

Deliverable 1.5: DAS Processing Algorithms

DigiMon
Digital monitoring of CO2 storage projects

Prepared by

Antony Butcher (UoB)

Tom Hudson (UoO)

Wen Zhou (UoB)

Sacha Lapin (UoB)

J-Michael Kendall (UoO)

Alan Baird (UoB)

DigiMon Deliverable D.1.5 Version 1,

November 2021

http://www.act-ccs.eu/home

Revision
Version Date Change Page
1.0 23.07.2021 First version All
1.1 20.08.2021 Amendments by T Hudson All
1.2 26.08.2021 Update to noise module documentation 26-31

Document distribution
ACT Coordinator

• Research Council of Norway

ACT national funding agencies

• Forschungszentrum Jülich GmbH, Projektträger Jülich, (FZJ/PtJ), Germany.
• Geniki Grammatia Erevnas kai Technologias/The General Secretariat for Research and Technology

(GSRT), Greece.
• Ministry of Economic Affairs and Climate/Rijksdienst voor Ondernemend Nederland (RVO), the

Netherlands.
• The Research Council of Norway (RCN), Norway.
• Gassnova, Norway.
• Development and Executive Agency for Higher Education, Research, Development and Innovation

Funding (UEFISCDI), Romania.
• Department for Business, Energy and Industrial Strategy (BEIS), UK.
• Department of Energy (DoE), USA.

DigiMon partners
• NORCE Norwegian Research Centre AS
• OCTIO Environmental Monitoring AS
• NTNU Norwegian University of Science and Technology
• University of Bristol
• University of Oxford
• CRES Centre for Renewable Energy Sources and Saving
• Helmholtz–Centre for Environmental Research
• Sedona Development SRL
• TNO Nederlandse Organisatie voor toegepast -natuurwetenschappelijk Onderzoek
• Geotomographie GmbH
• LLC Lawrence Livermore National Security
• SILIXA LTD
• EQUINOR ASA
• REPSOL –NORGE AS

Table of contents

1 Introduction 5

2 Installation 6

3 Module Overview 7

4 Module Descriptions 8

4.1 IO module 8
4.1.1 tdms_reader.py 8
4.1.2 utils.py 8

4.2 plot module 11
4.2.1 plot.py 11

4.3 model module 13
4.3.1 e3d_creator.py 13
4.3.2 raytrace.py 15

4.4 Convert module 16
4.4.1 convert.py 16

4.5 filters module 18
4.5.1 filters.py 18
4.5.2 qc.py 19

4.6 detect module 21
4.6.1 detect.py 21
4.6.2 raddetect.py 23

4.7 active module 25

4.8 Noise module 26
4.8.1 ani.py 26
4.8.2 visual.py 28
4.8.3 disp_inversion.py 30

1 Introduction
This report addresses deliverable D1.5 of the DigiMon project, which covers processing algorithms for
Distributed Acoustic Systems (DAS) datasets that are contained within a python library called DASpy. The
objective of DigiMon is to develop an early-warning system for Carbon Capture and Storage (CCS) which
utilises a broad range of sensor technologies including DAS. While the system is primarily focused on the
CCS projects located in shallow offshore environment of the North Sea, it is also intended to be adaptable
to onshore settings. Some of the key areas that the systems will monitor include the movement of the
plume within the reservoir, well integrity and CO2 leakage into the overburden. A combination of both
active and passive seismic methods will be deployed to track the movement of CO2, for example seismic
reflection to image seismic velocity changes or microseismics to capture small earthquakes relating to fault
activation.

These processing algorithms have primarily been developed using the Antarctica DAS dataset, which was
acquired on the Rutford Ice Stream and described in DigiMon report D1.1 and Hudson et. al (2021). The
purpose of this dataset was to record icequakes that occur at the base of the Ice Stream and investigate
the internal properties of the glacier. These were imaged using a surface deployed seismic array
comprising of both fibre optic cables and 3-component geophones. This dataset contains both active and
passive seismic measurements, which have been used to develop microseismic, Ambient Noise
Interferomerty (ANI), refraction and surface waves processing routines. These algorithms are under
continuous development during the course of project and will be further refined by future DigiMon
datasets (e.g. CAMi FRS Canada dataset).

