for a second backpropagation. A consecutive backpropagation from leaf 1 and 2 towards the

root ensures a connected skeleton of the network. In addition, the procedure provides the nodes as the points of intersection of two paths of

backpropagation, here indicated by the red arrow intersecting the green path.

https://doi.org/10.1371/journal.pcbi.1007073.g003
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from the satellite structure R2 to the root structure R1 along the arrival time map T(x) provides

the most probable path from R2 to R1 (cfr. Fig 3C). The region R2 is then assimilated into the

root structure, R1 R1 [ R2, and the process of solving (1) is repeated for i = {2, 3, 4, . . ., NR}.

Each backpropagation is applied until it reaches the growing root structure. Backpropagation

ensures connectivity of every component Ri in the vessel network to the initial root structure.

Backpropagation in the space between the connecting structures R1 and Ri was later combined

with a dilatation of the connecting edge to produce tubular structures matching the average

radius of (R1 + Ri)/2 (cfr. Fig 3C). The resulting vascular network is referred to as the arterial

or venous mask R1.

Identification of graph parameters. In the second part we identify leafs, medial axis,

nodes and edges of the network (cfr. Fig 3D). To provide these parameters, let us first define

a domain O
CH
B associated with the convex hull of the brain, as well as a binary image B1:O!

{0, 1}, {B1(x) = 1 if x 2 R1, else B1(x) = 0}. Then, we solve the boundary value problem

jrTj ¼
1=ðdistðBC

1
ðxÞÞ þ xÞ

inf

if

if

x 2 R1;

x 2 O=R1

(

TðxÞ ¼ 0 if x 2 R1 \ @O
CH
ℬ

ð2Þ

for the arrival time T, where BC
1
ðxÞ is the complement of B1(x), ξ = 0.1 is a small number to

avoid dividing by zero, and where dist() is the Euclidean distance function. Zero arrival time is

set in the root points (i.e. the AIF points), defined as the intersection of the convex hull of the

brain with the vessel network. Eq (2) provides a monotonically increasing map of arrival times

along the arterial/venous network away from the root points. Leafs of the vascular network

were identified from regional maxima (imregionalmax in MATLAB, cfr. Fig 3C), and

backpropagation from the leafs towards the root leads to a set of spatially connected medial

axis associated with the skeleton of the network. The path of backpropagation becomes the

edges in the graph. Bifurcation points or nodes occur whenever a path of backpropagation

intersects with a previous path of backpropagation, or with any of the root points (cfr. Fig 3D).

Governing equations in the 3D domain

In the coupled model combining 1D flow in larger vessels with 3D Darcy flow in the brain, the

majority of tissue is modelled as a porous medium where pressure driven flow is restricted by

fluid mass balance and generic assumptions about the vascular microstructure of the arterioles,

venules and the capillary system. In order to describe perfusion mathematically, we work

under the assumption of two parallel 3D systems (or compartments), one accounting for arte-

rial and one accounting for venous flow. The perfusion is interpreted as the delivery of oxygen-

ated blood from the first to the latter compartment. Further details regarding the 3D model

are given below.

Fluid mass balance. Let us now define a brain mask OB as the union of grey and white

matter. Fluid mass balance is ensured by the continuity equation, expressed in global form as

d
dt

Z

Oi

�rdxþ
Z

@Oi

rðu � nÞdA ¼
Z

Oi

~Qdx ð3Þ

for a geometric control volume Oi with boundaries @Oi. In (3), n is the outer unit normal vec-

tor of @Oi, u : OB � T ! R3
is the flow per unit area (i.e. flux), [m3 s−1 m−2], r : OB � T ! R

is the fluid density [kg m−3], � : OB � T ! R is the porosity [-], and ~Q : OB � T ! R is a

fluid source term [kg s−1 m−3]. In geoscience, the parameter 0� ϕ� 1 is known as the poros-

ity, and in the field of neuroimaging it is known as cerebral blood volume (CBV). Eq (3) must
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be valid for every geometric control volume Oi, hence, by the divergence theorem

@

@t
ð�rÞ þ r � ðruÞ ¼ ~Q: ð4Þ

For an incompressible fluid and for a situation of constant fluid density, (4) is equivalent with

r � u ¼ Q ð5Þ

where Q ¼ ~Q=r has units [m3 s−1 m−3].

Flow equations in the brain. Assuming a low velocity flow within the capillary brain tis-

sue according to Darcy’s law, provides the relation

u ¼ �
k
m
rp ð6Þ

between the flux u : OB ! R
3 [m3 s−1 m−3] and the pressure p : OB ! R [Pa] when neglecting

the gravitational acceleration [16, 17, 19, 39]. The flux u is also known as the Darcy velocity,

and is related to the fluid velocity by the porosity since only a fraction of the geometric volume

is available to flow. The viscosity μ is assumed to be constant everywhere, and k : OB ! R
[mm2] is the vascular permeability, in this work assumed to be isotropic.

Now, consider two fluid compartments, the arterial and venous compartment, where we

employ an index β indicating the compartment i.e. β 2 {a = arterial, v = venous}. We allow

each compartment to possess heterogenous porosity ϕβ(x) and vascular permeability kβ(x).

However, in the current work, we assign regionally constant parameter values of porosity and

vascular permeability within each compartment due to lacking prior information of regional

variability. Furthermore, let the perfusion P : OB ! R [m3 s−1 m−3] be the volume flux

between the two compartments, hence understanding perfusion as the transition rate of blood

from oxygenated to deoxygenated state [16–19]. Vascular flow is mainly pressure driven, and a

legitimate model for perfusion is linearly proportional to the pressure difference between the

arterial and venous compartment,

P ¼ aðpa � pvÞ ð7Þ

with a perfusion proportionality factor α = α(x) [m s kg−1]. The parameter α is assumed to

reflect anatomical factors affecting the tissue’s ability to facilitate perfusion, e.g. capillary den-

sity and microstructural organization, and can later be refined to separate the various factors.

Combining mass conservation (5) with porous media flow (6) for each of the two compart-

ments while coupling the compartments with the perfusion (7) yields a set of partial differen-

tial equations in the pressure fields pa and pv

� r �
kaðxÞ
m
rpaðxÞ

� �

¼
X

k2TI
a

Q�

a;kðxÞ � PðxÞ x 2 OB

� r �
kvðxÞ
m
rpvðxÞ

� �

¼
X

k2TI
v

Q�

v;kðxÞ þ PðxÞ x 2 OB

ubðxÞ � nbðxÞ ¼ 0 b ¼ fa; vg; x 2 @OB

ð8Þ

where nβ is the outer normal vector of the boundaries @OB of OB. No-flow Neumann bound-

ary conditions for the flux u/rp are imposed for x 2 @OB. The parameter � is a local

radius around x where Q�
a;kðxÞ has support, and will later be explained in more detail.

