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Abstract: The Arctic is a region undergoing continuous and significant changes in land relief due to
different glaciological, geomorphological and hydrogeological processes. To study those phenomena,
digital elevation models (DEMs) and highly accurate maps with high spatial resolution are of prime
importance. In this work, we assess the accuracy of high-resolution photogrammetric DEMs and
orthomosaics derived from aerial images captured in 2020 over Hornsund, Svalbard. Further, we
demonstrate the accuracy of DEMs generated using point clouds acquired in 2021 with a Riegl
VZ®-6000 terrestrial laser scanner (TLS). Aerial and terrestrial data were georeferenced and registered
based on very reliable ground control points measured in the field. Both DEMs, however, had some
data gaps due to insufficient overlaps in aerial images and limited sensing range of the TLS. Therefore,
we compared and integrated the two techniques to create a continuous and gapless DEM for the
scientific community in Svalbard. This approach also made it possible to identify geomorphological
activity over a one-year period, such as the melting of ice cores at the periglacial zone, changes along
the shoreline or snow thickness in gullies. The study highlights the potential for combining other
techniques to represent the active processes in this region.

Keywords: structure-from-motion; terrestrial laser scanning; digital elevation model; Svalbard; SIOS

1. Introduction

The Hornsund area in southern Spitsbergen (Svalbard) is the focus of wide glacio-
logical [1–4], hydrological [5–9], snow [9], permafrost [10,11], geomorphometric [12–14]
and biological [15] studies performed due to intensive alterations in the surveyed terrain.
Digital mapping of such an environment and its related phenomena has become a funda-
mental requirement to keep track of all such alterations [16]. The most up-to-date, accurate
and precise digital elevation models (DEM) for the study area are generated based on
high-resolution satellites and aerial photos [17]. From these, the DEM with the highest
spatial resolution (2 m) and accuracy (standard deviation = 0.6 m) is derived from aerial
photographs taken in 2011. However, to monitor climate-induced change in the territory,
there is a need for more frequent and accurate data on terrain elevation [17].

The aim of the paper is to examine and combine two DEMs produced from aerial
image sets and terrestrial laser scanning (TLS). All data created within the project are
further available to the scientific community through the Svalbard Integrated Arctic Earth
Observing System (SIOS). Aerial images for the studied area were provided by SIOS
through a dedicated call of proposals (https://sios-svalbard.org/AirborneRS (accessed
on 23 December 2021)). One of SIOS’s missions is to reduce the environmental footprint
of scientific observations in Svalbard [18]. To achieve this mission, SIOS supports and
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coordinates the usage of unmanned aerial vehicles (UAVs) and a crewed Dornier aircraft
to acquire imagery and hyperspectral data for the Svalbard research community to sup-
port scientific projects (https://sios-svalbard.org/AirborneRemoteSensing (accessed on
23 December 2021)). The project started in 2020 and so far, no publications have presented
the accuracy of the data collected within the framework of the project. In this study, we
examine and present the accuracy of products such as orthomosaics and DEMs obtained
during the mission. The aerial data over two Hornsund zones, the Fuglebergsletta and
Werenskioldbreen areas, were collected in June 2020 (Figure 1). The mission took place at
the beginning of the ablation season, when some snow cover was present in the numerous
gullies. Additionally, the flight level limited the sidelap of images, causing data gaps in the
DEM. To address these limitations, a long-range TLS campaign was performed in August
2021. Long-range terrestrial laser scanning is an emerging method for the monitoring of
complex and rough terrain such as mountain slopes, outcrops and deformations [16,19–23].
Here, we used the ultra-long laser scanner Riegl VZ®-6000, which has been successfully
used in cryosphere studies such as glacier mass balance measurements in China [24,25];
the mass balance of very small glaciers in the Swiss Alps [26]; snow distribution at a glacier
located in the Ötztal Alps, Austria [27]; glacier snowline determination [28]; or relationships
between different climate forcing and flows of Helheim Glacier, Greenland [29]. However,
at this point there are not many studies on the accuracy of ultra-long laser scans [23,26,30],
especially over 2 km [27]. Further, to our knowledge there has not yet been a study
published concerning the quality control of TLS-collected data with the Riegl VZ®-6000
instrument in the polar region. To fill this gap, we analyzed the accuracy of the relative
and absolute registration of four scans collected over the complex Fuglebergsletta area, the
most studied area near the Polish Polar Station.
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Figure 1. Location of the study area. The blue outlines represent the extent of aerial imagery acquired
during the crewed aircraft campaign in 2020; the red polygon presents the range of data taken by
terrestrial scanner Riegl VZ-6000 in 2021; the red asterisks illustrate the positions of the laser scanner;
the orange dots represent ground control points and the yellow dots represent checkpoints measured
by GPS in 2021; the blue rectangle presents the location of the Polish Polar Station, Hornsund.

