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Main question: How does the

molten cryolite in�ltrate and

dissolve a porous alumina

structure?

Focus of talk is Stage B, raft

problem.
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Tc

Tm

y

Front movement

φ0

(top)

Solid Alumina

Liquid Cryolite
Solid Cryolite

Air

1

Volume fraction

Temperature

y = Hy = c(t)y = b(t)

φ0 + ψ

Saturated Mush Uninfiltrated
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c(t)b(t) H

y
3Uninfiltrated

For c(t) < y < H:
∂T3

∂t
=
∂2T3

∂y2
,

At y = c(t) : T3 = 1− ε, ψċ = −Stkpf
∂T3

∂y
,

At y = 1 :
∂T3

∂y
= Nu(T − θe)
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c(t)b(t) H

y
2Mushy

For b(t) < y < c(t):

∂ψ

∂t
= 0,

∂

∂y
((1− φ− ψ)u2) = 0,

−γ K (ψ + φ)

(1− φ− ψ)

(
∂p2
∂y

+ β

)
= u2,

At y = b(t) : [pi ]
+
− = 0, u1 −

1− φ− ψ
1− φ

u2 = ψḃ
1− ρ
1− φ

,

At y = c(t) : p2 = −1, u2 = ċ

(
1+

ψρ

1− φ− ψ

)
,
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c(t)b(t) H

y
1InfiltratedFor 0 < y < b(t):

∂T1

∂t
+

∂

∂y
(qφcu1T1) = αip

∂2T

∂y2
,

∂

∂y
((1− φ)u1) = 0,

γ
−K (φ)

(1− ψ)

(
∂p1
∂y

+ β

)
= u1,

At y = 0 : T1 = 1, p1 = 0,

At y = b(t) : T1 = 1− ε, ψḃ = −Stkif
∂T1

∂y
,

[pi ]
+
− = 0, u1 −

1− φ− ψ
1− φ

u2 = ψḃ
1− ρ
1− φ

,
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Meaning and Symbol De�nition Value

In�ltrating force (γ) KP/(αpµc) 10�200

Stefan number (St) αfp[T ]cf /L 2.3

Newton cooling (Nu ) hH/kp 3

Di�usivity ratio (αip ) αi/αp 2

Overheat (ε) Tc/Tm − 1 0.015

Environment temperature ratio (θ) TA/Tm 0.86

Conductivity ratio (kif ) ki/kf 2.5

Conductivity ratio (kpf ) kp/kf 0.5
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In this limit the in�ltrated region does not exist, so only mushy

region and unin�ltrated is important. For the unin�ltrated region we

have
∂T3

∂t
=
∂2T3

∂y2
in c(t) < y < 1,

with boundary conditions,

T3 = 1 at y = c(t), T3 = 0 at y = 1
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rd Small overheat (ε� 1) limit

In this limit the in�ltrated region does not exist, so only mushy

region and unin�ltrated is important. For the unin�ltrated region we

have
∂T3

∂t
=
∂2T3

∂y2
in c(t) < y < 1,

with boundary conditions,

T3 = 1 at y = c(t), T3 = 0 at y = 1

and for the mushy region we have (with suitable boundary

conditions)

∂ψ

∂t
= 0,

∂

∂y
((1− φ− ψ)u2) = 0,

−γ K (ψ + φ)

(1− φ− ψ)

(
∂p2
∂y

+ β

)
= u2,
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In this limit the in�ltrated region does not exist, so only mushy

region and unin�ltrated is important. For the unin�ltrated region we

have
∂T3

∂t
=
∂2T3

∂y2
in c(t) < y < 1,

with boundary conditions,

T3 = 1 at y = c(t), T3 = 0 at y = 1

�uid equations can be integrated in space and lumped into the

boundary conditions giving

ψ = −∂T3

∂y

I

St
, ċ =

1

I
, c(0) = 0

with introducing

I =

∫ c(t)

0

1

γK (φ(x))
dx , İ =

1

γIK (ψ(c))
, I (0) = 0
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• Expand c = O(
√
t) as t → 0+, so need small t asymptotics to

initiate numerical solution, because 0 is singular.

• Seek similarity solution given

T ∼ T (η), c ∼ 2λc
√
t, I ∼ 2λI

√
t

with η = y/2
√
t = O(1) as t → 0+ and λc ,λI to be

determined from a system of nonlinear equations.
t

y

O(
√
t)

c(t)

1
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For a parameter set two di�erent solutions are possible: faster
propagating with less freeze ( ) or slower moving with more freeze ( ).
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Stable propagation agrees with small-time solution, then clogs due to the
boundary.
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Unstable solution switches to the stable one in short time, then clogs due
to the boundary.
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Conclusions:
• Developed a multiphase model for the in�ltration of molten

cryolite into a cold porous alumina
• Investigated the relevant small overheat 1− θ � 1 limit having

a new type of Stefan condition coupling Darcy �ow to heat

equation
• Similarity solution at small times yields nonuniqueness with one

stable solution and nonexistence
• Simulations show either clogging or full in�ltration depending

on the top boundary condition

Future work:
• What is the solution when there is nonexistence? (Di�erent

model)
• What are the next stages of the evolution?
• Re�ne physics (top boundary, pore size dependent capillary

pressure, dropping LTE, composition e�ects)
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