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a b s t r a c t 

Generalized polynomial chaos provides a reliable framework for many problems of uncertainty quantifi- 

cation in computational fluid dynamics. However, it fails for long-time integration of unsteady problems 

with stochastic frequency. In this work, the asynchronous time integration technique, introduced in pre- 

vious works to remedy this issue for systems of ODEs, is applied to the Kármán vortex street problem. 

For this purpose, we make use of a stochastic clock speed that provides the phase shift between the 

realizations and enables the simulation of an in-phase behavior. Results of the proposed method are val- 

idated against Monte Carlo simulations and show good results for statistic fields and point-wise values 

such as phase portraits, as well as PDFs of the limit cycle. We demonstrate that low-order expansions 

are sufficient to meet the demands for some statistic measures. Therefore, computational costs are still 

competitive with those of the standard form of intrusive generalized polynomial chaos (igPC) and its 

non-intrusive counterpart (NigPC). 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Generalized polynomial chaos (gPC) [1–4] is an uncertainty 

uantification (UQ) approach devoted to the propagation of un- 

ertainties from inputs to outputs of a numerical model, e.g., dis- 

retized partial differential equations. In this method, a series 

xpansion in orthogonal basis functions or modes is applied to 

he model, i.e., each stochastic variable is described as a linear 

ombination of stochastic modes. The modes are generally or- 

hogonal polynomial functions of standardized random variables 

ith known statistical properties. The Quantities of Interest (QoIs), 

hich are directly related to the output(s) of the model, are also 

escribed by a linear combination of well-known stochastic modes. 

s a result, the UQ problem reduces to the finding of the gPC co- 

fficients describing the QoIs. There are two classes of methods 

or their evaluation: Non-intrusive generalized polynomial chaos 

NigPC) and intrusive generalized polynomial chaos (igPC). 

NigPC has consolidated in the past years as an approach to 

erform UQ on systems characterized by complex numerical mod- 

ls that describe steady QoIs [5–9] . Non-intrusive methods rely on 

andom or deterministic sampling. The former case includes ran- 

om discrete L 2 projection [10] , sparse gPC based on least angle re- 
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ression [11] , and compressive sampling for identification of sparse 

PC approximations [12] . In the case of deterministic sampling in- 

tead, the QoI is evaluated at carefully chosen points in parameter 

pace, e.g., Gauss points. Once the input random variables are dis- 

retized – following one of the two aforementioned methods – a 

ollection of representative samples is generated in the stochas- 

ic space. Subsequently, associated deterministic numerical simu- 

ations are performed, where each simulation can be understood 

s a realization, i.e., a sample of a stochastic simulation. Provided 

hat the QoI is a sufficiently smooth function of the uncertain in- 

ut parameters, the number of deterministic simulations needed is 

onsiderably smaller than in other sampling based methods, such 

s Monte-Carlo simulation or Latin-Hypercube methods. For very 

arge numbers of random variables, the smoothness requirements 

nd computational cost become prohibitive (the curse of dimen- 

ionality). This can to some extent be remedied by model reduc- 

ion to limit the number of input random variables and the num- 

er of basis functions, in particular for elliptic problems [13] . Fur- 

her methods used to improve the rate of convergence with respect 

o the number of total terms in the series expansion for linear, el- 

iptic Partial Differential Equations (PDEs) with different functional 

ncertainties in the diffusion coefficient are presented in Bachmayr 

t al. [14 , 15] , which are based on the results from [16] . Anisotropic

molyak type polynomial spaces can alleviate the curse of dimen- 

ionality under proper smoothness assumptions of the parameter 

andom fields [17,18] . 

https://doi.org/10.1016/j.compfluid.2021.104952
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104952&domain=pdf
mailto:pepe@norceresearch.no
https://doi.org/10.1016/j.compfluid.2021.104952
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NigPC has been applied in a plethora of applications, where the 

oIs are generally scalar, steady quantities. For example, investi- 

ations where: uncertainties in the Young’s moduli of a structure 

odel induce uncertainties in the deflection of a truss structure 

19] ; uncertainties in geometrical parameters of a truncated cone 

nduce uncertainties in the flow, described by the Euler Equations, 

nd in the corresponding (steady) pressure, which is measured 

t some specific locations [7] ; uncertainties in the thermal con- 

uctivity of the heat equation induce uncertainties in the (steady 

tate) temperature [20] ; uncertainties in the Smagorinsky model 

f a Large Eddy Simulation induce uncertainties in the statistical 

oments of decaying homogeneous isotropic turbulence [5] ; un- 

ertainties in the Smagorinsky coefficient characterized by a reac- 

ive Large Eddy Simulation induce uncertainties in the mean and 

ms values of velocity, temperature and mixture fraction at spe- 

ific locations [9] . In contrast, few works have been carried out, 

here the QoIs are steady field quantities. For example, Onorato 

t al. [21] , while using the 2D Turbulent Navier–Stokes equations, 

nvestigated how uncertainties in the angle of attack of an airfoil 

nduced uncertainties in the field of Mach number. Congedo et al. 

6] investigated how uncertain inflow conditions induced uncer- 

ainties in the field of mean velocity of a turbulent swirled flow 

odeled by means of both Reynolds averaged Navier Stokes and 

arge Eddy Simulation. Note that in those cases the computational 

osts of NigPC are high, as the gPC coefficients associated to each 

oint in the field of interest must be computed. 

