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Abstract 
Practitioners working on building performance 
simulations do seldom apply uncertainty and sensitivity 
analysis using state-of-the-art global methods in their 
daily workflow. With stricter building regulations 
imposed year by year, a corresponding change in 
workflow has been identified as one important way to 
bridge the increasing gap between predicted and actual 
energy use. This study describes how statistical methods 
from research can be adapted to an efficient workflow in 
a practical setting, concretised through description of a 
proposed framework and methodology, and application 
on a case study for a hospital in Northern Norway.   
Introduction 
There is often a significant gap between predicted energy 
performance of buildings and energy use once buildings 
are operational (de Wilde 2014). Bridging this gap is 
crucial for the industry to deliver buildings that are robust 
towards change and uncertainties in design parameters. 
However, as building regulations have become stricter, 
the difference has increased (de Wilde 2014). One 
explanation for the increasing performance gap is that 
stricter regulations requires tuning of a large number of 
input parameters in building energy simulations to 
achieve highly optimized solutions. Combining a large 
number of optimistic “best case” input settings in a single-
point optimized solution will, however, lead to designs 
that may be very sensitive to changes in input parameters. 
We suggest that one way to bridge the increasing 
performance gap is to give practitioners access to tools for 
robust design of building energy systems.  
The aim of this research is therefore to develop a 
framework and methodology that makes it feasible for 
practitioners working on building performance simu-
lations (BPS) to readily apply state-of-the-art uncertainty 
and sensitivity analysis in their daily workflow.  
Uncertainty analysis and sensitivity analysis 
Uncertainty analysis in building energy assessment has 
become an active research field as a number of factors 
influencing energy use in buildings are inherently 
uncertain (Tian et al. 2018). Monte Carlo-based 
simulation is the most widely used uncertainty 
propagation method in building energy assessment, 
although non-sampling methods are also in use (Tian et 
al. 2018, Pang et al. 2020).  