Right hand side terms Q�
b;k ¼ Q�

b;kðxÞ [m3 s−1 m−3] are volumetric sink or source terms. The
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perfusion P becomes a sink term for the arterial compartment and a source term in the

venous compartment.

Governing equations in the vascular network

For simplicity, we currently omit the index β = {a, v} and consider either the arterial or the

venous vascular network consisting of nodes Ni and edges Ejk. Each node Ni has an associated

position ~xi and pressure ~pi [Pa]. An edge Ejk is the connection between the pair of nodes (Nj,

Nk), and is associated with a tubular length Ljk [m] and a constant tubular radius Rjk [m]. The

length Ljk is a geodesic distance measured along the tubular medial axis, and Rjk is computed

as the average tubular radius along the structure Ejk. Each edge Ejk mediates an absolute flow

~qjk [m3 s−1] from node Nj to node Nk. Algorithmically, the network is represented as a connec-

tivity matrix of an undirected graph. A schematic illustration of a vascular network with

proper notation is shown in Fig 4.

Each node Ni is connected to a set of neighboring nodes N ðNiÞ. A terminal node is defined

as any node with only one neighbour, i.e. NT ≔ fi : jN ðNiÞj ¼ 1g for the cardinality |�|, while

interior nodes are nodes with more than one neighbour, NI ≔ fi : jN ðNiÞj > 1g. We further

split the terminal nodes into root terminals and interior terminals. Root terminals NR are pres-

surized terminal nodes with imposed Dirichlet boundary conditions. Algorithmically, the root

terminals are the intersection points of the large vessels with the brain-background interphase

@OB, NR ¼ fi : ~xi 2 @OBg. Interior terminals are terminal nodes placed within the domain,

mediating flow from/to the vascular tree into the 3D domain. The flow in the interior termi-

nals is a Neumann boundary condition for the microvascular flow in the 3D domain. For the

Fig 4. Illustration of an arterial network with nodes Ni, i = {0, . . . 3} and connecting edges. Each edge has an

associated length Ljk, radius Rjk and medial axis (dashed lines). In the current example, N0, N2, N3 are terminal nodes,

while N0 is also a root terminal mediating incoming fluid into the vascular network. Node N1 is an interior node. Brain

tissueOB is shown as a filled ellipsoid, and arrowheads indicate direction of flow. For the sake of illustration, only the

arterial network is shown, but a similar, fluid collecting venous network is also present in the model.

https://doi.org/10.1371/journal.pcbi.1007073.g004
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remaining, we refer to interior terminals as terminals. Finally, the set of all nodes is the union

of interior nodes, terminals and root terminals, NI [ NT [ NR.

For modelling of flow through larger vessels we approximate the vessels as straight tubes of

constant, circular cross-sections. We also assume laminar flow of an incompressible, Newto-

nian fluid. The assumption of laminar flow is supported by Reynold numbers < 200 for any of

the middle cerebral arteries and penetrating arterioles [40]. Under these assumptions, the vas-

cular flow in larger vessels can be modelled using the Hagen-Poiseuille equation, relating a

pressure drop D~pjk ≔ ~pj � ~pk of an incompressible fluid of viscosity μ [Pa � s] through Ejk to

the flow ~qjk between two nodes Nj and Nk [41],

D~pjk ¼
8mLjk~qjk

pR4
jk

: ð9Þ

Fluid mass balance must be ensured for each interior node
X

j2N ðNkÞ

~qjk ¼ 0; k 2 NI: ð10Þ

Denoting kjk ≔ pR4
jk=8mLjk, and combining (9) with (10) yields the relation

X

j2N ðNkÞ

kjkð~pj � ~pkÞ ¼ 0; k 2 NI
ð11Þ

for the fluid mass balance of each interior node. Within the arterial and networks we assume

full porosity, hence collapsing into one-compartment flow. The root terminals represent the

outer boundaries of the complete flow system, and each of the root terminals are therefore

assigned a user-provided Dirichlet boundary condition ~p0

~pk ¼ ~p0 8 k 2 NR: ð12Þ

From the definition of a terminal node, terminal nodes have only one neighbour, i.e. only one

edge connection, and the flow in each of the terminal nodes can be expressed as

~qk ¼ kjkð~pj � ~pkÞ; j 2 N ðNkÞ 8 k 2 NI ð13Þ

providing Neumann boundary conditions of flow continuity between the arterial/venous net-

work and the brain. This topic is further addressed in the next section.

Distributing flow from the terminals

The intersection point connecting the flow in the 1D tubular network with the flow in the

generic 3D tissue yields a singularity both in terms of physics and numerics. Physically, there

is a modelling gap between the explicit, macro scale representation of arterial/veinal flow and

the micro circulation in the 3D domain. In our model, we fill this gap using a volumetric

source term Q� [m3 s−1 m−3]. For � = 0 this is essentially a Dirac measure

Q0ðxÞ ¼
Z

O

QðyÞdðx � yÞdy ð14Þ

where all fluid is distributed within an infinitely small point. However, assume that the blood

from the terminals is distributed along a fine scale network which is not visible at the imaging

resolution. The idea is to replace the Dirac measure, which is not physically sound, with a

more realistic model of the source region with a characteristic radius �. To this end, define the
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support function

Z�ðxÞ≔
1

�n
Z

x
�

� �
ð15Þ

where the shape function η is any positive and continuously differentiable function satisfying
R

OB
Zdx ¼ 1. In principle, the shape function η should reflect the structure of the sub-resolution

arterial and venous trees, but due to the lack of such data we adopt the generic choice

ZðxÞ≔

(
C exp 1

jxj2 � 1

� �
if jx½< 1;

0 if jxj � 1:

ð16Þ

An appropriate expression for the source terms then becomes

Q�ðxÞ ¼
Z

O

QðyÞZ�ðx � yÞdy: ð17Þ

Due to the properties that both the Dirac delta distribution and the source distribution

integrate to unity, we note that the total integral over (14) and (17) remains the same and

global mass balance is ensured from the terminals. Moreover, (17) converges to (14) in the

case where �! 0, justifying the notation Q0 in (14). For the remaining, adopt the notation

of β indicating characteristics of the arterial (β = a) or venous (β = v) tree, e.g. single nodes