The intrusive counterpart of gPC rose considerable interest in 

he first decade of 20 0 0’s [22–27] . Contrary to NigPC, igPC by

eans of stochastic Galerkin projection is not a sampling based 

ethod: only one numerical simulation of an expanded model is 

eeded to calculate the gPC coefficients, whether these are scalars 

r field quantities. The practical use of igPC may be limited due to 

he fact that standard numerical solvers, often the result of years of 

nvestigation, cannot be used without prior modification. Compu- 

ational aspects of igPC formulations of the incompressible Navier–

tokes equations in the laminar flow regime were treated in Knio 

nd Le Maître [28] , and boundary conditions for a well-posed for- 

ulation and a stable numerical scheme were presented in Pet- 

ersson et al. [29] . 

A well-known limitation of gPC is its inaccuracy in uncertainty 

ropagation of unsteady problems, where the phase between real- 

zations changes over time, e.g., turbulent flows or flows exhibiting 

eriodic behavior. In theory, unsteady stochastic problems can be 

ccurately described by considering an infinite number of stochas- 

ic modes [30–32] . In practice, accounting for an infinite number 

f stochastic modes is infeasible. The energy in periodic systems, 

n contrast to turbulent flows, is usually distributed in a hand- 

ul of frequencies. As a result, the phase shift between realiza- 

ions of the stochastic periodic problem can be tracked. Two sit- 

ations arise. (i) Deterministic frequencies: cases where the phase 

hift between realization is negligible, so that regular gPC is reli- 

ble and can be used without modification to study periodic flows. 

his fact is sometimes lost in claims in the scientific literature: 

gPC ... cannot deal with the Navier–Stokes equations for unsteady 

oisy flows, such as flow past a stationary cylinder. For these prob- 

ems gPC fails to converge after a short time” [33] ; “gPC tends to 

reak down for long-time integration” [34] ; “A well-known diffi- 

ulty is the simulation of uncertain time-dependent problems over 

ong times” [35] ; “note also that polynomial chaos could intro- 

uce convergence issues when dealing with unsteady flow prob- 

ems” [6] . We would like to stress that the previous sentences may 

e misleading if the entire context of the associated studies is not 

arefully read. There are numerous problems regarding periodic os- 

illations, where regular gPC could be used to study uncertainty 

ropagation. However, only few studies, such as Lucor and Karni- 

dakis [24] , have focused on this matter. (ii) Stochastic frequencies: 
2 
ases where the phase shift between realizations is not negligible. 

ere standard igPC and NigPC fail to produce accurate results if the 

tochastic basis remains small [33] . Wan and Karniadakis [33] pro- 

osed multi-element gPC, where the stochastic space is partitioned 

nto stochastic elements and standard gPC is independently ap- 

lied to each element. Despite its accuracy, it is computationally 

uch more expensive than regular gPC. Le Maître et al. [35] intro- 

uced asynchronous time integration (ATI) for igPC with rescaled 

ime in the stochastic domain. The local time of each realization 

s adjusted so that all realizations remain in phase. If the phase 

hift between the realizations is smooth as a function of the input 

andom variables, it is possible to derive an ordinary differential 

quation (ODE) that describes the adjustment of the clock. Schick 

t al. [36] proposed a method for the adjustment of the local time 

n cases where the phase shift between realizations is irregular. 

chick et al. [36] argue that the ATI method is not robust enough 

or that purpose, and that it is preferable to use a robust optimiza- 

ion method to determine the clock adjustment, despite increased 

omputational cost. Mai and Sudret [37] proposed time warping 

or phase adjustment for NigPC. Giraldi et al. [38] also used NigPC 

nd a time shift to synchronize wave arrival times within an earth- 

uake model. Conceptually related is the technique of introducing 

 physical coordinate transformation to align discontinuities in pa- 

ameter space, applied to multi-layered sedimentary basins [39] . A 

ifferent approach was proposed by Gerritsma et al. [34] , where 

ime-dependent gPC was introduced with new stochastic variables 

nd orthogonal polynomials being constructed as time progresses. 

onsequently, the number of stochastic modes remains small as 

he associated basis is nearly optimal for a sufficiently small time 

nterval. 

Due to the constraints mentioned above, standard NigPC and 

gPC should be avoided for problems where the QoIs are peri- 

dic with stochastic frequencies, or turbulent. Accurate uncertainty 

ropagation for turbulent or periodic (stochastic frequency) QoIs 

ould bring significant advantages in many engineering applica- 

ions. We want to stress, however, that a considerable amount of 

ork (mostly in turbulent QoIs) still remains to attain that goal. 

In this work, we investigate the Kármán vortex street generated 

y a flow around a rectangular cylinder by means of the incom- 

ressible Navier–Stokes equations. The following are the main ob- 

ectives of the present study: 

- To show that standard gPC is suitable for unsteady problems, 

where the QoIs are periodic and the frequency remains de- 

terministic. 

- To show that standard gPC fails when investigating periodic 

QoIs that exhibit stochastic frequencies. We want to warn 

that standard igPC and NigPC cannot be used to study such 

cases, or more complex cases regarding turbulent QoIs. 

- To show that ATI-igPC works predominantly well in periodic 

flows that exhibit stochastic frequencies. This extends the 

work of Le Maître et al. [35] , who introduced ATI-igPC for 

ordinary differential equations. 

- To show advantages of igPC with respect to NigPC in terms of 

computational costs, when the QoIs of interest are unsteady 

fields . 

