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Abstract: The drilling process is complex because unexpected situations may occur at any time.
Furthermore, the drilling system is extremely long and slender, therefore prone to vibrations and
often being dominated by long transient periods. Adding the fact that measurements are not well
distributed along the drilling system, with the majority of real-time measurements only available
at the top side and having only access to very sparse data from downhole, the drilling process is
poorly observed therefore making it difficult to use standard control methods. Therefore, to achieve
completely autonomous drilling operations, it is necessary to utilize a method that is capable of
estimating the internal state of the drilling system from parsimonious information while being able
to make decisions that will keep the operation safe but effective. A solution enabling autonomous
decision-making while drilling has been developed. It relies on an optimization of the time to reach
the section total depth (TD). The estimated time to reach the section TD is decomposed into the
effective time spent in conducting the drilling operation and the likely time lost to solve unexpected
drilling events. This optimization problem is solved by using a Markov decision process method.
Several example scenarios have been run in a virtual rig environment to test the validity of the
concept. It is found that the system is capable to adapt itself to various drilling conditions, as for
example being aggressive when the operation runs smoothly and the estimated uncertainty of the
internal states is low, but also more cautious when the downhole drilling conditions deteriorate or
when observations tend to indicate more erratic behavior, which is often observed prior to a drilling
event.

Keywords: drilling automation; autonomous systems; Markov decision process; responsible artificial
intelligence (AI); hybrid AI; fault detection; mitigation and recovery; safe operating envelope; safe
mode management; batch procedure

1. Introduction

Drilling automation has become an important topic after many years of slow adop-
tion. Yet, the automation of the drilling process can be addressed at very different levels.
Macpherson et al. (2013) [1] have defined ten levels of automation (LOA), starting with
being completely manual at level 1 and reaching full automation at level 10. At the highest
LOA, all the monitoring, generating, selecting, and implementing functions are performed
by a computer system. In other words, the drilling system can be considered as completely
autonomous. The major difference between automation and autonomy is that the first one
refers to the ability to control a system while the latter shall, in addition to control, be able
to respond to unexpected situations.

Some of the first ideas for applying automation to the drilling process date to 2004 [2].
It became clear that executing automated procedures could not be done without several
protection mechanisms such as safe operating envelopes (SOE) and fault detection and
mitigation (FDM) [3,4]. The application of standardized procedures under the protection
of SOE and FDM functions have shown that automated drilling operations were both pos-
sible [5] and increased the efficiency [6]. Attempts have been made to integrate downhole
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measurements from high-speed telemetry in a closed loop control architecture [7,8]. Also,
the control of drilling parameters has been automated using closed loop control [9,10].

With the advent of several drilling automation solutions that require access to the
drilling control system (DCS), open interfaces have been developed [11] and new software
architectures for the DCS have been designed [12].

Automation has also started to be applied to directional drilling when utilizing rotary
steerable systems (RSS) [13], but also with positive displacement motors (PDM) by solving
the decision-making problem of when to slide or rotate to achieve a trajectory with as
little tortuosity as possible [14,15]. Those considerations for when to rotate or slide in
directional drilling are borderline with autonomous control considerations as they relate
to automatic decision-making in addition to control considerations. Yet, to the best of our
knowledge, autonomous decision-making and control of the drilling process has not yet
been addressed.

There are two paths to achieve fully autonomous drilling: either rely on the presence of
a human operator in case the autonomous system is unable to recover from an unexpected
situation or design the system from scratch to never need any human assistance of any
form. The second alternative may be mandatory for very constrained environments such
as space exploration missions where distances and communication delays render human
interventions impractical or impossible, however in the context of drilling operations, it
is always possible to rely on the presence of a human operator and therefore the solution
described in this paper is based on the availability of a fallback “pilot” (the driller).

The research question addressed in this paper is the following: can we achieve safe
and efficient autonomous drilling, considering that a human operator can intervene in case
automatic recovery fails?

2. Problem Scope

Despite the very general nature of this research question, we have chosen to limit
the scope of work. First, by drilling we only consider the conditions for which the drill
bit can go on bottom without requiring to make a drill pipe connection. In practice, this
constraint implies that we do not consider tripping, reaming, and back-reaming operations.
Second, we limit ourselves to conditions for which the annulus is not closed and where a
single fluid is used. Because of this second constraint, we do not address underbalanced,
managed pressure, dual gradient drilling operations, or well control situations. Third,
we only consider drilling performance, therefore excluding questions related to wellbore
positioning, geo-steering, cementing, formation strength evaluation, e.g., leak-off test, etc.
Fourth, the automation of pipe handling is out of our scope because it can be seen as an
independent task with regards to the drilling process management and therefore can be
treated separately. The proposed solution should nevertheless be valid for:

• Land rigs, fixed platforms, or floaters;
• Any depth ranges and well shapes;
• Simple or tapered drill-strings and wellbore architectures;
• Under-reaming or hole opening operations;
• Water-based, oil-based, or synthetic-based drilling fluids, but not foams as this would

lead to a dual gradient drilling operation;
• Complex hydraulic networks with multiple paths such as leakage to the annulus from

an under-reamer, hole opener or positive displacement motor, or the use of booster
pumping in a riser;

• Low and high bandwidth communication methods, including possibly distributed
sensors along the drill-string.

As the problem of autonomous drilling is about taking decisions when confronted
with deviations from the planned drilling operation, those choices have a direct impact
on the overall drilling performance and the possible occurrence of drilling incidents.
Indeed, a multitude of different drilling hazards may occur during a drilling operation.
Typical ones are formation fluid influx, formation fracturing, hole collapse, stuck-pipe,
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pack-off, formation washout, failure of downhole components, breakdown of drilling
equipment, etc. On the one hand, the sequence of actions decided by an autonomous
drilling system shall avoid, if possible, to lead to any of those situations. On the other
hand, it is important to maintain a good overall performance for the drilling operation.
Drilling too fast can lead to drilling incidents, for instance associated with inefficient
cuttings transport, but drilling too slowly may also end up with other sorts of drilling
incidents for example associated with wellbore instabilities as the open hole formations are
left unprotected for too long.

Each decision taken during the drilling process shall be evaluated in the perspective of
multiple time horizons. The decision shall not cause an immediate increase of the risk level,
and at the same time it shall help control the risk levels in the medium term and minimize
the overall duration of the drilling operation for the long term. We consider in our approach
both data-driven techniques and physics-based models, the result being a hybrid artificial
intelligence system. Visualization of the internal state of the system is actively used as
an attempt to convey the details behind the decisions taken by the algorithms and thus
provide insightful information about the decisions taken by the system (for more details on
these and other features that are relevant for the models’ interpretability see the thorough
analysis in [16]).

Because of the criticality of the domain and problem, it is crucial that the autonomous
drilling solution is robust with respect to the uncertainty embedded in the process and
possible incidents that may occur, such that the users can build up trust in the system.
Hence, the proposed solution includes implementation of several protection layers that
ensure safe behavior both in case of failures and commands that violate the limits of either
the machines or the process. In the eventuality of a drilling incident, remedial actions
need to be taken. These actions cause delays and the overall duration needed to reach the
section total depth (TD) increases. Therefore, if we are capable to estimate the probability
of occurrence of drilling incidents as well as the delay they can cause if they occur, it is
possible to estimate their impact on the drilling time. So, a way to solve the autonomous
drilling problem is to find a series of actions that is capable of minimizing the time to reach
the section TD. This duration is decomposed into two parts:

• The time to execute the series of actions;
• The time needed to mitigate any drilling incidents if they occur.

More formally, this can be expressed as:

∆tTD(A) = ∑a∈A ta(a) + ∑e∈E P(e)tm(e), (1)

where ∆tTD is the estimated time to reach TD, A is a series of actions a, ta is a function
that estimates the duration that will take to execute an action, e is a possible drilling event
chosen from a set of possible drilling events E , P(e) is the occurrence probability of a
drilling event e, and tm is the estimated duration required to mitigate a drilling event.

If a series of actions is too aggressive and therefore increases the risk of occurrence of
drilling incidents, the result may be a longer delay in reaching the section TD than with a
series of actions that does not raise the risk level and yet maintains a good performance
level. The problem at hand is therefore to find the series of actions that minimizes the
estimated duration to reach the section TD, i.e., to solve the following equation:

argmin
A∈A

∆tTD(A), (2)

where A is the set of all possible series of actions to reach the section TD.
This minimization problem is estimated from the current physical state of the drilling

system. As the drilling system is observed only very sparsely, both in space and time, the
physical drilling system state is known with a degree of uncertainty.
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3. State Estimation and Uncertainty

In physics, state variables are the variables that describe the mathematical state of a
dynamic (time-dependent) system. A physical system is usually described by a set of partial
differential equations where the variables are physical quantities such as time, position,
velocity, volume, tension, stress, strain, temperature, pressure, etc., which describes how
certain physical quantities like mass, momentum, and energy are conserved. The drilling
system contains three sorts of components that can have motion relative to each other: the
drilling fluid, the drill-string, and entrained particles/bubbles immersed in the drilling
fluid. The drilling process is therefore described by applying conservation laws to these
three component types:

• Mass conservation for the drilling fluid [17]: ∂ρm
∂t +∇.(ρm

→
u f ) = 0, where ρm is the

drilling fluid density, t is time,
→
u f is a fluid velocity vector;

• Momentum conservation for viscous flow (Navier-Stokes) [17]:

ρm

(
∂
→
u f
∂t +

(→
u f .∇

)→
u f

)
= −∇p + ∇.

