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Abstract Even though standard cohort component models are relatively easy to comprehend, 
designing simulations to match expected population estimates and projections in multiple countries 
and over long spans of time is surprisingly challenging. We identify microsimulation design options 
that replicate United Nations population estimates and projections in three countries (Norway, United 
States, and India) over a 150- year time span. The design adapts the United Nations cohort component 
model, which implies a certain ordering of demographic events, and uses either cohorts or age groups 
to assign risk. We design four simple microsimulations that use United Nations demographic statistics 
as exogenous variables. One model adjusts event ordering and assignment of risk by age, called the 
Split Fertility design, and one model does not. Each model operates in either one- or five- year steps. 
The Split Fertility design has less than one percent divergence in total births, deaths, and population 
in all three countries. The simpler design produces varying magnitudes of divergence, as large as 20% 
in India. The Split Fertility design is suitable for simulations that seek to maintain population dynamics 
in multiple countries, whether operating in one- or five- year steps. The Split Fertility design is ideal for 
comparative simulations that adapt demographic statistics from cohort component models. Develop-
ment of the design highlights the flexibility of simulations and the importance of careful interpretation 
of exogenous statistics in simulation design.
DOI: https:// doi. org/ 10. 34196/ ijm. 00289

1. Introduction
As computing capabilities expand, simulations can model complex processes among larger popula-
tions of artificial agents over longer periods of time (Anderson and Hicks, 2011). Agents can repre-
sent actual populations in a given region, where they are assigned characteristics (e.g., sex, ethnicity), 
engage in relevant behaviors (e.g., marriage, having children), and age as time advances. Research 
questions drive the specific design and outcome variables of a simulation, including the implementa-
tion of demographic processes. For some projects, modeling population change is central, while in 
others it is only a background process. In the latter case, a popular option is using demographic rates 
as exogenous variables, so that agents experience demographic events as state transitions (e.g. dying 
or giving birth) determined by an external statistic. This approach seems straightforward, but simula-
tion design is highly flexible and there is a veritable host of implementation options for demographic 
events (for overviews of demographic microsimulations and their options, see: Birkin and Wu, 2012; 
Li and O’Donoghue, 2013; Mason, 2014; Morand et al., 2010; Spielauer, 2011; Van Imhoff and 
Post, 1998; Zagheni, 2015; Zaidi and Rake, 2001). Even when using high- quality exogenous vari-
ables, microsimulations can produce unexpectedly divergent outcomes (Li and O’Donoghue, 2014).

We identify a set of simulation design options, called Split Fertility, which replicate the United 
Nations (UN) 2019 World Population Prospects estimates and projections in multiple countries over 
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the 1950- 2100 period. Our design adapts the UN cohort component model (CCM), which operates 
under specific assumptions and with specific mortality, fertility, and migration statistics. Even though 
standard CCMs like the UN’s are relatively easy to comprehend, designing simulations to match UN 
estimates and projections in multiple countries and over long spans of time is surprisingly challenging. 
Guidance on how to adapt demographic statistics from a CCM to a microsimulation is sparse (a 
chapter on the topic in a SAS manual was only published in 2021) (Marois and KC, 2021), and the 
‘black box’ of design decisions in existing complex demographic microsimulations is overwhelming 
(Dekkers, 2010). Knowledge of the mathematical relationships in demographic statistics is easily 
taken for granted, creating an invisible hurdle to overcome when designing a microsimulation from 
scratch.

When faced with a deluge of data sources and decision- making for microsimulation design, it is 
tempting to interpret statistics as the probability of experiencing an event for people in the displayed 
categories (e.g. women aged 20- 24) (Van Imhoff and Post, 1998), and to use alignment procedures 
to correct divergence (Li and O’Donoghue, 2014). As we demonstrate, taking an intuitive interpreta-
tion of UN statistics in a microsimulation can produce very large population divergences in some coun-
tries, depending on prevailing population dynamics. Reducing that divergence requires a detailed 
understanding of how the UN’s demographic statistics produce expected population dynamics within 
a standard CCM. In particular, we implement the CCM’s implied ordering of demographic events, 
accommodate UN statistics that use cohorts instead of current age to assign risk, and make additional 
adjustments when converting between five- and one- year time steps.

The Split Fertility design closely matches UN CCM estimates and projections of population dynamics 
in multiple countries. Matching UN CCM population projections with a microsimulation approach is 
valuable for several reasons. It enables implementing population dynamics in all countries modeled 
by the UN, and it strengthens the validity of simulation model results against a well- regarded standard 
(Morrison, 2008). In this paper, we describe in detail why the design works, which makes it accessible 
to those unfamiliar with traditional demographic techniques and statistics. The Split Fertility design is 
sensible given a thorough understanding of UN statistics and assumptions, but not particularly intui-
tive. We therefore compare the Split Fertility design to a simpler microsimulation design and identify 
country- specific conditions that produce particularly high or low divergence from UN data. We make 
the Split Fertility design freely available to use as a demography module in a simulation of any country 
with UN population projection and estimation data.

Computational simulations of population change are extremely flexible in implementation. This 
means that they force into the open measurement assumptions latent within less flexible CCM projec-
tions, allowing demographers to take full responsibility for whatever assumptions they finally adopt. 
The possibility of competing implementation assumptions invites measures of the difference it makes 
to adopt one design option over alternatives. This paper quantifies this difference in a basic way, using 
the UN CCM as a standard for comparison. Importantly, multiple approaches are supported in compu-
tational simulation, another indication of the utility of simulation methods for demography.

2. Background
2.1 Population Dynamics and Dynamic Simulations
There is a variety of human population simulation models. Because our purpose is to replicate the 
UN CCM projections, we focus on dynamic microsimulation models (MSMs) that treat demographic 
statistics as exogenous variables. By dynamic, we are referring to MSMs that involve the passage of 
time and allow individual agents to age and for agent characteristics to change due to exogenous 
demographic rates (Li and O’Donoghue, 2013). Dynamic MSMs are similar to agent- based models 
(ABMs) in that both focus on the level of individual agents. However, agents in ABMs typically interact, 
respond to processes endogenous to the model, take account of individual differences in agents, and 
allow for relatively complex cognition and behavior. By contrast, the agents in MSMs are placeholders 
for the imposition of stipulated stochastic events, such as probabilities of transitions between states 
(e.g. dying, giving birth, migrating). Thus, the MSMs we consider represent a “top- down” approach to 
simulating population change, whereas ABMs typically emphasize “bottom- up” behaviors and inter-
actions between individuals that produce non- linear feedback effects (Zagheni, 2015). It is possible 
to employ hybrid models that mix top- down and bottom- up components, and may include complex 
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behaviors, interactions, and transition probabilities shaped by both micro- and macro- level variables 
(Bae et al., 2016; Birkin and Wu, 2012). For simplicity, we will refer to dynamic MSMs or hybrid 
models as simulations hereafter.