The DASpy library is scripted using Python, which is a popular, widely supported language with a large
range of dedicated libraries. We base the structure of the modules on the ObsPy library (Krischer et. al,
2015), an open-source library designed to facilitate the development of seismological software packages
and workflows. Some of the DASpy workflows act as wrappers for existing programs, such as NonLinLoc
(Lomax et. al, 2012) which is used to located seismic events. DASpy is hosted within a private GitHub
repository call ‘DAStoolbox’ which also contains a number of example Jupyter notebooks and datasets
which demonstrate the functionality of DASpy.

Within this report we describe the different modules contained within the DASpy library and its structure.

2 Installation
The DAStoolbox repository is hosted on GitHub, which is a hosting site for software development and
version control. The repository is private and will require access rights to be granted prior to cloning or
downloading the library. These can be obtain by contacting the authors of this report.

Figure 1: Screen shot of the DAStoolbox GitHub repository.

3 DAStoolbox Overview
The python library, DASpy, contains a collection of functions and classes which are generically group into
a range of different modules (Figure 2).

Figure 2: Structure of the DASpy library.

DA
Sp

y
IO

tdms_reader.py

utils.py

plot plot.py

model
e3d_creator.py

raytrace.py

convert convert.py

filters
filters.py

qc.py

detect
detect.py

rad_detect.py

active active.py

noise
noise.py

visual.py

4 Module Descriptions
4.1 IO module
A collection of functions for importing, manipulating and exporting DAS data.

4.1.1 tdms_reader.py

Script for reading Silixa’s iDAS TDMS file format. Downloaded from https://silixa.com/resources/software-
downloads/.

4.1.2 utils.py

array2stream(np_array, network, fs, start, channel_spacing=1,units='Strain rate')

Converts numpy array format DAS data into an obspy stream.

Parameters:
nparray - numpy array of DAS data
network - seismic network name
fs - sample rate in Hz
start - data start time
channel_spacing - spacing in metres
units - DAS units

Returns:
st - obspy stream

IO

tdms_reader.py

utils.py

array2stream

stream2array

tdms_to_stream

stream2segy

segy2stream

convert_das_tdms_to_mseed

create_das_stations_file

tracezoom

https://silixa.com/resources/software-downloads/
https://silixa.com/resources/software-downloads/

stream2array(st)

Populates a 2D np.array that is the traces as rows by the samples as cols.

Parameters:
st - obspy stream

Returns:
nparray - numpy array

tdms_to_stream(data_path,network, **kwargs)

Wrapper for the array2stream function. Reads in TDMS data and outputs an obspy stream.

Parameters:
data_path - path for TDMS file
network - seismic network name

Returns:
obspy stream

stream2segy(st,path,id)

SEGY writer for DAS data. Note: appears to remove ms from time.

Parameters:
path - path of segy file
id - unique file nameReturns:
st - obspy stream

 Returns:
 SEGY file

segy2stream(path,network,channel_spacing=1,units='Strain rate')

Reads in SEGY file and outputs and obspy stream with correct header information.

Parameters:
path - path of segy file
network - seismic network name
channel_spacing - spacing in metres
units - DAS units

Returns:
st - obspy stream

convert_das_tdms_to_mseed(tdms_data_dir, mseed_out_dir, first_last_channels=[0,1000],
network_code="AA", station_prefix="D", spatial_down_samp_factor=10, fk_filter_params={},
duplicate_Z_and_E=True, fold=False, apply_notch_filter=False, notch_freqs=[], notch_bw=2.5)

Function to read in tdms files and export them into mseed, in a format supported by QMigrate.
Note: Works best with DAS data split into less than 1 hour chunks.

create_das_stations_file(fibre_lats, fibre_lons, fibre_elevs, dist_between_samps_m,
station_dowsample_factor, out_fname, station_static_disp_offset=0.0)

Function to find das station coords and write to file for input to QMigrate. Note that elevations must be
in km.

tracezoom(st,d1,d2,t1,t2)

Function to zoom in on a specific section of the trace.

Parameters:
st - obspy stream
d1 - start zoom distance
d2 - end zoom distance
t1 - start zoom time
t2 - end zoom distance

Returns:
obspy stream

4.2 plot module
A collection of plotting functions for DAS datasets.