=
τ + ρm

→
g + ρm

→
f b, where p is pressure,

=
τ is

the stress tensor,
→
g is the gravitational acceleration and

→
f b represents external body

force;
• Force balance on particles/bubbles transported by the fluid (Newton) [18,19]:

ρ f Vp
d
→
u p
dt =

→
F p, where ρ f is the density of the background fluid, Vp is the parti-

cle volume,
→
u p is the particle velocity vector,

→
F p is the external force vector applying

on the particle;

• Torque balance on particles/bubbles transported by the fluid (Newton):
∂2
(

ρp Ip
→
ω p

)
∂t2 =

→
Mp, where ρp is the particle density,

→
ωp is the angular velocity of the particle, Ip is the

second moment of area and
→
Mp is an external torque applying on the particle;

• Energy conservation for heat transfer (Fourier) [20]: ∂
∂t (ρm H)− ∇

(
Q f + Qc

)
− qs = 0,

where H is the enthalpy per mass unit, Q f is the forced convective term, Qc is the
conductive and natural-convective term, qs is the heat generated by mechanical and
hydraulic frictions. The enthalpy can be expressed as a function of temperature T and
pressure by the following expression: dH = CpdT +V(1− αT), where Cp is the specific
heat capacity, V is the volume, and α is the volumetric coefficient of thermal expansion;

• Force balance for elastic deformation of the drill-string (Newton) [21]: ∂
→
T

∂s +
→
f s =

ρs A ∂2→u s
∂t2 , where

→
T is the internal tension vector in the solid, s is a curvilinear abscissa,

→
f s is an external force per unit length, ρs is the density of solid constituting the string,
A is an area and

→
u s is the velocity of control element of a portion of string;

• Torque balance for elastic deformation of the drill-string (Newton) [21]: ∂
→
M

∂s +
→
t ×

→
T +

→
c =

∂2
(

ρs Is
→
ωs

)
∂t2 , where

→
M is the internal torque in the solid,

→
t is the tangential

vector of the Frenet–Serret coordinate system,
→
c is an external torque, Is is the second

moment of area, and
→
ωs is the angular velocity of a control element of a portion of a

string;
• Energy conservation for linear deformation of the drill-string (Euler-Bernoulli) [22]:

∂2

∂s2

(
EI ∂2w

∂s2

)
+ µ ∂2w

∂t2 = q, where w is a deflection in a perpendicular direction to
→
t , E

is the elastic modulus, µ is a mass per unit length, and q is the potential energy of
external loads.

The resolution of these partial differential equations describes fully the time evolution
of the physical drilling system state in terms of the following variables:

→
u f ,

→
u p,

→
u s,

→
ωp,

→
ωs, p, τ, T,

→
T ,
→
M, and w. This resolution depends on the boundary conditions that are
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imposed by the drilling machines, i.e., top of string position, axial and rotational velocities,
volumetric flowrates, and on- or off-bottom condition (see Figure 1).
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These partial differential equations, except for the mass conservation, depend on

external contributions, i.e.,
→
f b,
→
F p,

→
Mp, qs,

→
f s,
→
c , and q. Some of these contributions can be

directly estimated, like for instance the effects due to gravitation, buoyancy, viscosity, when
the physical properties of the system components are known, e.g., geometrical dimensions,
density, compressibility, thermal expansion, rheological behavior, specific heat capacity,
thermal conductivity, Young’s modulus, Poisson’s ratio.

However, some other external contributions may depend on the information that is
not readily available as for instance the formation rock unconfined compressive strength
and angle of internal friction when evaluating rate of penetration (ROP). These values
change as new rock layers are drilled and therefore need to be constantly calibrated.

That is also the case of static and kinetic mechanical friction factors between the
drill-string and the borehole. These properties are used to estimate the mechanical friction
forces and torques [24]:

→
F µ = −

(
Fµk +

(
Fµs − Fµk

)
e−

|v|
vcs

) →
v

‖ →v ‖
(3)

where
→
F µ is the total kinetic friction force vector, Fµs is the upper limit of the static friction

force, Fµk is the limit of the kinetic friction force at high velocity, v is the slip velocity
between the two surfaces, and vcs is the critical Stribeck velocity. In addition, the static and
kinetic friction limits are expressed as:{

Fµk = µk
→
R.n̂

Fµs = µσ

→
R.n̂

(4)

where µk and µσ are respectively the kinetic and static coefficients of friction,
→
R is the

reaction force between the surfaces in contact, and n̂ is the normal unit vector at the contact.
The calibration of the coefficients of friction is typically made during conditions where the
bit is off bottom, like for instance during a pick-up or a slack-off sequence, or when rotating
off-bottom [22]. For boundary friction, the coefficient of friction is mostly influenced by the
viscous properties of the fluid, and therefore as long as the drilling fluid characteristics do
not change, the coefficients of friction should stay relatively constant. This being said, when
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picking up or slacking-off the drill-string, tool-joints may be dragged into a cuttings bed
therefore causing additional forces on the tool-joints that were not necessarily accounted for
by the model. In such a condition, when calibrating the mechanical friction based on pick-
up and slack-off motions of the drill-string, the apparent mechanical friction will probably
increase. However, when rotating off-bottom, the calibration of the mechanical friction may
give a different result than when utilizing drag forces, because the unaccounted torque
generated by rotating the tool-joints in the cuttings bed does not necessarily result in a
torque of a similar magnitude as the apparent increase of mechanical friction caused by
drag forces. It is therefore convenient to distinguish the coefficients of friction, µk, µσ,
which are only associated with mechanical friction, from friction factors that correspond
to apparent coefficients of friction for the total effect of various forces and torques that
are not only limited to mechanical friction but not accounted by the model [25]. It turns
out that the apparent axial and rotational friction factors may differ because the subjacent
unaccounted forces and torques are of a different nature. We will denote µs and µr the
respective sliding and rotational friction factors (dimensionless). Another example of
additional forces and torques that may influence the magnitude of µs and µr is related to
differential sticking forces resulting from a thick mud cake after drilling a highly porous
and permeable formation layer.

Even some of the contributions that should be simple to evaluate may be difficult to
assert because of missing information. For instance, the effect of gravitation and buoyancy
on a cutting particle is difficult to estimate simply because the volume and density of an in-
dividual cutting particle is not known. This uncertainty can influence hydrostatic pressure
calculations, cuttings transport [26], viscous pressure losses and even drill-string torque
through the grinding mechanism that takes place when cuttings are trapped between a
tool-joint and the borehole [27]. Also, the wellbore size may be different from the theoreti-
cal one. This can be caused by hole collapse, formation washout, i.e., hole enlargement,
but also because of accumulation of debris, e.g., cavings or cuttings therefore resulting
in borehole constrictions. So, in a similar way to friction factors used for accounting for
ill-defined effects on mechanical forces and torques, it is possible to utilize an annulus
hydraulic friction factor, µa (dimensionless). In perfect conditions, this correction factor
should be equal to one, but if it increases this may indicate that additional pressure losses
arise from an obstruction and if it gets smaller that may be a sign that the borehole is larger
than expected (see Figure 2).
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4. Protection Layers

To ensure safe drilling operations, an autonomous drilling system shall embed mecha-
nisms that are capable of automatically protecting the drilling process. We propose three
levels of protection:

• Protection of the commands sent to the drilling machines, also referred to as safe
operating envelopes,

• Protection of the drilling process, i.e., automatic fault detection, mitigation, and
recovery (FDMR);

• Protection of the process during transition from autonomous to manual control by
automatic management of safe operational modes.

The purpose of the safe operating envelopes is to ensure that no set-points can be sent
to the drilling machines that can lead directly or indirectly to a drilling incident. Here, we
suppose that similar safe envelopes exist to protect the drilling machines but that they are
implemented directly in the drilling control system (see Figure 3).
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The role of FDMRs is to automatically detect abnormal drilling situations and to react
accordingly. As a first response to a drilling incident, actions are taken to mitigate the
problem and as a subsequent set of actions, remedial procedures are engaged to cure the
problem and return to normal drilling conditions.

Safe modes management is ensured by automatic procedures that will be triggered
in case of failures. These procedures will put the drilling system in a state that should
not immediately cause a worsening of the drilling conditions. This is to allow a driller to
regain manual control of the drilling operation in a safe manner, even though his situation
awareness may be very low while the autonomous drilling system is in control.