https://sios-svalbard.org/AirborneRemoteSensing


Remote Sens. 2022, 14, 601 3 of 17

Terrestrial laser scanning (TLS) was next applied to complement the aerial photogram-
metry. The integration of 3D modeling techniques is advantageous for obtaining the most
complete and useful object coverage for many application areas [19]. Integration of aircraft-
based, helicopter-based and UAV photogrammetry with TLS is popular, especially at large
or inaccessible sites [21,23,30–32]. In this paper, digital aerial photogrammetry and TLS
were combined to produce a continuous DEM with the highest possible resolution and
accuracy. Thanks to that, this DEM, based on aerial photos and scanning (TLS), can be
successfully applied to many environmental applications, such as hydrology modeling,
glacier change detection, quantifying depositional and erosional processes in dynamic
and complex fluvial systems, the evolution of the landscape, geomorphology and the
monitoring of landslide displacement [13,33].

2. Study Area

The study area is located in the southern part of Spitsbergen, Svalbard (Figure 1).
The area is characterized by diverse surface coverage such as relatively flat topography,
mountains, tidewater glaciers and land-based glaciers. Narrow coastal plains with raised
marine terraces surround the fjord shores [34]. Further inland, mountain massifs range
in elevation up to 763 m above sea level (a.s.l.). The steep rock walls are cut by a system
of deep chutes and gullies [13]. Two regions are analyzed in this paper. The eastern part
is Fuglebergsletta, containing the Fugleberget massif and Hansbreen tidewater glacier;
the retreat of the Hansbreen caused the exposure of wide lateral moraine ridges with
buried glacial ice [35]. The western studied part is the Werenskioldbreen area; the land-
based Werenskioldbreen glacier’s foreground is flat with active glaciofluvial landforms
and moraine. The vicinity of the Polish Polar Station, located on the shore, makes these
two areas the focus of numerous environmental studies.

3. Materials and Methods
3.1. Aerial Imagery
3.1.1. Data Preprocessing

Imagery acquisition over the research area was carried out during a SIOS crewed air-
craft campaign on 22 June 2020. The aircraft, a Dornier DO228, is fitted with an RGB camera
(Phasone IXU-150, Schneider LS 55 mm f/2.8) and a hyperspectral imager (VNIR-1800,
Norsk elektrooptikk; [18]). The RGB camera and the hyperspectral imager can acquire
images with a ground resolution of 0.1 m and 0.3 m from a flight altitude of 1000 m, respec-
tively. During the Hornsund campaign, 622 high-resolution RGB photos were acquired.
Out of these, 326 were related to the Fuglebergsletta area (covering Polish Polar Station
and Hansbreen surroundings) and 296 to the foreground and frontal part of Werenski-
oldbreen (Figure 1). The images were all acquired at a flight altitude of 1000 m a.s.l., or
approximately 935 m above ground level, resulting in a ground resolution of approximately
0.085 m per pixel. Due to the variable lighting conditions during the mission, preliminary
exposure compensation was performed (Figure 2). The entire dataset was converted from
the RAW format (48 bit IIQ) to JPEG (24-bit).
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3.1.2. Ground Control Points and Checkpoints