Nk! Nβ,k or the set of nodes Nj ! Nj
b; j 2 fI;T;Rg. Considering the volumetric source/

sink terms Q�
b;k in (8), the total flow contribution (17) from terminal k can be approximated

as

Q�
b;kðxÞ ¼ Qb;kZ

�
b;kðx � ~xkÞjNb;kj: ð18Þ

where |Nβ,k| is the node volume. The volumetric flow Qβ,k through terminal k relates to the

absolute flow ~qb;k by

Qb;k ¼ ~qb;k=jNb;kj; ð19Þ

thus providing the relation

Q�
b;kðxÞ ¼ ~qb;kZ�b;kðx � xkÞ: ð20Þ

Continuity in pressure

In the flow-distribution region around each interior terminal |x − xk| < � we require that the

pressure drop between a terminal node Nβ,k and the surrounding brain tissue satisfying |x − xk|

< � scales with the terminal flow up to a user-provided constant γβ

~qb;k ¼
gb

m
~pb;k �

Z

O

Z�
b;kðx � xkÞpbdx

� �

8 k 2 NI
b
: ð21Þ

The coefficient γβ has the interpretation of an effective resistance in the unresolved network

extending from the terminal node. A higher value of γβ will enforce a lower pressure drop

between the vascular tree and the microvascular model, and vice versa. This closes the coupled
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modelling system, where the complete flow model is formed from (7), (8), (11), (12), (13),

(20), (21).

Generating maps of the perfusion proportionality factor α(x)

For the real brain application, voxelwise maps of the perfusion proportionality factor α (7)

were generated with higher values in grey matter than in white matter [42], ensuring a physio-

logically reasonable map. We illustrate our approach by applying the method also to simulate

flow in a frog tongue. In this specific example there is no grey or white matter, and we use α
constant everywhere.

Tracer mass balance and indicator dilution

The equations in the preceding sections describe blood propagation from the arterial to the

venous side of the brain vascularity. In order to simulate a real contrast enhanced MR acquisi-

tion we also introduce a model for transport of a tracer in the bloodstream. All quantities are

assumed to be in SI units, and later converted to more appropriate units for presentation

whenever needed. Observable or volumetric tracer concentration C(x, t) [mol/m3] is a linear

function of the fractional volumetric tracer concentrations Cβ(x, t) for each of the compart-

ments

Cðx; tÞ ¼ Caðx; tÞ þ Cvðx; tÞ: ð22Þ

Furthermore, tracer distribution volume is different from a geometric volume whenever ϕβ<
1, leading to the relation

Cbðx; tÞ ¼ �bðxÞcb;bðx; tÞ ð23Þ

connecting blood tracer concentration cβ,b(x, t) [mol/m3] to volumetric tracer concentration

Cβ(x, t).
The following criteria are assumed to hold: The tracer is homogeneously distributed in the

fluid within a small distribution volume Oi (i.e. a voxel or a node), all physiological and struc-

tural parameters are stationary within the time of acquisition, and tracer transport by diffusion

is not considered. Under these assumptions, the influx of tracer into Oi is determined by the

product of fluid tracer concentration cβ(x, t) and flux uβ(x)

�

Z

@Oi

cbðub � nÞdA ð24Þ

where n is the outward pointing surface normal of Oi. The rate of change of tracer within the

control volume yields

d
dt

Z

Oi

Cbðx; tÞdx: ð25Þ

In addition, one must account for volumetric source terms. Combining (24) with (25) and

allowing for perfusion and inflow and outflow of tracer from/to all interior terminals, an
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upstream finite volume model for tracer mass balance can be phrased as

R

Oi
�a
@ca

@t
dx ¼ �

Z

@Oi

caðua � nÞdA �
Z

Oi

c00Pdxþ
X

k2NI
a

Z

Oi

c0a~qa;kZ
�

a;kðx � xkÞdx x 2 OB

for c0a ¼

(
~ca;kðtÞ if ~qa;k � 0 ðNode is upstreamÞ

caðx; tÞ if ~qa;k < 0 ðBrain tissue is upstreamÞ
Z

Oi

�v
@cv

@t
dx ¼ �

Z

@Oi

cvðuv � nÞdAþ
Z

Oi

c00Pdxþ
X

k2NI
v

Z

Oi

c0v~qv;kZ
�

v;kðx � xkÞdx x 2 OB

for c0v ¼

(
cvðx; tÞ if ~qv;k < 0 ðBrain tissue is upstreamÞ

~cv;kðtÞ if ~qv;k � 0 ðNode is upstreamÞ

and where c00 ¼

(
caðx; tÞ if pa � pv

cvðx; tÞ if pa < pv

:

ð26Þ

For the edges Eβ,jk we construct a finer discretization in order to facilitate graded tracer con-

centration along the edges. Hence, split each edge Eβ,jk into nβ,jk subsegments associated with

medial axis voxels, and assign every remaining voxel in the edge to the closest medial axis

point, leading to disc-like discretization volumes Eβ,jk,i referring to subsegment i within edge

Eβ,jk. Also, assume the order of subsegments is downstream with increasing index i. In particu-

lar, cb;jk;nb;jk refers to the tracer concentration in the last subsegment of edge Eβ,jk, which is iden-

tical to the first subsegment upstream of node k. Similar equations as (26) apply to the nodes

under the assumption of full porosity within the distributing node volume

Z

Na;k

~�a;k

@~ca;k

@t
dx ¼ Dfa;k

Dfa;k ¼

� ð~cAIF � ~ca;kÞ~qa;k if k 2 NR
a ðroot terminal; ~qa;k < 0Þ

P
j2N ðNa;kÞ

c0~qa;jk if k 2 NI
a ðinterior nodeÞ

Dc~qa;k if k 2 NT
a ðterminalÞ

8
>><

>>:

c0 ¼

(
~ca;jk;na;jk

if ~qa;jk > 0 ðincoming fluidÞ

~ca;k if ~qa;jk < 0 ðoutgoing fluidÞ

Dc ¼

(
~ca;jk;na;jk

� ~ca;k if qa;k > 0 ðterminal is a sourceÞ
R

O
~ca;kZ

�
a;kðx � xkÞdx � ~ca;k if qa;k < 0 ðterminal is a sinkÞ

Z

Nv;k

~�v;k

@~cv;k

@t
dx ¼ Dfv;k

Dfv;k ¼

ð~cv;jk;nv;jk
� ~cv;kÞ~qv;k if k 2 ðNI

v [ NR
v Þ ðroot terminal; ~qa;k > 0Þ

P
j2N ðNv;kÞ

c0~qv;jk if k 2 NI
v ðinterior nodeÞ

Dc~qv;k if k 2 NT
v ðterminalÞ

8
>>><

>>>:

c0 ¼

(
~cv;jk;nv;jk

if ~qv;jk > 0 ðincoming fluidÞ

~cv;k if ~qv;jk < 0 ðoutgoing fluidÞ

Dc ¼

(
~cv;jk;nv;jk

� ~cv;k if qv;k > 0 ðterminal is a sourceÞ
R

O
~cv;kZ

�
v;kðx � xkÞdx � ~cv;k if qv;k < 0 ðterminal is a sinkÞ

ð27Þ

where fβ,k is the incoming/outgoing tracer flux of node k. Within the edges, tracer
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concentrations in each subsegment follows accordingly

