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Preface

This report is presenting results obtained during Kristian Thulin PhD study, and is a
slightly modified form of a paper submitted to SPE Journal. Kristian Thulin did most of
his portion of the work while being a PhD student at CIPR, University of Bergen.

Résumé

The ensemble Kalman filter (EnKF) is currently considered one of the most promising
methods for conditioning reservoir simulation models to production data. The EnKF is a
sequential Monte Carlo method based on a low rank approximation of the system
covariance matrix. The posterior probability distribution of model variables may be
estimated from the updated ensemble, but because of the low rank covariance
approximation, the updated ensemble members become correlated samples from the
posterior distribution. We suggest using multiple EnKF runs, each with smaller
ensemble size to obtain truly independent samples from the posterior distribution. This
allows a point-wise confidence interval for the posterior cumulative distribution
function (CDF) to be constructed. We present a methodology for finding an optimal
combination of ensemble batch size (n) and number of EnKF runs (m) while keeping
the total number of ensemble members ( mXn ) constant. The optimal combination of
n and m is found through minimizing the integrated mean square error (MSE) for the
CDFs and we choose to define an EnKF run with 10.000 ensemble members as having
zero Monte Carlo error. The methodology is tested on a simplistic, synthetic 2D model,
but should be applicable also to larger, more realistic models.
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The authors acknowledge the Research Council of Norway (PETROMAKS) for
financial support.
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1 Introduction

The ensemble Kalman filter (EnKF) is a sequential Bayesian data assimilation method which
estimates the posterior probability density function, or equivalently the posterior cumulative
distribution function (CDF), of uncertain model variables and parameters. It has become
increasingly popular in a large field of applications since its introduction in 1994 (|2]). In
the limit of an infinite ensemble, the EnKF samples the posterior distribution exactly for
a linear model with Gaussian statistics. For the linear and Gaussian problem this is the
minimum variance solution. In practice, with a finite ensemble size, randomness is introduced
in the drawing of the initial ensemble. When generating the initial ensemble, a random seed
has to be chosen, on which the final estimates will be dependent. The final estimate will
also depend on the randomness of the perturbations of the observed data at every analysis
step. For a non-linear or non-Gaussian problem the posterior CDF will be approximate, but
ideally the ensemble members from a finite EnKF run should be independent samples from the
approximate solution from an infinite EnKF run. If this is satisfied, it follows that ensembles
from repeated EnKF runs should be samples from the same distribution. For more details on
the ensemble Kalman filter see e.g. [3, 4]

In previous studies we have observed that when repeating EnKF runs, using different
random seeds to generate initial ensembles, the end results look visually different. 'To
investigate this further we applied the two-sample Kolmogorov-Smirnov test [1, pp. 392-394]
to pairs of EnKF runs, with the null hypothesis that the two samples are from the same
distribution. Even in simplistic examples we found that the null hypothesis was generally
rejected, leading to the conclusion that repeated EnKF runs might give estimates that
are inconsistent with each other. We will show that this phenomenon is caused by strong
positive correlations among ensemble members. Therefore, the independence assumption of
the Kolmogorov-Smirnov test is not satisfied. Further, the lack of independence makes it
difficult to quantify the simulation uncertainty in the estimate of the posterior distribution.

We propose to do multiple ensemble Kalman filter runs, each with a smaller ensemble size,
to increase the amount of independent information. This also enables us to better quantify
the Monte Carlo uncertainty in the final estimate of the posterior CDF. We further propose a
methodology for choosing an optimally combination of the number of ensemble members (n)
and the number of runs (m), under the constraint that the total resources (n x m) is fixed.
We know that if n is too small, the EnKF will collapse and there will be large biases in the
final estimate. On the other hand, if m is too small then the variance on the estimated CDF
will be very large. We seek a point which balances the two, and minimizes the mean square
error (MSE). The MSE is defined relative to the infinite EnKF run, and not relative to the
true posterior CDF.

In the literature various ensemble sizes have been used. An ensemble size of 100 was
typically used in the first reservoir applications (e.g. |7]), based on experience from other
fields (see e.g. [6]). Joint estimation of parameters and state has been done with as few as
40 members with satisfactory results in [5|. In a previous study using a 2D five spot problem
for single-phase flow it was concluded that an ensemble size of around 20 is sufficient to
reproduce the observations, but a much larger ensemble is needed to have a good estimate for
the uncertainty [11]. For another synthetic 2D five spot problem, the conclusion was that at
fairly large ensemble is required to estimate the uncertainty in the estimates accurately [12].