The paper is structured as follows: In Section 2 the gPC series 

xpansion is put in a wider context, and it is shown how ATI- 

gPC can be derived from a general series expansion. Section 3 ex- 

lains the fundamentals of the ATI method. In Section 4 , the gPC 

xpanded set of equations for the incompressible Navier–Stokes 

quations is derived using the ATI method. Section 5 gives a brief 

verview of the statistical measures used in this work. The numer- 

cal results, including some information on the computational costs 

f the solver, are presented in Section 6 and conclusions are drawn 

n Section 7 . 
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. Series expansions of random fields 

Consider a suitable probability space describing all relevant in- 

ut uncertainties of the nonlinear space-time dependent model of 

nterest. The elementary events of the space are denoted ω ∈ �, 

here � is the sample space. To represent and propagate uncer- 

ainty through the model, consider the general series expansion 

 (x, τ, ω) = v (x, τ ) + 

∞ ∑ 

i =1 

�i (τ, ω) v i (x, τ ) , (1)

here v (x, τ ) is the expected value function, �i (τ, ω) are zero- 

ean stochastic processes, and v i (x, τ ) are linearly independent 

elds in physical space, with { �i } , { v i } possibly orthonormal bases

n random and physical space, respectively. The scaled time τ is a 

unction of physical time that we may also allow to be stochas- 

ic, i.e., τ = τ (t, ω) . Eq. (1) is a generalization of the classical

arhunen-Loève expansion with time dependent stochastic and de- 

erministic components. Several methods can be derived by sub- 

tituting the expansion (1) into the nonlinear model of interest. 

n all subsequent examples we will assume that the stochastic di- 

ensionality can be restricted to n dominant dimensions of un- 

ertainty. The temporal evolution of the basis { v i } is restricted to 

he instantaneous normal direction, i.e., any new contribution is 

rthogonal to the current basis. By projecting the governing PDE 

nto the bases { �i } and { v i } while keeping τ = t fixed, one obtains

he Dynamically Orthogonal (DO) field equations [40,41] . The DO 

ethod was used to solve the stochastic Navier–Stokes equations 

n Sapsis and Lermusiaux [42] . Employing a linear scaling of τ with 

espect to time t in connection with the Dual DO equations (where 

he stochastic instead of the deterministic basis is kept orthonor- 

al) led to improvement in the performance by means of smaller 

ffective number of terms in (1) [43] . By fixing the stochastic basis 

ith respect to time and letting �i (ω) = �i ( ξ(θ )) be orthogonal 

olynomials with respect to some choice of random vector ξ(θ ) , 

he DO field equations reduce to the stochastic Galerkin projection 

f the gPC expansion. Controlling the dynamics of τ ( ξ, t) with an 

DE results in the ATI method. Next, we will describe gPC and ATI 

n some more detail. 

.1. Generalized polynomial chaos 

gPC offers a framework by spectral expansions in random vari- 

bles via orthogonal, stochastic polynomials. Assume that all in- 

ut random variables and fields of relevance to the application 

f interest can be parameterized to sufficient accuracy by an n - 

imensional random vector ξ = (ξ1 , . . . , ξn ) , where for brevity of 

otation we have omitted the dependence on �, i.e., ξ = ξ(ω) . 

he random variables are assumed independent with joint PDF 

 ( ξ) = w 1 (ξ1 ) . . . w n (ξn ) . 

Let { �i ( ξ) } be a set of normalized multivariate polynomials or- 

hogonal with respect to w, where i = (i 1 , . . . , i n ) ∈ N 

n 
0 
. The multi-

ariate polynomials are products of univariate Wiener-Askey poly- 

omials, i.e., �i ( ξ) = ψ i 1 
(ξ1 ) . . . ψ i n (ξn ) . The orthogonality of poly-

omials implies that 

 ξ

(
�i ( ξ)� j ( ξ) 

)
= 

n ∏ 

k =1 

δi k j k 
, i k , j k ∈ N 0 , (2) 

here δi j is the Kronecker delta and E ξ( ·) denotes the expectation 

perator, 

 ξ( f ) = 

∫ 
f ( ξ) w ( ξ) d ξ. (3) 

ny finite-variance random field x ( ξ) can then be expressed by its 

PC expansion, 

 ( ξ) = 

∑ 

i ∈ N 0 
x i �i ( ξ) . (4) 
3 
or practical use, the gPC expansion must be truncated to a finite 

umber of terms by restricting the order of the polynomials. The 

runcation scheme is defined by selecting a finite index set I ⊂ R 

n 
0 

iven by 

 = { i ∈ R 

n 
0 : ‖ 

i ‖ q ≤ p} , (5) 

here the q -norm (or quasi-norm if q < 1 ) is defined by 

 

i ‖ q = 

( 

n ∑ 

j=1 

i q 
j 

) 1 /q 

. (6) 

etting q = 1 leads to the total-order truncation including all pow- 

rs up to p, which is used in this work. Choosing q < 1 yields

he hyperbolic index sets [11] , favoring the influence of univari- 

te polynomials at the expense of high-order mixed polynomials 

ncluding several random dimensions. Other options include the 

yperbolic cross truncation strategy where compound nonlinear 

ffects from multiple random variables are truncated in favor of 

igher-order nonlinear effects in single and small numbers of joint 

ariables [44] . The total number of terms (P + 1) in an isotropic

otal-order expansion of maximum polynomial order p and n un- 

ertain input variables is given by 

 + 1 = 

(n + p)! 

n ! p! 
. (7) 

sing single-index notation, i.e., mapping the vector-valued multi- 

ndex set to the non-negative integers, the resulting scalar in- 

ices correspond to different multi-dimensional basis functions. 

he truncated gPC expansion then reads 

 ( ξ) ≈
P ∑ 

i =0 

x i �i ( ξ) . (8) 

nce the truncated gPC coefficients in (4) are calculated, the ex- 

ected value E ξ(x ) and the approximate variance V ξ(x ) of the

tochastic solution are given by 

E ξ(x ) = x 0 , 

 ξ(x ) = 

P ∑ 

i =1 

x 2 i . 