4.1. Safe Operating Envelopes

During drilling, it is important that the set-points sent to the machines are within
certain limits that ensure safety of the process. These limits are given by the safe operating
envelopes which are continuously computed by the underlying algorithms [28]. The safe
operating envelopes provide protection limits for the three control parameters relevant
for drilling, namely mud-pumps setpoints, top drive setpoints, and draw-work setpoints.
We will now succinctly describe three of those (for more detailed information see [23]):
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• Axial velocity;
• Flowrate;
• Rate of penetration (ROP).

4.1.1. Axial Velocity

When it comes to drill-string axial velocity, the system continuously computes which
are the maximum allowed limits, depending on the downhole conditions and if the set-
points provided are not within these limits, then the system will oversteer the setpoints
with own predefined values. This is to ensure that the axial velocity, which has a direct
impact on the velocity profile of the drilling fluid, should not introduce additional pressure
loss or gain which can trigger instability in the downhole conditions, namely swab or
surge. For instance, an upward movement of the drill-string will induce a decrease in the
downhole pressure which should not be below the pore pressure or the collapse pressure
of the open hole formations. Similarly, a downward movement of the drill-string will have
a mirrored effect. The computation of the safe operating limits for the axial movement is
adaptive to the current system state:

• If there is no circulation, the limits are computed as a function of the gel duration.
• If there is circulation, the limits are computed as a function of the drill-string rotational

speed and flowrate.

4.1.2. Flowrate

The pressure in the open hole wellbore should stay within the pore- and fracture
pressure margins of the formation to avoid influx of reservoir fluids or fracturing the well.
The flowrate of the fluid pumped in the wellbore will influence the pressure, and there is a
maximum flowrate that ensures not fracturing the open hole formation. The maximum
flowrate depends on the operational variables and downhole conditions such as:

• Drill-string axial velocity and heave levels;
• Drill-string rotational velocity;
• Bit and bottom hole depths;
• Temperatures;
• Cuttings load.

The system continuously calculates the maximum allowable flowrate which keeps
the pressure safe below the fracture pressure for the current operational variables and
downhole conditions. If the driller or the automated drilling system requests a flowrate
set-point that is above the maximum allowable flowrate, the flowrate set-point to the mud
pump controller is reduced to the maximum flowrate to ensure a safe operation.

If the well has been left without circulation for a while, for example during a pipe
connection, the gel strength of the drilling fluid has increased. The gel strength is an
important property of the drilling fluid since it keeps the drilled cuttings in suspension
when circulation is stopped, but care must be taken when starting up the pumps to avoid
large fluctuations in the annulus pressure when breaking the gel. To keep the well safe
during pump start-up, the system will calculate a minimum waiting time for establishing
circulation after the first flowrate change to avoid risking a high surge of pressure that a
new pump acceleration could cause.

High pump acceleration can also cause pressure spikes in the annulus, resulting in
well fracturing. In addition, it can be difficult to distinguish large pressure variations
caused by high pump accelerations from pressure variations caused by pack-off. Large
pump decelerations can generate a swab pressure that can cause influx of formation fluids.
The system continuously calculates maximum pump accelerations and decelerations to
avoid well fracturing or formation fluid influx. The calculation considers the bit and well
depth, temperatures, and cuttings load.
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4.1.3. ROP

The adaptive ROP management is aimed at local drilling performance optimization,
taking into account short-term effects (as opposed to the long-term effects considered by
the decision-making in the autonomous drilling modules). The optimization task entails
finding parameter set-points for the mud pump, top drive, and draw-works such that the
resulting ROP is maximized while avoiding potential drilling incidents, which are treated
as constraints for the optimization problem.

The system uses a bit-rock interaction model that estimates ROP as a function of
weight on bit (WOB), top-drive speed, and mud pump flowrate, while taking into account
the cutting and friction processes underlying the bit-rock interaction. It is based on the
model of Detournay et al. (2008) [29] which provides steady-state relations between WOB,
torque on bit, and depth of cut per revolution, coupled through a series of formation and
bit-related parameters. The model describes three separate phases of the bit response: a first
phase where ROP is less reactive to changes in WOB, a second phase where a sharp increase
of ROP is observed with additional WOB, and a third phase where ROP stagnates or even
decreases as more WOB is added. The transition between phase 2 and 3 corresponds to the
“founder point.” A linear variation of ROP with WOB is assumed in all three phases in our
implementation of the model. The detailed equations can be found in [30,31].

The ROP model needs to be continuously calibrated as drilling advances, since the
formation and bit properties may change, either suddenly, as in the case of drilling through
a hard-stringer, or gradually, for instance due to bit wear. The following parameters require
calibration:

• Formation unconfined compressive strength (UCS);
• Formation angle of internal friction;
• A parameter related to the cutting forces orientation (proxy for bit aggressiveness);
• Threshold for transition between phase 1 and 2 of the bit response;
• Threshold for transition between phase 2 and 3 of the bit response (founder point);
• Two parameters related to the variation of frictional force with WOB in phase 1 and 3,

respectively. The latter influences the stagnation or decrease in ROP as WOB is added
beyond the founder point.

The calibration uses a Sequential Monte Carlo (particle filtering) method [32], which
takes measurements from surface sensors (WOB derived from hook-load, ROP, top-drive
torque and rotary speed) and evaluates many different model realizations (“particles”) gen-
erated using a stochastic process (e.g., random walk). All particles, and their corresponding
formation and bit parameters, are weighted based on the match with the measured WOB,
torque, and ROP values, at a given time step. This results in probability distributions for all
the calibrated parameters, which can be summarized using their means and variances, and
further propagated to the other modules of the ROP management system. Further details
of the particle filter implementation can be found in [30].

Next, the drilling constraint module continuously evaluates various combinations of
drilling parameters with respect to the following incidents:

• Onset of drill-string sinusoidal buckling;
• Poor cuttings transport, leading to formation of cuttings beds;
• Excessive cuttings concentration in suspension, leading to pack-offs;
• Exceeding of geo-pressure margins, defined by the pore, collapse, and fracture pres-

sure, and minimum horizontal stress;
• Excessive mud-pump pressure.

The computations above are based on steady-state drilling models, consisting of
hydraulics, heat transfer, cuttings transport, torque and drag, and buckling models.
These models have been described in detail in previous publications [20,26,33,34].
Each model is updated in real-time at frequencies ranging from 1Hz to 5Hz, which ensures
the adaptive nature of the drilling constraints computations. The ROP is evaluated for a
given combination of drilling parameters using the calibrated bit-rock interaction model
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described in the previous section. The system checks that these parameter combinations
lie within the safe ranges defined by the drilling constraints, such that they maximize
the ROP computed by the bit-rock interaction model at a given time. In addition to the
drilling constraints described above, the set-point generation process includes limits on the
incremental change of drilling parameters, and only allows one parameter to be changed
at a time.

The optimum set-points are found using successive grid searches over the individual
ranges of the three main variables—WOB, top drive RPM, and mud pump flow rate—with
maximum increments defined by ∆WOB, ∆RPM, ∆Q, respectively. The drilling parameters
can be either increased or decreased by these pre-configured amounts. If a valid new
set-point is not found by changing one parameter at a time, the algorithm allows several
parameters to change simultaneously. If this still does not lead to a valid solution, it
increases the search increments ∆WOB, ∆RPM, ∆Q, and repeats the entire process with the
increased search space.

4.2. Fault Detection, Mitigation and Recovery
4.2.1. Overpull/Set-Down Weight

The system needs to react fast to abnormal drilling variables such as excessive hook
load, torque, or pressures to avoid ending up with serious drilling problems like stuck
pipe or well fracture. The drilling automation system continuously calculates maximum
and minimum values for hook load, torque, and pump pressure, accounting for changing
drilling conditions such as bit depth, temperatures, and cutting concentrations in the
wellbore. In our case, the implemented approach for calculation of maximum and minimum
values is model-based, using the observer-based approach described in [4]. The drilling
control system is continuously updated with the maximum and minimum values for hook
load, torque, and pump pressure. If some of the values are exceeded, a set of actions is
carried out to mitigate and recover from the fault.

In case the hook load exceeds the maximum or minimum values, the immediate
reaction is to move the drill string in the opposite direction to avoid that the pipe gets stuck,
or experiences excessive buckling. There may be stretch or buckling in the drill string, and
especially in long wells it may take some time before the bit starts to move when pulling or
lowering the pipe. When the top of string has moved a distance (calculated by the system)
sufficient to get the bit in motion, the movement is stopped. In an autonomous drilling
system, the system also needs to recover from the fault to be able to continue the drilling
operation. Excessive overpull or set-down weight may be caused by an obstruction in
the annulus which prevents the drill string to move, such as a cuttings bed. The recovery
procedure is therefore to reciprocate (move drill string while pumping and rotating) to try
to clean the hole. If the reciprocation is performed without any erratic hook load or torque,
the drilling operation can continue. If the reciprocation cannot be carried out without
erratic or excessive hook loads, the system is set in a safe mode.