The implementation of demographic rates as exogenous variables that update as time advances 
is a popular option in many policy- focused simulations (Li and O’Donoghue, 2013). For instance, 
healthcare demand and social- care models simulate the need for, and availability of, family- or formal- 
sourced care for young or older populations over time (Gostoli and Silverman, 2020; Mielczarek and 
Zabawa, 2021; Spijker et al., 2022). When designing a simulation that treats population dynamics as 
exogenous, it is intuitive to use reliable demographic statistics that are easily accessible. Most simula-
tions designed for a particular region or country use statistics from local governments. The DemoCare 
model, for example, is a hybrid model that follows cohorts of individuals as they age and are exposed 
to an exogenous risk of fertility and death, where the risk is determined by population statistics from 
Spain in 1908 to 1968 (Spijker et al., 2022).

Simulations that can use demographic statistics to model population outcomes in multiple coun-
tries are rare (for a notable exception, see Spielauer and Dupriez, 2019). One hindrance to compar-
ative model design is the availability of standardized data and proper implementation of that data 
in different countries. The World Population Prospect reports from the UN provide fertility, mortality, 
migration, and total population statistics by age and sex for all countries across a 150- year timespan 
(United Nations, 2019). The UN datasets are therefore a unique source for multi- country and compar-
ative simulations, and permit the use of exogenous statistics in simulations for both the past and 
future. The UN uses a CCM to connect past and future demographic statistics to the total expected 
population outcomes. However, there is little guidance on how to adapt the demographic informa-
tion provided by the UN into a simulation. In the following sections, we review the UN’s methods 
and explain why simulations can diverge from the UN’s population outputs even when using intuitive 
designs and applying the UN’s demographic statistics as inputs.

2.2 The UN’s Demographic Statistics and the Cohort Component 
Method
The UN develops population estimates and projections for nearly every country, and they periodi-
cally revise their estimates and projections. As part of this effort, the UN painstakingly estimates past 
fertility, mortality, and migration for each country using demographic techniques that standardize 
statistics from government, survey, and other sources (United Nations, 2019). The UN’s 2019 revision 
uses Bayesian techniques and explicit assumptions about trends in fertility, mortality, and migration 
to calculate demographic statistics that cover future periods (2020- 2100). The UN publishes variants 
of projections, or scenarios, based on different explicit assumptions. The Medium Variant projection 
scenario assumes birth rates will converge to a global medium, life spans will generally increase, 
and migration will continue at the count last observed for the 2015- 2020 interval; these assumptions 
are consistent with contemporary demographic theory and are tractable at the global scale (United 
Nations, 2019). The UN therefore estimates demographic statistics for the 1950- 2020 period retro-
spectively using observed data, and uses demographic theory and statistical techniques to derive 
future demographic statistics. The entire process is iterative and the UN must maintain a global net 
balance in population totals.

Despite variation in how the UN calculates each country’s estimates and projections from different 
data sources and methods, past and future demographic statistics operate seamlessly within the CCM 
to produce population totals for the entire 1950- 2100 period. The UN’s CCM starts in 1950 with the 
estimate of total population by sex and five- year age groups, and moves forward in five- year intervals.1 
The number of births is determined using age- specific fertility rates (ASFRs), a proportion of people in 
each age group survives based on survival ratios (SRs), and everyone is aged forward five years. The 
count of net migrants is also added or removed before the next five- year interval. Despite changes in 
how fertility, mortality, and migration statistics are derived in the estimation years (1950- 2020) and the 

1. The 2019 WPP and previous UN revisions operate in 5- year intervals, but the most recent revision (2022 WPP) 
operates in 1- year intervals. CCMs that operate in 5- year intervals are still very common, which means our adap-
tion of the 2019 WPP CCM may be generalizable to similar non- UN models. Future research can consider which 
additional adjustments are necessary when adapting a CCM operating in 1- year intervals.
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projection years (2020- 2100), the CCM procedure can start from any five- year interval between 1950 
and 2095 and be repeated until 2100 (United Nations, 2019).

The UN’s demographic data are high quality and freely available to use as exogenous variables in 
a simulation of any country’s population covering up to 150 years. The UN’s CCM procedure seems 
straightforward, suggesting that a match between simulation and CCM outcomes is simple to achieve. 
In fact, the rich implementation- assumption space of simulations surfaces complexities in the CCM 
procedure. The CCM has an implied ordering of demographic events and non- intuitive assignment 
of risk using cohorts. To understand these complexities, we must examine the demographic statistics 
used as inputs in the UN’s CCM model and the assumptions underlying time and age concepts.

2.3 Demographic Statistics, Event Ordering, and the Population at Risk
CCM and simulation approaches differ in how they assign the probability of experiencing an event at a 
given point in time (Van Imhoff and Post, 1998). In a simulation approach, agents have an individual 
probability of experiencing each event based on their characteristics (e.g. age, sex) and behaviors (if 
relevant; in the case of the MSMs in this paper, agent behaviors are not relevant). When operating 
with discrete time, the agent will experience an event instantaneously at a specific time. A major 
design decision is selecting the order that agents may experience events. Events can occur in a set 
order, in a random order for each agent, in an order where the higher probability event always occurs 
first, or with multi- step Monte Carlo experiments to determine the conditional probability of each 
event (for a discussion of competing risk in microsimulation, see Van Imhoff and Post, 1998). Event 
order can be decided based on theory, realism, the structure of the original data source, and/or for 
computational efficiency.

The structures of UN demographic statistics have consequences for selecting event ordering and 
assignment of risk by age for a simulation. Unlike individual- level probabilities in a simulation where 
events occur instantaneously in a given moment, many demographic statistics are in the form of an 
“occurrence/exposure” rate for a given period of time (Preston et al., 2000). That is, the number 
of occurrences (e.g. births) is the numerator, and the denominator is the number of people exposed 
to the risk (e.g. the female population of childbearing ages), over a time interval, such as five years. 
Membership of the population at risk can change within five years, because people simultaneously 
move in/out of the geographic area, die, age into a different risk group, or experience some other 
state change (Van Imhoff and Post, 1998). Demographic rates therefore use the mid- point popula-
tion to identify the average population at risk and account for this alteration in the population at risk 
over time The mid- point population is the simple average of the population at time t and time t+5, 
where t is the starting year population (e.g. 1950) and t+5 is the population after all other events like 
mortality, aging, and migration have occurred (e.g., 1955) (Preston et al., 2000). Using the mid- point 
population can seem like ‘borrowing’ information from the future, which conflicts with a simulation 
approach in which time marches forward continually.

Consider the age- specific fertility rates (ASFRs), which represent the number of live births per year 
and per 1,000 females in an age group. The count of at- risk persons is the five year interval’s mid- 
point female population in the age group (e.g. average of those aged 20- 24 in 1950 and in 1955). 
The ASFRs, therefore, represent the average risk of childbirth per year over a five- year interval, and 
presume information about the start and ending time point to identify the population at risk. Between 
time t and time t+5, some in the female population will die, migrate, and everyone will age each year, 
which moves them into a different age group’s fertility rate. In a simulation, the ASFRs will produce 
the wrong number of births if treated as a probability of birth occurring during the interval and if it is 
applied only once in a set order (e.g. always before or always after mortality), because there are either 
too many or too few agents in the population at risk at the given moment.