. Asynchronous time integration 

Generalized polynomial chaos fails to represent periodic QoIs 

hat are characterized by a stochastic frequency. To overcome this 

roblem, Le Maître et al. introduced asynchronous time integra- 

ion (ATI) [35] . We will briefly describe the method in the follow- 

ng. For a more detailed explanation, the reader is referred to [35] . 

onsider a set of stochastic ODEs, written as 

d 

dt 
y ( ξ, t) = F( y ( ξ, t)) , (9) 

here y ( ξ, t) is a random vector and F is a discrete operator. Now 

hoose a certain realization of ξ as a deterministic reference and 

all this solution y (r) that obeys Eq. (9) : 

d 

dt 
y (r) (t) = F 

(r) ( y (r) (t)) . (10) 

qs. (9) and (10) can be seen as semi-discretized PDEs, where the 

ector y will later be assigned to the gPC expanded velocity com- 

onents. Building on this, F can be interpreted as an operator that 

escribes the convection, diffusion and the pressure term included 

n the Navier–Stokes equations. 

The focus on the incompressible Navier–Stokes equations makes 

ur work differ from [35] , where small systems of ODEs were con- 

idered. For almost all ξ, Eq. (9) is satisfied by solutions y ( ξ, t) ,
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Fig. 1. The behavior of the stochastic solution y ( ξ, t) and the in-phase solution z ( ξ, t) in the t- and τ -time space. 

Fig. 2. Phase portrait of a realization of the stochastic solutions z ( ξ, t) (orange) and the reference y (r) (blue), where y (r) , z : R n → R 
2 . The vectors represent the input for 

� = d ( ξ, t) · F (r) ( y (r) (t)) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ach associated with a particular oscillation frequency f ( ξ) . This 

requency is slightly shifted from a reference frequency f (r) that 

orresponds to a reference solution y (r) . We now stretch and com- 

ress the solutions y ( ξ, t) so that all signals have the same fre-

uency f (r) . We call these uniformly oscillating solutions z ( ξ, t) , 

hich can be generated by introducing a stochastic time variable 

( ξ, t) that is a function of the physical time t and of the random

ealization ξ (i.e., the time rescaling is different for each realiza- 

ion): 

 ( ξ, t) = y ( ξ, τ ( ξ, t)) . (11) 

In order to get a formulation for the uniformly oscillating solu- 

ions z ( ξ, t) on the basis of the operator F , the chain rule is ap-

lied to Eq. (11) : 

d 

dt 
z ( ξ, t) = 

d 

dt 
y ( ξ, t) 

∣∣∣
t = τ ( ξ,t ) 

dτ

dt 
= F( y ( ξ, τ ( ξ, t))) ̇ τ = F( z ( ξ, t))

(12) 

The term F( z ( ξ, t)) ̇ τ is a scaled version of F( z ( ξ, t)) , which

uarantees that the solutions z ( ξ, t) are in phase. 

Fig. 1 illustrates the process of the time transformation. From 

eft to right: (1) The reference solution and a solution y ( ξ, t) of 

 selected realization of ξ are shown, which are out of phase. (2) 

sing a time scaling, it is possible to align both signals by choosing 

 ( ξ, t) so that they are in phase in the t-time space. (3) Since the

eference solution has double the frequency compared to y ( ξ, t) in 

his example τ (t) = 2 t . (4) To retrieve y ( ξ, t) , we plot z ( ξ, t) over

(t) . The signals appear to be in phase, but the τ -axis progresses 

wice as fast. Therefore, the original frequency of y ( ξ, t) is restored 

n the τ -time space. 

The time scaling can be summarized as 

z ( ξ, t) = y ( ξ, τ ( ξ, t)) (push-forward) , 

y ( ξ, t) = z ( ξ, τ−1 (t, ξ)) (pull-backward) , 
(13) 
4 
here the push-forward operation describes the process in which 

ll solutions are brought into phase. The pull-backward time scal- 

ng is used to recover the original oscillatory behavior of the solu- 

ion. The task now is to find a way of describing τ that guarantees 

n-phase behavior between the solutions z ( ξ, t) and the reference 

olution y (r) . 

The distance between the stochastic solution and the reference 

olution in the phase portrait can be expressed as 

 ( ξ, t) = z ( ξ, t) − y (r) (t) . (14) 

hen the distance vector and the velocity vector of the reference 

rajectory are orthogonal, the solutions oscillate in phase. The fol- 

owing dot product is therefore a measure of their phase shift: 

= d ( ξ, t) · F 

(r) ( y (r) (t)) . (15) 

his relation is graphically shown in Fig. 2 , where z ( ξ, t) and y (r) 

re two-dimensional vectors. When the trajectories are in phase 

middle), then � = 0 and the clock speed does not need to be ad- 

usted. If � < 0 (left), the local clock speed must be increased so 

hat the stochastic trajectory can catch up with the reference solu- 

ion and vice versa (right). 

Le Maître et al. [35] proposed an ODE for the determination of 

˙ that enforces the � = 0 criterion: 

d 

dt 
˙ τ ( ξ, t) = −α0 ˙ τ ( ξ, t)�( ξ, t) + α1 (1 − ˙ τ ( ξ, t)) . (16)

n this expression α0 determines how fast the local clock speed 

esponds to changes in �( ξ, t) , α1 controls the asymptotic behav- 

or of ˙ τ , and (1 − ˙ τ ) ensures that the clock speed remains close 

o 1. Additionally, these parameters are chosen in a way that the 

xed point ˙ τ ∗, i.e., the value of ˙ τ that makes the right-hand-side 

f Eq. (16) equal to zero or equivalently d 
dt 

˙ τ = 0 , should behave 

s an attractor for a large range of �. Consequently, the dynamical 

djustment of the clock speed as illustrated in Fig. 2 is assured. We 

ummarize the system of equations that follow the ATI method: 

d 
y (r) (t) = F 

(r) ( y (r) (t)) , (17) 

dt 
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d 

dt 
z ( ξ, t) = ˙ τF( z ( ξ, t)) , (18) 

d 

dt 
˙ τ ( ξ, t) = −α0 ˙ τ ( ξ, t)�( ξ, t) + α1 (1 − ˙ τ ( ξ, t)) , (19)

ith initial conditions: 

 

(r) (t = 0) = y 0 , (20) 

 ( ξ, t = 0) = y 0 , (21) 

˙ ( ξ, t = 0) = 1 . (22) 

In all numerical experiments we set α0 = 8 e −5 and α1 = 10 . 