Sensitivity analysis is often used in conjunction with 
uncertainty analysis to quantify the contributions of input 
parameters to the uncertainty in the model output (Tian 
2013, Saltelli et al. 2019). Sensitivity analysis methods 
can be grouped into local (LSA) and global sensitivity 
analysis (GSA) methods (Saltelli et al. 2008). LSA 
methods are computationally inexpensive, but examine 
only a limited part of the problem space. Dynamic 
simulation models for BPS are typically non-linear (Pang 
et al. 2020), and LSA approaches are therefore not robust 
because results are strongly dependent on the values 
chosen for the nominal case, potentially giving highly 
misguiding results (Saltelli et al 2019).  
There are a wide range of GSA methods available, with 
varying computational cost, robustness and accuracy 
(Saltelli et al. 2008, Pang et al. 2020, Tian et al. 2018). 
For studies with a high number of input parameters and 
high computational cost for each model evaluation, as 
typical is the case in BPS, accurate calculation of the 
importance of all input parameter in a global sense is very 
computationally costly. For such cases, a recommended 
approach is to first reduce the number of input parameters 
using a global screening method [e.g. Morris elementary 
effects method (Morris 1991), requiring a sampling size 
of around 10 times the number of input parameters], 
before proceeding with a reduced number of input 
parameters found to influence the output parameters of 
interest (Saltelli et al. 2008, Tian et al. 2018, Pang et al. 
2020). Regression methods have been among the most 
widely used GSA methods for sensitivity analysis in 
building energy analysis (Tian 2013); these methods are 
easy to understand and relatively fast to compute, 
requiring a sample size around 10 – 100 times the number 
of input parameters (Pang et al. 2020). Many regressions-
based indicators for the importance of input parameters 
can then be applied, such as e.g. standardised regression 
coefficients (SRC) which has been widely used in BPS 
(Tian 2013, Pang et al. 2020). SRC is however only 
applicable for uncorrelated input parameters, and care 
must be taken for non-linear models as its calculation is 
based on multiple linear regression (Tian 2013).  
For highly non-linear models, Sobol’s variance-based 
sensitivity indices have been shown to be effective in 
identifying the individual, interaction and total effects of 
model input parameters, although at a high computational 
cost [typically 500 – 1000 times the number of input 
parameters (Saltelli et al. 2008)]. Monte Carlo filtering is 
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a GSA-based approach which has lower computational 
cost, but which is nevertheless applicable for non-linear 
models (Saltelli et al. 2008, Østergård et al. 2017); this 
approach helps identifying regions of the input space that 
meet certain criteria. Use of meta-models is a machine 
learning based approach to reduce the computational cost 
for GSA of non-linear models that has been given a lot of 
attention for building performance analysis the last years 
(Van Gelder 2014b, Østergård et al. 2018).  
Input and output parameters 
The basis for any uncertainty or sensitivity analysis in 
BPS involves (i) determining input parameters that may 
influence the building performance, (ii) specifying the 
probabilistic distributions and possible correlations for all 
uncertain input parameters and (iii) selecting which 
output parameters of the model to analyse. The main 
approaches are summarized in recent reviews (Tian et al. 
2018, Pang et al. 2020), where sources of uncertainty in 
building performance analysis are classified into different 
areas and each area is discussed in detail.  
The relative importance of input parameters varies greatly 
from study to study based on the characteristics of the case 
and the output parameters of interest (Tian et al. 2018, 
Pang et al. 2020). Thus, generally one cannot know a 
priori which input parameters will have negligible 
impact, and thus a large enough range of input parameters 
should be included in the initial stages of BPS. A good 
approach is to do a pre-analysis step using provisional 
probabilistic distributions to identify the most influencing 
parameters, and then update the provisional distributions 
of the most influencing parameters based on the resulting 
sensitivity ranking (Van Gelder et al. (2014).  
Most of the existing case studies have done sampling by 
treating input parameters as independent parameters 
(Pang et al. 2020, Tian et al. 2018). However, neglecting 
correlation between input parameters may lead to highly 
inaccurate results as exemplified in Pang et al. (2020). 
Sensitivity and uncertainty analysis in daily workflow 
A systematic, global approach for uncertainty and 
sensitivity analysis is not regularly used by practitioners 
in charge of building energy simulations, especially in the 
Nordic countries (Østergård et al. 2020), partly due to 
availability of tools and methodology tailored to the 
typical workflow of practitioners. This is in strong 
contrast to the recommendations for best practise in 
sensitivity analysis given in Saltelli et al. (2019), where 
global exploration of the space of input factors is 
recommended. 
Some developers of BPS software have integrated global 
sensitivity and uncertainty analysis options in their 
software, e.g., the latest version 5.0 of IDA Indoor 
Climate and Energy (EQUA Simulation AB, Stockholm, 
Sweden). However, practitioners nevertheless often 
perform uncertainty and sensitivity analysis manually and 
locally using One-parameter-at-a-time (OAT) type LSA 
approaches, and typically only for a few parameters that 

are important based on the practitioners’ previous 
experience. Specifically for the Norwegian market, the 
leading tool for energy simulations of buildings, Simien 
(Simenergi, Lysaker, Norway), offers no built-in or add-
on functionality for sensitivity or uncertainty analysis. 
There are very few published studies on design 
methodology for decision making for building 
performance design from a more overall perspective, i.e., 
how to enable a good workflow for decision making 
application of sensitivity and uncertainty analysis for 
researchers or practitioners.  One early work in this 
direction was Van Gelder et al. (2014) who proposed a 
multi-step probabilistic analysis methodology, including 
screening, and a multi-layered sampling scheme.  
This topic is also addressed in a review article on BPS 
supporting decision making in early design (Østergård et 
al. 2016), where it was found that few of the existing 
solutions allow the designer to handle uncertainties and to 
explore large design spaces, while also lacking the ability 
to guide the designer towards better performing buildings. 
Østergård has later published several studies focused on 
holistic design methodology for decision-making, with 
applicability for both researchers and practitioners. These 
studies range from informed decision-making in early 
building design (Østergård et al. 2017) to presenting a 
framework for informed BPS (Østergård et al. 2020). 

