www.nature.com/scientificreports

SCIENTIFIC
REPORTS

natureresearch

An oceanic perspective on
Greenland’s recent freshwater
discharge since 1850
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Ralph R. Schneider®* & Eystein Jansen®?23*

Instrumental data evidence an accelerating freshwater release from Arctic sea ice export and the
Greenland Ice Sheet over the past three decades causing cooling and freshening in the subpolar North
Atlantic region. However, evaluating the observed acceleration on a historical oceanic and climatic
perspective remains challenging given the short available instrumental time series. Here we provide

a marine perspective on the freshwater releases to the ocean since 1850 as reflected in the northern
limb of the Subpolar Gyre. Our reconstructions suggest that the recent acceleration tracks back to the
1940s/50s and is unprecedented since 1850. The melting, initiated by the 1920s natural rise in solar
irradiance, accelerated in response to a combined effect of natural and anthropogenic forcing factors.
We find that Greenland’s freshwater discharge has contributed to a nutrient-driven fertilization of the
upper ocean and consequently increased the marine primary productivity since the 1940s/50s.

The alarming 21% century acceleration in the melting of Arctic sea ice and the Greenland Ice Sheet (GrIS)"* leads
to a gradual freshening of the North Atlantic’s surface water layer®=, affects ocean circulation®” and contributes to
the rising global mean sea level®. Evaluating the observed acceleration on a historical perspective and identifying
the trigger mechanisms (natural vs anthropogenic) is challenging as instrumental data cover, at most, the last few
decades. A mid-19"" century perspective on freshwater release from the GrIS and drift/sea ice is of importance as
the climate system has seen significant natural changes irrespective of any anthropogenic impact since the end of
the Little Ice Age (LIA) around 1850°.

Drift/sea ice and freshwater from the Arctic Ocean and the eastern GrIS flow within the East Greenland
Current (EGC) into the subpolar North Atlantic, of which up to 60% will reach the Labrador Sea!’. Freshwaters
potentially modulate Labrador Sea deep-water formation and thus influence the Atlantic Meridional Overturning
Circulation (AMOC)’. As a result of the ocean’s surface freshening, a 15% weakening of the AMOC occurred
since the mid-20% century'!. There is mounting evidence that the freshwater released from drift/sea ice and GrIS
delivers high amounts of nutrients (dissolved organic carbon, P, Fe and N), potentially fertilizing the ocean by
enhancing marine primary production, which may in turn also influence the marine food web and carbon cycle
(refs 1>°1° and references therein).

Scarce historical observations (visual detection from land or ships) provide information on sea ice extent in
the past!®!”, which marks the location of the Polar Front in the sub-polar North Atlantic region. The Polar Front
separates cold and fresh waters from the EGC from warm and saline waters transported northwards with the
North Atlantic Current (NAC) and the Irminger Current (IC). Presently the Polar Front is located further north
seaward of the shelf in the Iceland Sea (Fig. 1). Southward shifts of the Polar Front caused by outbursts of cold and
fresh waters from the Arctic Ocean, were commonly seen during the Great Salinity Anomalies (GSA’s)® from the
1960-1990s. These events lead to widespread changes in drift/sea ice extent and freshwater input to the subpolar
North Atlantic Ocean (refs ”'° and references therein).

Here we present a marine record from the western North Icelandic shelf that provides a decadal-scale per-
spective (since 1850) on freshwater releases from melting Arctic Ocean drift/sea ice and the GrIS entrained into
the EGC that has hitherto not been available. Core GS15-198-33 (site located at 66°37.5'N-20°51.2'W; Fig. 1) was

!Department of Marine Geology, Leibniz Institute for Baltic Sea Research, See Str. 15, 18119, Rostock, Germany.
2Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Allégaten 41, 5055,
Bergen, Norway. >NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5,
5007, Bergen, Norway. “Institute of Geosciences, Kiel University, Ludwig-Meyn-StraflRe 10, 24118, Kiel, Germany.
*email: kerstin.perner@io-warnemuende.de; matthias.moros@io-warnemuende.de; eystein.jansen@uib.no