4.2.1 plot.py

image(st,style=1,skip=10,clim=[0],tmin=0,tmax=None,physicalFiberLocations=False,picks=None)

Simple image plot of DAS stream, adapted from IRIS DAS workshop function.
#skip=10 is default to skip every 10 ch for speed
#style=1 is a raw plot, or 2 is a trace normalized plot
#clim=[min,max] will clip the colormap to [min,max], deactivated by default

Parameters:
st - The stream containing the DAS data to plot.
style - Type of plot. Default is raw plot (style=1). style=2 is a trace normalized plot.
skip - The decimation in the spatioal domain. Default is 10. (int)
clim - If specified, it is a list containing the lower and upper limits of the colormap.
Default is [], which specifies that python defaults should be used. (list of 2 ints).
tmin - Plot start time in seconds.
tmax - Plot end time in seconds.
physicalFiberLocations - Defines distance from header information.
picks - DASpy event object. If specified, will plot phase picks on the figure. Default is
None, which specifies it is unused. (DASpy detect.detect.event object)

Returns:
fig - A python figure object.

time_distance_plot(st, skip=10, channel_spacing_m=1.0, first_channel_offset_m=0.0, clim=[],
event=None)

Function to plot DAS arrivals as simple time vs. distance plot.

Parameters:
st - The stream containing the DAS data to plot.
skip - The decimation in the spatial domain. Default is 10. (int)
channel_spacing_m - The spacing between each DAS channel, in metres. Default is 1.0
m. (float)

pl
ot plot.py

image

time_distance_plot

plot_summed

fk_plot

first_channel_offset_m - The spatial offset of the first channel in the stream <st>, in
metres. Default is 0. (float)
clim - If specified, it is a list containing the lower and upper limits of the colormap.
Default is [], which specifies that python defaults should be used. (list of 2 ints)
event - DASpy event object. If specified, will plot phase picks on the figure. Default is
None, which specifies it is unused. (DASpy detect.detect.event object)

Returns:
fig - A python figure object.

plot_summed(img,xrange=None,dt=None,cmap='seismic'):

Plot function which displays an image of DAS data alongside amplitudes summed in both time and spatial
domain.

Parameters:
img - nparray of DAS data.
xrange - Spatial range of data
dt - sampling rate
cmap - colour map, default is 'seismic'

Returns:
fig - A python figure object.

fk_plot(st,wavenumber,max_freq,xrange=200,yrange=0.2,normalise=True):

FK filter for a 2D DAS numpy array. Returns a filtered image.

Parameters:
st - The stream containing the DAS data to plot.
wavenumber - maximum wavenumber value
max_freq - maximum frequency value
xrange - Spatial limit of data. Default is 200m
yrange - time limit of data. Default is 0.2s
normalise - apply fk plot to normalised data. Default it True, ie normalised.

Returns:
fig - A python figure object.

4.3 model module
Functions for modelling DAS data. This module effectively acts as a wrapper for E3D.

4.3.1 e3d_creator.py

These functions are used to create an input file for E3D.

import_velocity(self,fname,units='m'):

Imports velocity model from file

Parameters:
fname - velocity file in format [depth vp vs rho]
units - file units. Needs to be km for e3d.

plot_velocity(self):

Quick plotting function of velocity profile. To do: added attenuation to the model.

m
od

el

e3d_creator.py

e3d_model.import_velocity

e3d_model.plot_velocity

e3d_model.assign_model_parameters

e3d_model.position_receivers

e3d_model.define_source

e3d_model.plot_model

e3d_model.create_e3d_file

raytrace.py ray_trace_hom_vti

assign_model_parameters(self,xmax,zmax,dh,duration):

Defines the key model parameters.

Parameters:
xmax - Maximum length of model profile
zmax - Maximum depth of model profile
dh - Cell size. This is dependent on the minimum wavelength
duration - Time duration of the model

position_receivers(self,xstart,xend,dx=0,nrec=0,zstart=0,zend=0):

Defines receiver locations.

Parameters:
xstart - First receiver x location in km
xend - Last receiver x location in km
nrec - Number of receivers
zstart - First receiver z location in km
zend - Last receiver z location in km

define_source(self,srcx,srcz,src_type=1,freq=50,amp=1e+16,Mxx=1,Myy=1,Mzz=1,Mxy=0,Mxz=0,Myz=0)

Defines the source location and type.

