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A B S T R A C T   

Camera estimation of fish size in aquaculture production and fisheries is crucial for enabling knowledge-based 
decision making. Automatic estimation of fish lengths on an individual and population basis are key steps to 
automate biomass estimation. We propose to use an underwater 3D range-gated camera for accurate fish-length 
estimation of free-swimming fish. The proposed algorithm requires no manual work or contact with the fish and 
is done in-situ. A robust algorithmic pipeline consisting of detection, tracking and fish length estimation stages is 
proposed. We show the accuracy of the proposed system on free-swimming fish, both in terms of individual fish 
lengths as well as the population distributions. The results show that the proposed system achieves length 
estimation errors in the order of 1% of manual-measured fish length.   

1. Introduction 

By using emerging technologies, the aquaculture industry and fish
eries are moving from experience-based towards knowledge-based fish 
farming and capture (Føre et al., 2018; Li et al., 2020; Saberioon et al., 
2017). Underwater (3D) vision systems are a key enabling technology to 
facilitate this transition, mainly because they can enable automatic 
behaviour analysis (Papadakis et al., 2012; Oppedal et al., 2011), species 
identification (Iqbal et al., 2021), fish count (Sharif et al., 2015), 
fish-length estimation (Costa et al., 2006; Shi et al., 2020), and biomass 
estimation (Li et al., 2020). In fisheries, this type of information can be 
used to decide whether to haul in a catch or not, or for automatic sorting 
of the catch before hauling it in. In aquaculture, biomass estimation is 
important in production planning, for feeding practice and pre-harvest 
sale of the fish (Li et al., 2020). As a result, these industries will in
crease profits by reducing the need for manual labour and optimize their 
operations and reduce bycatch. 

While species identification and fish counts can be performed with a 
standard underwater 2D camera, accurate fish length estimation is very 
difficult to estimate without having high-resolution depth1 information 

available (Shortis et al., 2016). One approach for fish-length estimation 
with a 2D camera is to install infrastructure, e.g. a tunnel in the water, so 
the fish always swim past the camera at the same calibrated distance 
(Miranda and Romero, 2017). However, if the goal is to have a more 
flexible vision system which does not depend on external infrastructure, 
a high-resolution 3D underwater camera which is able to estimate both 
an intensity and a depth value for each pixel, is required (Shortis et al., 
2013). 

Numerous optical 3D vision systems have been proposed for the 
purpose of fish length estimation, such as structured light (Lopes et al., 
2017) and stereo-vision (Shortis et al., 2013). Stereo-vision has the 
advantage of being a relatively simple and cost-effective approach for 
gathering underwater 3D data of free-swimming fish. Many authors 
have proposed alternative stereo-vision systems for the purpose of fish 
length estimation, but they tend to struggle with limited viewing dis
tance and water turbidity which smears out the details which are used in 
the feature matching part of the disparity estimation procedure. 

In this study, we propose a range-gated 3D camera, which is 
described in detail in (Risholm et al., 2018), for the purpose of length 
estimation of free-swimming fish. The advantage of the 3D range-gated 
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camera is the combination of depth resolution, field of view and 
real-time 3D acquisition (10 Hz), and its resistance to turbidity makes it 
ideal for real-time monitoring of fish in e.g. fish-farms or on trawls. 

Our algorithmic approach to length estimation constitutes a 3-stage 
pipeline of fish-detection, tracking, and length estimation. We propose 
to use DBSCAN (Ester et al., 1996), a versatile clustering algorithm, for 
detection and segmentation of the fish followed by a global tracking 
algorithm which aims at producing a set of reliable tracks without oc
clusions. In the final step, we rely on the depth map to compute a cen
treline and corresponding fish length estimates for each frame in a track. 
From each track/fish, we propose a robust filtering approach to obtain 
the final length estimate given the per-frame results. 