There was no opportunity to place dedicated ground control points (GCPs) and check-
points before the flight campaign. Therefore, natural points were measured during the
fieldwork in 2021, between 13–18 August (Figure 1). The vast majority concerned centroids
of the characteristic large boulders which could have been correctly defined in the previ-
ously taken aerial photos. Fifty-nine points were measured in WGS 84 UTM 33X projection
by Leica GX1230GG receivers. Measurements were performed at GNSS post-processing
mode (30 min sessions, Phase Fixed solution) and RTK-GNSS mode, with corrections
from the reference station at the Polish Polar Station (PPS). The GCPs at Fuglebergsletta
were within the 4 km range from the PPS. The GCPs at the Werenskioldbreen area were
11–12.5 km from the PPS. The average horizontal and vertical accuracy related to the post-
processing measurements was 0.0003 m and 0.0008 m, respectively. The average horizontal
and vertical accuracy related to the RTK mode was 0.01 m and 0.024 m, respectively.

3.1.3. Data Processing and Quality

The attitude and position of the camera were recorded for each image, using an
onboard navigation system (Applanix POS AV 410). The flight data, together with the
GNSS correction measurements from the Polish Polar Station, were postprocessed us-
ing Applanix PosPac MMS 8 software. The total accuracy of the postprocessed camera
position and orientation were within 0.025 m and 0.01 degrees, respectively. The aerial
images were processed in Agisoft Metashape 1.7.5 software (https://www.agisoft.com/
(accessed on 23 December 2021)), using the postprocessed camera position and orientation
for each image. The structure-from-motion method was used to obtain high-resolution
DEMs and orthomosaics (Figure 2). Structure from motion (SfM) is a photogrammetric
technique for estimating three-dimensional models from two-dimensional images, collected
in proper overlap and coupled with local motion signals [36]. It is widely used in modern
photogrammetry, especially low-level, where UAVs are applied [37].

At the following stages of data processing, the images in full resolution (8280 × 6208 pixels)
were applied. Next, 30 GCPs were used in the aerotriangulation process (Figure 1). In the

https://www.agisoft.com/
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Fuglebergsletta area, the selected 27 GCPs were characterized by an appropriate distribu-
tion, presented in Figure 1. The GCP density was 1.17 GCP/km2. In the Werenskioldbreen
area, only three GCPs were measured, mainly located in the southern part of the study.
The GCP density was only 0.11 GCP/km2. The aggressive depth filtering was used to
generate dense point clouds, which produced the best results among the available levels.
The remaining artefacts were removed manually. Due to the negligible number of vertical
objects and the use of very high-quality images, estimated by the software at above 0.80,
the total number of removed points was insignificant, below 0.1%.

The remaining 29 points measured by GPS, which did not participate in the aerotrian-
gulation process, were used as checkpoints (Figure 1) to validate the vertical accuracy of
DEM and horizontal accuracy of the orthomosaic generated for Fuglebergsletta. The point
cloud data were exported into the grid format (*.tif) and compared against the GCPs in
ArcGIS software.

3.2. Terrestrial Laser Scanning (TLS)
3.2.1. Long-Range Terrestrial Laser Scanning

The TLS survey was carried out on 15 August 2021, using the Riegl VZ®-6000 long-
range terrestrial laser scanner (Figure 1). The scanner has an effective maximum range of
around 6 km, operates at a wavelength of 1064 nm and uses class 3B laser beams, so can
be used in snow and glacier studies thanks to high rates of reflection (80%) from snow-
and ice-covered terrain [23,24,29]. The result of a single laser scan is a large quantity of
3D data, usually of the order of several million point measurements, each with an x, y,
z and intensity value. This dataset is termed a point cloud and is the raw ‘product’ of
scanning [38]. The laser footprint size estimated from the beam divergence (0.12 mrad for
Riegl VZ®-6000) gives spot sizes of 15 mm at 60 m, 120 mm at 1000 m, 240 mm at 2000 m
and up to 720 mm at distances of 6000 m [39].