Note that no exact knowledge of the functional dependence of 

and τ is required when following the ATI method as the dynam- 

cs of ˙ τ is controlled via an ODE. Accordingly, we consider the ATI 

pproach to be more general if compared to other methods, as the 

ne followed in Musharbash and Nobile [43] , where an explicit al- 

ebraic relation between t and τ is required. Next, we will apply 

he ATI framework to the incompressible Navier–Stokes equations. 

. Application to the incompressible Navier–Stokes equations 

.1. Stochastic flow formulation 

The Navier–Stokes equations are obtained from conservation 

aws of mass and momentum. In case of incompressible flows, the 

ensity is assumed to be constant in space and time. Conservation 

f mass and momentum reduce to: 

 · u = 0 , (23) 

∂ u 

∂t 
+ ( u · ∇ ) u = − 1 

ρ
∇ p + ν∇ 

2 u , (24) 

ith suitable boundary conditions to be described later, and where 

 , p, ρ and ν represent the velocity, pressure, density, and the 

inematic viscosity, respectively. In this study we assume that u , 

p and ν are stochastic. Therefore, these quantities are expanded 

s gPC series (8) and inserted into the governing equations, which 

ields 

P 
 

i =0 

�i ∇ · u i = 0 , (25) 

P 
 

i =0 

�i 

∂ u i 

∂t 
+ 

P ∑ 

i =0 

P ∑ 

j=0 

�i � j ( u i · ∇ ) u j = −
P ∑ 

i =0 

�i 

1 

ρ
∇ p i 

+ 

P ∑ 

i =0 

P ∑ 

j=0 

�i � j νi ∇ 

2 u j (26) 

he system Eqs. (25) and (26) is projected onto the stochastic 

asis { �k } , which is composed by orthonormal polynomials (see 

q. (2) ). This results in P + 1 equations for mass conservation and

(P + 1) equations for momentum conservation: 

 · u k = 0 , (27) 

∂ u k 

∂t 
+ 

P ∑ 

i =0 

P ∑ 

j=0 

E ξ

(
�i � j �k 

)
( u i · ∇ ) u j = − 1 

ρ
∇ p k 

+ 

P ∑ 

i =0 

P ∑ 

j=0 

E ξ

(
�i � j �k 

)
νi ∇ 

2 u j , (28) 
5 
here k = 0 , . . . , P . The expectations of basis function triples 

 ξ

(
�i � j �k 

)
can be computed exactly for orthogonal polynomials 

sing Gaussian quadrature rules. Alternatively, closed-form expres- 

ions for some families of expectations of triple products based on 

olynomial recurrence relations are available in the literature [45] . 

he numerical method used to solve the stochastic, incompressible 

avier–Stokes equations is presented in Appendix A . 

.2. Asynchronous time integration of incompressible Navier–Stokes 

We define F as a discrete operator associated with the stochas- 

ic momentum equation 

( u ( ξ, t)) = 

[ 
−

(
u ( ξ, t) · ∇ 

)
u ( ξ, t) − 1 

ρ
∇p( ξ, t) + ν( ξ) ∇ 

2 u ( ξ, t) 
] 
,

(29) 

here the brackets ‘ [ ] ’ symbolize the spatial discretization opera- 

ion. In a similar way, F 

(r) is defined as a discrete operator associ- 

ted with the deterministic momentum equation 

 

(r) ( u 

(r) (t)) = 

[ 
−

(
u 

(r) · ∇ 

)
u 

(r) − 1 

ρ
∇p (r) + ν(r) ∇ 

2 u 

(r) 
] 
. (30) 

q. (18) is rewritten resulting in 

d 

dt 
u ( ξ, t) = ˙ τ ( ξ) F( u ( ξ, t)) . (31) 

pplying gPC expansion to Eq. (31) and projecting the resulting 

xpression on the stochastic polynomial basis leads to 

d 

dt 
u k = F 

gPC 

k 
, for k = 0 , . . . , P, (32) 

here ˙ τ ( ξ) has been incorporated in the operator F 

gPC 

k 
: 

 

gPC 

k 
= 

[ 

−
P ∑ 

i =0 

P ∑ 

j=0 

P ∑ 

m =0 

E ξ

(
�i � j �m 

�k 

)
˙ τi ( u j · ∇) u m 

(33) 

−
P ∑ 

i =0 

P ∑ 

j=0 

E ξ

(
�i � j �k 

)
˙ τi 

1 

ρ
∇p j 

] 

+ 

[ 

P ∑ 

i =0 

P ∑ 

j=0 

P ∑ 

m =0 

E ξ

(
�i � j �m 

�k 

)
˙ τi ν j ∇ 

2 u m 

] 

. (33) 

n a similar way, Eq. (19) is expanded leading to a system of ODEs 

or the coefficient ˙ τk , as shown in Appendix B . Note that the ex- 

ectations of the quadruple product E ξ

(
�i � j �m 

�k 

)
are calculated 

sing Gaussian quadrature rules. 