We show, on data acquired of free-swimming fish in tanks and fish- 
farms, that the combination of the 3D range-gated camera and the robust 
algorithms provide accurate fish length estimates for both individual 
fish and a distribution within fish groups. 

2. Materials and methods 

2.1. Overview of pipeline for length-estimation 

To provide reliable length estimates of fish swimming in an uncon
strained environment, we propose a three-step process pipeline. Fig. 1 
shows an overview of the algorithmic pipeline we propose for length 
estimation based on the range-gated 3D data. 

The first step is to apply a detection algorithm to find and segment 
the fish in a single frame. Based on the depth of the fish, the orientation, 
and the location in the image, we apply a tracking algorithm to establish 
reliable tracks. For each frame in each established track, we estimate the 
metric length of the fish. Each track consists of a set of noisy length 
estimates which we filter to produce an accurate length estimate for 
each track. The distribution of track-based length estimates is summa
rized to generate accurate fish population statistics. 

2.2. A range-gated underwater 3D camera 

Capturing high quality underwater fish video can be challenging due 
to poor visibility and technological limitations in sensor design. 
Recently, the range gating 3D system UTOFIA (Risholm et al., 2018) as 
shown in Fig. 1, has provided an opportunity to capture high-resolution 
underwater intensity and depth images. We include a short description 
here for completeness. 

A 532 nm solid-state laser with an active Q-switch combined with a 
fast range-gated black and white CMOS (1280 ×1024) chip makes up 
the vital parts of the range-gated system. The camera includes an on
board sequencer in firmware which allows for a fine-tuned control of the 

shutter opening in steps of 1.67 ns (~18 cm) in relation to the triggering 
of the laser pulse. The camera can acquire images at 1000 Hz. A set of 
images acquired with increments of 1.67 ns between the triggering of 
the laser pulse and the opening of the shutter is used to estimate the 
distance to objects in the field of view. Another benefit of the range 
gating is that we can use the image gated right in front of objects in the 
scene to remove the effect of backscatter and thereby increase the image 
contrast. An example of gated signal traces for pixels in an image are 
shown in Fig. 2. 

Typically, we use 100 frames to generate a 3D frame, and conse
quently generate 3D frames at 10 Hz. We then organize the range-gating 
such that we image 25 ranges which covers 4 m (25 *18 cm). At each 
range we average four images to increase the signal to noise ratio (SNR). 
We can further increase the SNR by binning pixels. In this paper we use 
intensity images which are binned 2 × 2 and the range gated images are 
binned 4 × 4 before we compute the depth map. A super-resolution 
depth-estimation algorithm is used to achieve a depth-resolution of 
about 1 cm depending on the SNR. 

The intrinsic camera parameters were estimated using Zhang’s 
calibration method (Zhang, 2000) applied to checkerboard patterns 
imaged underwater. We found the field of view of the camera to be 50 
degrees horizontally and 29 degrees vertically. 

2.3. Fish detection and segmentation 

Detection and segmentation of fish in 2D video streams can be 
difficult when one fish is partially occluding another fish. Typically, 
object detection algorithms will merge the two fish together because 
their texture will be similar. However, with a 3D representation of the 
scene, two fish swimming in front of each other are easy to separate out 
because they will swim at different depths. 

Generally, there are two types of object detection methods to be used 
for detecting individual fishes: supervised and unsupervised. The su
pervised approaches require high quality labelled data to train machine 
learning models that can detect the target objects. Since manually 
labelling individual fishes is cumbersome, we rely on unsupervised 
clustering techniques. As we do not know how many clusters/fish we 
have in a frame, partition-based clustering such as k-means will not 
work. Instead we apply the density based clustering algorithm DBSCAN 
(density-based spatial clustering of applications with noise) (Ester et al., 
1996) to detect and separate out arbitrary number of fish in the scene 
based on the depth map. 

