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d Alumina feeding: raft problem

Fluid

Saturated
Uninfiltrated

Dissolution boundary

Infiltration boundary

Front movement

Mush?
A

ti
m

e

C

E

D

B

Source: [Kaszas2016]
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d 1D Infiltration problem
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Similar models e.g. [Mortensen1989]
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d 1D Infiltration problem
c(t)b(t) H

y
3Uninfiltrated

For c(t) < y < H:
∂T3

∂t
=
∂2T3

∂y2 ,

At y = c(t) : T3 = 1− ε, ψċ = −Stkpf
∂T3

∂y
,

At y = 1 :
∂T3

∂y
= Nu(T − θe)
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d 1D Infiltration problem
c(t)b(t) H

y
2Mushy

For b(t) < y < c(t):

∂ψ

∂t
= 0,

∂

∂y
((1− φ− ψ)u2) = 0,

−γ K (ψ + φ)

(1− φ− ψ)

(
∂p2

∂y
+ β

)
= u2,

At y = b(t) : [pi ]
+
− = 0, u1 −

1− φ− ψ

1− φ
u2 = ψḃ

1− ρ

1− φ
,

At y = c(t) : p2 = −1, u2 = ċ

(
1+

ψρ

1− φ− ψ

)
,
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d 1D Infiltration problem
c(t)b(t) H

y
1InfiltratedFor 0 < y < b(t):

∂T1

∂t
+

∂

∂y
(qφcu1T1) = αip

∂2T1

∂y2 ,

∂

∂y
((1− φ)u1) = 0,

γ
−K (φ)

(1− ψ)

(
∂p1

∂y
+ β

)
= u1,

At y = 0 : T1 = 1, p1 = 0,

At y = b(t) : T1 = 1− ε, ψḃ = −Stkif
∂T1

∂y
,

[pi ]
+
− = 0, u1 −

1− φ− ψ

1− φ
u2 = ψḃ

1− ρ

1− φ
,
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d Similarity solutions for A = 10, γ = 10
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For a parameter set two different solutions are possible: faster
propagating with less freeze ( ) or slower moving with more freeze ( ).
[Tsypkin2005]
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d Reason for multiple solutions

Frozen fraction (S)
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Nonlinear system splits into“fluid”( ) and “solidification” ( ) parts.
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d Parameter dependence
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Changing the density slightly
changes the necessary pressure
needed for infiltration, the form
of the capillary pressure function
changes the behaviour only at
large frozen fractions and A has
large effect on the solution.
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d Regime diagram for early time solutions
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Changing the parameters of the operating regime (dashed) can change
the behaviour that we would expect happening.
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d Further stages
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Depending on the boundary condition at the top, the raft can either get
fully infiltrated or partially.
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d Numerical results

Stable propagation agrees with small-time solution, then clogs due to the
boundary.
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d Numerical results

Unstable solution switches to the stable one on a short timescale, then
clogs due to the boundary.
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The front stops later than in the isothermal infiltration case ( ), the
behaviour is non-monotonous (balance between clogging — infiltrating).
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d Complete vs Partial infiltration
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Measuring the infiltrated height (colour) can be used to identify the
convection coefficient, furthermore the infiltrated height is also correlated
with the apparent density of the raft.
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d Conclusions and Future work

Conclusions:
• Developed a multiphase model for the infiltration of molten

cryolite into a cold porous alumina.
• Investigated the relevant small overheat 1− θ � 1 limit having

an interesting type of Stefan condition coupling Darcy flow to
heat equation.

• Similarity solution at small times yields nonuniqueness with one
stable solution and nonexistence in certain regions of
parameters.

• Late time simulations show either clogging or complete
infiltration depending on the top boundary condition.

Future work:
• Modelling the disintegration of the raft (next stage of the

industrial problem)
• Refine physics (dropping LTE, composition effects)
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