Some demographic statistics use birth cohort instead of age to describe the population at risk over 
a time interval. Using the cohort means group membership has a more permanent designation based 
on year of birth (e.g. those born in 1950- 1954), rather than current age that advances each year. For 
instance, to identify how many people in a cohort survive from the beginning of a five- year interval 
to the next, the UN’s CCM uses the survival ratio (SR) statistic. The SR is calculated from an abridged 
life table, which is a classic tool used in demography to describe different pieces of information about 
how a birth cohort “dies out” over time (Preston et al., 2000). In a five- year CCM, the SR is the 
proportion of a cohort surviving from age x to x+5 from time t to t+5. The SR for males aged 20- 24 in 
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1950, for example, describes the proportion that will survive into 1955 to become ages 25- 29. Unlike 
the ASFRs that use a mid- point population, the SR applies to cohorts present at the beginning of 
the interval and to the newest cohorts born during the interval. The SR explicitly ignores changes in 
the population at risk when people enter or leave via migration. In a simulation, therefore, mortality 
should occur before aging and migration, and must occur after new births.

Migration statistics in CCM models can also rely on cohort designations, though some are designed 
as average exposure rates like ASFRs (Preston et al., 2000). In the case of the UN’s CCM, migration 
is best handled using cohorts, and the UN’s net migration statistic is provided as a count instead of a 
rate. The count of UN net migrants corresponds to the number of migrants to add or remove at the 
end of each five- year interval after everyone has been born, survived, and aged forward. This seems 
strange, but it is necessary because net migration is the residual between observed changes from 
natural increase (births minus deaths) and the total population at time t+5.2 The UN only published 
total net migrant counts by sex (not age) in the 2019 revision. Therefore, it is necessary to calculate 
the age distribution of net migrants by applying the CCM calculations before using the statistic in a 
simulation (see the appendix for our net- migration calculation procedure).3 Since migration is calcu-
lated after each cohort is aged forward, the cohort designations of net migrants match their age at the 
end of each five- year interval. In a simulation, migrants should be added or removed after mortality 
and aging.

Across all demographic events, differences in magnitude by age are apparent. Age groups may 
refer to the current age in any given year, or they may be birth cohort designations described by the 
population’s age at the beginning or end of the five- year interval. Users unfamiliar with conventional 
cohort designations may experience confusion when interpreting the age labels in UN data used to 
calculate CCMs. For instance, the UN lifetables show SR (column name is Sx,n) statistics for those 
of initial age 0, 1, and 5 on separate rows. It is not accurate to interpret these as applying to those 
aged 0- 1, 1- 4, and 5- 9, respectively, and there are exceptions to interpreting them as the population’s 
initial age as well. The first entry for initial age “0” is the proportion of new cohorts born over the 
five- year interval (e.g. new births in 1950- 54) who will survive to be the new 0- 4 age group by the end 
(e.g. 1955). The SR for initial age “1” is the proportion of the population aged 0- 4 at the start of the 
five- year interval who will survive to ages 5- 9. The SR of initial age “5” does describe survivorship of 
those aged 5- 9 at the beginning of the interval who will be 10- 14 by the end. Subsequent initial ages 
in the life tables are interpreted similarly. This labeling may seem misleading but interpreting it this 
way ensures full coverage of both newborn and other young cohorts while distinguishing important 
differences in early life mortality risk. After calculating migration counts from a CCM procedure, it is 
also important to interpret the resulting age groups carefully. Migrants in the 0- 4 group, for instance, 
refers to those who are age 0- 4 at the end of the five- year period. Knowledge of how to interpret age 
groupings for each demographic event is important to assigning risk in a simulation to the appropriate 
set of agents and in the correct order.

With this more in- depth understanding of the implied event ordering of the UN’s demographic 
statistics in the CCM,4 designing a simulation that assigns risk to the appropriate population while 
operating prospectively is more complicated. How should a simulation use the UN’s statistics to 
maintain population dynamics at the individual level? As we will demonstrate, however, simply by 
adjusting the order of demographic events in a simulation, we can achieve an exact match with the 
UN’s expected births, deaths, and total population when operating in five- year time steps. Several 
more adjustments are necessary to achieve a close match when operating in one- year step, but we 
believe these adjustments are worth the effort, particularly in high- growth countries.

2. The UN estimates migration in ways other than the residual method, depending on data sources in each 
country. However, the survival ratio calculation operates under the assumptions of net migration as a residual, 
and using the survival ratios alongside net migration allows for standard interpretation across countries.
3. We compared our calculation against age- specific counts graciously provided to us by the UN to confirm our 
approach was correct.
4. For an in- depth discussion of demographic statistics, see Preston et al. (2000).
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3. Two Demographic Microsimulation Designs
3.1 An Intuitive Interpretation
Not everyone who uses UN or similarly structured demographic statistics has a detailed understanding 
of the CCM method or how to interpret ASFRs, SRs, and net migration counts for a simulation. It is 
reasonable to assume that a simulation designer may attempt an intuitive approach first. For instance, 
consider an ‘Intuitive’ design that mimics how the UN’s CCM appears to order demographic events, 
and only uses current age to assign risk.5 This design is incorrect, but it serves as a useful foil for the 
correct approach. Suppose there is a version of the model that operates in five- year steps, and one 
that operates in one- year steps. The following demographic events occur in the specified order during 
each time step:

1. Fertility: female agents experience the full time step’s childbearing risk according to their 
current age and corresponding ASFR.

2. Mortality: agents experience death according to their current age and corresponding age 
labels for SR in the UN lifetable. Those who die are removed from the simulation.

3. Aging: surviving agents advance in age.
4. Migration: immigrants arrive and emigrants are removed from the simulation according to 

their current age and corresponding age labels for net migrants calculated from the UN data.

This design’s event ordering ignores the meaning of the mid- point population for the ASFRs, 
which uses exposure to account for the fact that all processes (births, deaths, migrations) are occurring 
simultaneously in real life. When applied to a simulation, the structure of the ASFR statistic suggests 
fertility occurs both before and after mortality, aging, and migration. When operating in a five- year 
step, this design will only be reliable when population dynamics maintain the size of female cohorts 
over time (e.g. a stationary one). If societal conditions favor a decline in females of high childbearing 
risk between the beginning and end of the five- year interval, there will be more births than expected. 
When the female population at elevated risk grows between the start and end of the interval, however, 
there will be fewer births than expected. When switching to a one- year step, the ASFR ordering 
problem is minimized because fertility occurs every year along with mortality, aging, and migration. 
Although the entire five- year fertility risk still favors female agents present before other demographic 
events occur, the magnitude of the problem is smaller.