In this study, a framework and methodology for 
uncertainty and sensitivity analysis in BPS is presented. 
The framework has been developed with focus on 
applicability in a daily workflow of practitioners, 
combining state-of-the-art methods described in the 
preceding sections with ease-of-use. A case study is 
included to illustrate how this methodology can be 
applied to understand and improve a hospital’s energy 
performance, potentially closing the big gap observed 
between calculated and measured energy consumption for 
this building. 
Methods 
SensiRob framework 
The SensiRob framework is a Python-based framework 
that interfaces with building energy simulation software 
through Extensible Markup Language (XML) files. An 
executable version is available for use by practitioners. 
The framework currently interfaces with the leading tool 
for energy simulations in buildings in Norway, Simien, 
but is built with a general structure to allow integration 
with other BPS tools. Simien is based on the methodology 
described in the Norwegian standard NS3031:2014, 
which compiles with the European standard EN ISO 
13790:2008.  SensiRob can run up to 20 Simien 
simulations in parallel, allowing for more than 5.000 
annual, hourly Simien-simulations within an hour on a 
regular desktop computer. A standardized Excel-format is 
defined for setting up parameter variations, and a 
graphical user interface (GUI) is used for performing 
analysis and postprocessing. The framework also includes 
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a sandbox for testing of algorithms and concepts for 
research, e.g. comparing the performance of different 
meta-models and sensitivity analysis methods. 
The statistical methods in the SensiRob framework are 
built around open source packages for parameter 
sampling, uncertainty analysis, GSA and meta-modelling, 
including the Python-packages PyDoe, SALib, 
statsmodels, scipy.stats and scikit-learn. 
Input and output parameters 
Following Tian et al. (2018), the input parameters are 
divided into four main categories; weather data, building 
envelope, HVAC system, and occupant behaviour. In 
addition, an additional category from Pang et al. (2020), 
“Control system”, is added. Some input parameters may 
be defined to be in more than one category.  
Input parameters are defined in an Excel-sheet which can 
be reused across projects. Following Van Gelder et al. 
(2014), input parameters are defined as uncertainty 
parameters (e.g. workmanship and occupant behaviour), 
design parameters (controllable by the designer or 
potential errors) or both. For each uncertainty parameter, 
the probabilistic distributions are defined by choosing 
distribution (e.g. normal distribution, left-tailed normal 
distribution, uniform distribution) and the input range. For 
each design parameter, distinct design values are given 
(either as a relative change or absolute value). 
Simien, Energy Plus and many other BPS divide the 
studied buildings into thermal zones. A thermal zone is an 
air volume at uniform temperature, plus all the heat 
transfer and heat storage surfaces bounding or inside of 
that air volume. A typical building can have up to 10-15 
zones, and input parameters like e.g. set-temperatures for 
heating and cooling and U-values for the walls and 
windows are generally set separately for each zone. In 
SensiRob, probabilistic distributions can be set either 
globally with the same variation in all zones (100% 
correlation), separately for each zone (no correlation), 
separately for a selection of zones (100% correlation 
within some zones, no correlation with other zones) or by 
setting a specific correlation (e.g. 75%) between a 
parameter in all zones. Most published case studies 
typically use 100% correlation (grouped parameters) or 
no correlation (Pang et al. 2020), which will often give a 
too strong or too weak effect of a parameter change, 
respectively. The disadvantage of using correlation 
settings other than 100% is that the number of input 
parameters increases significantly. In addition to allowing 
correlations between input parameters that occur in 
different zones, correlations between different parameters 
within or across zones can also be set.  
Simien offers a large range of output parameters, 
including annual/peak building electricity consumption, 
annual energy usage for heating/cooling/ventilation, 
overheating hours. All analysis options can be performed 
for any of these output parameters, and re-evaluation for 
other parameters can be done without re-simulation.  