4.2.2. Over-Torque

In case of an over-torque, the first reaction is to stop the rotation, unwind the torque,
and lift off the bottom, to avoid pipe twist-off or stuck pipe. The first step in the recovery
procedure is to move the drill string up/down without rotation. If this is completed
without any erratic or excessive hook loads, the system tries to start drill string rotation
stepwise. The final step in the recovery procedure is to reciprocate until the drill string
moves without any erratic torque or hook load.

4.2.3. Overpressure

Pack-offs are typical drilling incidents that may occur during a drilling operation.
To detect a bridging or pack-off situation, the system compares the measured pressures
along the hydraulic circuit with estimated ones. Ideally, the position of these pressures
should be along the annulus, yet as most drilling operations rely on mud pulse telemetry,
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it would be too uncertain that the detection would take place in a timely fashion if it were
based on measured downhole annulus pressure transmitted by such a low bandwidth
communication medium. Unless high-speed telemetry is available, the standpipe pressure
(SPP) is used as an overpressure detection point, even though the detection could react to
obstructions occurring inside the drill-string and which would be harmless for the open
hole formations. If an overpressure is detected, a mitigation procedure is initiated. The mud
pump rate is immediately reduced to a predefined value in order to observe how the drilling
system responds to these step changes. Also, if the drill-string is on bottom, it is lifted over
a minimum distance that ensures that no more cuttings are produced. After observing
the response of the drilling system to the step change in flowrate, either it is evaluated
that the obstruction is incompatible with any circulation and the mud pumps are stopped,
or a new flowrate is estimated that would allow to circulate without risking causing an
excessive annulus pressure below the flow restriction. The procedure may be repeated
several times if the flow conditions continue to deteriorate [3]. If stabilization of the flow
conditions is achieved, then the system starts a recovery procedure. To attempt recovering
from the bridging situation, the system starts reciprocating the drill-string in order to erode
the accumulation of debris that initially caused the overpressure situation [28].

4.2.4. Drilling Dysfunctions

The ROP management system can operate in both WOB and ROP control modes.
While the set-point generation described in Section 4.1.3 works internally with WOB as
a control variable, the resultant ROP set-point (computed from the calibrated bit-rock
interaction model) can be fed to the control system instead. When using the ROP control
mode, the system monitors the WOB to ensure that it does not exceed a maximum WOB
threshold reflecting uncertainty in the bit-rock interaction (e.g., when drilling into a hard
stringer, or when drilling above the founder point). If this WOB threshold is exceeded,
the system automatically switches to WOB control mode with a set-point defined by the
maximum WOB.

In the case of exceeding the founder point, the current estimate of the bit-rock interac-
tion remains valid, and only the founder point parameter needs to be adjusted. As such,
the system will gradually increase ROP while staying below the updated founder point.
On the other hand, when drilling a hard stringer, the system will initially be in a state where
the bit-rock interaction parameters are no longer valid, and the system will automatically
adjust its parameters, in particular the UCS, which will be then used to compute a reduced
ROP set-point.

It should be noted that the system presented in this paper currently does not con-
sider detection and mitigation of drill-string vibrations, but these shall be included in
future work.

4.3. Safe Mode Management

In the context of both automated and autonomous systems, the situation awareness of
the driller is highly decreased [35]. Hence, in abnormal situations where the control needs
to be switched from the autonomous or automated to manual mode, it is crucial that the
system is left into a state that ensures safe process for a certain amount of time. This is
necessary to allow the driller to regain control of the machines in a manner that does not
trigger unnecessary deterioration of the downhole conditions.

In the present context of autonomous decision-making, the internal state of the system
needs to be continuously monitored and, any deviation from normal behavior should
immediately be handled. Failures in communication or failures in the hardware equipment
can arise and, these are typical triggers that will influence the internal state of the system
and consequently the autonomous decision-making capabilities. The management of the
transition from autonomous to manual control, which is an integral part of the overall
system, ensures responsible and safe behavior of the artificial intelligence (AI) system (for
more detailed information on this, see [36]).
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An automated response in case of hardware failures or unsuccessful recovery is
ensured by two main modules, as illustrated in Figure 4. The first module monitors
continuously the state of the process and keeps track of the current context, while the
second module decides the context-specific actions that should be performed if failures
occur. Hence, this approach ensures robustness of the system and a safe process in case of
failures and, consequently a smooth transition from autonomous to manual control.
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5. Drilling Procedures

Under the protection of the safe operating envelopes, FDMRs and safe mode man-
agement, it is possible to execute series of drilling commands that are sent to the drilling
machines. Such a series of machine set points is a typical drilling procedure. A drilling
procedure can be seen as a recipe, i.e., a sequence of instructions. The International Society
of Automation (ISA) defines a standard (ISA-88 [37]) that makes use of the concept of recipe.
ISA-88 is a method to analyze batch control. The meaning and scope of batch control is
for any manufacturing process that produces more than just a few products, also referred
to as job production, but less than a mass production process, sometimes denoted as flow
production. In such a context, a batch is a limited quantity of something. Indeed, one can
see the drilling of a well section as a batch, since we need to drill a well-defined number of
stands in order to reach the section TD. Furthermore, the concept of batch drilling has also
been adopted for some field developments where all identical well sections are drilled in
one batch [38]. ISA-88 describes a batch process using three models:

• A process model: it is a hierarchical decomposition of the overall process into process
stages, which are themselves subdivided into process operations, which make use of
the process actions.

• A physical model: it is also a hierarchical categorization of the overall enterprise, into
sites which consist of areas, themselves containing process cells, in which there may
be units, themselves composed of equipment modules, which finally may be made of
control modules.

• A procedural control model: it describes how the batch process should be carried
out. It is also hierarchically organized with the first level subcategory being a unit
procedure, the second hierarchical level being an operation, which itself is made of
phases.

The ISA-88 standard provides a way to structure batch process control in a hierarchical
way. For instance, at a high-level point of view, a procedure, i.e., from the procedural
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control model, in combination with process cells, i.e., from the physical model, carries out
a process, i.e., from the process model perspective. Also, ISA-88 defines methods to deal
with exception handling. Figure 5 shows a possible decomposition of a drilling operation
utilizing the ISA-88 method. For the higher levels of abstractions, the ISA-88 standard
suits well with the well construction process and offers a structured way to analyze the
drilling process. However, at lower level of detail than drill or trip a stand, the standard
falls short to address the complexity of an actual drilling operation. This is because there
are not just a few possible recipes that can apply at any time, but multiple variations that
need to be chosen as a function of the current situation. At that level of detail, the drilling
process is not a batch process, instead it is job production, i.e., closer to handcrafting than
to plant manufacturing. For instance, when drilling every single stand, the driller shall
decide whether he should stage the mud pumps several times or reach the nominal speed
in one step after breaking the gel. The decision for the one or the other could depend on
the possible risk for pack-offs. He should also decide whether he shall start the top-drive
while establishing circulation, maybe to assist in breaking the gel or because there is a risk
of differential sticking, while the action may require that he needs to stop the top-drive
afterward to take a survey. He may have to decide whether it is necessary to lift off bottom
while drilling the stand because of pack-off tendencies or heavy drill-string vibrations.
He may have to decide whether a reciprocation is needed after drilling the stand, for
instance, if the ROP was very high and there is a risk that cuttings may pack around the
BHA when establishing circulation after a connection. Or he may decide to take a friction
test in order to check whether there are accumulations of cuttings along the borehole.
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Even though there are multiple choices that shall be decided when drilling every
single stand, it is still useful to proceed with several levels of abstractions in order to not be
overwhelmed by the unnecessary complexity. For instance, when starting the mud pumps,
there are detailed choices that should be made:

• Should we use two out of three mud pumps so that the third one can be used as a
booster pump to clean the marine risers?

• Should the mud pumps be started with different pump rates in order to minimize the
risk of accentuated stroke noise that can perturb the decoding of mud pulses from
downhole telemetry?
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For that reason, it is useful to decompose the problem into different levels of abstrac-
tions. Here, we will use the terminology of the Zachman framework [39], where the levels
of abstractions are, from high to low:

• Contextual level, i.e., drilling a 12 1/4-in section,
• Conceptual level, i.e., drilling one stand,
• Logical level, i.e., running a friction test,
• Physical and detailed level, i.e., unwinding the drill-string to reach zero torque after

stopping the top-drive.

The contextual and conceptual levels are already addressed through ISA-88, therefore
we will focus on the logical and physical levels.

5.1. Logical Level

At the logical level, drilling a stand can be decomposed into a series of procedural
operations (utilizing the ISA-88 terminology) (see Figure 5 in [36]):

• Take off slips: when the drill-string is in slips, it is lifted to transfer the weight from
the slips to the top-drive.

• Top-drive startup: the top-drive may be ramped up in one or several stages. The accel-
erations and stages should be chosen carefully to limit the risk for intense drill-string
vibrations, at least in deviated wells.