The Intuitive design correctly places mortality before aging and migration after aging, which means 
that agents’ current age is the same as their cohort designations when mortality and migration occurs 
in the simulation. However, this is only true when operating in five- year steps. If current age is used to 
assign mortality and migration at the one- year step, then after the first one- year step, some agents will 
have a different cohort’s SR applied to them than intended by the CCM. Applying the SR according 
to current age will generally overestimate deaths because it exposes younger agents to higher rates 
of death prematurely. Applying the SR by current age will also underestimate infant deaths because 
newborn cohorts age out of their high- risk cohort designation too soon.6 The impact of incorrect 
assignment by age for migration is highly variable and depends on the age distribution of emigration 
and immigration for a given country and time. In general, migrants will leave or enter the simulation 
at a current age five years older than their cohort designation implies. That is, if an immigrant is 
arriving in 1950 to the “10” cohort designation, they should actually arrive as age “5” because their 
cohort corresponds to the age they will be in 1955, not 1950. Therefore, when cohort designation is 
interpreted as current age, migrants would be in an older age group when experiencing other demo-
graphic events.

Population dynamics are inherently connected, so higher or lower expected births leads to diver-
gence in deaths and the size of the overall population, and the impact can compound with successive 
cohorts. If there are too few births over time, the cohorts of childbearing female agents will be smaller 
and there are even fewer births in later decades. Societal conditions can also reverse over time to 
favor too many births, deaths, or vice versa. Country- specific population dynamics, therefore, can 
produce very different profiles of divergence over a 150- year span.

5. While other similarly intuitive event- sequencing options exist (e.g. randomizing their order, assigning condi-
tional probabilities, or moving aging to the last event), our Intuitive design is an efficient fixed order design that 
someone with a basic understanding of the UN’s CCM could implement quickly.
6. In essentially all countries and periods, infant mortality is much higher than mortality for children aged 1- 4.
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3.2 The Split Fertility Design
So, what is the solution? We propose the Split Fertility design, which splits the fertility process so that 
childbearing happens twice instead of only once during each time step. At each round of the fertility 
process, that risk is halved according to the time steps of the model (e.g. 2.5 years of risk when oper-
ating in five- year steps, and 0.5 years of risk when operating in one- year steps). New agents born in 
the second round of fertility must immediately experience mortality and aging, so that they join their 
fellow infant cohort born in the first round of fertility. We summarize the order of events and assign-
ment of risk in the Split Fertility design below:

1. The first round of fertility: female agents experience half of the childbearing risk for the time 
step according to their current age and corresponding ASFR.

2. Mortality: agents experience death according to their initial cohort age and corresponding 
age labels for SR in the UN data. Those who die are removed from the simulation.

3. Aging: surviving agents advance in age.
4. Migration: immigrants arrive and emigrants are removed from the simulation according to 

their ending cohort age and corresponding age labels for net migrants calculated from the 
UN data.

5. The second round of fertility: female agents experience another half of the childbearing risk 
for the time step according to their current age and corresponding ASFR.

6. Second round infant mortality and aging: only applies to new agents born in the second 
round of fertility.

By splitting the fertility risk, we replicate the mid- point population while also operating entirely 
prospectively. Doing so allows half of fertility risk to occur before mortality, aging, and migration, and 
half to occur after those events. Mortality and migration still occur in the order specified in the CCM, 
and to the appropriate age groups for a model operating in five- year steps.

When operating in one- year steps, however, we make additional adjustments to risk assignment 
by age to use cohort designations for mortality and migration events. As previously described, the 
SR applies to the cohort present at the beginning of each five- year interval and new births. The SR 
cohort designation generally matches current age at the beginning of each five- year interval. The 
cohort designations for migration counts, however, correspond to current age at the end of each five- 
year interval. This means that a one- year model must track agents’ current age, as well as starting and 
ending ages that match their cohort designations.7 Table 1 shows the age assignments for a hypothet-
ical female agent aged 43 at the start of a five- year interval (t=0). Round two refers to the agent’s char-
acteristics during the second round of fertility in the Split Fertility design, which occurs after mortality, 
migration, and the aging process. Starting age is set to match current age at t=0, and end age adds 
five years onto initial age. The values of starting and end age do not change until the next five- year 
interval. As shown, the fertility rate follows current age, the SR always matches the starting age, and 
the selection of migrants always corresponds to immigrant or emigrant agents’ end age.

7. Tracking five- year cohorts to describe both starting and ending ages is also appropriate, but we have separat-
ed them here to be consistent with how the cohorts have different labels when used in the UN CCM.

Table 1. Assignment of Demographic Event Risk by Age for 1- year Split Fertility Design

t=0 Rnd. 2 t=1 Rnd. 2 t=2 Rnd. 2 t=3 Rnd. 2 t=4 Rnd. 2

Agent Age Characteristics

Current Age 43 44 44 45 45 46 46 47 47 48

Starting Age 43 43 43 43 43

Ending Age 48 48 48 48 48

Corresponding Age Labels for UN Statistics

Fertility Rate 40- 44 40- 44 40- 44 45- 49 45- 49 45- 49 45- 49 45- 49 45- 49 45- 49

Survival Ratio 40- 44 40- 44 40- 44 40- 44 40- 44

Migration Count 45- 49 45- 49 45- 49 45- 49 45- 49

https://microsimulation.pub/subjects/demography
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Three other adjustments to the mortality and migration process are required to achieve the best 
fit to UN targets when operating in one- year steps. First, it is necessary to grant immigrants special 
immunity to death for the remaining years of each five- year interval. Since the SR only assigns risk to 
those present (or born) since the beginning of each five- year interval and immigrants arrive each year, 
they must be immune to death until the next interval starts.

The second and third adjustments apply to new cohorts born over a five- year interval to account 
for the uneven exposure to risk that newborn cohorts experience in their first five- year interval. It 
is helpful to visualize years of risk experienced by each newborn cohort as shown in Table 2, which 
resembles a simplified lexis diagram. Cohort “A” is born in the first year and is exposed to a full 
five- years of risk, while cohort “E” is born in the last year of a five- year interval and experiences only 
one- year of risk. When all years of risk (the cells in gray) are summed, there are 15 years of total risk 
across five newborn cohorts. In contrast, older cohorts would have all gray cells in the table filled in 
and experience 25 years of risk across five cohorts.