Before applying DBSCAN we filter out points in the depth map that 
have a low confidence/weak signals and apply a median filter with filter 
size 3. The depth map is converted into a point cloud by using the 
intrinsic camera parameters (focal length, principal point and lens 

Fig. 1. Algorithmic pipeline. A DBSCAN clustering algorithm takes a depth frame (a) as input and produces a segmentation for each detected fish as output (b). A 
tracker takes a batch of detections as input and produces a set of tracks (c). Centrelines are estimated for each detection (d) and length estimates are computed for 
each frame in a track (e). A robust filtering method estimates a length estimate for each track to produce a population distribution (f). 
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Fig. 2. Range-gated 3D system. (a) shows an image of the range-gated 3D system. The full system includes a top-side box, Gigabit Ethernet cable, PC, and a cy
lindrical underwater housing. (b) A gated intensity image generated by the camera. (c) Example range-gated intensity traces of the points marked with an ’x’ in (b). 
The point at which the signal increases fastest represent the distance to the object. 

Fig. 3. DBSCAN clustering for fish segmentation. (a) Input depth map to DBSCAN. (b) Label map output from DBSCAN. (c) Intensity image overlaid with the DBSCAN 
bounding boxes and the maximum metric span of the associated cluster. (a)Depth map(b)Label map output from DBSCAN clustering(c)Bounding boxes with the 
maximum metric length of cluster. 
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distortion parameters) which are found through a standard checker
board image calibration procedure (Zhang, 2000). 

The output of the DBSCAN algorithm is a separation of all the points 
into different fish clusters. An example output from DBSCAN is shown in  
Fig. 3. 

2.4. Fish tracking 

A single fish swimming in front of the camera will be present in 
several consecutive frames. Tracking of individual fish is important to 
avoid counting the length of a single fish more than once. Since each 
track consists of several frames with the same fish, we can extract more 
robust individual fish estimates by clever filtering of the noisy frame- 
based length-estimates. 

There are generally three approaches to multi-object tracking (Luo, 
2021); sequential trackers, global trackers and deep learning based 
tracking. As global trackers have shown to be robust towards occlusions 
and re-identification, and are relatively flexible, fast and easy to 
implement, we based our implementation on a state-of-the-art global 
tracker (Wang et al., 2020). However, we do not anticipate that the 
length estimates would differ much by basing our implementation on 
one of the other main multi-object tracking approaches. 

A global tracker uses all the detections in a batch of frames and tries 
to link the detections into trajectories. They tend to organize the de
tections as nodes in a directed acyclic graph (DAG) and solve for a 
maximum a-posteriori (MAP) estimate using the minimum-cost flow or 
circulation formulation. This makes the MAP problem computationally 
tractable (the time required for a computer to solve the problem is a 
simple polynomial function of the size of the input). We base our 
implementation on the minimum cost circulation (CINDA) framework 
(Wang et al., 2020). 

Assume X = {xi} is a set of detections in a batch of frames. A DAG is 
constructed where the nodes are represented by the negative log like
lihood Ci = log βi

1− βi 
of a detection xi. We set βi = 0.0 if we have found that 

a detection was occluded to exclude it from being included in any tracks. 
Otherwise we set βi = 0.9 to make it likely that the detection is included 
in a track. An extension of this scheme would adjust βi according to the 
confidence we have in the detection. We connect each node to a source/ 
enter node Cen

i = − logPenter(xi) and sink/exit node Cex
i = −

logPexit(xi), where the edge values define the negative log likelihood of 
that node being the start or end of a track. We define each of these 
likelihoods the same way, where the likelihood increases with a 
diminishing distance to the boundary of the image and the further away 
from the camera the detection is. The edges connecting the nodes are 
modelled by the negative log likelihood of two detections belonging to 
the same track Ci,j = − logP(xi|yj). We model Ci,j with three indepen
dent Boltzmann distributions which accounts for the distance in depth 
between the detection, the distance in image-space between the de
tections and the frame horizon distance. We have used a frame horizon 
of 10 frames, where a detection is connected to all detections in the next 
10 frames, but with a diminishing probability the further out in time the 
detection is. This is to allow for some missed detections, e.g. caused by 
occlusions or noise. 

