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Alumina feeding processes Pty s

Mathematical Modelling

University of Oxford

Main question: How does the
molten cryolite infiltrate and
dissolve a porous alumina

structure?
@ Focus of talk is Stage B, raft
problem.
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Alumina feeding: raft problem Lot M

Mathematical Modelling
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1D Infiltration problem LM

Mathematical Modelling
A b(t) «c(t) H
Uninfiltrated @

)

For c(t) <y < H:

o1 _ Ty
ot 0y?’
. 0Ts
At y=c(t): Tz3=1-g¢, wc:—StkhW,
0T
A =1: — = Nu(T — e
t oy dy u(7T —6e)
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1D Infiltration problem LM

Mathematical Modelling
A b(t) «c(t) H
Mushy

)

For b(t) <y < c(t):
oY
at
0
ay (1=9¢—9)u) =0,

=0,

K + ¢) (8/32 )
-y \ay 77
At y=b(t): [p]" =0, m—WWzl/}ﬁid
At y:C(t): p2=—1, UQ:C"<1+1_12[)_¢>V
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1D Infiltration problem LM

Mathematical Modelling

b(t) c(t) H

For 0 < y < b(t): Infiltrated ,
oT; 0 PT )
atl a (ngcul Tl) =0Ujp—>5 8 5
o (= ) =
(<15) (apl )
7u—w y+ﬂ

At y=0: T1 =1, p1=0,

At y=b(t): Ty=1-¢, b= Stk,faa?/1
1-—9—4 —p
1t — _ — I
[pl]— - 01 U] 1 o ¢ 2 ¢b (z)
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Dimensionless parameters

InFoMM

Industrially Focused
Mathematical Modelling

Meaning and Symbol

Definition ‘Value ‘

Infiltrating force (7)

Stefan number (St)

Newton cooling (Nu )

Diffusivity ratio (cp )

Overheat (¢)

Environment temperature ratio (6)
Conductivity ratio (kir)
Conductivity ratio (kpf)

KP/(appc) | 10-200
ap[Tler/L | 2.3

hH /K, 3
aj/op 2
T./Tm—1 | 0.015
Ta/Tm 0.86

ki ke 25

ko ke 0.5
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Dimensionless parameters

InFoMM

Industrially Focused
Mathematical Modelling

Meaning and Symbol

Definition ‘Value ‘

Infiltrating force (7)

Stefan number (St)

Newton cooling (Nu )

Diffusivity ratio (o )

Overheat ()

Environment temperature ratio (6)
Conductivity ratio (ki)
Conductivity ratio (kpf)

KP/(appc) | 10-200
ap[Tler/L | 2.3

hH [k, 3
aj/op 2
Te/Tm—1 | 0.015
Ta) T 0.86

ki ke 2.5

ko) ke 0.5
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Small overheat (¢ < 1) limit IPF‘?MdM

Mathematical Modelling

In this limit the infiltrated region does not exist, so only mushy
region and uninfiltrated is important. For the uninfiltrated region we

have
0Ts 92T,

Ot 0y?

with boundary conditions,

in c(t)<y<1,

T3=1 at y=c¢(t), T3=0 at y=1
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Small overheat (¢ < 1) limit IPF‘?MdM

Mathematical Modelling
In this limit the infiltrated region does not exist, so only mushy

region and uninfiltrated is important. For the uninfiltrated region we

have
OTs _ 9°Ts

ot Oy?
with boundary conditions,

in c(t)<y<1,

Tz3=1 at y=c(t), T3=0 at y=1

and for the mushy region we have (with suitable boundary
conditions)

8¢_
I
0

@((1 — ¢ —P)n) =0,

ROl AR
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Small overheat (¢ < 1) limit IPF‘?MdM

Mathematical Modelling
In this limit the infiltrated region does not exist, so only mushy

region and uninfiltrated is important. For the uninfiltrated region we

have
OTs _ 9°Ts

ot 0y?
with boundary conditions,

in c(t)<y<1,

T3=1 at y=c(t), T3=0 at y=1
fluid equations can be integrated in space and lumped into the
boundary conditions giving
0Tz | .1
/

b= ¢=

—W§, ) C(O):O

with introducing

v 1 , 1
= [ ke ™ = ey '@ =0
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Small time asymptotics sl s

Mathematical Modelling

® Expand ¢ = O(y/t) as t — 0T, so need small t asymptotics to
initiate numerical solution, because 0 is singular.

® Seek similarity solution given
T~T(n), c~2AVt, | ~2X\/t

with n = y/2y/t = O(1) as t — 0T and A, \; to be
determined from a system of nonlinear equations.

At
c(t)

\J

o) !
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Similarity solutions for St =1, v = 10 LM

Mathematical Modelling

University of Oxford
o o oo
N &~ OO ©
T T T T

Temperature (T3)

| |
0 02 04 06 038 1 12 14 16 18 2
Similarity variable (7)

Frozen f. ¥
oo
(OIS
| |

For a parameter set two different solutions are possible: faster
propagating with less freeze ([l]) or slower moving with more freeze ().
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@ Numerical results (fast) sl s
"‘>—< Mathematical Modelling
o
5
z\ 0.8 08
-B 0F
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Stable propagation agrees with small-time solution, then clogs due to the
boundary.
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Numerical

results (slow)

InFoMM

Industrially Focused
Mathematical Modelling

06
04
02

0.0

1.0 0.00

o
o

005 010 015 020 O 0.30

0.0

0.2

0.4

0.6 0.8 1.0

(=Je(+)

Unstable solution switches to the stable one in short time, then clogs due
to the boundary.
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for early time solutions s

100

University of Oxford

Stefan number St/(7)
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Flow number ()

Region of no solution [ ] and two solution [

and the operating regime for the real system (dashed).
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Conclusions and Future work indusily Focused

Mathematical Modelling

Conclusions:
® Developed a multiphase model for the infiltration of molten
cryolite into a cold porous alumina
® |nvestigated the relevant small overheat 1 — 6 < 1 limit having
a new type of Stefan condition coupling Darcy flow to heat
equation

University of Oxford

® Similarity solution at small times yields nonuniqueness with one
stable solution and nonexistence

e Simulations show either clogging or full infiltration depending
on the top boundary condition

Future work:

® What is the solution when there is nonexistence? (Different
model)

® \What are the next stages of the evolution?

® Refine physics (top boundary, pore size dependent capillary
pressure, dropping LTE, composition effects)
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