It is intuitive to calculate yearly net migrants as the UN’s total count divided by 25 for older cohorts, 
resulting in an even distribution of migrants among all individual ages in each cohort. But among 
newborn cohorts, the yearly risk should be divided by 15. This adjustment effectively results in the 
first newborn cohort receiving about 1/3 of newborn cohorts’ total net migrants, and the last newborn 
cohort only about 7%.8 We must similarly adjust the calculation of mortality risk for newborn cohorts. 
Since the SR is expressed as probability of survival across a five- year interval, annual mortality risk 
among older cohorts is calculated by taking the UN SR to the fifth root and subtracting it from one. 
That is, the mortality rate (Model MR) for non- newborns is calculated as:

 
(
Model MR

)
= 1 − 5

√(
UNSR

)
  

We estimate annual mortality risk among newborn cohorts by taking the third root of the SR 
instead, which accounts for the newborn cohorts experiencing only 15 out of the 25 total years of 
exposure over the five- year interval (i.e. 5 * 15/25 = 3). This is a simple adjustment that achieves a 

8. It is important to note that Table 2 differs from a traditional lexis diagram because it operates in whole years 
of risk. It is more accurate to assume average risk as halfway through the year, that is, each year column in Ta-
ble 2 is split in half and cohorts are born halfway through the first year on average. Therefore, cohort “A” should 
have 4.5 years of total risk, because they only experience 0.5 years of risk in their first year. Similarly, cohort “E” 
would only have 0.5 years of risk. Altogether, newborn cohorts would have only 12.5 years of risk. However, this 
has consequences for the accuracy and simplicity of implementation in a simulation, particularly for migration. 
Dividing the migration count by another half introduces more rounding error because migration is relatively rare 
when the simulation population is scaled down. In the first year a cohort is born, there could be zero migrants 
to the cohort simply because halving the count does not result in an entire agent, and there will be five too few 
migrants in that interval. Net migration can be consistently underestimated and eventually impact other popula-
tion dynamics if the problem persists over decades, which is the case for projection years (2020- 2100) when net 
migration is held constant. One alternative is to calculate risk for each newborn cohort separately (e.g. cohort 
“A” annual proportion of net migrants is calculated as 4.5/12.5/5 multiplied by total expected newborn migrants, 
cohort “B” has 3.5/12.5/4, and so on), but this is needlessly complex. Another alternative is to introduce stochas-
ticity, where a minimum number of migrants leave/arrive each time step and the fraction of expected migrants 
becomes the probability of an additional migrant for that time step. This option introduces complexity and 
variability. The difference in approaches is likely small. We believe our solution is the most straightforward way to 
recognize uneven risk among newborn cohorts while achieving both a good match to UN targets and simplicity 
in simulation design.

Table 2. Years of Risk among Newborn Cohorts

Cohort Year 0 Year 1 Year 2 Year 3 Year 4 Total Years of Risk Percent of Total

A 1 1 1 1 1 5 33

B 1 1 1 1 4 27

C 1 1 1 3 20

D 1 1 2 13

E 1 1 7

Total 15 100

https://microsimulation.pub/subjects/demography
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close fit to expected deaths while giving each newborn cohort differing exposure to risk over the five- 
year interval9 . Therefore, among newborn cohorts (SR[0]), the mortality rate is calculated as:

 
(
Model MR[0]

)
= 1 − 3

√
UNSR

[
0
]
  

These adjustments are sensible with a thorough understanding of the UN’s statistics, but they are 
not intuitive. This is why the one- year version of the Intuitive design only uses current age to assign 
risk and doesn’t afford special treatment to infants’ calculation of risk or grant any immunities to 
immigrants. In the one- year Intuitive design, infant migrant counts and survival ratios are divided the 
same way as among agents in all other age groups. Contrasting the Intuitive and Split Fertility designs 
highlights the flexibility of simulations in implementing demographic statistics, and the importance of 
event ordering and how risk is assigned by age in a simulation.

4. Methods
4.1 Data
Data for MSM inputs and validation come from the UN’s 2019 World Population Prospects report 
for the countries of Norway, the United States (US), and India (United Nations, 2019). These three 
countries vary considerably in size and population dynamics over the 1950- 2100 period. India is at 
an earlier stage of the demographic transition than the US and Norway. It has a much younger popu-
lation and higher mortality risk in 1950 that drops quickly while fertility declines at a slower pace. 
Finally, India has much lower and net negative migration relative to its population size; although the 
US has relatively high net positive migration throughout the period, Norway achieves the highest net 
migrants relative to its population. These national differences challenge simulation- CCM matching 
in diverse ways. We downloaded UN data for each country on the population age/sex distribution, 
age- specific fertility rates, the abridged life table, infant sex ratios, as well as the total count of births, 
deaths, and net migrants.

4.2 Microsimulation Models
We designed four MSMs with AnyLogic 8.7.6: the Intuitive design in five- year steps and one- year 
steps, and the Split Fertility design in five- year steps and one- year steps. The Intuitive and Split Fertility 
designs differ in the ordering of demographic events and adjustments to the fertility rates, and the 
one- year versions differ in the risk assignment of agents by age. All models share common- sense 
adjustments to calculations when converting between annual and five- year periods of risk. The char-
acteristics of each model and formulas are summarized in Table 3, and described in more detail below.

All four models are “top down” designs that use the sorting method for variance reduction 
(Bekkering, 1995; Van Imhoff and Post, 1998). To determine how many agents die and are born 
each time step, we apply the UN’s statistics as a rate to the size of the appropriate age/sex group 
of agents present at a given time. The resulting number of agents within the corresponding age/sex 
grouping are selected at random to experience the event. In the case of fertility, newborn agents are 
randomly assigned to female agents in the corresponding age group. For migration, we simply select 
the number to emigrate at random among the appropriate age/sex group, and initialize the number 
of immigrants as appropriate. The statistics update with every five- year interval, according to the avail-
ability of the UN data. The UN’s statistics are therefore exogenous, but the population at risk by age/
sex characteristics is endogenous. This approach allows us to highlight the consequences of altering 
the event order and age assignment of risk, without interpreting random variation in the number of 
events as divergence from UN targets. Supplementary material in the appendix shows results using 
a more stochastic design (demographic rates and distributions are implemented as the probability of 
each agent experiencing the demographic event).

9. Alternative calculations of mortality risk at smaller time intervals with higher accuracy are likely available, 
but we were unable to find a more accurate straightforward solution. Implementing more complex adjustments 
would have marginal return to accuracy for a microsimulation. Our estimate of infant mortality risk introduced 
very little divergence even in a country with high infant mortality, and the divergence is negligible in countries 
with low infant mortality.

https://microsimulation.pub/subjects/demography
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The statistics from the UN determine the age and sex distribution of the population at initial-
ization and birth. Each simulation uses an initial sample of 100,000 agents, which is more efficient 
than running at full scale in each country, but still large enough to avoid substantial rounding errors 
common to the sorting method (Bekkering, 1995). At initialization, the sample of 100,000 agents 
matches the age and sex distributions of each country in 1950 according to UN data. In the five- year 
versions of the models, we use the UN’s data on sex and five- year age groups to initialize agent char-
acteristics (i.e. agents are age 0, 5, 10, 15, etc.). In the one- year versions of the models, we use the 
UN’s data on sex and age in individual years to initialize agent characteristics (e.g. agents are age 0, 
1, 2, 3, etc.).10 When new agents are born, they are assigned a sex to match the UN’s infant sex ratio.