• Mud pump startup: first the air gap at the top of the drill-string needs to be filled
without using too much time. Then circulation must be established. This means break-
ing the gel and reaching a steady flow into the whole hydraulic circuit. Breaking the
gel may be assisted by rotating the drill-string. Then the mud pump rate is increased
toward its nominal value. This can be done in one or several steps depending on the
operational risks for pack-offs or differential sticking. It may be necessary to stop the
top-drive, if it was running, and a survey shall be taken. If the top-drive has been
stopped, it may be necessary to lift up and down the drill-string several times in order
to remove some of the trapped torque, at least for deviated wells. When mud pulse
telemetry has been established, the top-drive may be started.

• Tag bottom: on a floater, the heave compensator may need to be started. Furthermore,
the axial tagging velocity shall be chosen to give a clear signal that the bit is on bottom
and yet not be the source of large stick-slips because of a large step-change in WOB
when touching the bottom hole.

• Drill: the drilling parameters, i.e., WOB, top-drive speed, and flowrate, should be con-
tinuously adapted to the current drilling conditions both to optimize the penetration
rate but also control risks of drill-string vibrations and poor cuttings transport.

• Reciprocate: to improve the hole conditions it may be necessary to ream-up and down
for a certain distance. The choice of top-drive speeds, axial velocities, and flowrates
should be adapted to the current downhole conditions and potential risks for pack-offs
and surging.

• Perform a friction test: if information about the downhole mechanical friction is
necessary, a pick-up and a slack-off procedure may be performed. The pick-up
distance and the axial velocities should be chosen as a function of the length of the
drill-string, expected friction, and possible consequences on swab and surge pressures.
The flowrate may also have to be adjusted for performing the friction test.

• Move to stick-up height: on a floater it may be necessary to stop the heave compensator
if it was turned on. Then the drill-string is lowered such that the tool-joint is at the
correct level for the iron roughneck.

• Stop top-drive: the top-drive rotation speed is brought down to zero with a controlled
deceleration. With deviated wells or if heave variations are low, it may be necessary
to apply a zero-torque procedure consisting of unwinding the drill-string to remove
the torque that is still trapped in the drill-string because of the mechanical friction.
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• Stop mud pumps: the mud pumps are ramped down with a controlled deceleration
procedure in order to avoid large downhole pressure variations due to the drilling
fluid inertia effects.

• Set in slips: the slips are closed, and the drill-string is lowered to transfer the weight
from the top-drive to the slips.

• Perform booster pumping: during any procedural operations where the mud pumps
are active, it may be necessary to pump from the bottom of the riser in order to assist
lifting cuttings that are trapped in the riser.

5.2. Physical and Detailed Levels

The previously described logical operations are executed on the physical level. Each
of these logical operations require further details that are specific to the rig, drill-string, and
BHA used in the current drilling operation. We suppose that the translation into physical
actions of the logical operation is performed by the rig control system which controls the
rig equipment such as top drive, draw-works, and mud pumps. The control includes
machine set-point control, e.g., making the top-drive rotate with the correct rotational
velocity, the pumps pumping with the desired flow-rate, and the draw-works hoisting
or lowering the drill string at the desired velocity. The set-points to the machines are
limited by the safeguards given by the drilling automation system, for example limiting
the drill string axial velocity to avoid swabbing the well. The set-points are also limited
by the machines’ physical limits. Fault detection, mitigation and recovery, and safe mode
management are also performed by the rig control system to ensure that reactions to faults
and communication loss are performed as fast as possible.

The drilling control system collects the sensor data related to the machinery and makes
it available to other parts of the system. The basic measurements include hook load, top
drive torque, and pump strokes per minute. The latter can be converted to flowrate using
the information about the volume pumped for each stroke.

6. Decision Making and Risk Mitigation

Autonomous drilling is achieved when the continuous running of the four levels of
abstraction does not require any human intervention. While such solutions exist for the
two lowest levels (logical and physical and detailed levels) the problems associated with
the contextual and conceptual levels have to our knowledge not been addressed.

At both the contextual and conceptual levels, rather high-level decisions must be
taken. We consider that the main objective is to drill the current section as fast as possi-
ble: this implies avoiding timewise costly incidents relating to poor downhole conditions.
These conditions are typically identified via specific procedures and measurements: down-
hole pressure monitoring provides information about the potential obstruction of the
flow-path because of the cuttings accumulation, while the friction tests can be seen as (very
indirect) measurements of the mechanical friction factor in the wellbore. High or increasing
friction is an indication of poor downhole conditions. When detected, one can attempt
to improve the downhole conditions by performing one of the two following actions:
reciprocating displaces the cuttings and ultimately improves the situation; alternatively,
reducing the drilling speed may prove sufficient when the conditions have not reached
a dramatic point yet. In summary, when restricting the autonomous drilling problem to
wellbore conditions considerations there are at any decision gate three main options for an
autonomous system:

• Perform a friction test: this provides possibly useful insight about the quality of the
hole being drilled but does not contribute directly to the hole creation process, and
can be a source of risk as lifting the pipes up and down without rotation can lead to
overpulls, set-down weights that can lead to stuck pipe situations.

• Perform a reciprocation: this improves the downhole conditions by displacing the
cuttings upward. Additionally, torque analysis while reciprocating is a good source of
information for the estimation of the wellbore state, and downhole measurements are
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still available during this operation since high circulation is established. This action
does not contribute directly to the drilling process and has therefore a cost.

• Drill, with a possible speed reduction: reducing the speed may limit the deterioration
of the downhole conditions or even improve them. This is of course at the cost of
drilling performance. Also, since the bit is on-bottom, surface measurement analysis
(hook-load and surface torque) is much more difficult, and one mainly relies on
downhole pressure to estimate the wellbore quality.

Deciding which of those actions should be taken requires balancing the possible loss
of performance of each individual action and the benefits in terms of wellbore condition
and estimation quality. There exist several models for such decision problems. We chose in
this work to consider the most classical one, namely the Markov Decision Process (MDP).
We use in the sequel the notations from [40]. This formalism is, since its introduction in the
1950s, ubiquitous in optimization and planning problems and is at the core of advanced
machine learning techniques such as reinforcement learning. An MDP is defined by a set S
of system states and a set A of possible actions. We consider in this paper a continuous state
set and a discrete (and finite) action set. Applying the action a when the system is in state
s has a cost c and brings the system to a new state s′. The cost is defined by the function
C : S × A → R while the transitions are assumed to be probabilistic: the distribution
of the new state is defined by its density function T : S2 × A → R+. In other words,
the probability that s′ belongs to a subset S′ of S is

∫
S′ T(x, s, a)dx for some appropriate

measure. Such a decision network has a simple graphical representation that renders the
main mechanisms explicit (see Figure 6). A policy is defined as a function π : S→ A that
associates to each system state a corresponding action. It can be interpreted as a strategy
that dictates the action to take when the system is in a given state. One can finally define the
expected utility Uπ(s) associated to the policy π and the initial state s. This corresponds to
the expectation of the cost function and accounts for the random transitions. This expected
utility satisfies the following relation:

Uπ(s) = C(s, π(s)) +
∫

S
Uπ
(
s′
)
T
(
s′, s, π(s)

)
ds′ (5)
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Figure 6. Graphical representation of a Markov Decision Process. The combination of an action ai and
a state si results in a new state si+1 and a cost Ci. The objective is to find an optimum policy π∗ that
minimizes the accumulated cost when taking successive actions from an initial state. The transition
from si to si+1 is probabilistic, such that one has to account for the uncertainties associated to the
system’s evolution.

The objective is to find an optimum policy π∗, i.e., one that minimizes the
expected utility:

π∗ = argmin
π

Uπ(s), ∀s ∈ S (6)
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Such a framework can be used to model a rich class of decision problems, although
the requirements that the transitions only depend on the previous system state (and not on
a longer history) can be a limitation in some cases. Apart from their conceptual simplicity,
MDPs present the advantage of being well studied: there exist several algorithms to
determine or approximate the optimum policy. Note however that those algorithms still
suffer from the curse of dimensionality: the computational expenses grow exponentially
with the dimensions of the state and action spaces.

In order to implement the contextual and conceptual levels of autonomous drilling,
we chose to cast our problem as an MDP, i.e., we need to define what a system state is and
derive the corresponding transitions and risk functions. We describe the details of the MDP
modelling in the next paragraphs.

6.1. Actions

Before detailing what we consider as system states, we review the different actions
that can be taken. As stated in this section’s introduction, the choices are reciprocating,
performing a friction test or continue drilling with a possible ROP reduction. The available
choices are nevertheless not always the same, depending on the context: both friction tests
and reciprocation require to lift the drill-string. Those actions can only be initiated if the
block is sufficiently low. Interrupting the drilling operations to perform one of those two
operations is costly: it requires to lift the bit off-bottom with sufficient margin and tag
bottom when the operation is finished. This extra cost vanishes when the operations are
done during a connection procedure: both pipe lifting and the bottom tagging are parts of
the procedure, and therefore do not entail any additional cost. We consequently distinguish
between friction tests and reciprocations done while drilling and those done prior to a
connection.