SCIENTIFIC REPORTS |

(2019) 9:17680 | https://doi.org/10.1038/s41598-019-53723-z


https://doi.org/10.1038/s41598-019-53723-z
http://orcid.org/0000-0002-7464-2191
http://orcid.org/0000-0003-1453-9181
http://orcid.org/0000-0002-7383-5100
mailto:kerstin.perner@io-warnemuende.de
mailto:matthias.moros@io-warnemuende.de
mailto:eystein.jansen@uib.no

www.nature.com/scientificreports/

4 &
* \ v
N o8 SR ~ S
80°N & < < &S Ny
: TR S SN

\:\-in
P
SOy
v .
2oN! \ -
70°N. ! )
. N
Baffin Greenland
Bay -
“ Sea -
-
~ X
\
7 \\
65°N Iceland o
Sea 1<) P
Qo
~
=
=

kk

; oo == & ) » K
60°N \\\\\\H'\J(, P | LN — A
&, N
%, \
Y NI
; 2 B N
Labrador £ y = O
Sea 5,/1 ?
L2 S
Surface elevation change rate (m yr~')
54 0 <3 Subpolar 7
= Gyre W
A . : o'W

307w 20°W
Figure 1. Location of sediment core GS15-198-33 on the North Icelandic shelf and regional ocean circulation
in the subpolar North Atlantic. The North Atlantic Current (NAC) transports warm/saline waters northwards
via eastern Fram Strait into the Arctic Ocean (red arrow). Part of the NAC flows westwards as the Irminger
Current and North Icelandic Irminger Current (NIIC). Via western Fram Strait, cold/fresh surface waters

(blue arrow) enter the subpolar North Atlantic and flow within the East Greenland Current and East Icelandic
Current (EIC) southwards and form the northern limb of the Subpolar Gyre. The Polar Front (PF) reflects the
approximate maximum extent of sea ice. We show surface mass balance changes of the Greenland Ice Sheet
(GrIS) since 1900 obtained from ref. >, which enter as meltwater releases the adjacent ocean. Sub-regions of the
GrIS from ref. ° present the respective drainage area as follows: NE - northeast, CE - central east, CW - central
west. Stykk = Stykkisholmur weather station.

collected from the Hunafl6aill area, a north-south orientated depression, at 360 m water depth (Supplementary
Note 1). We use a combined approach of proxy-based (alkenone and planktic foraminifera) and observational
data (Supplementary Notes 2-4). The EGC influences the surface waters of the region, while subsurface water
properties are closely linked to the inflow of Atlantic waters® (Fig. 1, Supplementary Fig. 1). Therefore, our study
offers an extended perspective, beyond the instrumental data period, on important environmental responses
(e.g., ocean circulation, Polar Front movements and marine phytoplankton primary production) to changes in
the climatic background conditions and freshwater release from the GrIS and drift/sea ice during the 19" and
20" centuries.

Results
Freshwater release and primary productivity on the North Icelandic shelf since 1850. An inves-

tigation of the frontal zone area of the North Icelandic shelf reveals multi-decadal fluctuations in regional oceanic
conditions (Fig. 2¢,e,g) and atmospheric temperatures (Fig. 2d) since 1850. This variability is concurrent with
the 38 years long drift/sea ice export history from western Fram Strait*' and the reconstructed Storis Index from
southeast Greenland®? (Fig. 2a,b). Apparent co-variability in the North Icelandic ocean and air temperatures and
western Fram Strait sea ice export during the 20th century®?* suggests that regional air and surface ocean climate
vary here in response to the occurrence of drift/sea ice in winter and spring. The abundance of %Cs,., and the
recent freshwater flux record (FWF - combines meltwater from the eastern GrIS and Fram Strait drift/sea ice) to
the Greenland Sea® co-vary closely during the last five decades (Fig. 2h-i). This enables us to extend the available
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Figure 2. Changes in the southward influence of drift/sea ice and freshwaters since 1850. (a) Observational/
historical drift/sea ice occurrence on the East Greenland shelf??, (b) western Fram Strait satellite —-based
reconstruction of the winter sea-ice export?!, (c) abundance (%) of the cold and fresh water indicator G. uvula
— thick blue line is the 3 point running mean, (d) West Icelandic air temperature from Stykkishélmur - please
note the inverse axis scaling, e calcium carbonate content (CaCOj;) (f), the flux of planktic foraminifera g
(dashed line) (g) Total sum (X) of all alkenones. (h) Total abundance (%) of the freshwater alkenone Cs;, (i)
Annual Freshwater Flux (FWF) to the Greenland Sea (GrSea)?.