For the fertility process, each model makes slight adjustments to the UN ASFRs, which originally 
express annual births per 1000 females over a five- year interval. In the one- year version of the Intuitive 
design, we simply divide the ASFRs by 1000 to calculate the annual births per female agent. In the 
five- year version of the Intuitive design, we also multiply the ASFRs by five to expose female agents 
to the entire five- year interval’s risk of childbirth at once. We do the same adjustments for the Split 
Fertility designs, but we also halve the UN ASFRs, so that half of childbearing risk occurs in round one 
before mortality, aging, and migration, and half occurs afterward in round two fertility. These adjusted 
formulas are shown in Table 3. Newborn agents initialize immediately after each fertility event and 
they receive a sex based on the UN’s infant sex ratio. In the five- year versions of each model, newborn 
agents are assigned an age of negative five, and in the one- year versions of each model they are 
assigned an age of negative one. After the second round of fertility, newborn agents immediately 
experience mortality and aging. This ensures that by the end of each interval, second round infants 
join first round infants in the same age group.

For the mortality process, we also made slight adjustments to the UN SRs before applying them 
to agents in a particular age/sex group. The UN SR expresses the entire five- year interval survival 
for those present at the start of the interval and for new births. Formulas to convert the UN SR to a 
mortality rate for interval and annual risk are shown in Table 3. In the five- year versions of each model, 
we calculate mortality risk by subtracting the SR from one. In the one- year versions of each model, 
annual survival can be estimated as the fifth root of the SR, and therefore the annual risk of death 
is one minus that value. In the Intuitive design and the five- year designs, we apply mortality risk to 
agents based on their current age. Agents aged 100- 104 experience the same risk as those aged 
95- 99, and agents who reach an age of 105- 109 have a mortality rate of 1 so that no agents are aged 
110 or older. In the one- year version of the Split Fertility design, the mortality risk applies to agents 
based on their initial age instead of their current age. Also, for newborn cohorts, we take the third 
root of the SR instead of the fifth root. Lastly, immigrant agents in the one- year Split Fertility design 
are immune from mortality risk until the start of the next five- year interval.

Migration is split into emigration and immigration processes, with adjustments to their calcula-
tions also shown in Table 3. We start with the count of net migrants by age group and sex for each 
five- year interval, which we derive from the UN’s CCM procedure. Since all four simulations start 
with 100,000 agents instead of the full population of each country, we must scale down the count of 
net migrants accordingly. We designate negative counts as emigrants and positive counts as immi-
grants. For emigration in the five- year models, we randomly draw agents to match the known count 
of emigrants in each age/sex group, and remove them from the simulation. For the immigration 
process, the corresponding number of new agents initialize into the simulation. In the one- year 
version, because we select emigrants across five years and five age groupings, we divide the known 
emigrant count by 25, and remove that number of emigrants for each one- year age/sex group. We 
do the same for the one- year version of immigration, dividing the known count of immigrants by 25 
before generating new agents. In the Split Fertility design, newborn cohort migrants are divided by 
15 instead of 25. Importantly, immigrants in the Split Fertility design initialize by their age at the end 
of the interval, so we calculate their current age by subtracting the remaining number of years in 

10. The UN provides limited annual and single age- group statistics as interpolated from their five- year data. We 
only use the one- year data to initialize the population in one- year age groups. The annual and individual age 
group data is insufficient to adapt the UN’s five- year CCM to a one- year model.

https://microsimulation.pub/subjects/demography
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the five- year interval. This ensures the immigrant 
agent is the correct age at the end of the interval 
and not older than expected when contributing to 
fertility. To match expected values for immigration, 
immigrant agents in the Split Fertility design are 
immune from death and emigration risk until the 
five- year interval ends.

4.3 Comparison Metrics
A calculation of mean relative divergence is 
commonly used to externally validate population 
projections operating with the same underlying 
assumptions (Marois and KC, 2021). To compare 
the size of the divergence between models and 
over time, we calculated the average percent diver-
gence in the expected number of births, deaths, 
and total population in relation to the UN’s CCM- 
derived values. First, we summed the absolute 
difference between the UN and MSM results at the 
end of each five- year interval, and averaged that 
difference for the entire 1950- 2199 period as well 
as for 50- year subsets (i.e., 1950- 1999, 2000- 2049, 
and 2050- 2099). The percent difference is calcu-
lated using the UN’s results as the denominator for 
each outcome. An average of 2.6% divergence for 
births, for instance, means that births exceed or fall 
short of the UN’s value by 2.6% on average for the 
time period shown. We assess skew toward positive 
or negative divergence visually.

5. Results
Table  4 shows how the five- year versions of the 
intuitive and Split Fertility models compare in the 
average divergence from the UN counts of births, 
deaths, and the total population. In all three coun-
tries, the Split Fertility design replicates the UN 
target values. The Intuitive design leads to a diver-
gence of varying magnitude. The distance from the 
UN figures is largest in India, where the population 
is off by an average of 8.9% across all periods, while 
it is only 2.7% in the US and 1.5% in Norway. For all 
countries, the divergence in births appears largest 
during the 2000- 2049 period, while divergences 
in deaths and total population increase with time. 
By the 2050- 2099 period, the Intuitive design in 
India averages a sizeable divergence (10%) in total 
population.

Table  5 shows the one- year versions of the 
Intuitive design and the Split Fertility design. The 
Intuitive design consistently produces the most 
divergence in all three countries. The Split Fertility 
design improves upon the Intuitive design in all 
countries, however, it does not eliminate diver-
gence completely. Average overall divergence 
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across the three countries and demographic outcomes are around 1% or less when using the Split 
Fertility design. Compared to the five- year Intuitive design, the one- year version of the Intuitive design 
produces slightly smaller divergence in the US and Norway, but the diverge in India is much larger. 
Across all demographic outcomes, overall divergence in India’s one- year Intuitive model is over 20%.

Figure 1–3 graph the results of each model for Norway, the US, and India respectively. In Norway 
(Figure 1), the five- year Intuitive design initially produces too many births, but then it consistently 
underestimates births. The one- year Intuitive design produces much smaller magnitude of divergence 
in births than the five- year model through 2050, but afterward there are fewer and fewer births than 
expected each period. The one- year Intuitive design produces particularly higher death counts than 
expected in 1950- 1980 and after 2020. Taken together, the Intuitive designs’ divergences in births 