The MAP solution is found with the CINDA framework which results 
in a set of trajectories with a corresponding cost. The cost can be used to 
filter out unreliable (low-cost) trajectories. As the global tracker acts on 
a batch of frames, an online version would e.g. work on a batch of the 
latest N number of frames. In the current study we have used all avail
able frames. 

2.5. Fish length estimation 

This section describes the approach we apply to estimate a metric 
length for each fish track. The overall pipeline is shown in Fig. 1. For 
each frame in a track, we first extract the centreline in the DBSCAN 

segmentation going from head to tail. Next, we estimate the metric 
length by converting the centreline to world coordinates using the depth 
values. Based on the per-frame length estimates, we compute a robust 
length estimate for each track/fish. These steps are explained in more 
detail in the following sections. 

2.5.1. Centreline extraction 
The centreline estimation approach is shown in Fig. 4. It can be 

difficult to extract the centreline robustly and efficiently for arbitrarily 
oriented fish in an image. We assume that the fish are represented by 
elongated structures and can be approximated by an ellipsoid. The fish 
segmentation is rotated according to the orientation of the major axis of 
the fitted ellipsoid such that the major axis is oriented across the col
umns of the image grid. 

A distance map (distance from the boundary of the fish segmenta
tion) is computed along the columns. For each column, the fish centre
line is located at where the distance from the boundary is largest 
(highest value of the distance map along a column). The DBSCAN seg
mentation has problems with very thin or narrow structures – which 
may occur on the tail and head of the fish. Applying DBSCAN segmen
tation directly may therefore lead to under-segmentation of fishes 
resulting in a shortened centreline. Consequently, we have added an 
extra search forward and backward of the fish to see if there may be 
extra pixels that should be classified as part of the fish. Extra pixels are 
added to the centreline if the difference between the depth values right 
outside the segmentation are within a threshold Text . Empirically we 
have found that Text = 10cm works well to include the thin/narrow 
structures. 

In some instances, we may have other fish swimming in front of the 
fish we are trying to estimate the length of. We label these cases as 
occluded if we observe depth values at the extrapolated centreline edges 
being closer to the camera than the fish we are currently processing. 
Nearer depth values will most likely represent another fish and occluded 
fish will most likely be estimated with a too short length estimate. 

A 2nd order polynomial is fitted to the centreline coordinates to 
regularize the centreline. We explored different approximations (1st and 
higher order polynomials and splines), where a 2nd order polynomial 
provided the best compromise between insensitivity to outliers and 
flexibility of fitting to a bending fish. 

2.5.2. Length-estimation per detection 
We sample the depth map along the fitted centreline. The depth 

values are noisy and may have large outliers – especially at the head and 
tail side of the fish. We apply a robust 1st order line fit to the noisy data 
by using the mid-80 percentile depth values. A 1st order polynomial 
(line) fit is used because we are not interested in the geodesic distance 
along the surface of the fish which may be better approximated by a 
higher order polynomial fit. 

Given the pixel coordinates and associated depth value, we use the 
intrinsic camera parameters to convert the centreline into Euclidean 
coordinates. We integrate along the centreline Euclidean coordinates to 
determine the length of the fish. 

We have found that with large slopes of the line fit (fish is swimming 
away or towards the camera), the length estimate is underestimated. The 
perspective foreshortening is the main cause of this. We tend to miss 
pixels on the head and tail of the fish the more it is angled along the 
optical axis, and around the area of the fish furthest from the camera 
(Fig. 5). 