The paper is organized as follows. We start by a description of the synthetic 2D model in
Section 2 followed by an explanation of the two-sample Kolmogorov-Smirnov test in Section 3.
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Figure 1: The triangular grid over the domain. Circles: sources, crosses: sinks.

The methodology of multiple EnKF runs, confidence interval and optimization of MSE is given
in Section 4, and then results from the methodology applied to specific examples are presented
in Section 5. Finally summary and conclusions are given in Section 6.

2 Description of the synthetic 2D-case

In this paper we consider a model for single-phase flow in a homogeneous medium. The
single-phase reservoir equation for this case then becomes

K .., 0p
v. (;Vp) =2, (1)

where k is permeability , p is the viscosity, A is the compressibility, ¢ is the porosity and p
is pressure. In the combined parameter and state estimation problem, we would like to focus
on a single dynamic variable and a single unknown parameter. For this reason further scaling
assumptions are done to end up with the following model equation

dp
— — V- (kVp) = f, 2
LV (xVp) = @)
where p is the dynamic variable, and k = k(x, y) is the unknown static parameter of the model.
We assume that the unknown parameter x can be represented by a two dimensional Gaussian
random field. The right hand side has constant non-zero values at a five-spot pattern with

three sources and two sinks (see Figure 1)

((1/2 (z,y) =(0,0)
1 (x,y) =(—0.9,0.9)
)2 (a,y) = (0.9,-0.9)
f@y) =9 4 (m,z) = (0.9,0.9) (3)
-1 (x,y) =(-0.9,-0.9)
0 otherwise.




The forward problem is solved by the finite element solver parabolic from the Partial
Differential Equation Toolbox by MATLAB [9]. The square domain has a triangular
discretization with 665 nodes and 1248 triangles (see Figure 1). The dynamic variables are
calculated at the nodes while the static variable is calculated in the center of each triangle.

2.1 Reference data set

The unknown parameter x(z,y) has a prior distribution given by a Gaussian variogram and
correlation length equal to half of the length of the reservoir. The mean is 4.0 over the whole
domain. A reference Gaussian random field is drawn from this prior distribution. Artificial
measurements are generated at uniform time steps by running the forward model on the
reference field and extract values for the dynamic variables at the locations of the sinks and
sources. The values are then perturbed with a noise with zero-mean and variance of 1.0x 10710
to generate synthetic observations. The same set of observations is used for all EnKF runs.
The initial ensembles of realizations of k(z,y) are also drawn from the same prior distribution.
For more details on the synthetic example, see [10, 11].

3 Kolmogorov-Smirnov test

In statistics the two-sample Kolmogorov-Smirnov test is used to determine whether two
empirical CDFs differ, or equivalently if two samples can be from the same underlying
distribution (see e.g. [1, pp. 392-394]). The empirical CDF for a sample {x;}} ; is defined as

cdf, (z) = %Z I(z; <x), (4)
i=1

where I (-) is the indicator function. Given another sample {z;}!" ; of same size, we want to
test the null hypothesis that {z;}"_; and {Z;}"; come from the same distribution. The test
statistic of the two-sample Kolmogorov-Smirnov test is then given as

D,, = sup |cdf,(z) — ga/fn(x) , (5)

where cdf, and (?Eﬁ'n are the two respective empirical distribution functions. The null
hypothesis is rejected when D, is larger than some critical value, that can be looked up
in a table. There are several equivalent formulations of the table of critical values for the
Kolmogorov-Smirnov test, one that is often used can be found in [1].

The Kolmogorov-Smirnov test assume that the x’s that constitute the sample {z;}" ; are
independent, and similarly that the members of {z;}?_, are independent. In particular, the
calculation of the critical value of the test relies on this assumption. Failure of this assumption
may lead to a significant p-value (less than 0.05) even if the null hypothesis is true (i.e. x;
and 7; come from the same distribution).

Examples of prior and updated EnKF samples for a static parameter in the 2D case
from Chapter 2 are shown in Figure 2. The spread among the CDFs to the right is clearly
larger than the spread among those to the left. To investigate this further we apply pair-wise
Kolmogorov-Smirnov tests (significance level 5%) separately to the example data in the left
and right panel of Figure 2. The number of rejected pair-wise comparisons are 2 out of 45
times for the unconditioned ensembles (left panel), and 28 out of 45 times for the conditioned
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Figure 2: Ten CDF estimates before and after conditioning on data, for the synthetic 2D
case. The posterior CDF estimates (right) are updated using the EnKF with 100 ensemble
members.

ensemble members (right panel). A rejection of 2 out of 45 pairs is to be expected with a
5% significance level. The higher rejection rate for the right hand panel is due to the lack
of independence between ensemble members within each of the CDF curves. As mentioned
above, the lack of independence may cause rejection by the Kolmogorov-Smirnov test even
if each individual ensemble member are actually drawn from the target (infinite EnKF run)
posterior distribution.