. Statistical quantities of interest 

Numerical simulation of unsteady periodic flow permits a de- 

ailed investigation of the system as a result of the large amount of 

nformation: temporal signals for each flow variable at every node 

f the computational domain. Aside from the instantaneous fields 

btained by the simulation, two statistical quantities are generally 

f major interest in studies featuring instability, vibrations and/or 

imit cycles: the temporal expected value E t ( y (t)) , and the tempo- 

al variance V t ( y (t)) . A schematic representation of a signal y (t) ,

ssociated with a given point in physical space of the field y (t) , is 

iven in Fig. 3 (gray curve). 

For illustration purposes, we discretize the field y ( ξ, t) in ran- 

om space by N different realizations, as depicted in Fig. 3 (red 

urves), along with the PDFs of E t 

(
y ( ξ, t) 

)
and V t 

(
y ( ξ, t) 

)
. To 

uantify the behavior of a given periodic, stochastic field y ( ξ, t) it 

s convenient to define four measures: 

E ≡ E ξ( E t ( y ) ) = E t 

(
E ξ( y ) 

)
= y 0 , (34) 
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Fig. 3. Illustration of signal y (ξ , t) for N realizations. The signal is characterized by four scalars EE , VE , EV and VV . 
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6

s

V ≡ E ξ( V t ( y ) ) = 

P ∑ 

i =0 

E t y 
2 
i − (E t y i ) 

2 = 

P ∑ 

i =0 

y 2 
i 

− y 
2 
i , (35) 

E ≡ V ξ( E t ( y ) ) = 

P ∑ 

i =0 

y 
2 
i , (36) 

V ≡ V ξ( V t ( y ) ) = 

2 P ∑ 

m =1 

( 

P ∑ 

i =0 

P ∑ 

j=0 

(
y i y j − y i y j 

)
E ξ(�i � j �k ) 

) 2 

� = 

P ∑ 

i =0 

P ∑ 

j=0 

y 2 
i 
y 2 

j 
− y 2 

i 
y 2 

j 
= V t 

(
V ξ( y ) 

)
, (37) 

here the bar notation y has been temporarily introduced to facil- 

tate to distinguish between temporal and stochastic mean values. 

These expressions are the expected value in random space of 

he temporal mean ( Eq. (34) ) and variance ( Eq. (35) ), respectively,

s well as the variance of the same temporal mean Eq. (36) and 

ariances Eq. (37) . The latter two can be used to define error bars

or the two former expectations. In the example of Fig. 3 , we ob-

erve in the histogram plot at the bottom left that the temporal 

ean value of each signal varies considerably along realizations 
6 
 9 < E t ( y ( ξ, t)) < 11 ). We also observe variability in the temporal

ariance ( 3 < V t ( y ( ξ, t)) < 5 ). 

The quantities EE , EV , VE and VV are useful when assessing 

ow the temporal mean and temporal variance of a periodic flow is 

ffected by input uncertainties. If only those measures are of inter- 

st, NigPC should be the method considered, as it is easy to imple- 

ent and performs satisfactorily. Note that the shape of limit cy- 

le signals, described by k characteristic amplitudes (period- k limit 

ycles) and frequencies, are not captured by EE , EV , VE and VV . 

uch information can be, nevertheless, of high interest in cases, e.g. 

hen the frequency content of the signals and maxima of the cor- 

esponding crests are required. Accordingly, in the study of flow 

imit cycles, it is generally appropriate to analyze the signals di- 

ectly, e.g. by building phase portraits of correlated quantities. It 

ight also be of interest to evaluate the probability distribution 

hat characterizes a periodic flow variable. For such requirements, 

he quantities EE , EV , VE and VV are not suited. In this work, we 

how that an adequate surrogate model for y ( ξ, t) is feasible by 

eans of igPC (standard or ATI) for oscillating laminar flows. 

. Numerical results 

The implementation of the method ( Section 4 ) in our in-house 

olver is validated in the supplementary material using a back- 
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Table 1 

Numerical values of characteristic length scales. 

H/h c B/h c L u /h c L d /h c b c /h c Grid-size 

8 16 3.5 10.5 2 80 × 160 

Table 2 

Coordinates of the probes. 

P 1 © P 2 © P 3 © P 4 © P 5 © P 6 ©
x/h c 3.5 5.3 7.1 3.5 5.3 7.1 

y/h c 0 0 0 2.5 2.5 2.5 
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Fig. 4. Geometry, length scales and location of the probes of a 2D flow with a rect- 

angular bluff body. 
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ard facing step. The resulting tool is named SUN-S ( S tochastic 

 nsteady N avier–S tokes) and can take into account uncertainties 

n the fluid viscosity and in boundary conditions for velocity u and 

ressure p. It was developed for MATLAB 2017b based on finite 

olumes. The numerical test cases are one-dimensional in stochas- 

ic space. The extension to multiple dimensions is conceptually 

traightforward but leads to increased computational cost, as dis- 

ussed in more detail in Section 6.4 . 

.1. Flow around a rectangular cylinder 

We investigate the Kármán vortex street generated by a rect- 

ngular cylinder. The vortex shedding downstream the interfering 

ody is a well-known observation in fluid mechanics. Vortices are 

ormed at the back of the cylinder and periodically separate from 

he upper and lower side of the body. Although the phenomenon 

s associated with Kármán’s name, the first experimental observa- 

ions were reported by Mallock [46] and Bénard [47] in 1907 and 

908. The main contribution of Kármán was the stability analysis 

f the vortex formation and the explanation of the mechanisms of 

ake drag in 1911 [48] . The Kármán vortex street is an interesting 

roblem because we observe unsteady quantities while the flow 

attern can still be assigned to the laminar regime. Therefore, we 

an solve the original Navier–Stokes equations without further tur- 

ulence modeling. 