Statistical methods in SensiRob 
The SensiRob framework integrates a wide range of 
sampling techniques and statistical methods for 
uncertainty and sensitivity analysis. The Morris 
elementary effects method is implemented to identify 
input parameters of high importance, using the scheme of 
Ruano et al. (2012) to identify optimal trajectories. The 
main component of the framework is a quasi Monte Carlo 
(qMC)/Latin hypercube sampling (LHS) based 
uncertainty and sensitivity analysis, where sampling can 
be done using either LHS or Sobol sequences. To 
determine the number of sampling points required for the 
analysis, convergence tests can be performed. Regression 
methods, have been implemented as global methods for 
determining the importance of input parameters, 
including SRC, dominance analysis based of R2 change 
and Random Forest based importance measures generally 
applicable for non-linear models (Antoniadis et al. 2021). 
Further, Monte Carlo filtering is implemented using the 
Kolmogorov-Smirnov test, accompanying visualization 
of input parameter distributions corresponding to a 
specified part of a given output parameter.   
Variance-based Sobol indices are also implemented, but 
due to the high computational demand these are currently 
not part of the workflow. Several metamodels are 
implemented in the research sandbox, including 
Multivariate adaptive regression splines (MARS) and 
Gaussian processes (GPR) which were recommended in 
two different comparisons of meta-modelling techniques 
for BPS (Østergård et al. 2018, Van Gelder 2014b).   
Design parameter analyses are added as another layer in 
SensiRob. For a quick overview of the different designs a 
One-design-at-a-time (ODT) analysis is possible, but this 
is not recommended as a stand-alone analysis as 
uncertainties are neglected. Functionality for performing 
a full uncertainty analysis for each design (ODT-MC) is 
included to investigate how each design is influenced by 
the uncertainty in the input parameters. Further, 
methodology to investigate the influence of changing 
several design parameters simultaneously is provided, 
optionally with restraints on how many design parameters 
can be changed (e.g. maximum of two changes), enabling 
a robust design process. Finally, it is possible to do a full 
uncertainty and sensitivity analysis where the parameter 
range of the GSA is expanded to also include the span of 
the design parameters, to get deeper insight into the 
importance of the design parameters in a global setting.  
Workflow 
The workflow the user is led through in the SensiRob 
framework is closely linked to the process proposed by 
Van Gelder et al. (2014), and also has similarities to the 
process described in Østergård et al. (2020), giving the 
following multi-step process:  
(i) Parameter identification. Identify and evaluate 
uncertainty and design parameters, including a 
preliminary (broad) range of possible values for each 
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parameter. Input parameters are defined in an Excel-sheet 
which can be reused across projects, providing a good 
starting point based on previous experience.  
(ii) Screening. Perform a Morris or qMC/LHS analysis 
(depending on the number of input parameters) where all 
parameters are grouped (100% correlated across zones) to 
determine which parameters can be neglected in further 
analysis, for which parameters an accurate probabilistic 
distribution must be given and where correlation should 
be considered. Screening can be done for several output 
parameters. Parameters can be automatically removed 
based on rank or value of importance. 
(iii) Uncertainty and sensitivity analysis. With updated 
parameter values and correlation considerations, perform 
a qMC/LHS analysis to find an estimate for the 
uncertainty in the output parameters of interest, and 
evaluate the relative importance of the input parameters 
using regression-based methods or Monte Carlo filtering. 
(iv) Design analysis. For each design, perform a 
qMC/LHS analysis to investigate the influence of the 
design parameters under uncertainty. Based on the aim of 
the analysis, various analyses with combinations of 
design parameters can also be made. 
Based on this workflow, the practitioner will gain 
valuable insight into the model compared to today’s 
approach were selected input parameters are changed 
manually one at a time. Currently, the SensiRob 
framework is in the internal testing phase, and the 
workflow is expected to be refined when additional 
experience from practical applications becomes available.  
Results 
The application of the SensiRob framework and 
methodology in a practitioner’s workflow is demonstrated 
using a case study for a hospital building in Northern 
Norway. Here both a Simien simulation model and 
selected measurement and experience data is available. 
For this building, the actual energy usage when put in 
operation was significantly higher than projected, and 
thus this is an interesting case study.   
The Simien model of the hospital consists of 13 thermal 
zones. Compared to the original model, heat pump and 
chiller is excluded from the model (coefficient of 
performance set to 1) and the heating and chilling capacity 
is set so high that temperature requirements are always 
fulfilled. This was done to simplify the interpretation of 
the results when using a single output parameter in the 
presented results. The output parameter considered in the 
presented analysis is the HVAC (Heating, Ventilation and 
Air Conditioning) energy usage. 
The results presented in this section follow the steps in the 
SensiRob framework, as described under Methods.  
Step 1: Parameter identification 
Input parameters along with nominal value and 
probabilistic distributions considered in the analysis are 
shown in Table 1; 27 uncertainty parameters across 13 