Although the range of 6 km theoretically covers most of the area of interest, in order
to increase the density of scans in the far field and reduce shadowing problems [23], a
total of four scans were acquired from various positions to cover the area as uniformly
as possible. The scanning frequency was set to 30 kHz and column and line resolutions
to 0.002◦. Riegl instrument uses laser light, so is relatively slow compared to the phase
difference scanners [40]. Therefore, the number of the positions and scan resolutions
were chosen to take advantage of good atmospheric conditions, which is not common in
harsh Arctic conditions. Associated phenomena affecting long-distance estimations are
air temperature, pressure and humidity. Therefore, we used meteorological data from a
nearby meteorological station at the Polish Polar Station during measurements.

3.2.2. Point Cloud Registration

Relative and absolute positioning of scans [38] (Figure 2) was performed using
RiSCAN Pro 2.12.1 (http://www.riegl.com/products/software-packages/riscan-pro/
(accessed on 23 December 2021)). The maximum measured distance by TLS within the
study area was about 7.8 km. However, to minimize the effect of the laser footprint size for
long distances, during the registration process we used only parts of point clouds within
the range of 3 km from the laser scanner position. The data were also filtered to remove
noises, and the unstable area of the glacier was omitted during the registration of the scan.

Fine cloud-to-cloud registration was performed by a Multi-Station Adjustment (MSA)
tool in RiSCAN Pro [32]. The software identifies common plane patches from different
scan positions, links them together and minimizes the errors between all these linked plane
patches by using an iterative matching algorithm [41]. The standard procedure in MSA
uses a plane patch filter [32]; however, our study used triangulated polydata to increase
the number of planes in the registration process. As a result, all point clouds from the four
stations were merged into a single point cloud.

An absolute registration was performed in the last step to fit the merged point clouds
into the reflectors scanned during the field campaign. Five Riegl flat reflectors (50 mm

http://www.riegl.com/products/software-packages/riscan-pro/
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diameters) were distributed spatially as evenly as possible around each of the four scanner
positions and measured using RTK-GNSS in the UTM 33X zone. Leica GX1230GG receivers
operating in the RTK mode used corrections from the reference station at the Polish Polar
Station. The average horizontal and vertical accuracy of RTK GNSS measurements of all
20 reflectors was 0.01 m and 0.02 m, respectively.

3.2.3. Validation of TLS

Absolute positioning allows laser scans to be integrated with the other registered
data [38]. However, before such integration, validation of the data should be performed.
The densities of TLS point clouds strongly depend on the distance to the scanning system
and the chosen scan frequency [23]. Therefore, to uniform the data, point clouds were first
filtered with the Octree algorithm in RiSCAN Pro 2.12.1 and then exported to the LAS
format. Next, the data were imported to ArcGIS, converted into the raster format and
compared against the 19 GCPs and checkpoints measured in 2021 (see Chapter 3.1.2) which
were captured during scanning.

3.3. Integration of Aerial and TLS Based Data

To assess the difference between aerial-based and TLS-based DEMs, we used the
freely available Multiscale Model-to-Model Cloud Comparison (M3C2) plugin for open-
source CloudCompare software [42]. M3C2 is an algorithm used for multitemporal point
cloud distance calculations. It estimates local positions in two input point clouds by using
the surface normal vectors to determine the median point within a cylinder of defined
radius [42,43]. For the point-cloud-based strategy, the M3C2 algorithm is chosen as the best-
established method, especially in earth sciences, when dealing with irregular surfaces [44].
Here, we used the algorithm to compare the data and find areas where differences between
both point clouds were significantly larger than the estimated accuracy of the DEMs
generated from those point clouds. Buildings and noises were removed from the point
clouds. Normal calculations were performed at a fixed scale (D = 2 m) using the core
point file.

Both DEMs contain data gaps; therefore, we combined both DEMs to create a con-
tinuous gapless product with the best possible accuracy and resolution. Missing data in
aerial-based DEM stem from too low a sidelap of images. TLS data gaps arise from two
primary sources: a line-of-sight obstacle resulting in occlusion (holes in the data as some
foreground interfered with the scanner’s line of sight) and a dropout resulting from a
specular reflective or absorbent surface, preventing the energy from a given laser pulse
from returning to the TLS instrument [38,45]. Furthermore, TLS data has inhomogeneous
point density throughout the area [16,22,30,42,46]. Thus, we used the aerial-based DEM
with relatively homogeneous point distribution as the reference dataset. Next, the data
gaps and areas covered by snow were replaced by the data from TLS. In a few small zones
without any data, TLS data were interpolated using the Inverse Distance Weighting (IDW)
algorithm [16].