2.5.3. Length-estimation per track 
Fig. 6 shows a set of intensity frames extracted from tracking an 

individual salmon over a total of 36 frames. Fig. 7 shows different es
timates, including the fish length, slope of the line fit to the depth profile 
and the curvature of the centreline, extracted from the fish segmentation 
at each frame in the track. Based on the per-frame estimates, the aim is 
to extract a per-track length estimate. It is obvious that at certain frames, 
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the length estimates become unreliable because the fish is quickly 
turning (e.g. at frames 25–37 where it is turning away from the camera). 
Consequently, the slope of the depth profile fit, and curvature of the 2nd 
order polynomial fit, are good discriminators for whether the length 
estimate is reliable. We propose a simple filtering technique to exclude 
these unreliable estimates from the calculation of the per-track fish 
length: (1) the slope should be stable over a neighbourhood of 5 frames 
(should not differ more than 10 cm) and the absolute slope should be 
less than 40 cm. (2) the curvature of the fitted centreline should be less 
than 0.1. 

We estimate a reliable fish/track estimate by calculating the mean 
and standard deviation over the valid estimates. For the case shown in 
Fig. 7, valid estimates are shown with a circle. 

3. Results 

We have performed two experiments to validate the performance of 
the proposed fish-length estimation. The first experiment validates the 
accuracy of the individual fish length estimation, while the second 
experiment validates the generated length-distribution over a popula
tion of fish. 

3.1. Three free-swimming fish with known lengths 

With this experiment we were interested in establishing the accuracy 
of the camera calibration and the length estimation. This was achieved 
by being able to estimate a precise fish length for tracks of fish that we 
know the exact length of. Consequently, we establish the accuracy of the 
system by estimating the length of three manually measured fish that 
can be uniquely identified in the video. Fig. 8 shows example frames 
from the video where three Atlantic cod (Gadus morhua) are swimming 
freely in a tank. The centreline of the three fish have been manually 
annotated in each frame in the two different video segments. We used 
the manually annotated fish to validate that the data produced by the 
system can be used to accurately estimate the fish length. Two tracks can 
be extracted for each fish. We estimate the fish length for each frame in a 
track and the aggregate track-based length estimate. In Fig. 9 we show 
examples of the fish length estimates for the three fish, while Table 1 
summarizes the aggregate results for the two track sequences for each 
fish. 

Our results show that the camera system is well calibrated, both in 
terms of the checkerboard calibration to determine the field of view of 
the camera and that it reports correct depth estimates. A 10% error in 
the depth estimate would correspond to a 10% error in the length esti
mate. We find that the relative error in the length estimate is less than 
2% based on the manually annotated centrelines. 

3.2. Free-swimming Atlantic salmon with known population statistics 

With this experiment we establish the validity of the population 
length-estimation of free-swimming salmon (Salmo salar). We base the 
experiment on a dataset acquired from a fish farm on the west-coast of 
Norway. Fig. 10 shows example frames of the dataset (a total of ~3000 
frames/5 min recording) with overlaid centrelines for a selection of fish 
in the frame. A small net cage (5 m × 5 m and 4 m deep) contained 45 
salmon. All the 45 salmon were manually measured to the closest 
0.5 cm. We found that the average length was 49.3 cm with a standard 
deviation of 7.0 cm (see Table 2 for more robust statistics as well). 

We established population statistics by both manually labelling 44 
fish and by applying the algorithm. With the proposed algorithm we 

Fig. 4. Centreline extraction. (a) Intensity image overlaid with the detection bounding box and the final estimated centreline. (b) The distance transform of the 
segmentation mask rotated such that the major axis of the ellipsoid resides along the x-axis. The raw centreline is represented by the stapled magenta line, while the 
fitted 2nd order polynomial is represented by the green line. (c) The fitted centreline is rotated back into image space and overlaid on the depth map. 

Fig. 5. Length estimation. The depth values along the centreline shown in 
Fig. 4(c) are shown in red. Robust values used in line-fit are shown in solid blue, 
while the line fit is shown in black. The slope of the curve is − 4 cm and the 
median distance of the fitted line is 224 cm. The estimated fish length using the 
depth values from the fitted line is 41.8 cm. 