zones, a total of 273 individual parameters. To address the 
errors that could be made in the design or building phase 
in the SensiRob framework, a set of design parameter 
variations (12) are defined to represent possible errors in 
the design or building phase. Uncertainty parameters are 
given with 95% confidence interval and truncated normal 
distributions are used for all uncertainty parameters.  
Step 2: Screening 
A Morris screening analysis with 10 optimal trajectories 
and 4 levels is performed in accordance with 
recommendations by Saltelli et al. (2004), with input 
parameters grouped (100% correlated across groups; 260 
simulations for 27 grouped parameters). Results of the 
Morris screening analysis are shown in Figure 1, where 
the points represent the absolute value of the mean 
elementary effect µ* (x-axis) and the standard deviation 
of the elementary effect σ (y-axis) for each parameter. 
According to a classification scheme proposed by 
Sanchez et al. (2014), the ratio σ/µ* allows the 
characterisation of the model parameters in terms of 
linearity and monotony. Parameters with σ/µ* larger than 
1.0 can be classified as non-linear and/or non-monotonic 
(three parameters; equipment power, ventilation supply 
temperature summer and ventilation air volume) and 
parameters with σ/µ* smaller than 0.1 can be classified as 
linear (three parameters; ventilation exchanger efficiency, 
winter temperature and specific fan power).    
Based on this screening analysis, additional effort was 
used to accurately update the probabilistic distributions 
for parameters with high values for μ* or σ. In this case, 
probabilistic distributions for all parameters which are 
named in Figure 1 (13) were considered, to ensure that 
they are as accurate as possible. Analysis with higher 
number of trajectories (up to 30) and levels (up to 10) 
gave similar results with no additional parameters 
introduced into the 12 highest ranked parameters. 

 
Figure 1. Results from Morris screening analysis using 
10 trajectories, showing the standard deviation versus 

the absolute value of the mean elementary effect for each 
input parameter. Parameters of high importance are 
named. Parameters left of the dashed σ/µ*=1 line are 

classified as non-linear/non-monotonic and parameters 
right of the σ/µ*=0.1 line are classified as linear.    
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Table 1. Parameter values for the hospital case study. Where nominal values vary across thermal zones, a range is 
given. Bounds are absolute minimum and maximum values where the distribution is truncated. The design changes 

column defines the design parameters input to the SensiRob framework, each corresponding to potential issues. Where 
a parameter belongs to multiple categories, additional categories are indicated by their first letter. 
Category Parameter Unit Nominal 