Parameters:
srcx - x-coordinate of source
srcz - z-coordinate of source
src_type - Source types. 1: Explosive (p-wave); 4: Moment tensor

plot_model(self):

Quick plotting function of model dimensions. To do: add velocity model.

create_e3d_file(self,path='./')

Function to create an e3d input file

Parameters:
path - path to save file e.g. 'model/'

4.3.2 raytrace.py

ray_trace_hom_vti(s,r,C,rho):

Return ray attributes for given source and receiver locations and VTI stiffness tensor.
Based on equations from Chapman (2004): Fundamentals of seismic wave propagation, and Leaney
(2014): Microseismic source inversion in anisotropic media.

Parameters:
 s[3] -- source coordinates
 r[3] -- receiver coordinate
 C[3,3] -- VTI stiffness tensor in Voigt notation
 rho -- density

Returns:
 TqP -- qP travel time
 TqSv -- qSv travel time
 TSh -- Sh travel time
 vqP -- qP phase velocity
 vqSv -- qSv phase velocity
 vSh -- qSh phase velocity
 VqP -- qP group velocity
 VqSv -- qSv group velocity
 VSh -- qSh group velocity
 SqP -- qP spreading factor
 SqSv -- qSv spreading factor
 SSh -- qSh spreading factor
 gqP -- qP polarization vector
 gqSv -- qSv polarization vector
 gSh -- qSh polarization vector
 qPp -- qP slowness vector
 qSvp -- qSv slowness vector
 Shp -- qSh slowness vector

4.4 Convert module
Functions for converting DAS data into other units.

4.4.1 convert.py

vel_to_strain_rate(das_data_in, dx=1.0):

Function to convert DAS data from velocity to strain-rate. Note: Doesn't apply gauge length effects. This
is done separately in apply_gauge_length().

Parameters:
das_data_in - Array of data to convert from velocity to strain-rate. (np array)
dx - The spacing between the DAS channels. Can be a float or the same shape as
das_data_in (float or np array)

Returns:
das_data_out - np array of strain rate data.

strain_rate_to_vel(das_data_in, dx=1.0):

 """TO BE COMPLETED"""

apply_gauge_length(das_data_in, gauge_length=10.0):

 """TO BE COMPLETED"""

co
nv

er
t

convert.py

vel_to_strain_rate

strain_rate_to_vel

apply_gauge_length

rotate_synth_Q_T_data_to_das_axis

rotate_synth_Q_T_data_to_das_axis(synth_data_q, synth_data_t, das_azi_from_N,
azi_event_to_sta_from_N, aniso_angle_from_N=0.0, aniso_delay_t=0.0, fs=1000.0):

Function to rotate synthetic QT data into das axis, assuming vertical arrival angles.

Parameters:
synth_data_q - Array of synthetic Q component data. (np array of floats)
synth_data_t - Array of synthetic T component data. (np array of floats)
das_azi_from_N - DAS positive axis (away from interrogator) from North, in degrees
(float)
azi_event_to_sta_from_N - Epicentral angle of station from event, from North, in
degrees (float)
aniso_angle_from_N - Anisotropy angle from North in degrees. If -1.0 or 0.0, does not
apply anisotropy. (float)
aniso_delay_t - Delay time between fast and slow shear waves, in seconds. If
aniso_angle_from_N <= 0, then no anisotropy is applied. Default is 0, i.e. no anisotropy
applied. (float)
fs - Sampling rate of data in Hz (float)

Returns:
data_out_das_axis - Data out, rotated accordingly (array of floats)

4.5 filters module
Collection of filter functions for DAS data.

4.5.1 filters.py

fk_filter(st, wavenumber, max_freq):

FK filter for a 2D DAS numpy array. Returns a filtered image.

Parameters:
st - Stream of DAS data to apply notch filter to (obspy stream)
wavenumber - maximum value for the filter
max_freq - maximum value for the filter

Returns:
st_fk - FK filtered time series.

image_sharpen_demean(st,sigma=3,alpha=30):

Image sharpening function.