Fig. 6. Individual frames extracted from a track with overlaid centreline. The green centreline are valid samples used to estimate the composite length of the 
tracked fish. 
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established 106 fish tracks. The population statistics are reported in 
Table 2 and show that the three estimated populations match well. With 
the experiment in Section 3.1 we established that the camera was 

Fig. 7. Example of estimates extracted from a single track/fish. Images for a selection of the frames are shown in Fig. 6. Valid length estimate points are shown with 
a circle. 

Fig. 8. Example frames from the cod dataset. Left: Intensity image of the three fish overlaid with the manually labelled centrelines. Right: Depth map with the 
overlaid centrelines. We have filtered away all the non-confident depth estimates. The depth is reported in centimetres. Notice that the longest fish (fish 2) has a 
centre line which is shorter in pixel length than the shortest fish (fish 1), hence the need for accurate distance estimates to convert the pixel coordinates to 
metric distances. 

Fig. 9. Length estimates along tracks for the three cods (sequence 2). Circles 
represent valid points which are used to estimate the per-track length estimates. 

Table 1 
Comparison of the estimated versus ground truth length estimates for the three 
cods.   

Ground truth 
length 

Estimated 
mean 

Estimated 
std 

% 
error 

Fish 1 – 
sequence 1  

54 cm  53.6 cm  5.8 cm  0.7% 

Fish 1 – 
sequence 2  

54 cm  54.9 cm  5.5 cm  1.7% 

Fish 2 – 
sequence 1  

62 cm  62.1 cm  3.9 cm  0.2% 

Fish 2 – 
sequence 2  

62 cm  62.1 cm  2.1 cm  0.2% 

Fish 3 – 
sequence 1  

71 cm  70.2 cm  1.5 cm  1.3% 

Fish 3 – 
sequence 2  

71 cm  70.8 cm  4.5 cm  0.2%  
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calibrated, and that the length estimation procedure produced accurate 
and precise estimates. Because the three population distributions 
(ground truth, manually labelled and the full algorithmic pipeline) re
ported here are similar, we have established the accuracy and validity of 
the automatic length estimation pipeline including the detection, cen
treline extraction and tracking. 

4. Discussion 

Systems for automatic monitoring of free-swimming fish are impor
tant to enable precision feeding, behaviour analysis and biomass esti
mation in aquaculture. Accurate fish length estimates, both on an 
individual and population basis, is an essential technological feature of 
such a system. Fish lengths can be used to monitor growth and weight of 
the fish and be used as input to automatic feeding systems. We have 
presented a system for automatic length estimation of free-swimming 
fish which produces population mean length estimates with a mean 
error in the order of 1% of the ground truth population. 

The proposed algorithm produces a population distribution which 
has somewhat fatter tails than the ground truth population distribution. 
The outliers at the top of the length scale (see Fig. 11) are caused by two 
fish swimming close together where DBSCAN has segmented them as 
one fish. Verifying that a detection represents a single fish can be ach
ieved by e.g. matching it with a fish template such as the Point Distri
bution Model(Tillett et al., 2000). At the lower length scale, the outliers 

are caused by tracks of fish swimming far away from the camera where it 
is difficult to get reliable depth of the tail/head because it covers few 
pixels. Another difficult case is when the fish are swimming away or 
towards the camera where the head/tail is occluding for the other end of 
the fish. Both cases cause a foreshortening of the estimated length. In 
future work we plan to regress a scaling factor to adjust for the fore
shortening caused by these different effects. It may also be that some fish 
are more likely to swim by the camera more often than others which will 
induce a bias in the distribution (e.g. Folkedal et al., 2012; Nilsson et al., 
2013). 