Z

Eb;jk;i

~�b;jk;i
@~cb;jk;i
@t

dx ¼ ð~cb;k � ~cb;jk;iÞ~qb;jk i ¼ 1

Z

Eb;jk;i

~�b;jk;i
@~cb;jk;i
@t

dx ¼ ð~cb;jk;i� 1 � ~cb;jk;iÞ~qb;jk i ¼ 2; . . . ; nb;jk

ð28Þ

for β = {a, v}. Note that the first subsegment relates to the upstream node. The hematocrit fac-

tor Hct connects blood tracer concentration cβ,b with plasma tracer concentration cβ according

to

cb;b ¼ cbð1 � HctÞ: ð29Þ

Tracer can only distribute within the arterial and the venous compartment, and the observable

tracer concentration becomes

Cðx; tÞ ¼ ðcaðx; tÞ�a þ cvðx; tÞ�vÞð1 � HctÞ: ð30Þ

when applying (22), (23), and (29). In the current model, the hematocrit is independent of ves-

sel scale, and therefore only has the role as a global scaling factor of the tracer concentration

curves. Eqs (26), (27), (28), and (30) form the model for indicator dilution. Further details on

the numerical implementation are shown in Supporting Information.

Numerical implementation of flow

Integrating (8) over a control volume (voxel) Oi� O and applying the divergence theorem

yields

�

Z

@Oi

ðlarpaÞ � ndA ¼
X

k2TI
a

Z

Oi

Q�

a;kdx �
Z

Oi

Pdx

�

Z

@Oi

ðlvrpvÞ � ndA ¼
X

k2TI
v

Z

Oi

Q�

v;kdxþ
Z

Oi

Pdx
ð31Þ

for the conductivities λβ≔ kβ/μ, β = {a, v}. The elliptic term of Eq (8) was discretized using

finite volume TPFA (two-point flux approximation), leading to a linear relation in the trans-

missibilities tij and pressure difference pβ,i − pβ,j between a center voxel xi and an adjacent

neighbor xj. TPFA is widely applied in reservoir mechanics, and the reader is referred to [43]

for more details. Following TPFA, Eq (31) can be approximated as a linear system

X

j2N i

tijðpa;i � pa;jÞ þ aiðpa;i � pv;iÞjOij �
X

k2TI
a

~qa;kZ
�

a;kðxi � xkÞjOij ¼ 0

~qa;k ¼ ka;jkð~pa;j � ~pa;kÞ; j 2 N ðNa;kÞ 8 k 2 NI
a Continuity in flow

X

j2N i

tijðpv;i � pv;jÞ � aiðpa;i � pv;iÞjOij �
X

k2TI
v

~qv;kZ
�

v;kðxi � xkÞjOij ¼ 0

~qv;k ¼ kv;jkð~pv;j � ~pv;kÞ; j 2 N ðNv;kÞ 8 k 2 NI
v Continuity in flow

ð32Þ

when also applying Eq (20). Further define the voxel neighborship around an interior node

N vðNb;kÞ≔ fj : Z�
b;kðxj � xkÞ > 0; k 2 NI

b
g including all voxels close to terminal Nβ,k receiving

a nonzero fluid distribution. The network Eqs (11) and (12) are readily discretized, while the
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condition on pressure continuity Eq (21) becomes

~qb;k ¼
gb

m
~pb;k �

X

j2N ðNb;kÞ

Z�
b;kðxj � xkÞpb;jjOjj

0

@

1

A 8 k 2 NI
b

ð33Þ

A linear system Ax ¼ d was created,

A ¼

AðDa ! DaÞ AðDa ! DvÞ

AðDv ! DaÞ AðDv ! DvÞ

AðDa ! NaÞ 0

0 AðDv ! NvÞ

AðNa ! DaÞ 0

0 AðNv ! DvÞ

AðNa ! NaÞ 0

0 AðNv ! NvÞ

0

B
B
B
@

1

C
C
C
A

ð34Þ

where x is the concatenation of the voxelwise pressure values pβ,i and nodal pressure values

~pb;i. The argument D refers to the Darcy equation in the continuum, and N refers to the nodes.

The subscript indicates arterial or venous compartment/tree. The arrow indicates interactions,

e.g. the submatrix AðDa ! NaÞ contains the interaction between the arterial compartment

and arterial-tree nodes. Right hand side d depends on Dirichlet boundary conditions on the

pressure. The linear system of equations was solved using GMRES [44] with a tolerance of

10−6, and a LUP decomposition for preconditioning.

Numerical implementation of indicator dilution

A first approximation of the forward time step was initially computed from the largest possible

time step satisfying the CFL conditions of the Darcy domain, the nodes, and the segments.

However, due to the implementation of a backward Euler solver, we were able to use signifi-

cantly longer time steps, leading to a sequence of time points ti = iδt, i = {0, 1, . . ., n} where δt
was ten times the maximum time step according to the CFL condition. Total number of itera-

tions became n = floor(120/δt), where 120 is maximum simulation time. Forward simulation

of tracer evolution was performed by creating a discrete linear system of equations from (26),

(27), (28)

ciþ1 ¼ ci þ dtðAci þ biÞ; i ¼ f2; 3; . . . ; ng; c0 ¼ 0 ð35Þ

in the variable

ci ¼ cD;a; cD;v; cN;a; cN;v; cE;a; cE;v �
T
i

�
ð36Þ

containing the concatenation of discrete variables of tracer concentration at time point ti in

the Darcy domain cD,β, the nodes cN,β, and the edges cE,β, and where B is a block-diagonal

matrix

ð37Þ

with similar notation as (34), in addition to E(�) referring to the edges. The constant vector bi

depends on AIF values cAIF,i. A backward Euler updates the concentration at time point ti
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according to

ðI � dtAÞciþ1 ¼ ci þ dtbi ð38Þ

where I is the identity matrix. The matrix ðI � dtBÞ is fixed over iterations, and a GMRES

solver was used as a solver with a LUP preconditioner with the previous iterate as initial guess

in the consecutive time iteration.