Parameters:
st - Stream of DAS data to apply notch filter to (obspy stream)
sigma -
alpha -

Returns:
st_shp - Image sharpened time series.

fil
te

rs

filters.py

fk_filter

image_sharpen_demean

wiener

notch

qc.py

SNR_traditional

SNR_explicit

SNR_event

wiener(st):

Wiener filter with wrapper for applying to obspy streams

Parameters:
st - Stream of DAS data to apply notch filter to (obspy stream)

Returns:
st_wiener - The filtered time series.

notch(st, f_notch, bw):

Notch filter to filter out a specific frequency. Note: Applies a zero phase filter.

Parameters:
st - Stream of DAS data to apply notch filter to (obspy stream)
f_notch - The frequency to apply a notch filter for in Hz (float)
bw - The bandwidth of the notch filter in Hz (float)

Returns:
st_notch - The filtered time series.

4.5.2 qc.py

SNR_traditional(st_data, pow_vs_amp='power', return_all_channels=False):

 Function to calculate traditional SNR (mean^2 / stdev^2).

SNR_explicit(st_data, st_noise, power_vs_amp='power', return_all_channels=False):

Function to calculate the SNR of a data window given a window of noise.

SNR_event(st, event, phase='S', nsamp_sig_win=100, nsamp_noise_win=100,
return_all_channels=False):

Function to calculate the SNR of an event from its picks and windows around the signal and the noise.
The SNR is defined here as the rms amplitude of the signal window divided by the rms amplitude of the
noise window, as in Stork et al 2020.

Parameter:
st - Stream containing data associated with event arrivals and sufficient time before to
window noise. (obspy stream)
event - DASpy.detect.detect event object containing phase picks for the event. This
function will only use the phase picks associated with the phase specified as an optional
input, <phase>. (DASpy event object)
phase - The phase to use (P or S). This controls what phase arrival times to use from
event_phase_picks. Default is 'S' (str)
nsamp_sig_win - The number of samples to use for the signal window. (int)
nsamp_noise_win - The number of samples to use for the noise window. (int)
return_all_channels - If True, returns array containing SNR for each individual channel.
(bool)

Returns:
average_SNR - Average SNR for all channels combined. If return_all_channels = True, this
value is not returned.
OR:
SNR_all_channels - If return_all_channels = True, will return array of SNR values for each
individual channel.

4.6 detect module
Routines for detecting seismic events recorded using DAS.

4.6.1 detect.py

assign_phase_picks(self, stations, phase_time_picks, phase_labels, weights=[]):

Function to assign phase pick data to event.

Parameters:
stations - List of station labels. (list of strs)
phase_time_picks - List of phase time picks for associated stations, in UTCDateTime
format. (list of UTCDateTime objects)
phase_labels - List of phase labels associated with phase time picks. These can be <P> or
<S>. e.g. ['P', 'S', 'S']. (list of specific strs)

de
te

ct

detect.py

assign_phase_picks

_ncc

_cc_single_time_window

spatial_cc_event_detector

mad

sta_lta_detector

rad_detect.py

radon_slider

radon_plot

ss_picker

pick_collate

binning

moving_average

ss_coincidence

radpicker

convert_radpicks_to_nonlinloc

_ncc(data, template):

Function performing cross-correlation between long waveform data (data) and template. Performs
normalized cross-correlation in fourier domain (since it is faster).

Returns normallised correlation coefficients."""

_cc_single_time_window(st_curr_win, stations, max_samp_shift=10):

Function to perform cross-correlation detection lgorithm that shifts across a stream of channels in the
spatial axis, for one time window, over the whole stream, st, input.

Parameters:
st_curr_win - Stream of DAS data, containing channels, labelled D???. (obspy stream)
stations - The stations to process for. This dictates the order over which the spatial cross-
correlation is undertaken. (list of strs).
max_samp_shift - The maximum shift to apply in samples. Default is 10. (int)

Returns:
norm_cc_all_channels - The normallised cc shift for all channels combined.

spatial_cc_event_detector(st, win_len_secs=1.0, max_samp_shift=10, nproc=1):

Function to detect events based on a spatial cross-correlation detection algorithm that shifts across a
stream of channels in the spatial axis, one by one.