The novelty of the system lies in the use of a range-gated 3D imaging 
sensor which can produce high-resolution intensity and depth images 
over a large depth range (typically 1–8 m), even under turbid conditions 
(Risholm et al., 2018). The availability of high-resolution depth infor
mation makes the detection and segmentation of the individual fish 
relatively easy. Furthermore, the real-time imaging (10 Hz) enable 
image acquisition of fast swimming fish. Because the fish deforms as 
they swim which may cause self-occlusions and perspective fore
shortening, it is important to have a tracks consisting of many detections 
of the same fish to robustly estimate its length. 

Stereo-based approaches to length estimation (Shafait et al., 2017) 
have shown potential of providing length errors within 1% of the true 
length by using semi-automatic stereo-correspondence labelling. Robust 
automatic estimation of dense stereo-correspondences in the underwa
ter environment is very difficult because of water turbidity, specular 

Fig. 10. Example frame from the free-swimming salmon dataset. The manually labelled centrelines are overlaid. The depth map is shown in centimetres and low 
confidence depth values have been removed. 

Table 2 
Population estimates for the free-swimming salmon.  

Measurement method Mean Mean Error Standard deviation Minimum Median Maximum 

Manually measured (n = 45) 49.3 cm – 7.0 cm 33.2 cm 50.7 cm 58.2 cm 
Manually labelled tracks (n = 46) 49.8 cm 1.0% 8.0 cm 29.6 cm 50.2 cm 67.7 cm 
Proposed algorithm (n = 106) 49.2 cm 0.2% 10.2 cm 24.4 cm 50.9 cm 69.0 cm  

Fig. 11. Comparison of histograms of length estimates between the proposed algorithm and the manually measured fish.  

P. Risholm et al.                                                                                                                                                                                                                                 



Aquacultural Engineering 97 (2022) 102227

8

repeating fish texture and varying ambient lighting. Artificial lighting is 
especially important for night-time observations or for deep-water ob
servations. One approach to robustify the stereo-correspondence esti
mation is to use active stereo (Risholm et al., 2019), i.e. to project a 
non-repeating and possibly coded light signal. Such light would neces
sarily have to be in the visible light spectrum, preferably green/blue 
which is the least attenuated part of the spectrum as we use in this work, 
to be useful. The advantage of the range-gated system is that we are not 
looking for stereo-correspondences which quickly becomes difficult 
without artificial lighting and with deteriorating water conditions, but 
rather the returned light pulse for a specific pixel which is more robust to 
turbidity and difficult object/fish textures. However, increasing 
turbidity does deteriorate the quality of the depth estimates and causes 
forward scattering which causes blurring of the image. We defer eval
uating the effect of turbidity on the length estimates to future work, but 
our initial approach will be to apply unsharp-filtering to reduce the 
blurring of the depth maps as described in (Risholm et al., 2018). 

With robust and accurate length estimation established, the next goal 
will be to correlate it with weight to determine biomass. In future work 
we will develop algorithms to predict the weight by also taking the 
width of the cross section of the fish into account. We will also inves
tigate if it is possible to fit a surface to the depth map and estimate the 
weight directly from the volume contained within the surface. 

Behavioural information of free-swimming fish is valuable informa
tion for fish farmers. This type of information can be used to determine if 
the fish are healthy, hungry or stressed (Martins et al., 2012). One way 
to detect behavioural shifts is to study the swimming pattern of indi
vidual fish and the whole population as one (Oppedal et al., 2011). 
Tracking of fish in 3D facilitates recording of individual swimming 
speed. Swimming speed is a good indicator for buoyancy, it is relevant 
for submerged farming of salmonids coping with strong water currents 
as salmon then maintain a stationary position (Johansson et al., 2014), 
and sickness as indicated by low activity levels (Vindas et al., 2016). The 
high-resolution depth information facilitates easy detection and 
multi-object tracking of fish. We hypothesise that it should be possible to 
train a classifier based on the fish tracks to predict the cause of the fish 
behaviour. 
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