4. Results
4.1. Digital Elevation Model and Orthomosaics Based on Aerial Imageries
4.1.1. Fuglebergsletta

As a result of aligning the images, 325 from 326 were correctly aligned. Camera
locations and image overlaps are presented in Figure 3A. Details on data processing are
shown in Table 1. The final resolution of the DEM equals 0.169 m and the point density
was 35.2 points/m2. The root mean square error for all 27 GCP locations calculated by
the software was 0.0018 m. Based on the improved dense clouds, digital elevation models
were generated. The DEM was exported to raster format with 0.169 m resolution, the
best possible resolution with this software, to increase the possibility of mapping even the
smallest geomorphological features [16]. The vertical quality of the DEM was assessed
based on 29 GCPs that were not used in the aerotriangulation process (Figure 4A). The
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standard deviation equaled 0.14 m, with a mean value of −0.22 m and a median value of
−0.19 m. The maximal vertical error of the DEM equaled 0.54 m. There is a small systematic
error in the DEM. In general, the elevation of the DEM generated in Agisoft is slightly
higher than the measured elevation of the checkpoints.
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Figure 3. Camera locations (black dots) and image numbers and overlaps over Fuglebergsletta (A)
and Werenskioldbreen area (B).

Table 1. Processing settings and final resolution of the products.

Image Alignment Dense Cloud Depth
Maps

Filtering

3D Model DEM Orthomosaic

Accuracy Tie
Points Quality Points Quality Faces Size Resolution Size Resolution

Fuglebergsletta High 356,693 High 1,074,237,705 Aggressive High 213,379,209 73,519 ×
38,769 0.169 m 106,313

× 50,381 0.0843 m

Werenskioldbreen High 323,830 High 959,690,194 Aggressive High 191,045,203 61,565 ×
45,592 0.174 m 81,027 ×

53,511 0.087 m

After the final colour calibration of the entire dataset, an orthomosaic was produced
(Figure 4B). The resolution of the orthomosaic was two times higher than the DEMs, which
were the basis for its creation, and equalled 0.0843 m. The horizontal accuracy of the
orthomosaic was estimated based on the same GCP points as those used for the DEM
accuracy assessment. The standard deviation of the horizontal accuracy equalled 0.10 m,
with a mean value of −0.12 m and a median value of −0.10 m.

In the low-image-overlap areas, the insufficient color blending over merged images
may be noticeable. Even using color and white balance calibration in postprocessing, this
effect was difficult to eliminate. For flat areas located below c. 140 m a.s.l., the applied
flight parameters were sufficient to assemble the models. However, the mountain slopes
and peaks on both study sites were characterized by either insufficient or a complete lack
of coverage (Figure 3A). This resulted in broad blank areas (Figure 4) in the DEM and
orthomosaic. Parts of the model composed only of a pair of images occasionally presented
coarse graining or a deep generalization of elevation data (Figure 5A). Similar effects occur
even with multiple overlaps on watercourses, surface water (Figure 5A) and the sea. For
this reason, the DEM shows negative point values, reaching –15 m. Artefacts were also
generated by moving objects, such as animals (Figure 5B).
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points represent GCPs used during processing in Agisoft, while yellow points served as checkpoints
to estimate the quality of the products.
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(A), artefacts generated by reindeers (B) and noises over water bodies (A,C).