New decisions are taken on a regular basis, based on the hole depth. In order to ensure
that the hole depth has increased between two decisions, we consider nested actions: one
action a is defined by the sequence of integers (rd, fd, d, rc, fc, c) where rd, fd take value
0 or 1, depending whether reciprocation (rd) or friction test ( fd) are performed while
drilling, d represents the pace reduction applied to the ROP (d is chosen to take values
among 0, 10, 20, 30, 40 s/m pace reduction), rc and fc correspond to the reciprocation and
friction test prior to a connection, while c (taking value 0 or 1) indicates the occurrence of a
connection. Then, depending on the block position, we restrict the possible combinations
by imposing:

• rd = fd = 0 if the block is higher than 15 m,
• rc = fc = c = 0 if the block is higher than 5 m,
• rd = fd = 0 and c = 1 if the block is lower than 5 m.

The number of possible actions thus depends on the block position: only five choices
when the block is higher than 15 m, and 20 choices otherwise.

6.2. States

When attempting to cast the autonomous drilling problem into an MDP, the first
task is to design a suitable notion of system state. This step is indeed central since it
determines the nature of the transition and reward functions. The design of system states
must respect some possibly contradicting criteria: they need to represent with enough
fidelity the real status of the ongoing operations but at the same time should have a compact
representation such that the optimization computations remain tractable. Indeed, the most
natural state representation of a system would account for the distribution in the wellbore
of the different physical quantities relevant for the drilling process: annular and string
pressures, temperature, density, cuttings proportion, tension, and torque to name a few.
This approach would certainly facilitate the risk estimation associated to a reward function:
the occurrence of drilling incidents is directly related to the hydraulic or mechanical
behavior of the wellbore. However, transitioning the system from one state to another via
some drilling action would necessitate costly numerical simulations. In addition, the size
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of the state space would prove prohibitive: even with a coarse discretization, each of those
profiles would be a high dimensional variable. No known resolution algorithm can tackle
this situation. We therefore chose a much more compact representation that still relates to
the drilling incidents in a simple and realistic way. More precisely, the drilling incidents
we consider first are those associated to fault detection, because any abnormal situation
is expected to be detected by the system, which will hopefully prevent the situation to
degenerate. Those incidents occur when the measured hook load, surface torque, or SPP
exceeds some calculated threshold. The thresholds themselves are continuously updated
based on the current operational conditions and on assessment of the downhole conditions.
This latter part is based on the continuous estimation of some downhole friction parameters:
some sliding friction coefficient for the hook load computations, rotation friction coefficient
for the surface torque, and annular friction for the SPP. One can therefore consider that an
incident occurs when the corresponding (real) downhole friction becomes higher than the
one estimated by the system. This is why we define a system state s as the combination of
six friction coefficients: s = (µs, µs, µr, µr, µa, µa) where the subscripts s, r, a represent the
sliding, rotation, and annular frictions while the frictions µ and µ correspond respectively
to the “real” downhole friction and the estimated one. As stated above, drilling incidents
relate easily to such states: overpull or set-down weight happen when µs > µs, over-
torques when µr > µr and over-pressures when µa > µa (see Figure 7). A last parameter D
indicating the current hole depth of the wellbore is also included in the state.
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In order to take the optimum action at a given time, it is necessary to know what the
current state of the system is. In our case, it requires the knowledge of the different frictions
µs, µs, µr, µr, µa, µa. The frictions µr, µs, and µa are in our context directly accessible.
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Indeed, one of the systems in charge of the logical levels performs estimations of the
downhole frictions based on the available measurements. Those estimations rely on proper
identification of the sequences of real-time data suitable for such analysis, and on the
inversion of numerical models to determine the friction factors that minimize the mismatch
between measurement and simulations. For each of the three types of frictions, one has
therefore access to a time series of friction points: the value used in the safety trigger
mechanism to determine the correct thresholds is based on a moving average. It is this
value that corresponds to the frictions µr, µs, and µa. Note that these parameters remain
constant as long as no new “measurement” is taken: downhole pressure measurement
for annular friction, off-bottom surface torque for rotational friction (typically during
reciprocating sequences or friction tests) or pick-up/slack-off sequences for sliding frictions
(typically during friction tests). So even if those frictions can be thought as good estimations
of the “real” downhole frictions µs, µr, µa just after a measurement, the latter will tend
to drift as time goes, for example because of cuttings distribution evolution, while the
estimated friction will remain constant. We model this behavior of the real frictions as a
simple linear process, µ(t) = a + b t + ε, where t represents the time and ε is a Gaussian
white noise term. Then, a simple linear regression from the friction points provides the
coefficients a and b of the model, and the associated covariance matrix. Finally, at any
given time, this information is used to derive an approximated Gaussian distribution for
the frictions µs, µr, µa (we use prediction intervals, see [41] for example, to derive this
distribution, and consider for the regression points the time window that minimizes the
estimation variance).

To summarize, we use as state variables quantities that characterize the overall well-
bore quality (the three frictions µs, µr, µa) as well as the system’s own estimations of those
quantities (the corresponding µs, µr, µa). Of course, the real wellbore state being unknown,
statistical techniques are used to estimate real frictions, such that at any time one has to
consider the state distribution obtained when the frictions µs, µr, µa are seen as Gaussian
random variables.

6.3. Transition Functions

In order to obtain a MDP formulation of our drilling autonomy problem, we need
to define stochastic transition functions that describe the evolution of the system state
under the various actions. We first consider the evolution of the “real” frictions µs, µr, µa.
The way they evolve during the operations is closely related to the dynamics of cuttings
distribution. Cuttings beds, when displaced by the string axial movement (in particular,
around the tool-joints), exert additional drag forces that can be (abusively) interpreted
as friction parameter increase. The presence of cuttings beds also reduces the flow area
leading to an increase in frictional pressure losses. High concentrations of cuttings in the
drilling fluid also modify the fluid’s lubricating capabilities and therefore have a direct
impact on the nominal friction coefficient. This behavior can be difficult to model. Direct
numerical modelling of the cuttings transport process is feasible but results in costly
transition functions. Moreover, this approach would require to explicitly characterize the
mapping between the different possible cuttings distributions and their corresponding
friction coefficients. We chose instead a more direct approach: we consider that for each of
the three friction variables, the different actions lead to an increment (possibly negative)
in friction which is itself normally distributed. This means that we need to associate to
each combination of friction and action, a Gaussian distribution. We use pre-computed
simulations for this purpose: by using an advanced drilling simulator, configured to run
the exact same well as the one to be drilled and randomly activated actions (such as friction
tests, reciprocation sequences or ROP modifications) we can accumulate statistics on the
effect of those actions on the frictions observed in the simulator. In particular, the mean
and standard deviation of the observed increments in friction are sufficient to derive the
necessary transition functions. Of course, this approach requires intensive computing:
for the 400 m drilled section considered in this study, 5 days of simulations on a regular
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computation server resulted in 10 drilled sections, which in turn provided statistics about
approximately 100 occurrences of each different type of action.

The same set of simulations is used to model the effect of the different operations on
the estimated frictions µ. For the sake of simplicity, we associate to each action a coefficient
λ < 1 that controls the quality of the friction estimation process. Then, given the two
frictions µt and µt at a time t, and the downhole friction µt+1 after performing an action,
the estimated friction µt+1 is deduced from |µt+1 − µt+1| = λ |µt − µt|. The coefficients
corresponding to the combinations of actions and frictions are also statistically determined
from the pre-computed simulations mentioned above.

6.4. Reward/Penalty Function

The last function to specify for the MDP associated to our drilling autonomy problem
is the reward function: it associates to each combination of state and action a cost. This cost
consists of two parts: the deterministic cost induced by performing the action, and a
probabilistic one associated to the potential incidents occurring during the operations.

Those incidents come in two categories: the ones related to the activation of the safety
trigger mechanisms (over-pulls/set-down weight, over-torques and over-pressures), and
the ones associated to further degradations of the downhole conditions (such as stuck
pipe, formation fracturing, mud losses). The first type of incident is indeed deterministic.
As soon as the measurement associated to a downhole friction µ (hookload for sliding
friction, surface torque for rotation friction and SPP for annular friction) gets larger than the
threshold obtained from the estimation µ plus a safety margin, a safety trigger mechanism
is activated, assuming that the current operation is protected (for example, while drilling
the hookload and surface torque safety triggers are not active). The occurrence of such an
incident is thus based on modelling of the well response: for example, a small excess in
sliding friction may not be sufficient to produce an excess of 2 tons (the additional safety
margin) on the hookload while lifting the pipes in the upper section of the well, but it
may be enough at a deeper stage. The cost associated to safety trigger incidents is fixed.
The expected well responses in terms of hookload, surface torque and SPP as a function of
the hole depth and the downhole frictions are pre-computed and stored in look-up tables,
and therefore do not contribute significantly to the problem resolution computation time.
The downhole incidents follow a different logic. Their occurrence probability is based on
the difference between the measurement and a theoretical value based on an assumed
reference friction. Indeed, the probability of experiencing a pack-off increases with the
difference between the observed SPP and the expected one. In those situations when the
well is protected by safety triggers, the observed measurement cannot exceed the one
associated to the estimated friction µ, while the actual friction µ can be reached in other
cases. The costs associated to the downhole incidents are also a function of the observed
excess in hookload, surface torque, and SPP: curing a pack-off situation is likely to take
more time when the observed over-pressure is 20 bar than when it is 5 bar.