Arterial input function

As arterial input function we used a gamma-variate function

~cAIFðtÞ ¼ C0ðt � t0ÞAe� ðt� t0Þ=B ð39Þ

with constants A = 3, B = 1 [45]. Tracer simulation time was 120 s, with a delay t0 = 7.5 min.

All program code was written in MATLAB.

Sensitivity analysis

We performed a numerical sensitivity analysis to examine how uncertanties in the input

parameters are propagating through the model and affecting the output parameters. For a

function y = f(xi) depending on a set of variables xi, i = {1, 2, . . .}, the relative sensitivity coeffi-

cient

c�i ≔
xi

y
@y
@xi

ð40Þ

is a measure of how the input parameter xi affects the outcome y. The derivative was computed

around an expected xi with a 1% variation on xi. We report c�i for the perfusion parameter α,

the fluid viscosity μ, as well as the arterial and venous components of the porosity ϕβ, the per-

meability kβ, and the pressure drop parameter γβ. As investigated output parameters we used

the arterial and venous pressures pa and pv, respectively, the perfusion (P), time to peak (TTP),

and the mean transit time (MTT). Time to peak and mean transit time were computed accord-

ing to standard definitions from tracer kinetic modelling. Time to peak is the average time in

seconds to maximum height of the contrast enhancement curves. Mean transit time becomes

CBV/CBF, which is equivalent to MTT = (ϕa + ϕv)/P in terms of our notation.

Results

Numerical simulation of circulation and perfusion in a frog tongue

The current section accounts for simulation of circulation and perfusion in the frog tongue

previously described. The vascular networks were segmented in terms of a binary mask, nodes,

edges, and medial axes. In Fig 5 we have aligned these structures with the support function

η�(x − xk) (15). Simulation parameters used in the numerical simulations are shown in Table 1.

Several of the parameters are not accurately known, and literature references were used to find

appropriate estimates. The parameters kβ and ϕβ are field parameters, but were held constant

in space within each compartment. The perfusion proportionality factor α was held constant

everywhere within the frog tongue. Obtained pressure maps of the arterial and venous com-

partments are depicted in Fig 6. Pressure conditions in the vessel network are completely

determined by the node pressure, but for visualization purposes the pressure was approxi-

mated along the edges using linear interpolation between connecting nodes. The obtained

map of perfusion is shown in Fig 7. For the applied set of parameters an average perfusion of
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65 ml/min/100ml was obtained, in the same order as human brain perfusion [50]. Average

fluid tracer concentration of the arterial input function, and the arterial and venous compart-

ments are shown in Fig 8. Voxelwise, volumetric tracer concentration C [mmol L−1] (30) as a

function of time is shown in Fig 9. We used a time step Δt = 5 s between each time frame for

plotting. In order to demonstrate scale invariance of the algorithm, perfusion was recomputed

within a smaller FOV with different resolutions represented by multiplicative resolution scales

Si, i = {1, 2, 4, 6, 8, 10, 12, 14, 16}. See the red rectangle in Fig 5 for the applied FOV with matrix

size S1 = (100 × 100). The matrix size at scale i becomes Si = (100 × 100)i. With except from the

FOV, same parameter settings as reported in Table 1 were used for these simulations. Average

perfusion for each scale was computed within the frog tongue, and obtained values are shown

in Fig 10. For all practical means, perfusion remains constant over the resolution scales.

Whole brain simulation on a MRI-extracted geometry

The current section describes numerical simulation of circulation and perfusion in a complete

human brain where the geometry, including grey and white matter, as well as the vascular net-

works were extracted from MRI data. Simulation parameters are shown in Table 2. All figures

show the same image slice (no. 180) of the 3D image stack, with except from the 3D rendering

in Fig 11.

Fig 5. Vascular network of the frog tongue. Node centers are indicated with black dots. The medial axis of the

network structure is shown as the set of lines connecting the nodes (red lines: arterial network, blue lines: venous

network). The grey area within the tongue tissue indicates the support function η�(x − xk) (15) summed up for all

terminals. The red rectangle in the lower field is the small FOV used for demonstrating scale invariance.

https://doi.org/10.1371/journal.pcbi.1007073.g005
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A volume rendering of the T1-weighted input data with superimposed arterial and venous

masks is shown in Fig 11 [52]. Vascular permeability kβ and porosity ϕβ were assigned constant

values within grey and white matter for each compartment, according to Table 2. The perfu-

sion proportionality factor α(x) (7) is plotted in Fig 12 for one axial slice. The grey matter

value of α was set 1.6 times higher than the white matter value in order to resemble regional

distribution of human brain perfusion [42]. The piecewise constant parameter maps of kβ(x),

ϕβ(x), and α(x) were smoothed using a Gaussian convolution with radius 2.5 mm and standard

Table 1. Scalar simulation parameters for the frog tongue within various domains. Matrix size was limited by the native input data. Arterial and venous boundary pres-

sure values were applied as Dirichlet boundary conditions to the vascular root terminals NR. The perfusion proportionality factor α(x) (7) was assigned a constant value

everywhere. par. = parameter. Field parameter α is only valid for the brainOB.

Parameter Symbol Unit Domain of validity

Entire domain Compartment Vascular network

Arterial Venous Arterial Venous

Field-of-view FOV mm (40, 33, 1)

Matrix size - - (634, 515, 1)

Voxel size h mm (0.063, 0.064, 1)

Viscosity blood [46] μb Pa � s 3.00 × 10−3

Support radius (17) � mm 10.0

Hematocrit Hct - 0.40

Perfusion par. (7) α m s kg−1 1.00 × 10−6

Permeability [47] kβ 10−12 m2 1.00 5.00

Porosity [48] ϕβ - 0.05 0.10

Boundary pressure [49] pβ,0 kPa 10.6 1.60

Pressure drop par. (21) γβ 10−12 m3 0.01 0.01

https://doi.org/10.1371/journal.pcbi.1007073.t001

Fig 6. Pressure maps pa and pv of arterial (left) and venous compartment (right) of the frog tongue, respectively. Note the different

greyscale range between the plots, applied for visualization purposes.

https://doi.org/10.1371/journal.pcbi.1007073.g006
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deviation 1.5 mm to impose smoothness in the white matter/grey matter boundary. The

Gaussian smoothing is an attempt to simulate partial volume effects in MR, where a voxel situ-

ated on the boundary between different tissue will possess properties reflecting both tissue

types. Calculated pressure maps of the arterial and venous compartments are shown in Fig 13.