To confirm that the 28 rejections out of 45 tests can not occur by chance we use a Bonferroni
correction, which is a multiple-comparison correction used when several statistical tests are
being performed simultaneously. The use of the Bonferroni method guaranties a simultaneous
significance level of 5%, i.e. the probability of having at least one rejection is 0.05 when all
the null hypotheses are true. In our situation the Bonferroni correction amounts to dividing
the significance level 0.05 by the number of tests performed. For the case in Figure 2 we have
10(10 — 1)/2 = 45 pair-wise comparisons in each panel, which means that we should apply
a significance level of 0.05/45 = 0.0011 to each individual test. For the CDFs to the left,
the minimum p-value is 0.0082, well above the critical value of 0.0011. For the CDFs to the
right, many p-values were below the critical value and the minimum p-value was as low as
3.96 x 10716 This clearly shows that they can not all come from the same distribution by
chance.

4 Methodology

To identify the extent of the inconsistencies, ten EnKF runs are done starting with different
independently sampled initial ensembles. The posterior variables after the second data
assimilation step are then examined. For each of the ten runs, the 45 pairings for all 665
dynamic and 1248 static variables are checked using the Kolmogorov-Smirnov test with the
Bonferroni correction. For the smaller ensemble sizes (20 and 50) the Kolmogorov-Smirnov
test fails for almost all variables, both static and dynamic. Even for an ensemble size as large
as 1000, a large part of the variables have the observed inconsistencies. The extent of failures
for the Kolmogorov-Smirnov test for 200 ensemble members can be seen in Figure 3. This
figure shows the lowest from the 45 p-values for each variable, plotted spatially. From the
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Figure 3: Spatial variation of p-values for the Kolmogorov-Smirnov test with Bonferroni
correction in a case with 200 ensemble members. Regions lower than the critical value, are
blank in the plot. Dynamic variables are shown to the left and static variables are shown to
the right.

Bonferroni correction we know that the null hypothesis can be rejected with a 95% confidence
if the lowest p-value is below 0.05/45 = 0.0011. For the static variable the areas furthest
away from the measurement locations stays consistent, while the variables closest become
inconsistent. The reason for this is that the variables far away from the well is not very
sensitive to the observed data, and hence is not updated. Because the initial ensembles are
sampled independently from the prior, the independence assumption made in the Kolmogorov-
Smirnov test is fulfilled approximately. From the dynamic plot the same behavior is observed.
In addition we have a region with non-significant p-values around the center well. This can
be explained by the fact that the dynamic variables in this area are described up to the
measurement error. The measurement error is also independently drawn, and should produce
consistent estimates according to the Kolmogorov-Smirnov test. These plots show the extent
of the inconsistencies after only two data assimilation steps, as more data gets assimilated
larger areas will have p-values below the critical value.

4.1 Point-wise confidence band on the posterior CDF

We have observed severe inconsistencies even for the relatively simple problem described in
Section 2. Motivated by this, and the fact that people have reported satisfying results that
match the history with as few as 40 ensemble members, we suggest doing several EnKF runs,
each with fewer ensemble members. This strategy provides independent samples from the
posterior. After a single run with the ensemble Kalman filter, with ensemble size n = 200,
one has only a single estimate of the posterior CDF. Using a different random seed when
generating each initial ensemble, the estimated posterior CDFs will differ. With only a single
run one has no estimate of precision for the estimated posterior CDF.

Our suggestion is then, instead of doing one large run with m» = 200 members, to do
e.g. m = 10 runs with n = 20 members each, which has the same computational cost. In the
following we fix a variable (static or dynamic), and let = denote the different values of the
variable. The mean of the ten runs is then the new estimate of the posterior CDF:

m

o, (z) = %Z a9 (), (6)
j=1




where cdf\)(z) is the version of (4) calculated from ensemble number j. Similarly, we calculate
the empirical standard deviation s(x) from the m ensembles. A standard 100(1 — )%
confidence interval for the true cdf(z) is then

adf(x) — t*ifm) () + t*% (7)
where t* is the upper «/2-quantile of the t-distribution with m — 1 degrees of freedom. When
calculated for different values of x, (7) constitute a point-wise confidence band for the function
cdf(xz). The next step is, given the total number of resources (n x m), to select a reasonable
number of ensemble members (n) and number of runs (m).