Parameters:
st - Stream of DAS data, containing channels, labelled D???. (obspy stream)
win_len_secs - Length of the moving window, in seconds. Default is 1 s. (float)
max_samp_shift - The maximum shift to apply in samples. Default is 10. (int)
nproc - The number of processors to use. Default is 1. (int)

Returns:
ncc_st - obspy stream

mad(x, scale=1.4826):

Calculates the Median Absolute Deviation (MAD) values for the input array x.

Returns:
MAD value with scaling.

sta_lta_detector(st, sta_win=0.05, lta_win=0.25, MAD_multiplier=10.0, min_channels_trig=10,
phase='S'):

Function to detect phase arrivals using an STA/LTA trigger with a Median Average Deviation trigger
threshold. Note: This is currently a very simple trigger, which will just pick hte highest STA/LTA value
within the data for each channel.

4.6.2 raddetect.py

radon_slider(st,start_distance=0,winsize=200,overlap=50,slowmin=-0.5e-3,slowmax=0,npx = 101):

Sliding 2D radon transform using pylops

Parameters:
st - Stream of DAS data, containing channels
start_distance - beginning of the DAS trace, default=0
winsize - number of channels in the window
overlap - channel overlap

Returns:
semblance_out - a dictionary of the semblance and other key parameters

radon_plot(semblance_out,windidx,picks=None):

Radon transform plotter

Parameters:
semblance_out - dictionary output from the radon_slider function
windidx - window panel to plot

ss_picker(semblance_out,windidx,neighborhood_size=50,threshold=130):

Picks arrivals from the radon transform data

Parameters:
semblance_out - dictionary output from the radon_slider function
windidx - window panel to plot

Returns:
picks - dictionary containing slowness and pick time

pick_collate(semblance_out,neighborhood_size=50,threshold=130):

Collates picks from each window

Parameters:
semblance_out - dictionary output from the radon_slider function
neighborhood_size - window panel to plot

Returns:
picks - dictionary containing slowness and pick time

binning(data,binsize,tmin,tmax):

Bins data at user defined intervals

moving_average(a, n=3)

Fast moving average function

ss_coincidence(semblance_out,event=1,threshold=120,pmin=-0.001,pmax=-
0.0001,midpt=500,binsize=0.005,trigger_val=1, plot=True)

A coincidence filter and wrapper for ss_picker
Parameters:

semblance_out - dictionary output from the radon_slider function
threshold - value for the radon picker
pmin - minimum slowness value in s/km
pmax - maximum slowness value in s/km
binsize - bin size in seconds. Size dictates the sensitivity of the coincidence filter.

Returns:
picks - dictionary containing slowness and pick time

radpicker(files,event=1):

This is a wrapper function which reads in a tdms file, filters the data, applys a radon transform and picks
the events.

Parameters:
files - list of files to process produced using glob
event - starting event number

convert_radpicks_to_nonlinloc(picks_all_df, nonlinloc_outdir='', phase='S', phase_pick_err=0.02):

Function to take radon transform detection picks from radpicker() and convert these picks to individual
events and nonlinloc files.

Parameters:
picks_all_df - A pandas dataframe containing a list of event phase picks from radpicker().
(pandas df)
nonlinloc_outdir - The directory to save the nonlinloc obs files to. Default is the current
working directory. (str)
phase - The phase labels to assign for nonlinloc. Should be P or S. (str)
phase_pick_err - The time error associated with phase picks, in seconds. Default = 0.02 s
(float)

Returns:
events - A list of DASpy event objects] - not yet implemented.

4.7 active module
Functions for processing active-source DAS data.

ac
tiv

e

active.py

butter_bandpass

butter_bandpass_filter

shot_time

masw.dispersion_create

masw.plot

masw.process

masw.pick

DCModelling.vs2vp

DCModelling.response

create_start_mode

4.8 Noise module
The Noise analysis module contains 6 python script files. Core functions are defined in 3 files, named
ani.py, visual.py and disp_inversion.py. Functions defined in each script are listed in the chart below.

4.8.1 ani.py

Ambient Noise Interferometry (ANI) functions including deconvolution and cross correlation. Data entry
and interferometry parameters are defined in the function of:

noise_interferometry (stream, source_trace_num,

 sliding_window_length=1.0, overlap = 0.9,

 water_level=0.01, alpha = 100, core='deconvolution', onebit=False)

 Apply interferometry to sliding windows over all traces in the Obspy Stream object.