The voxelwise map of perfusion for a single axial slice is shown in Fig 14. Obtained values of

Fig 7. Regional variability of the perfusion P [ml/min/100ml] within the frog tongue.

https://doi.org/10.1371/journal.pcbi.1007073.g007

Fig 8. Average fluid tracer concentration [mmol L−1] as a function of time for the arterial input function (AIF),

and for the arterial and venous compartment of the frog tongue. The average was calculated over the frog tongue.

https://doi.org/10.1371/journal.pcbi.1007073.g008
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average perfusion, arterial and venous pressure, time to peak (TTP), and mean transit time

(MTT) are reported in Table 3 for the entire brain, as well as for white, and grey matter. The

ratio of white matter perfusion to grey matter perfusion is 1.45, not far away from the expected

ratio of approximately 1.6. The total number of arterial and venous nodes found in the data set

was 335 and 1222, respectively. Spatially averaged tracer concentration-time-curves are shown

in Fig 15 for the arterial input function, as well as the arterial and venous compartments. Run-

time for the whole brain simulation was 2.5 d on a 32 multicore 2.29 GHz linux server with

355 Mb RAM without use of parallel computing environments.

Fig 9. Voxelwise volumetric tracer concentration C [mmol L−1] (22) as a function of time for the frog tongue. Every five second is shown

from left to right and top to bottom, T = {0, 5, . . ., 60} s.

https://doi.org/10.1371/journal.pcbi.1007073.g009

Fig 10. Average brain perfusion computed within the same FOV but under various multiplicative resolution

scales. All other simulation parameters were identical across the resolution scales. The average perfusion is converging

at higher resolution scales.

https://doi.org/10.1371/journal.pcbi.1007073.g010
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Table 2. Simulation parameters for the human brain geometry within the various sub-domains. Arterial and venous boundary pressures were applied as Dirichlet

boundary conditions to the vascular root terminals NR. Permeability and porosity are field parameters, but were assigned constant values within each tissue and compart-

ment. par. = parameter.

Parameter Symbol Unit Domain of validity

Entire domain Compartment Vascular network

Arterial Venous Arterial Venous

Field-of-view FOV mm (170, 220, 153)

Matrix size - - (346, 448, 311)

Voxel size h mm (0.49, 0.49, 0.49)

Viscosity blood [46] μb [Pa � s] 3.00 × 10−3

Support radius (17) � mm 30.0

Hematocrit Hct - 0.40

Perfusion par. (7) α m s kg−1 1.00 × 10−5

Permeability [47] kβ 10−12 m2 12.5 25.0

Porosity [48, 51] ϕβ - 0.05 0.10

Boundary pressure [49] pβ,0 kPa 13.3 0.66

Pressure drop par. (21) γβ 10−12 m3 0.20 0.20

https://doi.org/10.1371/journal.pcbi.1007073.t002

Fig 11. 3D volume rendering of the T1-weighted data including the arterial (red) and venous (blue) vessels.

https://doi.org/10.1371/journal.pcbi.1007073.g011
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Parameter sensitivity analysis

The relative sensitivity coefficient c�i according to (40) was computed for each output variable

for the frog tongue and the 3D human brain example. Spatially averaged relative sensitivity

coefficients of the human brain example are shown in Fig 16 (left panel), where it is found that

Fig 12. Map of the perfusion proportionality factor α(x) used as input to the simulations. Higher perfusion was

assigned to grey matter than to white matter in order to resemble regional distribution of perfusion within a real

human brain.

https://doi.org/10.1371/journal.pcbi.1007073.g012

Fig 13. One slice of the calculated pressure maps pa and pv of the arterial (left) and venous (right) compartment, respectively.

https://doi.org/10.1371/journal.pcbi.1007073.g013
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the perfusion proportionality parameter α has a strong positive relation to the perfusion P
(grid position (1,3)), and a negative relation to MTT (grid position (1,5)). Venous porosity ϕv

is strongly positively correlated with MTT (grid position (3,5)). An example of a voxelwise

map of c�i for the frog tongue is shown in Fig 16 (right panel), demonstrating a local variability

in the coefficients.

Discussion

A proper mathematical model of circulation and perfusion is essential for simulating the

pathway of blood, nutrients, oxygen, and drugs within the brain and other organs. In this

respect, a comprehensive simulation tool for entire organs should address certain require-

ments: (i) It needs to be scale invariant, (ii) it should reflect a clinical understanding of perfu-

sion, and (iii) it should apply to an entire organ. We claim that existing simulation tools are

lacking at least one of these requirements. Traditional pharmacokinetic compartment mod-

els are useful to describe perfusion within entire organs, but they are inaccurate for voxelwise

descriptions [6–9], hence, they are short of (i). On the other hand, numerous simulation

studies have described the intertwined processes of angiogenesis, drug delivery and

Fig 14. Obtained voxelwise perfusion P [ml/min/100ml] (7) for one axial slice.

https://doi.org/10.1371/journal.pcbi.1007073.g014

Table 3. Obtained average perfusion �P , arterial �pa and venous �pv pressure, time to peak (TTP), and mean transit

time (MTT) for various brain regions in the whole brain simulation.

Brain region �P �pa �pv TTP MTT
Unit mL/min100/mL Pa Pa s s

Entire brain 35.78 8.10 7.62 17.03 35.30

White matter 29.20 8.15 7.68 18.01 40.36

Grey matter 42.21 8.06 7.57 17.03 30.36

https://doi.org/10.1371/journal.pcbi.1007073.t003
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interstitial flow in artificial tumor microvascular networks [12–15]. However, these models

are not explicitly expressing perfusion as a clinical parameter, and they have not been devel-

oped for the whole brain, hence lacking in (ii) and (iii). In this context, there is a need for

precise mathematical models describing perfusion both locally and globally, also requested

in [53]. The current study is an attempt to bridge this gap. Our main contribution is a

Fig 16. Relative sensitivity coefficients for the perfusion proportionality parameter α, porosities ϕa, ϕv, vascular permeabilities ka,

kv, the pressure drop parameter γa, γv, and fluid viscosity μ investigated for the compartmental pressures pa, pv, the perfusion P,

time to peak (TTP), and mean transit time (MTT) for the frog tongue. Brighter values indicate higher sensitivity of the input

parameter to the output parameter. Left: Relative sensitivity coefficient averaged over the voxels for the 3D human brain example. Right:

Voxelwise, relative sensitivity coefficients from the frog tongue showing the relation between α and P.

https://doi.org/10.1371/journal.pcbi.1007073.g016

Fig 15. Average tracer concentration time curves within the arterial input function, as well as the arterial and

venous compartments of the human brain dataset.

https://doi.org/10.1371/journal.pcbi.1007073.g015
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comprehensive, data-driven and scale invariant model for whole brain circulation and perfu-

sion using a mathematically strict definition of perfusion in line with its clinical understand-

ing. Thus, our method is simultaneously addressing (i)-(iii), and it represents a new

generation of simulation tools for predicting transport of nutrients, oxygen and drugs in live,

human tissue. Simulation of flow in live, human tissue is a challenging task where compart-

ment models with suitable modifications can be transferred across organs and physiology

[18]. In this context, our model is generic and can be modified for description of other

organs than the brain, as well as pathological conditions. At present, our model assumes no

leakage and an intact blood-brain barrier, and the focus for discussion is restricted to brain

perfusion in the absence of pathological conditions.