Greenland Sea FWF record® qualitatively beyond the instrumental data period. Changes in climatic forcing fac-
tors (Table 1), i.e. solar irradiance®® (Fig. 3¢), anthropogenic forcing (Fig. 3d), atmospheric circulation** (NAO,
Fig. 3b) and oceanic forcing (Atlantic Multidecadal Oscillation — AMO; see Table 1 and Supplementary Fig. 5d),
are likely to control large parts of the overall variability and trends in regional freshwater and primary production.
In the following, we examine the link between various forcing mechanisms and the resulting oceanic responses
since 1850, using the following tripartite division: (1) 1850s to 1900s, (2) 1900 to 1940s/50s, and (3) 1940s/50s to
the present.

SCIENTIFICREPORTS|  (2019)9:17680 | https://doi.org/10.1038/s41598-019-53723-z


https://doi.org/10.1038/s41598-019-53723-z

www.nature.com/scientificreports/

Proxy 1850 to 1900 | 1900s to 1940s/50s | 1940s/50s to present
1940s/50s to 1980s | 1980s to 2000 | since 2000

Drift/ Sea Ice occurrence | high low increasing decreasing absent

Polar Front weak strong weak weak weak
;:g;:gilcl\igggmons Summer to Winter Air . . . . . .

Temp. gradient high decreasing increasing decreasing decreasing

GrIS freshwater supply | low low increasing increased increasing

NAO Index negative phase | positive phase negative phase positive phase | neagtive phase

AMO Index positive phase | negative phase positive phase negative phase | positive phase
Forcing factors SPG-AMOC strong strong weakening weak strong

Volcanic activity weak weak increased increased weak

Solar Irradiance weak increasing increasing high decreasing

Table 1. Summary of changes in oceanic/climatic conditions on the North Icelandic Shelf and key climate
forcing factors for the Atlantic region since 1850.

Late LIA conditions (1850s to 1900s). A constant supply of drift/ sea ice? traveling through the EGC and East
Icelandic Current (EIC; Fig. 1) to the North Icelandic shelf (Fig. 2a, Table 1) produce relatively cold ocean®
(Fig. 2¢) and spring air temperatures in the wider study area (Fig. 2d). Concomitantly, we record low CaCO;
content and planktic foraminifera flux (<80 ind. g~!) that implicate a shallow/thin winter mixed-layer and low
primary production (Fig. 2f,g). Low freshwater (%Cs;., <2.5%, Fig. 2h) and X alkenone abundance (<1pgg™,
Fig. 2e) support the assumption of a weak surface primary production which is presumably limited to the spring
months. This, combined with the low abundance of the front indicator T. quinqueloba®® (Fig. 3a), suggests a weak
Polar Front influence on the North Icelandic shelf. The drift/sea ice that regularly reached the North Icelandic
shelf primarily controlled oceanic conditions, while the Polar Front lingered south of Iceland!®? (Fig. 3A). In
winter, the prevalence of strong northerly winds (negative NAO; Fig. 3b) favoured a southward extension of the
drift/sea ice (Fig. 3A) in the subpolar North Atlantic region. The weak solar irradiance? at this time (Fig. 3c)
likely hampered quick melting of the early spring drift/sea ice and consequently prevented excessive freshwater
release to the surface ocean layer. This allowed the development of a stable stratification, which limited vertical
mixing and heat loss to the atmosphere and prohibited shoaling of the winter mixed-layer during spring. As
shown by our data (Figs. 2, 3A), the abundant drift/sea ice occurrence in spring restricted nutrient availability to
the surface layer and thus hindered excessive primary production (Fig. 2f,g).