values 
Bounds Uncertainty 

(95% conf.) 
Design 

changes 
HVAC - Ventilation Vent Supply Air m3/hm2 12 – 50 0 – 80 5 % + 20% 
HVAC - Ventilation Vent Extract Air m3/hm2 12 – 50 0 – 80 5 % + 20% 
HVAC - Ventilation Vent Supply Temp °C 19 – 21 15 – 23 2 + 2 
HVAC - Ventilation Vent Supply Temp Summer °C 19 15 – 23 2 - 3 
HVAC - Ventilation Vent SFP 100 kW/m3/s 1.5 0.1 – 10 50 %  
HVAC - Ventilation Vent Exchanger Efficiency % 80 0 – 100 10 % - 5 %% 
HVAC - Ventilation Vent Heat Coil Capacity W/m2 100 0 – 200  20%  
HVAC – Cooling + U + C Cool Settemp °C 24 23 – 30 3 - 1 
HVAC – Heating + U + C Heat Settemp °C 21 12 – 23 3 + 2 
HVAC – Heating + U + C Heat Settemp Night °C 19 12 – 23 4 + 2 
User behaviour  Num Persons - 6 – 102 0 – 200 50 %  
Control system + U  Lighting Power W/m2 8 – 60 0 – 100 50 %  
Control system + U Lighting Power Holiday W/m2 0 0 – 100 10  
Control system + U Lighting Usage Hours h (/day) 12.75 – 24 0 – 24 2  
Control system + U Equipment Power W/m2 6.7 – 65.5 0 – 100 20 %  
Control system + U Equipment Power Holiday W/m2 0 0 – 100 2   
Control system + U Equipment Usage Hours h (/day) 9.9 – 22 0 – 24 2  
Weather Summer Temp °C 8.9 -20 - 20 3  
Weather Winter Temp °C -4.2 -20 - 20 3  
Building Envelope Uval Façade W/m2K 0.12–0.18 0.05 – 1 0.02 + 0.1 
Building Envelope Uval Separator Wall W/m2K 0.25 0.05 – 1 0.02  
Building Envelope Uval Roof W/m2K 0.1 0.05 – 1 0.02 + 0.08 
Building Envelope Uval Window W/m2K 0.8 0.05 - 2.5 0.02 + 0.4 
Building Envelope Uval CoolPipes W/m2K 0.2 0.05 – 1 0.02  
Building Envelope Infiltration N50 h-1 0.6 0 – 7 0.2 + 1.9 
Building Envelope Thermal Bridge Norm W/K/m2 0.03 0 – 1 50 % + 300 % 
Building Envelope Window Solar Fact - 0.51 0 – 1 30 %  

Step 3: Uncertainty and sensitivity analysis 
The high computational cost due to application of Monte 
Carlo uncertainty simulation can be reduced by using 
more efficient sampling methods, such as, e.g., LHS or 
Sobol sequences (Kucherenko et al. 2015).  The general 
recommendation for a LHS sample size is stated as ten 
times the number of variables according to Tian et al. 
(2018) and Loeppky et al. (2009), while Pang et al. (2020) 
recommends using 10 – 1000 times the number of 
variables depending on analysis method. The SensiRob 
framework gives the possibility to study convergence by 
incremental sampling (Pang et al. 2020). Here this was 
done by calculating selected output parameter and SRCs 
for 6 different sample sizes (64 to 2048 samples) 
repeatedly (5 times per sample size), and studying 
convergence properties. For the full set of 27 parameters 
grouped (100% correlation across zones), 512 samples 
were required for stable output parameter and SRC for the 
10 input parameters with highest SRC. For the 27 
parameters individually (no correlation across zones), 
acceptable stability for the output parameter was found 
for 512 samples, while 2048 samples were necessary for 
SRC.  For Monte Carlo filtering a higher number of 

samples give better results, and thus 4096 samples has 
been used across all analyses for the current case.  
The uncertainty analysis for change in HVAC energy 
usage due to the input parameter variations given in Table 
1 is presented in Figure 2 for varying correlation across 
zones. The mean change in HVAC energy usage is found 
to be 18% across all correlation settings, with uncertainty 
(95% confidence interval) ranging from 38% (100% 
correlation between zones) to 18% (no correlation).  

 
Figure 2. Change in HVAC energy due to variation of 

input parameters (thick line, circles) for varying 
correlation across zones. Uncertainty (95% conf. int.) 

shown using shaded area.  
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Figure 3. Relative importance of input parameters for HVAC energy usage based on SRC for (A) the case with full 

correlation across zones (R2=0.85), and (B) the case with no correlation across zones (R2=0.89). The 10 input 
parameters with highest importance are shown to illustrate the application of the framework. In (B), SRC values are 

shown across zones using a stacked bar plot, where each zone is shown using a separate colour. 