In the current study we demonstrate scale invariance of our algorithm, thus fulfilling (i).

This becomes clear in Fig 10, where the average perfusion within a patch convergences

towards a fixed number at higher multiplicative scales. In this respect, we have shown that our

method can be used to retrieve or simulate perfusion in isolated patches of various scale and

resolution given appropriate boundary conditions. Practically speaking, the average perfusion

over a ROI is by all practical means independent of discretization level, a property lacking for

traditional compartment models of perfusion. With respect to (ii) above, our implementation

is in line with previous work where it was suggested to define perfusion as the transition of

blood from the arterial to the venous side in a 2C model [16–19].

An important novelty of our work is the data-driven whole brain geometry applied in the

simulations, satisfying (iii) above. Geometry largely affects simulation results by imposing no-

flow conditions between the brain and non-brain regions. Our approach to generate the whole

brain geometry utilizes advanced MR acquisitions to provide a mask of the brain, and also spa-

tially connected vascular networks in 3D for the arteries and veins. The visibility of the brain

mask and the vascular networks is limited by the imaging voxel resolution. A strong argument

in favor of whole brain simulation in contrast to simulating on smaller patches only is the

application of simpler no-flow boundary conditions around the organ. Also, Dirichlet bound-

ary conditions are effectively applied at the arterial inlet and the venous outlet in the larger ves-

sels. On the contrary, simulating small patches requires unknown and complex boundary

conditions along all boundaries with permeating flow.

Our simulation results demonstrate a somewhat higher mean transit time [54], and lower

perfusion than expected [55] (i.e. Table 3), although the obtained ratio of grey matter perfusion

to white matter perfusion was reasonable. These deviations may be due to erroneous parame-

ter settings, as they must be determined by trial and error. This is also supported by the sensi-

tivity analysis demonstrating a high variability in the sensitivity of input parameters within the

investigated parameter range to the output fields (see Fig 16). One useful application of our

model is the estimation of local model parameters of porosity, permeability and α in the frame-

work of inverse modelling. In these approaches, a tracer kinetic model is fitted to concentra-

tion time curves subsequent to a bolus injection of a contrast agent [56]. Common to both

forward simulation and inverse modelling tasks is the need for accurate forward kinetic mod-

els ensuring conservation of mass. In addition, flow models providing conservation of fluid

momentum are applied in more comprehensive models, e.g. ensemble Kalman filters [57]. An

initial investigation on estimating parameters of a forward model utilizing a multi-compart-

ment model to estimate perfusion is presented in [58]. The approach presented there is based

on the ensemble Kalman filter which is a promising candidate for parameter estimation also in

our setting. The ensemble Kalman filter is used for parameter estimation of many large scale

problems within geoscience (see e.g. [58]).

A commonly debated challenge of vascular flow simulations is how to connect 1D tubular

flow in the vessel network with 3D Darcy flow in the continuum [22, 59, 60]. It is well-
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known that the numerical accuracy of elliptic PDEs with Dirac source terms is below optimal

order estimates since the solution is not in H1. Several solutions to the problem of numerical

instability have been proposed, e.g. modification of the source term itself by smoothing ker-

nels, by locally refined meshes [61], or by quasi-uniform meshes [62]. Our suggested solution

circumvents the numerical challenges by modifying the underlying mathematical model of

the vascular network, thus becoming compliant with a numerically stable approximation to

the PDE. As described earlier, we define a local support function η� where the flow is distrib-

uted from the 1D network into the 3D brain tissue, in this sense avoiding the singularity and

also adopting to the physiological circumstances of distributing micro-flow below imaging

resolution. The support function ensures fluid mass balance. Furthermore, it assures that a

majority of the fluid is distributed close to the terminals rather than further away, while at

the same time adopting to local, complex geometrical shapes. Outside a strict threshold � no

fluid is allocated. For the venous network, the opposite process takes place with fluid uptake

instead of delivery within the non-zero support function. The non-local distribution of fluid

eliminates the singularities from the mathematical model, at the cost of a (slight) non-locality

in the equation. From an abstract perspective, this mimics the situation of modelling fracture

propagation in elasticity, where peridynamics is a model that incorporates physically moti-

vated non-local terms [63].

A work of particular relevance is the model in Peyrounette et al. [53]. The authors provide a

consistent coupling of the node terminals with the continuum following an analytical approxi-

mation of Darcy’s law. In contrast to our model, they require pointwise consistency of pressure

drop in adjacent voxels, while we demand consistency in average pressure drop. Also, the

authors are not focusing on perfusion as a clinical model parameter, and a whole brain simula-

tion on a data-driven geometry is a task they foresee in future work.

Another approach for dealing with the 1D-3D coupling problem is the simulation of

branched mesoscale vessel trees below imaging resolution according to a set of growth rules

related to bifurcation angles, vessel radii and length [64]. To the best of our knowledge,

whole brain flow simulation on these networks coupled with data-driven macro-scale vessels

has not been carried out yet. To this point, we claim that such growth of vessels deprived

from attracting forces is mathematically redundant to achieve the goal of a smooth distribu-

tion of flow, which is equally well obtained by our proposed method of a smooth support

function.

Since we are applying porous media-like flow in the capillaries we are not depending on

segmenting single vessels down to the capillary scale. On the macro-scale, we assume the

knowledge of vascular networks down to imaging resolution. Hence, there exists an inter-

mediate scale of approximately 50-500 μm with unknown vessel architecture associated

with medium-sized arterioles and venules, requiring a novel solution for representing

the flow. One proposed solution is the coupling of a 1D vascular network with a hierarchical

Darcy flow model [65, 66]. A noticeable challenge following this approach is determination

of model parameters for each hierarchical state. Moreover, flow in increasingly larger

arterioles does not sufficiently well adhere to classical Darcy flow. Our support function is

a novel approach for simultaneously dealing with the 1D-3D coupling problem as well as

with the transport of fluid on an invisible, fine-scale network of medium sized arterioles and

venules.