Changing climatic background conditions (1900 to 1940s/50s).  Overall, low freshwater occurrence (Fig. 2h) and
weak primary production (Fig. 2f,g) still prevailed on the North Icelandic shelf during the early-20" century. As
the atmospheric pressure pattern shifted towards a more positive NAO phase, with strong southwesterly wind
anomalies in winter (Fig. 3b), less drift/sea ice reached the shelf region, which in turn initiated a northward
migration of the Polar Front from its late-LIA position south of Iceland. The prominent rise in T. quinqueloba
(Fig. 3a) illustrates the presence of the Polar Front on the North Icelandic shelf during spring, when there was no
sea ice over the site anymore (Fig. 3B). In the 1900s to early-1920s, relatively large summer to winter temperature
differences of about 14 °C occur (Table 1; Supplementary Fig. 5a). In the ocean, surface waters warm in spring
(Fig. 2¢) concurrent with decreasing drift/sea ice occurrence'® (Table 1; Fig. 2a and Supplementary Fig. 5h), while
the winter mixed-layer remained relatively shallow (Fig. 2f,g).

The 1920s gradual increase in total solar irradiance (Fig. 3c) warmed the northern hemisphere and marked
the transition from a ‘cold’ to a ‘warm’ climatic state. This transition parallels a lull in volcanic activity that likely
contributed to a rising effective solar irradiance?® (see Table 1). Concurrently, the atmospheric CO, concentra-
tions showed a weak positive trend (Fig. 3d). The air temperature increased markedly in the western Iceland area
(Fig. 2d) as well as on the southeastern Greenland shelf?, and the summer to winter air temperature difference
decreased to about 9 °C (Supplementary Fig. 5a). Simultaneously, drift/sea ice occurrence'® (Fig. 2a) reached
an all-time 20" century low and became nearly absent on the shelf during the 1930s (Table 1, Supplementary
Fig. 5h). These conditions correspond to an overall atmospheric (Fig. 2d) and oceanic (Supplementary Fig. 5d)
warming during that time*>?. The increasing inflow of warm Atlantic Water into the subpolar North Atlantic
likely contributed to atmospheric warming of the entire Arctic?’ and initiated from the early 1920s a stepwise
subsurface warming on the North Icelandic shelf** (Supplementary Fig. 3e). Despite the return to a negative
NAO phase, and subsequent strong northerly wind anomalies in winter (Fig. 3b), the oceanic gradient weakened
on the shelf in the mid-1930s, as the absence of drift/sea ice could not possibly cause regional cooling of air and
surface ocean temperatures compared to the 1850 to 1900 interval. Nevertheless, our reconstructions reveal that
the increase in solar irradiance and shift to a positive NAO phase likely triggered the observed changes in fresh-
water abundance and primary production on the North Icelandic shelf for the 1900 to 1940s/50s interval. The
pronounced minimum in our C;,,, record (Fig. 2h) suggests that the freshwater influence is confined to the west
of the Polar Front on the East Greenland shelf during this period.

An accelerated freshwater release to the ocean (from 1940s/50s to the present). A permanently boosted primary
production (Fig. 2f,g) accompanied an accelerated surface water freshening (Fig. 2h) and a reduced Polar Front
influence (Figs. 3a,c) since the 1940s/50s on the shelf region. The climatic background conditions, i.e. high solar
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Figure 3. Oceanic response to drift/sea ice retreat. (a) Changes in marine surface freshwater occurrence.

(b) Annual freshwater Flux (FWF) to the Greenland Sea as presented in ref. °. (c) Solar irradiance as shown

in ref. 2. (d) Atmospheric CO, concentration obtained from https://data.giss.nasa.gov/modelforce/ghgases/
Fig.1A.ext.txt. (e) The leading Principal Component (PC) from an EOF analysis of the winter Sea Level Pressure
(SLP) for the region 90°W to 40°E and 20°N to 70°N calculated from the HADSLP 2014 data set*, reflecting the
North Atlantic Oscillation (NAO) pattern. (f) Abundance (%) of Polar Front indicator T. quinqueloba.