The geometry and the relevant dimensions are shown in Fig. 4 . 

able 1 presents the associated numerical values. The coordinates 

f the probes are listed in Table 2 . The inlet velocity describes a

at profile with the bulk velocity u in . The pressure gradient at the 

nlet is zero. On the top and bottom boundaries of the domain we 

et a zero gradient condition for both velocity and pressure. The 
ig. 5. Strouhal number as a function of Reynolds number for b c /h c = 2 (left). Results a

xp. [49] , Okajima num. [50] , Sohankar num. [51] and Islam num. [52] ). Frequency of t

hown in the range Re ∈ [70 , 130] . 

7 
utflow boundary conditions are as follows: 

∂u 

∂x 
= 0 , 

∂v 
∂y 

= 0 and p = 1 atm . (38) 

he rectangular cylinder is placed on the line of symmetry with 

espect to the height H and its surfaces are modeled as solid, non- 

lip walls. The Reynolds number for this specific case is given by 

e = 

u in · h c 

ν
, (39) 

here ν is the kinematic viscosity and h c is the height of the cylin- 

er. 

We study two cases and consider an artificial fluid. Case A 

efers to variations of kinematic viscosity, and case B refers to 

ariations of inlet velocity. Both cases correspond to the same 

ange in Re ∈ [95,105]. Fig. 5 (left) shows the characteristic fre- 

uency of the wake oscillation as a function of the Strouhal num- 

er Sr = f · h c /u in . Probe 5 © is used to measure the oscillations. Re-

ults, which are in agreement with [49–52] are scattered along one 

ingle line around Sr ≈ 0 . 135 . 

Fig. 5 (right) shows the oscillation frequency for the same cases. 

hanges in Re lead to stronger frequency variations in Case B. 

ase A exhibits almost no change in frequency in the range Re ∈ 

70 , 130] . 
re shown in the range Re ∈ [100 , 250] for comparison with other studies (Okajima 

he oscillations in the wake of the cylinder as a function of Re (right). Results are 
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Fig. 6. Fields EE and VE for case A. 

Fig. 7. Fields EV and VV for case A. 
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.2. Case A: uncertain viscosity 

In this section, we consider the kinematic viscosity to be uncer- 

ain: 

(ξ ) = ν0 + ν1 ξ , (40) 

here ξ ∼ U[ −1 , 1] is a uniform distribution and ν0 = 1 m 

2 s −1 ,

nd ν1 = 0 . 052 m 

2 s −1 . The inlet velocity is deterministic and con-

tant with a value 100 ms −1 . Consequently, Re ∈ [95 , 105] . We con-

ider normalized Legendre polynomials for gPC. 

The simulation is carried out using the standard intrusive gPC 

echnique (not ATI) and the results are validated in three different 

ays. 

i) The fields associated with EE , VE , EV VV , introduced in 

Section 5 , are compared to the fields obtained from the Monte 

Carlo simulation. 

ii) Three realizations of ξ are selected and corresponding values 

of velocity are computed from the gPC model (8) . Results are 

compared in a phase portrait to velocity time series obtained 

from three different deterministic simulations. 

ii) A Monte Carlo simulation is performed with 500 samples. The 

corresponding PDF at two locations and three time instants are 
compared to the ones obtained from the gPC simulation. 

8 
Figs. 6 and 7 show the fields of EE , VE , EV and VV calcu- 

ated from established limit cycles. We observe that EE captures 

he recirculation zone (dark blue) dowsntream of the bluff-body. 

he field of EV ( Fig. 7 ) suggests that this recirculation zone does 

ot exhibit oscillations in the region immediately downstrem of 

he rectangular cylinder, as indicated by the dark blue zone of 

V . As expected, a large region of constant inlet velocity (no os- 

illations) is encountered upstream of the bluff-body. The field EE 

lso shows regions where the temporal mean velocity is high (dark 

ed). Note that only a portion of this region exhibits oscillations of 

mall amplitude. The field EV shows zones where the amplitude 

f the oscillations is high, as observed in the two symmetric dark 

ed zones. We also observe two elongated, symmetric areas down- 

tream of the bluff-body. These regions characterize the increas- 

ng/decreasing amplitude of the wake downstream of the rectan- 

ular cylinder. 

The field VE suggests that the temporal mean value of the os- 

illations ( E t ) is not strongly influenced by uncertainties of ν over 

arge regions. The oval shape area depicted in red is the only pre- 

ominant region, where the temporal mean of velocity oscillations 

s affected by uncertainties in ν . The field VV shows the influence 

f ν uncertainties on the amplitude of oscillations of velocity. The 

ariability is confined within the red-colored region of EV , which 
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Fig. 8. Limit cycle oscillations for probe 2 © (left, period-two limit cycles) and probe 5 © (right, period-one limit cycles) of the reference and the stochastic simulation with 

P = 4 for different realizations of ξ . 

Fig. 9. Limit cycle oscillations for probe 1 © (left) and probe 6 © (right) of the reference and the corresponding stochastic simulation with P = 4 for different realizations of 

ξ . Note that other two probes are here considered to show additional phase portraits. The quality of agreement, as shown in this Figure, is the same among all probes 

considered in this study (not shown). 
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mplies that large amplitude oscillations are affected by ν uncer- 

ainties in a stronger manner than the low amplitude counterparts. 

From Figs. 6 and 7 , it is also observed that igPC agrees very

ell with Monte-Carlo simulations. Although not shown in here, 

e highlight that an expansion of P = 1 is sufficient for accurately 

apturing the fields of EE , VE , EV and VV in case A. 