N
oi

se
 m

od
ul

e
ani.py

noise_interferometry

deconvolution_core

crosscorrelation_core

visual.py

power_spectrum_plot

power_spectrum_calc

power_spectrum_core

fk_plot

fk_transform

disp_inversion.py

masw.dispsion_fk

DCModelling

create_disp_from_model

disp_inv

 stream <obspy stream>: multi channel data

 source_trace_num <int>: The channel treated as virtual source (B in AB^*)

 sliding_window_length <float>: sliding window length in second

 overlap <float>: Overlap of sliding windows, default 0.9 (90%)

 water_level <float>: water level friction of maximal power spectrum (only) applied to deconvolution,
default 0.01(1%)

 alpha <float>: gaussian low pass filter based on G = exp(-f^2/alpha^2), f (unit: Hz)

The first interferometry method implemented is water-levelled deconvolution in frequency domain.

deconvolution (x, y, dt, wl=0.001, alpha=20)

 Deconvolution to x by y in frequency domain:

𝑑𝑑(𝑤𝑤) =
𝑥𝑥(𝑤𝑤)𝑦𝑦(𝑤𝑤)∗𝐺𝐺(𝑤𝑤)

𝑚𝑚𝑚𝑚𝑥𝑥�𝑦𝑦(𝑤𝑤)𝑦𝑦(𝑤𝑤)∗,𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥(𝑦𝑦(𝑤𝑤)𝑦𝑦(𝑤𝑤)∗)�

 --

 0, preprocessing: demean, detrend, tapering

 1, Fourier transform

 2, water leveled deviation

 3, gaussian low pass filter

 x <numpy.ndarray>: space-time domian seismic data, 2D matrix

 y <numpy.ndarray>: time series seismic data from certain channel, 1D

 dt <fload>: time domain sampling step = 1/sampling rate

 wl <float>: water level friction of maximal power spectrum (only) applied to deconvolution, default
0.01(1%)

 alpha <float>: gaussian low pass filter based on G = exp(-f^2/alpha^2), f (unit: Hz)

The most widely used interferometry method is cross correlation. To improve convergency of
interferograms, continuous noise are normalized in time and smoothed in frequency domain. We
implement 1-bit time domain normalization and keep it as an option for user to determine. Frequency
domain smoothing is implemented over a 21 points sliding window smoother.

crosscorrelation_core(x, y, dt, alpha=200, onebit=False)

 Cross correlation of x and y

𝑐𝑐(𝑤𝑤) =
𝑥𝑥(𝑤𝑤)𝑦𝑦(𝑤𝑤)∗𝐺𝐺(𝑤𝑤)

�(𝑥𝑥(𝑤𝑤)𝑥𝑥(𝑤𝑤)∗𝑦𝑦(𝑤𝑤)𝑦𝑦(𝑤𝑤)∗)

 0, preprocessing: demean, detrend, tapering

 1, Fourier transform

 2, cross correlation (normalized) = cross coherence

 x <numpy.ndarray>: space-time domian seismic data, 2D matrix

 y <numpy.ndarray>: time series seismic data from certain channel, 1D

 dt <fload>: time domain sampling step = 1/sampling rate

 alpha <float>: gaussian low pass filter based on G = exp(-f^2/alpha^2), f (unit: Hz)

t_nor <str> : time domain normalization: '1-bit' or None

4.8.2 visual.py

The visualization of continuous noise is implemented in plot.py and described in previous sections. This
script instead visualize noise in frequency and frequency-wavenumber domain.

power_spectrum_plot(stream, ax=None)

 Plot averaged noise spectrum on log-log scale curve of.

 Input -

 stream: Obspy stream or trace

 ax: matplotlib axes object

 Output -

 ax

power_spectrum_calc(stream)

 Calculate power spectrum of each trace in an obspy stream object.

 Input -

 stream: Obspy stream or trace

 Output -

 Px: numpy array (2D [tr, nfft]), power spectrum density (c^2/Hz), 'c' is the unit of input data.

freq: numpy array (1D), frequency in Hz

power_spectrum_core(x, dt, npts=None)

 Calculate power spectrum for an array x [tr, npts].