The two types of incidents induce two different behaviors: in order to avoid a safety
trigger to take place, it is preferable to have friction estimations µ larger than the real down-
hole frictions µ. In this situation, the safety mechanisms will not be activated. Of course,
this means that the well will not be properly protected. This is reflected in the downhole
incidents’ characteristics: their occurrence probability and severity depend on the maxi-
mum value attained by the surface measurements. This value is limited by low estimated
frictions µ. In order to balance the two types of incidents, it is therefore necessary to ensure
that at the same time the downhole frictions are as low as possible, and that the estimated
ones are as close as possible to their downhole counterparts.

6.5. Solution

Given the MDP defined by the states, transitions and reward function described above,
it is possible to compute an optimum drilling policy, i.e., a function that associates to any
state (or state distribution as in our case) the optimum action, accounting for the entire
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path until the end of the drilling section. There exist several algorithms devoted to the
computation of such policies. We chose to use a variant of the standard Value Iteration
algorithm [40], based on Gauss-Seidel iterations and multilinear interpolations of the
value function.

We derived a two components architecture for the high-level decision-making: the first
component generates optimum policies, using the algorithm mentioned above. Those poli-
cies correspond to specific instances of the decision problem. The depth discretization
(fine depth grid for the early decisions, coarse grid for the later ones) coupled with the
dependence of the available actions on the current block position impose a regular update
of the decision problem and the associated policy. This process is devoted to the first
component of the architecture. The second component of the architecture monitors the
on-going drilling activities, receives from sub-systems the current friction estimations, and
based on the linear regression described in Section 6.2 identifies the current state distribu-
tion. Then, it uses the optimum policy generated by the first component to determine the
optimum upcoming action, given the current system state distribution.

7. Results and Discussions
7.1. Examples

The autonomous drilling system was used in a virtual environment, consisting of a
high-fidelity wellbore simulator (which reproduces the hydraulic and mechanical behavior
of a drilling well, as well as the cuttings transport and temperature evolution processes)
coupled with an industrial drilling control system. We considered the drilling of a 300 m
long 8 1/2 ‘’ section, using a water-based mud. The well was relatively short, with a target
depth at 1300 m and a final inclination of 60 degrees. This well was chosen in preparation
for further pilot demonstration.

As indicated in Section 6, the state transition function was deduced from pre-computed
simulations, where the entire section drilling was performed several times. For this
specific well, cuttings transport was not a particular issue: in all situations, the safety
mechanisms described in Section 4.1.3 ensured that adequate drilling parameters were used.
The statistics accumulated during the simulations are illustrated in Figure 8. For each of
the three frictions (sliding, rotation, annulus), the effects of the different actions (including
the connections and the various degrees of drilling pace reduction) are represented as
box plots: the center of the boxes corresponds to the average increment (or decrement) in
friction, the upper and lower parts of the boxes and of the vertical lines to the average ±1
and 2 standard deviations, respectively.

Since they extensively rely on models, the risk estimations are also case specific. Apart
from the three safety trigger incident types, we also consider the following ones: stuck
pipe (we distinguish between axially and radially stuck), pack-offs, fracturing, losses
(permanent), and well control. The two first ones are based on hook-load and surface
torque while the four latter ones are related to the hydraulic behavior and deduced from
the SPP estimations. In this specific well, increases in annular friction are barely noticeable
on the pump pressure, which means that the hydraulic incidents do not play a significant
role in the provided examples. In Figure 9 an example of risk estimation is discussed.
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As explained in Section 6.5, the main output of the decision-making algorithm is an
optimum policy π∗. This function associates to any state an optimum action. In our context,
where some components of the current state (the frictions µ) are uncertain, the policy is
used to determine the optimum action associated to a state distribution. At any time, the
autonomous drilling system is therefore able to select an action as long as it has access to
the current probabilistic state estimation. In addition to the current action to be taken, it
can also predict the most probable sequence of states and actions that will be taken until
the end of the section. When an action a is selected from a state s, the transition function of
the system provides a distribution of the next states. By selecting the most probable next
state s′, one can then repeat the procedure: estimate the next optimum action a′, estimate
a new state distribution and select the most probable output until a final state is reached.
It should be noted that although the drilling plan (a sequence of states and actions) that
one obtains from such a procedure is the most probable one, it is not necessarily a likely
one (i.e., the probability that this sequence of states and actions is encountered in the future
is relatively low). Indeed, the probability that another state than the most likely one arises
during the operations is very high. In this case, the policy π∗ will recommend another
action, which will result in a different drilling plan.
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Figures 10 and 11 illustrate this situation. They were both generated from the same
initial conditions. In both figures, the top graph shows a sequence of actions, represented
by the block movement. Reciprocation sequences are associated to 15 m up and down
movements, friction tests (not shown in the figures) to 10 m up and down movements,
and drilling to downward block movement. When a pace reduction is applied to drilling
actions, the reference block movement is represented by a dashed grey line. The bottom
plot shows a partial representation of the state graph associated to the sequence of actions.
For each estimated state along the main path, we also represent the possible next states.
The full graph of states and actions is so large (it explodes exponentially) that it is preferable
to restrict visualization to a chosen path in this graph. The path shown in Figure 10 is a
sequence of first drilling operation, with varying pace reductions, followed for the last
stands by a sequence including reciprocation before making connections.
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Figure 10. A drilling plan. The top graph shows the block position evolution corresponding to a sequence of actions.
In this example, the 4 first stands are drilled with some pace reduction, while the three last ones also include some
reciprocation sequence.

This contrasts with Figure 11: an alternative state has been selected along the path
(corresponding to the red dot in the state graph). This shows the sequence of actions that
takes place if this specific state is encountered at this stage, instead of the most probable
one. One can see that the selected state corresponds to a better downhole situation, since
the recommended actions do not contain any reciprocation sequences anymore.

The optimum decision, as computed by the solver, depends on the current state
distribution. We recall that this distribution is related to the estimation of the downhole
frictions, obtained by independent linear regressions. This estimation results in three
independent Gaussian distribution for the three frictions µs, µr, and µa. We first illustrate
the effects of the mean values of the estimations.

Two slightly different initial conditions, as can be seen in Figure 12, may result in the
two different paths of Figure 13. The left chart of Figure 12 shows the state corresponding
to the top path of Figure 13, and the right chart corresponds to the bottom path. Those two
states result in different actions: a reciprocation sequence is recommended in the first case,
while in the second case it is not deemed necessary. Note that in the second case, the system
estimates that the effect of the reciprocation is such that the system recovers completely
from the situation, and the remaining drilling plan remains unchanged.
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Figure 12. The two initial states used to generate the path shown in Figure 13. The only difference is
the downhole sliding friction (yellow dot), larger than its estimated counterpart in the first state, and
equal to it in the second one.
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Figure 13. The action plans as suggested by the system for the two initial conditions from Figure 12.
In the first case, a reciprocation sequence is recommended, while it is not deemed necessary in the
second case.

Uncertainty in the state estimation also has an effect. In particular, high risk associated
to possible states can lead the system to take cautious actions such as performing a friction
test in order to have a better agreement between the downhole and estimated frictions.
In Figure 14, we show the system’s recommendations for two state distributions that only
differ in their uncertainty: the mean values of the different frictions are the same in both
cases, but the standard deviations (indicated by the green markers in the vertical bars)
are higher in the bottom case. This will typically occur when information acquisition
actions such as friction test (for rotation and sliding friction) and reciprocation sequences
(for the rotation friction only) have not been performed recently. As can be seen from
the block position representation of the action, in the case of increased uncertainty, the
system recommends performing a friction test. As seen from the risk model described
in Section 6.4, the effect of the friction test will be to move the estimated sliding friction
closer to the real one. In the situations where the two originally differ significantly, this
should reduce the cost associated to the various drilling incidents. In the shown example,
the uncertainty in sliding friction is such that this situation is far from unlikely and is
therefore accounted for by the system.



Energies 2021, 14, 969 27 of 32
Energies 2021, 14, x FOR PEER REVIEW 27 of 32 
 

 

 
Figure 14. Effect of uncertainty on the decision-making. The uncertainty in friction estimation is high in the low plots (the 
standard deviations are indicated by the green markers). In this situation, the system recommends performing a friction 
test in addition to the reciprocation sequence. 

7.2. Discussion 
The examples presented above all arise from a simulated environment. During real 

operations, additional noise to the sensory data makes the situation more difficult to as-
sess, and it is interesting to observe how the system behaves in such a context. The uncer-
tainty management included in the decision-making process should manage to handle 
those additional uncertainties: however, it can be extended to include measurement inac-
curacy and model calibration quality into the friction estimation and propagate them via 
the frictions’ linear regressions to the state distribution computations. 