4.2 Optimal combination of ensemble size (n) and number of runs (m)

We want to find an optimal combination of n and m under the constraint that the
computational effort (n x m) is fixed. With too few ensemble Kalman filter runs the number
of samples are very low, and this results in a very large uncertainty on your estimmated CDF.
On the other hand, with a too small ensemble size the EnKF will not give satisfying results
and there will be a large bias in the end estimate. The goal when doing repeated runs is to
balance the two terms and minimize the mean square error (MSE) defined generally as

MSE(z) = Variance(z) + Bias(z)2. (8)

The bias for a given x-value is the absolute distance to the CDF for infinite run. For a given
x-value and with m EnKF runs, the bias term is

Bias(x) = |cdfs(z) — cdf, ()], 9)

where cdfy () is the CDF for the infinite ensemble run and cdf(z) is given by (6).
The variance term is defined as an inflated variance

(z)’s%(2)

Variance(z) = @ xm’

(10)

where z* is the upper a/2-quantile of the normal distribution. The inflated variance measure
is used here to account for the increased uncertainty when there are very few samples (m is
low). For m higher than 10, t* &~ z*. See Fig. 4 for a plot of the upper critical values of the
student’s t-distribution as a function of degrees of freedom.

Finally, as scalar measure of approximation error we use the integrated mean square error

(IMSE),

TMSE — /_OO MSE(z) da. (11)

[e.9]

If this is done for several combinations of n and m, where n x m is kept constant, we could
find an optimal combination that minimizes the mean square error for the given example.
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Figure 4: Critical values for the student’s t-distribution as a function of degrees of freedom.
The degrees of freedom in m samples are m — 1.

Table 1: ensemble sizes and # runs
m (runs) n (members)
1 1000
2 500
3 333
4 250
5 200
10 100
20 50
50 20
100 10
200 5
5 Examples

The simple single-phase flow 2D model with 665 dynamic and 1248 static variables described
in Section 2 is run for two assimilation steps. Rather than comparing the estimated fields after
the two assimilations with the reference fields, we want to compare the estimated CDFs with
the corresponding estimated CDF from an infinite solution. In this case we define a single
large run with 10.000 ensemble members is defined as the infinite run, and the estimated CDFs
from the infinite run as the infinite solution. In the two following examples the combination
of ensemble size n and the number of runs m are varied while n x m is kept equal to 1000
and 200, respectively. Out of the 1913 variables we have chosen to look at only a single static
parameter located at the center of the domain (middle circle in Fig. 1). Since this point is
also a data-point, there is information in the data to update the static variable during the
data assimilation steps.

5.1 nxm=1000

The different ensemble sizes employed are given in Table 1. Plots of the estimated CDFs for

10
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Figure 5: CDF for the static variable for the reference data set. The dashed lines outline the
95-% confidence interval. The lighter background indicates the span of all the runs, and the
solid line is the CDF of the run with the infinite ensemble (10.000 members).

different combinations of n and m for the static variable are shown in Figure 5, the plot for
the dynamic variable is similar. In these plots the light background outlines the span of all the
CDFs from the m runs. For clarity, the average is not plotted, but a 95% confidence interval
band is shown with dashed lines. The solid line shows the infinite run. For the upper left plot
with 200 runs of only 5 ensemble members, we see that the span of the estimated CDFs are
very wide, and that the covariance interval band does not at all cover the infinite run. For
50 runs with 20 ensemble members the estimates have improved a lot and the span of the
different runs are narrower. The infinite run is just on the boundary of the confidence interval
band. In the case of 10 runs with 100 ensemble members, the interval has narrowed even
further and it now contains the infinite run perfectly. With only 3 runs with 333 members it
is evident that the confidence interval band becomes much wider because of the low number
of runs.

With only 5 ensemble members we observe a systematic bias in the confidence interval,
relative to the infinite solution CDF. This means that an ensemble size of 5 is too small
for the EnKF. To investigate this closer we have plotted the average CDF over 50 runs for
each combinations of n and m in Figure 6. By averaging over 50 runs we eliminate most of
the randomness, and a systematic trend in the bias is clearly visible in the figure. For our
simplistic example the bias is clear for 5 and 10 members, and ensemble sizes above 20 seems
enough that the EnKF can give satisfying results on average.

11
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Figure 6: Means of CDF for different ensemble sizes (static variable, reference data).

Table 2: Ensemble sizes and runs
m (runs) n (members)
1 200

2 100

4 50

10 20

20 10

40 5

The IMSE values (see Section 4.2) are plotted in Figure 7. It clearly shows that the bias
grows when n is decreasing, and that the variance is growing when n increases (and therefore
m decreases). For our case, with n x m = 1000, it looks like n should be at least somewhere
between 50 and 100 before the bias is at an acceptable level. From the variance in Figure 7,
and from the plot of the critical values for the student’s t-distribution in Figure 4, we can
further conclude that m should be larger than approximately 5 in this case.