Table 4. Average Percent Divergence from UN Target Values in 5- year Models

Births Deaths Total Population

Country Period Intuitive SF* Intuitive SF* Intuitive SF*

Norway 1950- 2099 2.7 0.0 0.8 0.0 1.5 0.0

1950- 1999 2.6 0.0 0.1 0.0 0.5 0.0

2000- 2049 2.7 0.0 0.2 0.0 1.5 0.0

2050- 2099 2.7 0.0 1.5 0.0 2.0 0.0

Usa 1950- 2099 3.7 0.0 1.8 0.0 2.7 0.0

1950- 1999 3.6 0.0 0.2 0.1 1.3 0.0

2000- 2049 4.2 0.0 1.0 0.0 3.0 0.0

2050- 2099 3.4 0.0 3.1 0.0 3.2 0.0

India 1950- 2099 9.3 0.0 7.0 0.0 8.9 0.0

1950- 1999 7.3 0.0 3.2 0.0 4.0 0.0

2000- 2049 11.2 0.0 5.0 0.0 9.3 0.0

2050- 2099 9.4 0.0 10.1 0.0 10.7 0.0

*Split Fertility Design

Table 5. Average Percent Divergence from UN Target Values in 1- year Models

Births Deaths Total Population

Country Period Intuitive SF* Intuitive SF* Intuitive SF*

Norway 1950- 2099 1.6 0.3 3.3 0.5 2.1 0.3

1950- 1999 1.0 0.3 3.3 0.9 1.2 0.1

2000- 2049 0.8 0.3 3.8 0.7 1.3 0.2

2050- 2099 2.9 0.1 3.0 0.2 3.3 0.4

Usa 1950- 2099 2.0 0.5 2.2 0.6 3.1 0.3

1950- 1999 0.9 0.6 3.6 0.5 1.4 0.2

2000- 2049 1.6 0.2 3.1 0.6 2.7 0.3

2050- 2099 3.5 0.5 0.8 0.6 4.5 0.2

India 1950- 2099 19.5 0.3 20.8 0.6 20.7 0.3

1950- 1999 8.1 0.3 18.3 1.1 11.1 0.3

2000- 2049 23.8 0.4 14.6 0.5 21.2 0.3

2050- 2099 29.4 0.3 25.7 0.4 24.4 0.4

*Split Fertility Design
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Figure 1 Results of Norway Models, scaled up to actual population size

Figure 2 Results of USA Models, scaled up to actual population size
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and deaths result in a slightly underestimated population size by 2100. In contrast, the five- year Split 
Fertility design is a perfect match to UN targets, but the one- year version still has some divergence, 
with a very slight underestimation of deaths.

The patterns of divergence for the US models (Figure 2) are similar to Norway, but of greater 
magnitude. The US Intuitive designs underestimate births in the first period, and the one- year Intui-
tive design likewise overestimates deaths during several periods. The USA five- year Intuitive design 
noticeably underestimates deaths after 2030. The Intuitive designs’ underestimation of the overall 
population in the US occurs earlier than in Norway. Meanwhile, the US five- year Split Fertility design 
yields an almost exact match with the UN’s estimates and projections, although the one- year version 
slightly underestimates births and deaths.

In India (Figure 3), the Intuitive designs produce opposite patterns of divergence, while the Split 
Fertility designs are both exceptional matches to UN targets. The five- year Intuitive model underesti-
mates births, while the one- year version overestimates births starting in 1970. The five- year Intuitive 
design likewise underestimates deaths, particularly after 2030, while the one- year version initially 
underestimates deaths until 2005 when it dramatically overestimates them thereafter. Overall, the 
five- year Intuitive design underestimates total population and the one- year version overestimates it, 
but only after a few decades have passed.

6. Discussion
It is worth contemplating why the Intuitive designs diverge from the UN CCM projections in different 
ways across the three countries analyzed in the study. In Norway, the divergence is relatively negli-
gible regardless of design; in the US, the Split Fertility design clearly benefits the estimation of births; 
and in India, the divergence becomes quite large with time and in different directions depending on 
the time- step of the model. The magnitude and specific pattern of the divergence varies because of 
population dynamics and potential compounding from trends among females of childbearing age. 
Figure 4 summarizes the population dynamics of each country among females age 15- 49 based on 

Figure 3 Results of India Models, scaled up to actual population size

https://microsimulation.pub/subjects/demography
https://microsimulation.pub/subjects/dynamic-microsimulation
https://doi.org/10.34196/ijm.00289


 
Research article

Demography; Dynamic microsimulation

Bacon et al. International Journal of Microsimulation 2023; 16(3); 77–99 DOI: https:// doi. org/ 10. 34196/ ijm. 00289 92

UN data. India is going through the first demographic transition during the first 50 years of the simu-
lation, which results in rapid population growth. The US and Norway are going into the second demo-
graphic transition, with low fertility, mortality, and an aging population, but they are also hosts to large 
waves of immigration that offset population decline.

The five- year Intuitive design underestimates births in populations with growing female popula-
tions at childbearing age, overestimates births in populations that are declining, and the timing of this 
growth and decline produces unique patterns of divergence. Large divergence in births naturally has 
compounding consequences for deaths and total population. In the 1950s, there are excess births in 
Norway because the population of females at childbearing ages is declining from emigration and the 
consequences of low fertility during World War II. There are suddenly far fewer births than expected 
during the 1960s because the baby boomer cohorts age into childbearing risk, and then divergence 
diminishes in the 1970s as the age distribution becomes rectangular. Immigration to Norway increases, 
peaking between 2005 and 2015, and thereafter the Intuitive designs underestimate births. The US 
experiences similar patterns in age structure and immigration, but never has net emigration and has 
an earlier peak in immigration than Norway. The divergence in India’s five- year Intuitive designs seems 
negligible at first, because initially high mortality maintains a delicate balance in the size of rapidly 
growing female cohorts. The divergence in births picks up between 1960 and 2000, because the sharp 
decline in mortality permits rapid growth in cohorts at risk for childbirth. As the age structure becomes 
more rectangular, the divergence in births stabilizes. The underestimation of deaths becomes much 
larger in magnitude in the latter part of the 21st century, because the high- risk age groups are much 
smaller than anticipated by the UN statistics.

Population dynamics and compounding divergence also explain why the one- year version of the 
Intuitive design performs better than its five- year counterpart in Norway and the US to some extent, 
but does much worse in India. By itself, moving to a one- year step reduces divergence in births 
because it allows mortality, migration, and aging to occur each year before the subsequent year’s 
fertility. This minimizes compounding divergence in the US and Norway initially. Consistently high 
immigration in later decades, however, underestimates births further because the immigrants are 
all older than expected, which diminishes their contribution to fertility. India’s results in the one- year 
Intuitive design are almost entirely due to exceptionally high mortality in early years, which resulted 
in severe under- estimation of infant mortality. In subsequent decades, cohorts who aged into child-
bearing risk were much larger than expected and therefore larger cohorts are born thereafter. When 

Figure 4 Population Dynamics Among Females of Child- bearing Ages (15- 49), UN Data WPP2019
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all the exceptionally large cohorts become older, they are exposed to high death risk earlier than 
expected, which leads to much higher death counts than the UN targets.

Although the five- year and one- year Split Fertility designs perform well across country context, 
there is persistent divergence in the US and Norway one- year Split Fertility design. This occurs 
due to rounding error from the sorting method, because all events in a simulation result in discrete 
counts of affected agents, and rare events or events among small populations floor at zero 
(Bekkering, 1995; Van Imhoff and Post, 1998). This particularly affects migration events in the 
one- year model, because we divide total migrant counts in each age/sex group by 25, and the 
adjusted count must be an integer. Even with large net migration in Norway and the US, some 
age/sex groups will have too- few immigrants after dividing by 25, which leads to slightly too- few 
women of childbearing age. These errors could also affect events among small age/sex groups 
that have very low probability, such as fertility and mortality among some periods and age groups. 
These problems are minimal in India for two reasons: 1) High population growth leads to a very 
large population quickly despite all countries starting with 100,000 agents, 2) India experiences 
minimal net migration, which means that rounding errors in migration make almost no difference 
in observed outcomes.