irradiance? (Fig. 3¢), prevailed now in a ‘warm state’ (Table 1) and radiative forcing from anthropogenic green-
house gas emissions increased continuously (Fig. 3d). We attribute the accelerated freshwater release to enhanced
melting of drift/sea ice and an amplified freshwater flux from the Arctic Ocean (Fig. 3¢c), concurrent with an
increased meltwater runoff from the eastern part of the GrIS® (Fig. 3f). This is in accordance with reports of a
permanently reduced surface mass balance of the GrlS since the 1950s*'. Our primary production reconstruc-
tion demonstrates prominent decadal variability since the 1940s/50s (Fig. 2e,f), while our freshwater proxy data
illustrate the increased accumulation of freshwater in the upper ocean (Fig. 2h,i). The primary production’s dec-
adal variability likely resulted from various forcing factors acting on a local to regional scale that finally lead to
enhanced vertical mixing on the North Icelandic shelf.

In response to the 1940s/50s high spring air temperatures (Fig. 2d), almost absent drift/sea ice'¢
(Supplementary Fig. 5h) and warm subsurface waters (Supplementary Fig. 3e), a pronounced, thermal-driven,
stratification developed on the North Icelandic shelf. During this time, a weak Polar Front influence (Fig. 3¢) pre-
vailed in consequence of the weakened oceanic gradient, i.e. warm atmospheric and oceanic temperatures. These
conditions led to the gradual formation of a deep and stable winter mixed-layer and allowed a rapid shoaling
in spring. This initiated a prominent boost in primary production in the 1940s/50s by enhancing the coccolith

SCIENTIFICREPORTS|  (2019)9:17680 | https://doi.org/10.1038/s41598-019-53723-z


https://doi.org/10.1038/s41598-019-53723-z

www.nature.com/scientificreports/

(3 alkenones >1pgg™!, Fig. 2e) and planktic foraminifera blooms (Fig. 2g). The decline in primary production
in the 1960s to late-1970s (the time of the GSA events), on the other hand, did not occur solely in response
to thermal-driven winter mixed-layer depth changes. It also corresponded to an increased influence of drift/
sea ice and the subsequent freshwater release to the surface water layer, as the Polar Front migrated over the
North Icelandic shelf and prevailed further south of our core site near its LIA position (Fig. 3a). The intensified
drift/sea ice export through the western Fram Strait'®*' (Fig. 2a,b) was favoured by a negative NAO phase, with
strong northerly wind anomalies (Fig. 3¢, Supplementary Fig. 4a). This return to more abundant drift/sea ice
(Supplementary Fig. 5h), as opposed to the preceding drift/sea ice minimum in the 1930s-1950s, led to renewed
cooling of the air and surface water temperatures in the region in the 1960s to 1970s (Fig. 2¢,d). Although air
temperatures dropped, the summer to winter temperature difference remained about 2 °C higher compared to
the preceding negative NAO phase from 1880 to 1900 (Supplementary Fig. 5a). Such a seasonal air temperature
difference between a ‘cold’ and a ‘warm’ climate state seems to be sufficient to trigger an earlier annual melting
onset of drift/sea ice, producing notably freshwaters, as evidenced by our data (Fig. 3e). Simultaneous to wide-
spread oceanic cooling across the North Atlantic basin (Supplementary Fig. 5d) and a slowdown of the ocean
circulation'' (Supplementary Fig. 5f) during the 1960s to late-1970s, cooler intermediate waters reached our
study area® (Supplementary Fig. 3e). In contrast to the preceding 1940 to 1960 warm period, a thicker freshwater
lid in the 1960s to late-1970s likely restricted any rapid shoaling of the winter mixed-layer and led to a temporally
reduced, coccolith-driven, surface primary production (Fig. 2f). From the late-1970s to mid-1980s, surface (coc-
colith) primary production recovered (Fig. 2f), which occurred together with a brief cooling in air temperatures
as well as in surface waters (Fig. 2¢,d). This accompanies a steep rise in subsurface temperatures on the shelf*
(Supplementary Fig. 3e). We suggest that the return to a thermal-driven stratification caused the deepening of
the winter mixed-layer and its rapid shoaling in spring that produced the peak in (coccolith) primary production
(Fig. 21).