A common challenge with the implementation of forward simulation tools is the assign-

ment of accurate parameter settings, which is also a limitation in our work. We tried to accom-

plish this task by using literature values whenever possible. Another open question is the

method’s sensitivity to missing vessel segments below the resolution scale. Clearly, macrostruc-

tural geometry is strongly influencing the flow pattern, and even higher resolution data than
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we apply in our work are expected to produce simulation results with certain differences.

However, this is future work of high relevance that should be systematically investigated over a

range of admissible resolution scales.

We emphasize that simulation on a full brain geometry is highly challenging from a compu-

tational perspective [53, 67]. Indeed, our discrete representation of the whole brain contains

324 arterial segments, 1212 venous segments, and 13.9 millions active voxels on which Darcy’s

law is discretized. To our knowledge, no comparable simulations have been conducted at this

scale on real data.

In conclusion, we have implemented a scale invariant, whole brain flow model in accor-

dance with a clinical understanding of perfusion. To the best of our knowledge, none of the

existing approaches possess these essential properties. Hence, our model represents a new gen-

eration of scale invariant simulation tools for brain perfusion, with a wide range of possible

applications related to forward simulations as well as to inverse modelling tasks in contrast

enhanced imaging. From a clinical point of view, such generic and scale-invariant simulation

tools have a large potential to improve the accuracy of postprocessing tools used in dynamic

imaging methods. They can also be highly useful for a better understanding of drug delivery

and hence treatment efficacy as well as for preoperative planning stages, with a possibly large

impact on daily health-care.
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7. Guibert R, Fonta C, Estève F, Plouraboué F. On the normalization of cerebral blood flow. Journal of

Cerebral Blood Flow & Metabolism. 2013; 33(5):669–672. https://doi.org/10.1038/jcbfm.2013.39

8. Sourbron SP. A tracer-kinetic field theory for medical imaging. IEEE Trans Med Imaging. 2014. https://

doi.org/10.1109/TMI.2014.2300450 PMID: 24710162

9. Hanson EA, Sandmann C, Malyshev A, Lundervold A, Modersitzki J, Hodneland E. Estimating the dis-

cretization dependent accuracy of perfusion in coupled capillary flow measurements. PLOS ONE.

2018; 13(7):1–16. https://doi.org/10.1371/journal.pone.0200521

Assessment of whole brain perfusion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007073 June 25, 2019 28 / 31

https://doi.org/10.1212/WNL.0b013e31823a0ef7
http://www.ncbi.nlm.nih.gov/pubmed/22094481
https://doi.org/10.1111/j.1600-0404.1986.tb07869.x
https://doi.org/10.1111/j.1600-0404.1986.tb07869.x
http://www.ncbi.nlm.nih.gov/pubmed/3493616
https://doi.org/10.1159/000016074
https://doi.org/10.1159/000016074
http://www.ncbi.nlm.nih.gov/pubmed/10878436
https://doi.org/10.1371/journal.pone.0096713
https://doi.org/10.1371/journal.pone.0096713
http://www.ncbi.nlm.nih.gov/pubmed/24816641
https://doi.org/10.1177/1971400915576641
https://doi.org/10.1177/1971400915576641
http://www.ncbi.nlm.nih.gov/pubmed/25923677
https://doi.org/10.1002/mrm.1910160313
http://www.ncbi.nlm.nih.gov/pubmed/2077337
https://doi.org/10.1038/jcbfm.2013.39
https://doi.org/10.1109/TMI.2014.2300450
https://doi.org/10.1109/TMI.2014.2300450
http://www.ncbi.nlm.nih.gov/pubmed/24710162
https://doi.org/10.1371/journal.pone.0200521
https://doi.org/10.1371/journal.pcbi.1007073


10. Perdikaris P, Grinberg L, Karniadakis GE. Multiscale modeling and simulation of brain blood flow. Phys-

ics of Fluids. 2016; 28(2):021304. https://doi.org/10.1063/1.4941315 PMID: 26909005

11. Reichold J, Stampanoni M, Keller AL, Buck A, Jenny P, Weber B. Vascular graph model to simulate the

cerebral blood flow in realistic vascular networks. Journal of Cerebral Blood Flow & Metabolism. 2009;

29(8):1429–1443. https://doi.org/10.1038/jcbfm.2009.58

12. Sefidgar M, Soltani M, Raahemifar K, Bazmara H. Effect of fluid friction on interstitial fluid flow coupled

with blood flow through solid tumor microvascular network. Comput Math Methods Med. 2015; 2015:

e673426. https://doi.org/10.1155/2015/673426

13. Cattaneo L, Zunino P. A computational model of drug delivery through microcirculation to compare dif-

ferent tumor treatments. Int J Numer Method Biomed Eng. 2014; 30(11):1347–1371. https://doi.org/10.

1002/cnm.2661 PMID: 25044965

14. Schuff MM, Gore JP, Nauman EA. A mixture theory model of fluid and solute transport in the microvas-

culature of normal and malignant tissues. I. Theory. J Math Biol. 2013; 66(6):1179–1207. https://doi.

org/10.1007/s00285-012-0528-7 PMID: 22526836

15. Cai Y, Xu S, Wu J, Long Q. Coupled modelling of tumour angiogenesis, tumour growth and blood perfu-

sion. J Theor Biol. 2011; 279(1):90–101. https://doi.org/10.1016/j.jtbi.2011.02.017 PMID: 21392511

16. Cookson A, Lee J, Michler C, Chabiniok R, Hyde E, Nordsletten D, et al. A novel porous mechanical

framework for modelling the interaction between coronary perfusion and myocardial mechanics. Journal

of biomechanics. 2012; 45(5):850–855. https://doi.org/10.1016/j.jbiomech.2011.11.026 PMID:

22154392

17. Cookson AN, Lee J, Michler C, Chabiniok R, Hyde E, Nordsletten D, et al. A spatially-distributed compu-

tational model to quantify behaviour of contrast agents in MR perfusion imaging. Medical image analy-

sis. 2014; 18(7):1200–1216. https://doi.org/10.1016/j.media.2014.07.002 PMID: 25103922

18. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR in Biomedicine.

2013; 26(8):1004–1027. https://doi.org/10.1002/nbm.2940 PMID: 23674304
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