Next, a sensitivity analysis is made to analyse the relative 
importance of the input parameters. In Figure 3, the 
relative importance of input parameters is shown using 
the SRC. For the case with full correlation across zones in 
Figure 3 (a), parameters related to ventilation [exchanger 
efficiency and SFP (Specific Fan Power)] are found to be 
of highest importance, ahead of a weather parameter 
(winter temperature). Other important parameters are 
related to cooling and heating set temperature and lighting 
power. In Figure 3 (b), corresponding data for the case 
with no correlation across zones is presented.  The order 
of importance is the same for the four most important 
parameters when summating the contribution from 
individual zones. However, large differences in 
importance across zones can be observed.   
Figure 4 shows which input parameter values 
(normalized) lead to low HVAC energy usage (green) and 
high HVAC energy usage (red) for the 100% correlation 
case. This is found by identifying the 10% of the 4096 
simulations which gives lowest and highest HVAC 
energy usage, respectively, and plotting the distribution. 
Monte Carlo filtering is done by comparing the full 
distribution of each input parameter with the selection in 
a two-sample Kolmogorov-Smirnov test. P-values below 
0.01 indicate that the parameter is of critical importance 
for the investigated criterium, p-value between 0.01 and 
0.1 indicate that the parameter is important and above 0.1 
indicates that the parameter is insignificant (Saltelli et al. 
2004). 
While SRC is useful to understand the importance of the 
input parameters, potential non-linearities in the model 
means that some input parameters may have high SRC 
while only being important for either positive or negative 
changes in HVAC energy usage. Monte Carlo filtering is 

an approach that helps identifying regions of the input 
space that meet certain criteria, applicable for non-linear 
analysis and correlated input, giving excellent analysis 
and visualization possibilities. A combination of Monte 
Carlo filtering with  interactive visualization is a method 
which can be intuitively understood by practitioners, as 
also Østergård et al. (2020) has explored.  

 
Figure 4. Monte Carlo filtering visualized for case with 

full correlation across zones. Distribution of input 
parameters (normalized) corresponding to the 10% 

lowest/highest HVAC energy usage is shown in 
green/red along with corresponding p-value for the two-

sample Kolmogorov-Smirnov test. 

A. B. 
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Step 4: Design analysis 
The aim of the design analysis in the current case study 
was to understand how different issues that could occur in 
the design phase, building phase or operational phase 
would influence the HVAC energy usage. One such issue 
could be that the infiltration-value for the building 
envelope in the finished building is significantly higher 
than planned for, either due to setting a too optimistic 
estimate in the design phase or due to poor follow-up in 
the building phase. Another issue could be that the 
ventilation supply temperature was set to 19°C in 
summer, but in reality turned out to be set to 16°C. Twelve 
such potential issues have been identified and are listed in 
Table 1 in the column “Design changes”.  
A typical approach for a practitioner without specific 
software for global uncertainty and sensitivity analysis 
available, would be to perform a one-design-at-a-time 
(ODT) analysis, i.e., consider the isolated effect of each 
issue, and based on this analysis consider if the increase 
in HVAC energy usage is acceptable. With this approach, 
the combined effect of uncertainties considered in step 3 
and the considered issue would not be found. Also, the 
combined effect of several issues would be overlooked.      
In Figure 5, results from an ODT analysis for each of the 
12 issues is shown using dark green bars. In the same 
figure, the design change corresponding to each issue is 
combined with an uncertainty analysis, using the 
probabilistic distributions for input parameters from step 
3. The case with 75% correlation across zones is 
considered, all 27 parameters are included, and 512 LHS 
samples are used for each design. The issues are sorted by 
highest combined effect. It can clearly be seen that the 
combined uncertainty is influenced by non-linear effects, 
as the importance order based on the ODT alone is 
different. Investigation of the combined effect of multiple 
design changes with uncertainty is also facilitated in 
SensiRob, but is not included in this case study. 