4.1.2. Werenskioldbreen Area

As a result of aligning the images, 285 out of 296 photos for Werenskioldbreen were
aligned correctly. Both the automatic and manual alignment functions failed to merge
ten images representing the southern part of the glacier. It was caused by low overlap
over the Angellfjellet ridge (594 m a.s.l.) and partial cloud cover over this area, making
it difficult to detect tie points correctly. Camera locations and image overlaps for the
second area are presented in Figure 3B. Details on data processing are described in Table 1.
The final resolution of the DEM equals 0.174 m and the point density is 33 points/m2.
The root mean square error for three points used in aerotriangulation was 0.0011 m. The
resolution of the DEM in raster format and orthomosaics generated for the zone was 0.174
and 0.087 m, respectively (Figure 6). The resolution difference between orthomosaics for
Werenskioldbreen and Fuglebergsletta was caused by the variation between mean ground
level and flight altitude. Similar to the DEM for Fuglebergsletta, noises over water bodies
(e.g., Figure 5C) are also present for the Werenskioldbreen area.

No checkpoints were applied to assess the final absolute vertical accuracy of the
DEM and horizontal accuracy of the orthomosaic. However, we compared the DEM and
orthomosaic generated using three points in aerotriangulation and without using any
GCP. Results show significant improvement of the former products. The DEM accuracy
measured over the three GCPs increased from 1.77 m to 0.22 m. The horizontal accuracy
of the orthomosaic increased from 1.29 m to around 0.1 m (the orthomosaic was shifted
towards the southeast).
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4.2. TLS

In this study, we only used point clouds within 3 km from the laser scanner position
(Figure 7; see Chapter 3.2.2). The four scans were registered using nearly 540,000 plane
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patches detected throughout the area (Figure 7). The final point cloud had over 117 million
points, with a density of around 500–600 thousand points per m2 in the near-field region of
the scans and just a few points per m2 at the distance of 3 km from the scanner. The RMS
error obtained during the relative registration of all four point clouds was 0.09 m.
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Figure 7. Terrestrial laser scanning data over the study area. The yellow polygon in (A) indicates the
area covered by all scans, while the brown polygon presents the data range used in the registration
procedure. Yellow asterisks in (B) illustrate the positions of the laser scanner. Orange and yellow
dots represent GCPs and checkpoints that served to estimate the quality of the raster DEM generated
from TLS data. Red dots in (C) present the example positioning of the RIEGL reflectors regarding the
scanner position.

The final point cloud was then georeferenced utilizing 20 RIEGL reflectors (Figure 7C),
with an RMS error of 0.13 m. The lowest accuracy in the northerly direction (0.2 to 0.3 m)
was noticed for the two lateral scans, numbers 2 and 4. The lowest accuracy in the easterly
direction was for scan number 1 (0.21 to 0.25 m). Height accuracy was high for all scans (of
order 0.01–0.05 m).

The georeferenced cloud point was next filtered using an Octree algorithm in RiSCAN
Pro 2.12.1 with a cell length of 0.16 m and converted into the raster format in ArcGIS (Esri,
California) with 0.16 m resolution. As the areas of DEM interpolated in the shadow are
characterized by lower accuracy, NoData values were assigned to the raster where holes
in the data were present. Therefore, the DEM contains data gaps and keeps information
only at spots measured directly by the laser scanner. The vertical quality of the TLS-based
DEM was assessed based on the 19 independent points (Figure 7B). The standard deviation
equalled 0.31 m and median value −0.19 m. The maximal vertical error of the DEM
was 0.93 m.
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4.3. Integration of Aerial DEM with TLS

The resulting M3C2-based point cloud distances are presented in Figure 8. Generally,
the differences between both point clouds over the surveyed area were in the range of the
vertical accuracy of the product (SD equalled 0.14 m and 0.31 m for aerial and TLS data,
respectively). The map of surface differences shows local changes ranging from −4 m to
2 m (Figure 8A). The largest recorded differences, up to −4 m, are noted over the gullies
and depressions filled by snow in 2020. Therefore, before integrating both DEMs, all areas
covered by snow were removed from the aerial-based point cloud (Figure 8B,C). We also
documented the erosion of lateral moraine of Hansbreen (around −0.7 m), which consists
of an ice core covered with debris, as well as erosion along the shoreline. There are elevation
changes of about 1 m concentrated over the mountain slope in the western part of the
analyzed area. Numerous large boulders probably affect the quality and accuracy of the
TLS-based DEM in that zone. As the scanner was located on marine terraces, around 300 m
below, the laser beam was directed significantly upwards, and reflected off the wall of
these boulders, rather than the top. Regardless of these local differences, we combined both
DEMs into one continuous product. The final dataset (Figure 8D) is composed of a mosaic
of two DEMs in raster format. All data gaps and snow areas in the aerial-based DEM
were filled with the TLS-based DEM, with a blending option over a two-meter seamline.
Moreover, we interpolated DEM values for a few remaining holes, where no data from
both campaigns were present and interpolation of the DEM was made under the building
and infrastructure of PPS (Figure 8D).
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Figure 8. Comparison of the multitemporal point clouds: aerial-based point cloud from images 