The validation of the entire autonomous drilling system is a complex task: every de-
cision made by the system needs to be properly evaluated. Potential deviations between 
human decisions and the ones made by the system must be carefully assessed: this re-
quires deep understanding of the decision-making framework, adequate access to internal 
computations, and ad-hoc data exploration tools. The different graphical interfaces used 
in the illustration of Sections 6 and 7 are an attempt to illustrate the various components 
of the decision-making process. However, making every single decision fully understand-
able by a human operator is a challenging task. It is however mandatory if one wants this 
kind of advanced technique to be adopted by the drilling industry. Note that these chal-
lenges are also commonly encountered by any application that relies on artificial intelli-
gence. 

Indeed, the framework used here to model the decision-making process (namely 
MDP) stems from artificial intelligence. It is therefore tempting to draw inspiration from 
the latest research in this area to possibly improve some of the system components. A 
promising direction would be to consider the general framework of reinforcement learn-
ing: in this paradigm, some (or all) of the functions defining the MDP (transition and cost 
functions) are unknown and are dynamically learned via interactions with the environ-
ment. The transition function design that we use in this work (where the characteristics of 
the friction evolution are statistically inferred from simulations) corresponds to this ap-
proach, but not the risk model design. Extending the learning phase to risk evaluations 
would clearly lead to improved accuracy but requires the ability to accurately model (us-
ing numerical models) drilling incidents, which is a difficult task since those incidents 
often come from complex interactions between the mechanical, hydraulic, and geological 
system and the cuttings displacement. 

Figure 14. Effect of uncertainty on the decision-making. The uncertainty in friction estimation is high in the low plots (the
standard deviations are indicated by the green markers). In this situation, the system recommends performing a friction test
in addition to the reciprocation sequence.

7.2. Discussion

The examples presented above all arise from a simulated environment. During real
operations, additional noise to the sensory data makes the situation more difficult to assess,
and it is interesting to observe how the system behaves in such a context. The uncertainty
management included in the decision-making process should manage to handle those
additional uncertainties: however, it can be extended to include measurement inaccuracy
and model calibration quality into the friction estimation and propagate them via the
frictions’ linear regressions to the state distribution computations.

The validation of the entire autonomous drilling system is a complex task: every
decision made by the system needs to be properly evaluated. Potential deviations between
human decisions and the ones made by the system must be carefully assessed: this requires
deep understanding of the decision-making framework, adequate access to internal com-
putations, and ad-hoc data exploration tools. The different graphical interfaces used in the
illustration of Sections 6 and 7 are an attempt to illustrate the various components of the
decision-making process. However, making every single decision fully understandable by
a human operator is a challenging task. It is however mandatory if one wants this kind of
advanced technique to be adopted by the drilling industry. Note that these challenges are
also commonly encountered by any application that relies on artificial intelligence.

Indeed, the framework used here to model the decision-making process (namely MDP)
stems from artificial intelligence. It is therefore tempting to draw inspiration from the latest
research in this area to possibly improve some of the system components. A promising
direction would be to consider the general framework of reinforcement learning: in this
paradigm, some (or all) of the functions defining the MDP (transition and cost functions)
are unknown and are dynamically learned via interactions with the environment. The tran-
sition function design that we use in this work (where the characteristics of the friction
evolution are statistically inferred from simulations) corresponds to this approach, but
not the risk model design. Extending the learning phase to risk evaluations would clearly
lead to improved accuracy but requires the ability to accurately model (using numerical
models) drilling incidents, which is a difficult task since those incidents often come from
complex interactions between the mechanical, hydraulic, and geological system and the
cuttings displacement.
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Note that the need to rely on pre-computed simulations to estimate some of the
system’s characteristics (limiting the learning to the current drilling operation does not
generate enough data and is dangerous given the criticality of the operations) suggests
some interesting development for this work. In [42] the authors suggest the usage of
uncertainty propagation techniques via Monte Carlo simulations to estimate the risk
associated to some given well design. This risk evaluation step would then be a natural
component of the well-planning process. It would be tempting to merge the simulations
attached to a reinforcement learning approach with the ones performed at the planning
stage. The planning simulations themselves would then fully account for the usage of
autonomous drilling, and the success criteria used for the selection of a specific design
could be closer to the real drilling performance. From the autonomous drilling perspective,
including the uncertainties described in [42] in the pre-computed simulations would make
the system more robust to unexpected situations.

8. Conclusions

In this paper we have described an autonomous drilling solution. Drilling decisions
are taken automatically by analyzing which series of actions will minimize the time to reach
the section TD. The estimated time to drill the remainder of the section is decomposed
into the predicted time to execute the series of actions and the plausible time that may
be lost curing drilling incidents, if any occur. In that way, a balance between maximizing
performance and minimizing risk levels is achieved, as if a too aggressive action plan is
chosen, it could lead to greater chances for drilling incidents to occur which could actually
increase the total duration to reach the section TD.

In drilling operations, uncertainty is of great importance as the drilling operation is
usually poorly observed since most of the measurements are at the rig site and very few
downhole measurements are available, leaving therefore a large uncertainty for evaluating
the state of the process. The described method accounts explicitly for uncertainty. In fact,
the method utilizes the current uncertainty in its determination of the best action plan to
reach the section TD as specific drilling procedures may provide information that reduces
this uncertainty. Therefore, actions that are directly reducing performance may still be
valuable to be executed if they can reduce the uncertainty of the current situation and
therefore help in taking better decisions thereafter.

Despite the constant attempt to lower risk levels, it is still possible that drilling
incidents may occur. For that reason, the solution provides first responses to drilling
incidents, if any occur. The automatic reaction to drilling incidents also includes mitigation
procedures that can potentially help returning the system to normal drilling conditions.
However, in case of failure of the mitigation procedures, the autonomous drilling function
can set the drilling system in a safe mode which gives time for a human operator to take
control, though with a low situation awareness.
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Abbreviations

A area (m2)
A set of possible actions
a an action
a bias parameter of the friction function
b slope parameter of the friction function
C a cost function
Cp specific heat capacity (J/(kg·K))
c a cost
c indicator of the occurrence of a connection
→
c external torque (N·m)
d pace reduction applied to the ROP (s/m)
E elastic modulus (Pa)
→
F p external force vector applying on the particle (N)
→
F µ total kinetic friction force vector (N)
Fµk limit of the kinetic friction force at high velocity (N)
Fµs upper limit of the static friction force (N)
→
f b external body force (N/kg)
fc indicator for friction test procedure at connection time
fd indicator for friction test procedure while drilling
→
f s external force per unit length (N/m)
→
g gravitational acceleration (m/s2)
H enthalpy per mass unit (J/kg)
Ip second moment of area for particle (m4)
Is second moment of area for string (m4)
→
M internal torque in the solid (N·m)
→
Mp external torque applying on the particle (N·m)
n̂ normal unit vector at the contact (dimensionless)
p pressure (Pa)
Qc conductive and natural-convective term (W)
Q f forced convective term (W)
q potential energy of external loads (J)
qs heat generated by mechanical and hydraulic frictions (W/m)
→
R reaction force between the surfaces in contact (N)
rc indicator for reciprocation procedure at connection time
rd indicator for reciprocation procedure while drilling
S set of system states
S′ a subset of S
s curvilinear abscissa (m)
s a state
s′ a new state
T density function for a distribution of state
T temperature (K)
→
T internal tension vector in the solid (N)
→
t tangential vector of the Frenet-Serret coordinate system (dimensionless)
t time (s)
Uπ expected utility associated to the policy π
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→
u f fluid velocity vector (m/s)
→
u p particle velocity vector (m/s)
→
u s velocity of control element of a portion of string (m/s)
V volume (m3)
Vp particle volume (m3)
v slip velocity between the two surfaces (m/s)
vcs critical Stribeck velocity (m/s)

w deflection in a perpendicular direction to
→
t (m)

Greek letters
α volumetric coefficient of thermal expansion (K−1)
ε Gaussian white noise
λ quality coefficient for the friction estimation process
ρ f density of the background fluid (kg/m3)
ρm drilling fluid density (kg/m3)
ρp density of particle (kg/m3)
ρs density of solid constituting the string (kg/m3)
π a policy
π∗ optimum policy
µ mass per unit length (kg/m)
µa real hydraulic annulus friction factor (dimensionless)
µa estimated hydraulic annulus friction factor (dimensionless)
µk kinetic coefficient of friction (dimensionless)
µr real rotational friction factor (dimensionless)
µr estimated rotational friction factor (dimensionless)
µs real sliding friction factor (dimensionless)
µs estimated sliding friction factor (dimensionless)
µt a real friction at time t (dimensionless)
µt an estimated friction at time t (dimensionless)
µσ static coefficient of friction (dimensionless)
=
τ stress tensor (Pa)
→
ωp angular velocity of the particle (rd/s)
→
ωs angular velocity of a control element of a portion of a string (rd/s)
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