 
Figure 5. Dark green bars: ODT analysis of change in 
HVAC energy usage for each design change (issue). 

Light green bars: Combined effect of design change and 
uncertainty. Error bars show one standard deviation. 

Discussion 
In this study we have shown how the SensiRob 
framework and methodology can be implemented in a 
practitioner’s workflow by considering a case study for a 
hospital building in Northern Norway. For a consultant 
already using a supported tool for BPS, the availability of 
such a framework with accompanying methodology is a 
necessary first step to enable the use of global uncertainty 
and sensitivity analysis among practitioners.  
In order to integrate the use of this type of frameworks 
and methodologies in the daily workflow of practitioners 
working on BPS beyond the pilot phase, high focus must 
be put on leading the user through a process that can be 
repeated and automatically documented for each new 
project. The 4-step process demonstrated in the case study 
has many of the characteristics that are required in order 
to succeed; automatic import of existing simulation files, 
re-usable Excel-sheet with probabilistic distribution for 
potential input parameters that can be reused across 
projects, the possibility to make many simulations in a 
short time-span and intuitive visualizations. The 
framework will be further developed in cooperation with 
practitioners in an ongoing project. 
For the considered case study, analysis of measurements 
after the hospital had been in operation for one year 
showed a 20% higher energy usage for heating and a 22% 
higher energy usage for ventilation than projected. 
According to De Wilde (2014), the main reason for the 
performance gap between predicted and measured energy 
usage is often a different occupant behaviour than 
assumed in the design stage. This was found to partly the 
reason also in our case; in many rooms the set-
temperature for heating was manually set to 23°C, while 
it was set to 21°C in the control system and in the design.  
Another typical issue pointed out by De Wilde (2014) is 
that the quality of the building is often not in accordance 
with specification, with insufficient attention to both 
insulation and airtightness. This was also found in the 
considered case study; both infiltration rate and thermal 
bridges were not according to plans and BPS input 
parameters due to lack of control in the building phase. 
Thermal imaging showed leakage around doors and 
windows, and thermal bridges with higher heat 
conductivity than projected were found. The higher 
energy usage for ventilation was found to be due to the 
use of higher temperature than projected for the 
ventilation at night. This was an indirect cause of the poor 
building performance, which required a change of control 
system settings to assure required daytime temperatures. 
Comparing with the current case study results, the 
ventilation system was generally identified as the most 
critical component, with several ventilation parameters 
highlighted in both the uncertainty analysis and in the 
analysis of specific issues. Thus, for this type of building 
care must be taken regarding these parameters in the 
design process, and should also be followed up when the 
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building is set into operation. The input parameters for 
infiltration, thermal bridges and set temperatures for 
heating were also identified as critical in the model, in 
agreement with the experience from the hospital in 
operation. However, although the same parameters were 
identified in the model as in the hospital in operation, the 
modelled changes in HVAC energy usage in the case 
study were actually higher than measured. Thus, some of 
the probabilistic distributions for the input parameters 
have probably been given a too high value. In the 
remainder of the pilot phase, the probabilistic 
distributions for the input parameters will be refined, in 
order to provide a good starting point for future projects. 
With respect to the statistical methods applied in the case 
study, the results presented for case 3 clearly showed that 
taking correlation between input parameters into account 
is crucial for correct interpretation of the results for multi-
zone buildings. Grouping input parameters and thus 
assuming full correlation between input parameters across 
zones lead to more than doubled variance in the projected 
change in HVAC energy usage. This topic has been given 
limited attention in the literature and should therefore be 
followed up in future studies. 
Conclusions 
This study has presented a framework and methodology 
that should make it feasible for practitioners working on 
BPS to get insight into the complex interactions between 
input parameter variations and model output in their daily 
workflow. This type of understanding is necessary to 
address the increasing gap between projected and 
measured energy usage in buildings. Through a case study 
for a hospital it has been shown how introducing state-of-
the-art global uncertainty and sensitivity analysis in the 
workflow can give a different level of actionable 
understanding than approaches often applied today. 
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