taken in 2020 and TLS-based point cloud collected in 2021. (A) M3C2-calculated distance between Figure 8. Comparison of the multitemporal point clouds: aerial-based point cloud from images
taken in 2020 and TLS-based point cloud collected in 2021. (A) M3C2-calculated distance between
aerial-based and TLS dataset; (B) orthomosaic presenting data gaps and snow cover over the land in
2020; (C) vertical difference of the point clouds with snow cover area eliminated from further data
integration; (D) the final DEM integrated from both DEMs. Black polygons present the areas where
DEM was interpolated.
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5. Discussion

The two approaches to acquiring the terrain data discussed in this paper are helpful in
studying the landform topography and different environmental processes in the Hornsund
area. However, both technologies have their limitations. The best vertical accuracy was
noted for the aerial-based DEM. However, the limited sidelap of the mission caused data
gaps in DEM over mountain slopes. Such settings should be considered when planning
subsequent missions in the future, especially when the area of interest is land relief of the
mountain regions.

Further, as GCPs and checkpoints were not established prior to the photograph sur-
veys, we chose large, outsize boulders to serve as calibration and validation points [47,48].
Using such existing ‘stable’ features is a limitation of studies that use photogrammetric
methods to produce DEMs [48]. For the first studied zone, Fuglebergsletta, we used
enough GCPs to generate the DEM and orthomosaic and assess their accuracy. For the
Werenskioldbreen area, only three points would have been used to create the DEM and
orthomosaic. Thus, more significant distortions in the northern part of the study must
be expected due to the lack of GCPs in that part of the model. Notwithstanding this, we
generated the best products with the best resolution and accuracy for the Hornsund area.
Further, it is possible to supplement them with better-representing GCPs and recalculate
the dataset in the future. We would also like to underline here that regardless of the vertical
accuracy of DEMs, the very high resolution of the DEMs gives the possibility to map even
the smallest geomorphological features, compute geomorphometric indices and carefully
estimate geomorphometric parameters [16].

The accuracy of the TLS-based DEM is slightly lower than the aerial-based product.
One of the properties that strongly influenced the long-range TLS was an inhomogeneous
point density throughout the area of interest and positional uncertainty due to the laser
beam width [22,30,42,46]. Laser footprint size at long 3 km distances equals around 0.36 m.
Furthermore, on inclined surfaces the laser footprint becomes deformed to an ellipse [22].
The uncertainty caused by these large footprints are not yet quantified, but is expected
to be in the order of decimeters and strongly depends on the distance from the scanner
to the surface [27]. Laser scanner data are susceptible to data gaps in locations not in the
direct line-of-sight of the scanner, resulting in ‘range shadows’ which inherently added
uncertainty to the derived product [22,38,42,45,49]. Further, the configuration of the scan
position and Riegl flat reflectors [30] was limited by terrain conditions, which would
increase the error in relative alignment and absolute registration of scans. Considering all
these limitations, the final vertical and horizontal accuracy of the TLS-based DEM of order
0.30 m is not unexpected to be in the lower-decimeter range [27] and is the best possible
for the complex natural terrain. The DEM at interpolated areas has a quality lower than
estimated in the study. In the future, viewshed analysis before TLS fieldwork could remove
the shadowing effect [50,51] and improve the accuracy of the data.