The model designs presented here represent a series of adjustments and selection of options 
that are necessary to closely match UN population dynamics. We have demonstrated the implied 
ordering and assignment of risk by age dictated by the mathematical relationships within the UN’s 
CCM inputs and outputs, and the consequences for disregarding some of those relationships. Imple-
menting these procedures in a simulation, which always operates prospectively and at the individual 
level, is far from intuitive. A common challenge in simulation research is integrating multiple data 
sources of varying quality and measurement assumptions (Müller, 2009; Riecke et al., 2019). Non- 
demographers frequently design simulations, and understanding a specific CCM is not a natural next 
step after downloading UN data. The Split Fertility design simplifies the process of implementing 
basic population dynamics in multiple countries and over many decades using the same standardized 
data source. Because the UN data are internally consistent, the Split Fertility design specified here 
minimizes the need for alignment procedures, which are popular and controversial course- correction 
methods in microsimulation (Li and O’Donoghue, 2014).

The Split Fertility design adapts a five- year standard CCM that is popular among demographic 
projection methods, which makes the design applicable to simulations that rely on non- UN CCM 
demographic statistics as well. It is important to recognize, however, that other design options are 
more appropriate when using different data sources or implementing other demographic processes 
within a simulation. A CCM designed for smaller geography, or for specific sub- groups of the popu-
lation (e.g. ethnic groups), may operate with different statistics than the UN’s CCM (Birkin and Wu, 
2012; Smith et al., 2013). Introducing additional demography modules (e.g. domestic migration), 
agent decision- making (e.g. partner selection), and social networks (e.g. kinship) further compli-
cates how population dynamics are implemented. The DYNAMIS- POP microsimulation platform, 
for example, uses country- specific projection and microdata as inputs, and can incorporate modules 
on education, intergenerational transmission of ethnicity, partner selection, and prenatal care (Spie-
lauer and Dupriez, 2019). The Split Fertility design is not a standalone microsimulation platform, but 
its data requirements and specifications make it an ideal demographic module for multi- country or 
comparative simulations.

It is also important to recognize that our analysis does not compare whether MSM or CCM 
approaches to population projection are superior. The Split Fertility MSM uses the same assumptions 
and inputs as the UN’s CCM. Using UN statistics as inputs means the simulation is accepting the UN’s 
assumptions concerning future trends in fertility, mortality, and migration. Not everyone agrees with 
those assumptions, and other projection assumptions are more appropriate for some projects (O’Neill 
et  al., 2000; Roser, 2013). Even if using UN assumptions and data is appropriate, it may not be 
appropriate to use the Split Fertility design exactly as we specify in this paper. Alternative or adjusted 
designs may be more efficient, realistic, or meet the needs of the specific project without introducing 
significant divergence. For example, we also developed a design for Norway that operates in one- year 
steps and uses the crude mortality rate instead of the survival ratio, and still achieves low divergence 
(Puga- Gonzalez et  al., 2022). We are currently testing a broader range of options to assess the 
consequences of selecting different combinations.
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7. Conclusion
Demographic microsimulations are incredibly flexible in how they can incorporate different assump-
tions and complex processes that affect, and are affected by, population dynamics. This flexibility can 
become a burden when there is uncertainty about which options are most appropriate for a specific 
project. We identified a set of options necessary when using demographic statistics derived for stan-
dard CCM projections, but there are many data sources and statistics available. Knowledge of the 
relationship between demographic statistics and the population totals can inform simulation design. 
As demonstrated in this paper, harnessing the flexibility of simulations is a powerful tool for unveiling 
hidden assumptions when validating against an external standard.

The Split Fertility design works because it uses the event ordering implied by the UN’s CCM, 
approximates the mid- point population for fertility rates, and distinguishes between cohorts and 
age groups when assigning risk. It maintains minimal divergence over a 150- year span even when 
operating in one- year steps, which is highly desirable in simulation research where annual outcomes 
are common. The design is also appropriate for multiple countries of varying population size and 
dynamics, which makes it perfect for comparative simulation projects.

The future of simulation research is bright, and it is imperative that demography and population 
dynamics are a part of it. With growing complexity, temporal scale, and capacity, simulations can 
model real- life populations and contribute insights to a host of research questions in multiple fields. 
Moreover, simulations can do that with a degree of flexibility that is unmatched by traditional demo-
graphic projection methods, allowing demographers to exercise greater theory- grounded control 
over implementation assumptions. This places a responsibility on demographers at the forefront of 
simulation research to communicate the demographic principles, mathematical relationships, and 
assumptions present in simulation design.
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the code under a Creative Commons license, and we request our paper be cited when borrowing 
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Appendix

Calculating Net Migration as a Residual in UN 
projections
These calculations are only necessary to get the age/sex distribution of migrants for the years 
1950- 2020 since net migration is the same as observed in 2015- 2020 thereafter. In following 
UN procedures, net migration is only calculated for those aged 0- 84. Calculations must be 
conducted independently of the previous or subsequent period to prevent compounding 
error from rounding. Follow the following procedure to calculate net migrants by age/sex:

1. Calculate mid- point population for female cohorts aged 15- 49 by taking the simple 
average of populations in each cohort at the start of each period

2. Calculate number of births using formula: [Mid- period female pop*(ASFR/1000)*5]
3. Distribute births by sex using infant sex ratio
4. Apply Survival Ratios to determine survival of matching age group, with exception of 

the following:

a. Apply “0” survival ratio to the new infants
b. Apply “1” survival ratio to the 0- 4 age group
c. Apply “95” survival ratio to those age 100+

5. Age forward everyone by 5 years (new infants are now in 0- 4 age group)
6. Calculate net migration as the simple difference between the population size in each sex 

group for age groups 0- 84, and the corresponding population at the start of the next 
period

Supplementary Stochastic Model Results
The models presented below use the same time steps, event ordering, assignment of 
risk, and changes to UN statistics used for the main results of the manuscript. We ran 100 
iterations of each model design in each country, and the distributions are shown as boxplots 
(Figures A1–A3). Instead of using the sorting method to determine how many agents 
experience the demographic events, these models use individual experimentation. When 
fertility, mortality, and emigration events occur, an agent rolls a uniform distribution between 
0 and 1, and experiences the event if their roll is less than the value of the UN statistic. This 
option is common in simulation design, and naturally introduces more variation in the number 
of births, deaths, and emigrations that occur at each time step. Fertility appears to have 
much higher variability than deaths and total population, but this is primarily a difference in 
scaling.
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Figure A1. Results of Norway Models with Additional Stochasticity Options, scaled up to actual 
population size

Figure A2. Results of USA Models with Additional Stochasticity Options, scaled up to actual 
population size
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Figure A3. Results of India Models with Additional Stochasticity Options, scaled up to actual 
population size
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