In the 1980s to 2000s, the NAO shifted into a pronounced positive phase (Fig. 3b) and the return to strong
southwesterly wind anomalies presumably favoured an enhanced accumulation of freshwater on the North
Icelandic shelf. The constant weak Polar Front influence (Fig. 3a) seems to result from the markedly fresh-
ened surface waters. Simultaneously, the seasonal air temperature difference decreased roughly by another 4°C
(Supplementary Fig. 5a), and was mainly driven by a rise in spring temperatures (Fig. 2d). This consequently
promoted a faster and prolonged melting of drift/sea ice. Combined with a predominant export of younger and
thinner drift/sea ice from the Arctic Ocean (refs."? and references therein), the freshwater release to the upper
ocean layer intensified markedly (Fig. 3e,f). As a consequence of this, stable stratification developed on the shelf,
which prevented a shoaling of the winter mixed-layer and thus reduced the surface primary production.

Since the 2000s, the seasonal temperature gradient decreased by a further 2 °C (Supplementary Fig. 5a) com-
pared to the preceding interval. Northwestern Icelandic spring temperatures rose by about 1°C (Fig. 2d) and June
temperatures increased by as much as 2 °C (Fig. 3), despite the fact that solar irradiance decreased during this
time (Fig. 3¢). Substantially diminished drift/sea ice concentrations along the East Greenland shelf was observed
by the year 2000 and the Polar Front retreated northward into the Iceland Sea (Fig. 3C). The gradual disappear-
ance of seasonal ice increased the heat flux to the atmosphere through enhanced upper ocean convection, which
is typically limited to the depth of the mixed-layer****. Concurrently, surface freshening accelerated on the North
Icelandic shelf (Fig. 2h,i), while high atmospheric and oceanic temperatures triggered enhanced surface and
subsurface melting of the GrIS**** and caused an excessive release of melt- and freshwater to the marine envi-
ronment>* (Supplementary Fig. 6). Recent observational studies suggest that rising carbon emissions*” (Fig. 3d),
increased water vapour (aerosol load)®® and redundant deposition of ‘black carbon’ on the GrlS and sea ice®
could act as crucial factors for enhancing the melting. Other recent works suggest that the GrIS and its peripheral
glaciers may exceed a tipping point, where surface mass loss and surface runoff outpace the re-growth and thus
destabilize the GrIS**#!. It appears that anthropogenic forcing has accelerated this melting process of the drift/
sea ice and the GrIS since the early 2000s via feedback processes (i.e. albedo reduction)*?, while the influence of
natural (solar and oceanic forcing) drivers seem to have diminished.