The snow cover present in the aerial imagery taken in 2020 and data gaps in both point
clouds led us to integrate both datasets [32,52]. Usually, within point-cloud-based strategies,
the data acquired in at least two epochs are used to determine the geometric changes
between them [30,43,44,52]. Here, apart from the accuracy assessment, we compared and
combined the data acquired within one year. The distances between both point clouds were
distributed unevenly over the whole area. The differences lower than the vertical accuracy
of DEM (SD = 0.31 m) indicated the stable area. The final DEM for Fuglebergsletta was
composed of the aerial-based DEM, with data gaps and the snow-covered regions filled
by TLS data. One needs to keep in mind that the expected accuracy of such a product is
lower than singular point clouds acquired over two years, as the combined DEM comes
from the datasets collected in 2020 and 2021. Merging two DEMs from two different
years is challenging, as the study area is undergoing continuous changes in land relief.
However, temporal changes in most of the area are below the accuracy of both DEMs, and
therefore the DEM can be successfully applied to hydrological, glaciological, biological
and geomorphometric studies, when observed changes are larger than the accuracy of the
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DEM. In other words, the merged DEM that we have generated represents the topography
of the region’s independent annual surface elevation changes, since the incorporated data
were collected during the following two years. In the process of merging two datasets, the
annual elevation changes may not reflect in the resulting DEM because of suppression of
high-density elevation data recorded from TLS and photogrammetric methods [53,54].

To conclude, the final point clouds, DEMs and orthomosaic are the best terrain prod-
ucts with the highest spatial resolution for the Hornsund area and can be used for further
environmental studies. They allowed us to identify local geomorphic processes, such as
melting of ice cores at the periglacial area or shoreline erosion. However, for studies aiming
to identify changes within a specified time range or slow geomorphometric processes on
slopes, we recommend using data from the same types of sources (aerial/TLS) or stem-
ming from a more extended period, such as DEMs generated from aerial imagery taken
in 2011 [17]. In addition, we would like to underline here that all the DEMs should be
first co-registered [55,56] and the final error must be defined to differentiate between real
changes and data noise [22]. This is especially important for the DEM of the Werenskiold-
breen area, as only three GCPs located along an almost-straight line were used in the data
processing. This suggests that despite the high relative accuracy of the DEM, the absolute
accuracy could be lower and decrease with the distance from measured GCPs; therefore,
co-registration is needed when comparing with the other data.

6. Conclusions

The Hornsund area is the site in the focus of several studies due to the vicinity
of the Polish Polar Station. It is a complex terrain under constant changes, although it
lacks repeated datasets with spatial resolution high enough to map even the smallest
geomorphological features. In the present study we derived aerial-based DEMs, TLS-
based DEMs and orthomosaics, and assessed their accuracy and usefulness for further
environmental studies.

Aerial data provided by SIOS were used to generate the DEMs and orthomosaics for
the Fuglebergsletta and Werenskioldbreen areas. The products lack gaps over the mountain
slopes due to the low sidelap during the flight. Nevertheless, the derived DEM has sufficient
quality to study different geomorphometric features. Long-range TLS, despite limitations
such as data gaps, complex terrain which limits scan positions and large laser footprint
sizes at long distances, can also serve for future analysis of the different geomorphological
processes. In particular, the area close to the scanner position with very dense point clouds
can be used for future studies of 3D displacements and minor geomorphological features.

This work demonstrates that combining other techniques could be an option, especially
in remote polar areas, when data acquisition depends on many factors. In order to remove
the aforementioned holes in the datasets from aerial and TLS surveys, we integrated both
DEMs over the area close to the Polish Polar Station. Comparison of the point clouds
revealed a few small zones under local geomorphic processes, such as the melting of ice
cores at the periglacial zone and changes along the shoreline. The differences in both
products over the rest of the area were generally lower than the accuracy of both DEMs.
This allowed us to combine the data and create the final continuous DEM without gaps
for the Fuglebergsletta area. After the proper co-registration, all point clouds and DEMs
can be successfully applied in further studies of landform evolution and hydrological,
geomorphometric and other processes in the region.
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13. Senderak, K.; Kondracka, M.; Gądek, B. Talus slope evolution under the influence of glaciers with the example of slopes near the
Hans Glacier, SW Spitsbergen, Norway. Geomorphology 2017, 285, 225–234. [CrossRef]
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