From the monotonic trends of both the bias and the variance curves plot in Figure 7 it
looks like there should be a minimum value of the IMSE function for a specific choice of n, but
with only this few points on the x-axis it is difficult to conclude any further. Also, the IMSE
curve is almost constant at the optimal interval and the ultimate result will not be sensitive
to small changes in the choice of n.

5.2 nxm=200

The optimal value of the IMSE will be dependent on n x m, therefor it is informative to repeat
the same exercise with a different restriction on the resources. One might also argue that 1000
ensemble members are too much for a real reservoir model. For these reason, we have done
the same experiment as in the previous example, only this time with n x m = 200, closer to
what is typically being used. The selected combination of n and m are shown in Table 2.

12
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Figure 7: The integrated values for the bias, variance and mean square error as a function of
n.

Plots of the CDFs for the different combinations of n and m are shown in Figure 8. Similarly
to Example I, we see that with only 5 ensemble members the mean estimate is not close to the
run with the infinite (10.000 members) EnKF run. With 10 ensemble members the results are
considerably better. The reference infinite case is just on the border of the confidence interval
as in the case for 1000 ensemble members, the confidence interval is also narrower than for 5
members. The case with 5 runs of 40 ensemble members shows further improvement in the
results. The confidence interval is marginally narrower, but more importantly it now captures
the infinite case. With only 3 runs of 66 members, the confidence interval increases because
of the few number of runs. The behavior of the biases in the means are the same as shown in
Figure 6.

The integrated mean square error plot are shown in Figure 9 and the tendency that the
bias increases with low n (or high m) and that the variance increases with high n (or low m)
is clear also here. For this example we can see that n should be at least 20, and m should be
at least 3-4, with in this interval it is difficult to conclude any further. Looking at the two
MSE plots, it is worth noticing that the value of the MSE is approximately a factor 5 higher
using a total of 200 ensemble compared to using 1000 ensemble members.

6 Summary and Conclusions

The ensemble Kalman filter is a sequential Monte Carlo method that uses a finite ensemble
to approximate the covariance matrix during each data assimilation update. These
approximations will yield a different posterior estimate depending on the initial ensemble. It
has been observed that the amount of variation is substantial and significant by the standards
of a Kolmogorov-Smirnov test. The excess variation has been identified to be caused by
ensemble members being correlated samples from the posterior distribution. Markov Chain
Monte Carlo ([8]), which is another popular Monte Carlo method, is also plagued with the
problem that the generated samples are correlated.

13
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Figure 8: CDF plots for the static variable. The dashed lines outline the 95-% confidence
interval. The lighter background indicates the span of all the runs, and the solid line is the
CDF of the run with the infinite ensemble (10.000 members).

As a solution we have suggested to do several EnKF runs, each with fewer ensemble
members, rather that one large run. In this way more independent information about
the posterior CDF is obtained. Also we have presented a methodology and some general
motivations for finding an optimal choice for the combination of the number of ensemble
members (n) and the number of EnKF runs (m), keeping their product (n x m) constant.
This is done by minimizing the integrated mean square error.

One of the main points to be made here is that with only a single EnKF run, there is no
control over the Monte Carlo error in the estimated CDF. This means that making decisions
based on a single ensemble might be difficult, as a new EnKF run with a different seed may
give a completely different result.

The methodology is tested on a synthetic single-phase 2D example with a total of 1913
variables with two different resource restrictions, n xm = 1000 and n x m = 200. In both cases
we noticed that using too few ensemble members resulted in a very large bias and therefore
also a large MSE. The other extreme is using too few EnKF runs (low m); this results in a
large variance and therefor also in a large MSE. The optimal combination is then using enough
runs to have an acceptable variance, and also keep the ensemble size large enough so that the
bias is also at an acceptable level. For the first case, with m x n = 1000 it looked like an
ensemble size of approximately 100 was sufficient, where are for the case where m x n = 200
an ensemble size of around 20 was optimal. For both the minimum value of the integrated
MSE and the minimum tolerated ensemble size, there is approximately a factor 5 difference
between using a total of 1000 members and 200 members. The minimum number of runs

14
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Figure 9: The integrated values for the bias, variance and mean square error as a function of
n.

needed, on the other hand, is similar for the two cases, around 4 or 5. We believe that this
lower bound can be used as a general guideline for more complicated problems, whereas the

minimum number of ensemble members will be dependent on both the specific case and the
total resources available.
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