Discussion

Acceleration of ocean freshening since the 1940s/50s — a regional perspective. During the
1940s/50s, the accelerated freshening of the northern Subpolar Gyre limb was likely the result of the natural
change in the climatic background conditions, i.e. solar, atmospheric and oceanic forcing, since the end of the
LIA (Fig. 3). Since the 1920s atmospheric warming substantially reduced the sub-Arctic and Arctic seasonal tem-
perature gradient (Supplementary Fig. 5a), and as a result the drift/sea ice and the GrIS became more vulnerable.
In addition, the shift to a more positive NAO (Fig. 3¢) led to more moist air masses being diverted poleward and
thus strengthened the meridional northward heat transport. The associated atmospheric warming led, in turn,
to a prolonged melting season. Starting in the late-1920s, a substantial warming took place in the North Atlantic
as reflected by the positive AMO Index (Supplementary Fig. 5d). The combination of strong atmospheric and
oceanic forcing likely contributed to the rise in GrIS meltwater runoff in the 1930s*, and triggered enhanced
drift/sea ice melting that eventually caused freshwater accumulation in the Arctic Ocean®. This strong early 20
century Arctic warming happened at a time when the levels of carbon emissions were much lower compared to
recent decades (Fig. 3d), which suggests that anthropogenic forcing played a minor role. The subsequent mid-
1930s shift to a negative NAO phase (Fig. 3b) favoured an accelerated release of freshwater and drift/sea ice from
the Arctic Ocean via the western Fram Strait. This accelerated Arctic freshwater release, which merged with the
GrIS runoft within the EGC, reached the North Icelandic shelf in the 1940s/50s (Fig. 2c-i). We propose that since
that time this freshwater forcing has exerted a prominent control on the regional environmental conditions,
including the Greenland and Iceland Sea. Importantly, the freshwater transport in the EGC through the Denmark
Strait (Fig. 1) is part of the northern limb of the Subpolar Gyre. Therefore, we postulate that since the 1940s/50s
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the Labrador Sea has received larger amounts of freshwater from the EGC, as compared to the background cli-
mate conditions during the LIA. Our findings highlight that the 1960s-1990s ‘Great Salinity Anomalies™® and the
recent (since 2000) rise in GrIS freshwater flux® should be considered as multi-decadal climate variability against
the backdrop of this longer-term freshening trend. The 1960s to late-1980s pronounced negative NAO phase cer-
tainly facilitated strong freshwater release from the Arctic Ocean. Presumably, the shift from a ‘cold’ to a ‘warm’
climatic state allowed distinct fingerprints of these outflows on the simulated AMOC!"! and associated Subpolar
Gyre (ref. 1 and references therein) variability to be examined. In association with the 1990s shift to a positive
NAO, the freshwater outflow from the Arctic Ocean was reduced**, which allowed unprecedented amounts of
freshwater to accumulate in the Beaufort Gyre since the start of the 21% century*>*6. However, instead of a slow-
down of the subpolar North Atlantic’s surface water freshening since the 1990s, we document in accordance with
recent oceanographic studies>**” a continuation. The 1940s/50s initiated melting of the GrIS evolved during
the 2000s as the major freshwater source to the Subpolar Gyre’s northern limb and thus to the subpolar North
Atlantic. Despite the negative trend in solar irradiance forcing since the 2000s (Fig. 3¢), the northern hemisphere
has experienced significant climatic warming (Supplementary Fig. 5¢) and ice sheet melting, and drift/sea ice
retreat continued at an unprecedented rate similar to carbon emissions (Fig. 3d) and the global sea-level rise®.
This suggests anthropogenic forcing as the main driver for the recently observed changes in the freshwater fluxes.

Freshwater controlled acceleration of marine primary production since the 1940s/50s.  Recent
oceanographic studies reveal that the freshwater flux from the GrlIS and its peripheral glaciers not only occurs as
surface runoff, but also as submarine discharge!>*. The surface and subsurface freshwater releases from the GrIS
act as dynamic nutrient sources to the ocean and thus significantly influence marine primary production***, a
factor that will become even more important if climate warming continues. The co-variance between our freshwa-
ter record and the GrIS FWF record® demonstrates the close coupling of surface marine production and nutrient
release from the GrIS since the 1940s/50s. Our findings are in line with recent studies on sub-glacial meltwater
discharge® and nutrient release from meltwaters'? from East and West Greenland'**. A similar GrIS-melt driven
fertilizing effect of surface waters, as recorded on the North Icelandic shelf, appears also to take place in the
Disko Bugt area, West Greenland* (Supplementary Fig. 6). Furthermore, downstream in the western limb of the
Subpolar Gyre, an area influenced by the cold and drift/sea ice carrying Labrador Current, recent studies reveal
increased primary production driven by reduced ice occurrence®. These findings point to the so far under com-
municated, but import role of meltwaters from drift/sea ice and the GrIS as dynamic sources of nutrients for the
oceans. This has important implications for the role of the ocean as a carbon sink to the deep-ocean and nutrient
re-distributer.

Summary. Acceleration in freshwater release from the GrIS and drift/sea ice of the last 30 years, as docu-
mented in instrumental data, is unprecedented since 1850. Our combined analyses of historical and proxy data
provide evidence that this surface water freshening in the subpolar North Atlantic started already back in the
1940s/50s, and is part of a longer-term process. Starting in the 1900s, the stepwise overlapping of natural forcing
factors, such as the 1920s atmospheric warming and shift to a positive NAO followed by the oceanic warming in
the 1930s, triggered the acceleration in freshwater discharge to the upper ocean in the 1940s/50s. Since the 1960s,
the anthropogenic forcing has added to the natural forcing factors that lead to melting of the GrIS. As a side effect
of this, nutrient-rich freshwater have contributed to enhanced fertilization of the ocean by increasing marine
primary production. Our results provide a new perspective on the ocean freshening since 1850, and reveal that
changes in freshwater release recorded in observations covering the last 30 years are rather small in amplitude on
this longer-term perspective.