 Input -

 x: numpy array (2D, [tr, npts])

 dt: float, sampling step in second

 npts: int, number of sampling points, npts should >= x.shape[1]

 Output -

 Px: numpy array (2D [tr, nfft]), power spectrum density (c^2/Hz), 'c' is the unit of input data.

freq: numpy array (1D), frequency in Hz

fk_plot(st, flim=[-100,100], dt=0.001, dx=1)

 Plot fk transform with all traces in the st (NOTE: trace distance must be CONSTANT)

 st could be an obspy stream or an numpy array.

 only if st is an numpy array:

 provide sampling information: dt, and dx

fk_transform(data, dt=0.001, dx=1, pad_x=0, pad_t=0)

 fk spectrum of a seismic section

 data_fk = output after fk-filter

 f = frequency axis

 kx = wave number axis

 data [n_x, n_t]

 pad_x (0 -)= pad zeros on x (space) domain, 0= no pading, 1 = n_x, 2 = 2*n_x,...

4.8.3 disp_inversion.py

dispersion_fk(self, st, freqmin=5, freqmax=30, kmin=0., kmax=0.1, vmin=500, vmax = 3000, a=50)

 Pick fundamental mode surface wave dispersion curve from FK domain of DAS data.

 Input -

 st <Obspy Stream>: multi channel waveform

 freqmin <float>: minimal frequency to be picked

 freqmax <float>: maximal frequency to to picked

 kmin <float>: minimal wavenumber

 kmax <float>: maximal wavenumber

 vmin <float>: minimal velocity

 vmax <float>: maximal velocity

 a <float>: a factor to supress picking of higher mode surface wave.

 maximal velocity is defined: vmax - a*freq

class DCModelling(pg.Modelling)

 A class made for pygimli inversion.

 1, contains elastic model information

2, calculating dispersion of the corresponding elastic model

create_disp_from_model(mat, freqs, disp_obs, poisson=0, plot=True):

 Forward dispersion curve from a given model and plot with observed data.

 Input -

 disp_obs: observed Rayleigh wave velocities.

 freqmin: minimum frequency of rayleigh waves.

 freqmax: maximum frequency of rayleigh waves.

 mat: initial velocity model

 Output -

disp_model: Contains model dimension, the initial model and forwarding function.

disp_inv(disp_model, disp_obs)

 Invert for the best fit dispersion curve.

 Input -

 disp_model: DCModelling class, contains model dimension, the initial model and forwarding
function.

 disp_obs: masw class, contains observed dispersion curve

 Output:

 coeff: final 1D Vs model

 inv: pygimli inversion operator

5 References

Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., et al.

(2021). Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from

Antarctica. Journal of Geophysical Research: Solid Earth, 126,

e2020JB021493. https://doi.org/10.1029/2020JB021493

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015).

ObsPy: A bridge for seismology into the scientific Python ecosystem. Computational Science and

Discovery, 8(1). https://doi.org/10.1088/1749-4699/8/1/014003

Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic Picker Developments and Optimization:

FilterPicker--a Robust, Broadband Picker for Real-Time Seismic Monitoring and Earthquake Early

Warning. Seismological Research Letters, 83(3), 531–540. https://doi.org/10.1785/gssrl.83.3.531

https://doi.org/10.1029/2020JB021493

	Deliverable 1.5: DAS Processing Algorithms
	DigiMon
	Revision
	Document distribution
	Table of contents
	1 Introduction
	2 Installation
	3 DAStoolbox Overview
	4 Module Descriptions
	4.1 IO module
	4.1.1 tdms_reader.py
	4.1.2 utils.py

	4.2 plot module
	4.2.1 plot.py

	4.3 model module
	4.3.1 e3d_creator.py
	4.3.2 raytrace.py

	4.4 Convert module
	4.4.1 convert.py

	4.5 filters module
	4.5.1 filters.py
	4.5.2 qc.py

	4.6 detect module
	4.6.1 detect.py
	4.6.2 raddetect.py

	4.7 active module
	4.8 Noise module
	4.8.1 ani.py
	4.8.2 visual.py
	4.8.3 disp_inversion.py

	5 References