Methods

Sediment core collection. The marine sediment core GS15-198-33 was collected by the R/V ‘G.O. Sars’ in
2015 at 66°37.53'N, 20°51.16’'W from 361 m water depth offshore western North Iceland. Core GS15-198-33 has
been collected from a well-known high accumulation area on the shelf that was previously sampled in 1999 by
the R/V ‘Marion Dufresne’ (core MD99-2269)%. The sediment core was sampled continuously at 1 cm resolution
(1 cm thick sediment slices).

Radionuclide measurements. Radionuclide analyses of 2!°Pb, 1¥’Cs, and 24! Am were carried out by gamma
spectrometry with a Ge-well detector (GCW4021-7500SL-RDC-6-ULB) and processed with GENIE 2000 soft-
ware (Canberra Industries Inc., USA). Counting statistics were better than 15% for 2!°Pb and '*’Cs and better
than 20% for 2! Am activity. The radionuclide activities were calculated using standard reference materials (decay
corrected): IAEA-447 (*¥Cs, 21°Pb, *°Ra) and IAEA-385 (**'Am). The following nuclides and energies were used
for quantification of isotopes: 2°Pb: 46.5 keV, 22°Ra: 295keV and 351keV, 2! Am: 59.5keV and '¥’Cs: 661 keV.

Bulk sediment analyses. For mercury measurements, we used a DMA-80 analyzer from MLS Company.
Data were calibrated against CRM (BCR) 142R certified reference material and SRM 2709 soil standard using
5 concentration steps covering a range from 5 to 500 ng Hg. Sample weights were 100 mg. The CaCO; content
was calculated using the sediments total inorganic carbon content (TIC). The TIC was measured using 100 mg
of freeze-dried sediment that was diluted with 40% H3PO4 and incinerated at 1200°C on a Multi EA4000 from
Analytikjena.

Planktic foraminifera counts. We determined planktic foraminifera down to species level in the >63 um
using a stereomicroscope. We recorded six planktic foraminifera species of which Turborotalita quinqueloba,
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Globigerinita uvula, Neogloboquadrina pachyderma, and Globigerinita glutinata occur in high abundance (>6%),
while Globigerina bulloides and Globorotalia scitula occur only sporadically.

Preparation and analyses of alkenones. Homogenized sediments samples were analyzed for alkenones
out at the Institute of Geosciences Biomarker Laboratory, Kiel University. Long-chained alkenones (Cs;) were
extracted from homogenized, 2 to 3 grams of bulk sediment, using an Accelerated Solvent Extractor (Dionex
ASE-200) with a mixture of 9:1 (v/v) of dichloromethane:methanol (DCM:MeOH) at 100 °C and 100bar N, (g)
pressure for 20 minutes. Extracts were cooled at c. —20°C and dried by vacuum rotary evaporation at 20 °C and
65 mbar. We used a multi-dimensional, double gas column chromatography (MD-GC) set up with two Agilent
6890 gas chromatographs for identification and quantification of Cs;.,, and Cj;; ketones®!. Quantification of the
individual compounds was achieved with the addition of an internal standard prior to extraction (cholestane
[Cs;H,s] and hexatriacontane [Cs¢H;,4]. The relative proportions were obtained using the peak areas of the two
different compounds. The UK’;; index was calculated using the equation®?: UK';; = (C;;,)/(Cs;, + Cs;.3). The
proportion of tetra-unsaturated C;, ketones relative to the sum of alkenones (%Cs,,,) serves as an indicator of
changes in freshwater release, via meltwater discharge, from the GrIS>>*.

Empirical orthogonal function analyses. Standard linear regression has been used to calculate the
regression maps in Supplementary Fig. 4, whereas the empirical orthogonal functions have been calculated using
standard singular-value decomposition analysis. We have used winter (December-January-February) sea level
pressure data from the HadSLP2 data set?* over the Atlantic sector (90°W-40°E; 20°N-70°N). HadSLP2 data is
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.
gov/psd/.

Data availability
The data presented within this manuscript are available as excel file.
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