Fig. 8 depicts a phase portrait of the two velocity components u 

nd v . The control points correspond to probe 2 © and probe 5 ©. The 

omputation is done with an order of P = 4 . Convergence results 

re achieved and no further improvement in the results is seen for 

 > 4 . The gPC trajectories, both period-two and period-one limit 

ycles, agree very well with the deterministic counterpart, as also 

hown in Fig. 9 . 

We compare the stochastic signals of the horizontal velocity u 

n Fig. 10 , which are extracted at probe 3 © and 5 ©. Whereas the 

ignal measured at probe 3 © exhibits two characteristic frequen- 

ies (a period-two limit cycle), the signal of probe 5 © is related 

o only one characteristic frequency (a period-one limit cycle). The 

eriod-two limit cycle encloses the information of the vortex shed- 

ing from the upper and lower side of the bluff-body. Due to the 

odest computational cost we generated 40 0 0 samples of gPC. By 

omparing the differences between estimators, it was considered 

ufficient to use 500 samples for the much more expensive MC 

imulations. It is observed that igPC not only captures the shape 

f the two type of signals, but also the crests. Only small differ- 

nces are encountered in the spread of the realizations. This can 

e attributed to a very small frequency shift, that is captured by 

C but not by igPC. 
9 
These signals are the basis for the PDFs shown in Fig. 11 . The

oints in time chosen for evaluating the PDF are highlighted with 

lue lines in Fig. 10 and correspond to [ 0 , 0 . 125 , 0 . 75 ] for probe 3 ©
nd [ 0 , 0 . 25 , 0 . 5 ] for probe 5 ©. The shape of the PDFs is fairly well 

ecovered by igPC, where the mode is predicted approximately in 

he middle of the respective PDF. The support of the PDFs differs, 

hich may arise from small frequency dependencies of the deter- 

inistic solution. To conclude: standard igPC can accurately predict 

he characteristic frequency and the amplitudes for all realizations, 

hereas the support of the PDFs is not perfectly reproduced. 

.3. Case B: uncertain inlet velocity 

Consider the case of uncertain inlet velocity 

 (ξ ) = u 0 + u 1 ξ , ξ ∈ U[ −1 , 1] , (41)

ith u 0 = 100 ms −1 , u 1 = 5 ms −1 while the viscosity ν = 1 m 

2 s −1 

emains constant and deterministic. The range of Re investigated 

emains unchanged ( Re ∈ [95 , 105] ) with respect to case A. For

he simulations using igPC-ATI, we set α0 = 8 e −5 and α1 = 10 .

 suitable set of parameters can be found by evaluating �

 Eq. (15) ) from previous simulations and adjusting α0 and α1 so 

hat Eq. (19) has a fixed point for a large range of �. 

We investigate the fields EE , VE , EV and VV in Figs. 12 and 13 . 

t is observed that EE and EV remains unchanged with respect to 

ase A. It means that the origin of uncertainties (either from ν or 

 inlet) do not play a role in the temporal mean value and vari- 
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Fig. 10. Signals of the normalized u -velocity for probe 3 © and 5 © and different realizations of ξ compared to Monte Carlo. The results for igPC correspond to a simulation 

with P = 4 . 

Fig. 11. PDFs of the normalized u -velocity for probe 3 © and 5 © and different snapshots of one period T ref of the limit cycle for P = 4 . 
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nce of the velocity oscillations. In contrast, the field of VE is very 

ifferent with respect to the counterparts of case A, which implies 

hat the propagation of uncertainties is, therefore, very different in 

ase A and in case B. We observe in VE of case B that the dark

lue region upstream of the bluff-body does not exist (as in case 

), and it is now represented by a light blue-sky color. This is in

greement with the fact that the inlet velocity is constant but un- 

ertain. We also observe that the regions of high velocity in EE 

dark red) are also the regions more susceptible for uncertainties, 

s illustrated in VE (dark red). The field of VV , contrary to VE , is 

ery similar in case A and in case B, yet the magnitudes are very 

ifferent: the lar gest values of VV in case A are three times smaller 

han in case B. It means that the amplitude of the velocity limit 
10 
ycles are more susceptible to uncertainties in the inlet velocity u 

han to uncertainties in ν . 

Figs. 12 and 13 also show the fields EE , VE , EV and VV com- 

uted by igPC and igPC-ATI. Both techniques are able to accurately 

apture the fields EE , EV . We also observe that the uncertainty 

n E t and V t , which is represented by VE and VV , is not well

aptured by igPC. This is due to the fact that case B exhibits a 

tochastic frequency. Accordingly, the phase shift between realiza- 

ions cannot be modelled by the standard igPC technique for low 

xpansion orders (such as P = 4 chosen in this work). In contrast, 

gPC-ATI accurately captures the fields VE and VV . Even an ex- 

ansion with P = 1 is sufficient to reproduce all fields well (not 

hown). Since the higher modes of τ and u decay to a similar ex- 
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Fig. 12. Fields EE and VE for case B. 

Fig. 13. Fields EV and VV for case B. 
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ent, it was considered sufficient to truncate the expansion of those 

uantities to the same polynomial order, which is also P = 4 for 

gPC-ATI. 

We compare the phase portraits obtained by three determinis- 

ic simulations with the ones obtained by igPC and igPC-ATI. We 

onsider the same locations as in case A. Fig. 14 shows a period- 
11 
wo limit cycle, whose amplitude slightly increases for increas- 

ng values of Re . This is in correspondence with case A, although 

n that case the trajectories are closer to each other (see Fig. 8 ).

ig. 14 also shows that igPC-standard fails when reproducing these 

rajectories, whereas igPC-ATI does a good job. The phase portraits 

llustrated in Fig. 15 , taken at two different probes for different re- 
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Fig. 14. Limit cycle oscillations for an uncertain inlet velocity for probe 2 © (left) and probe 5 © (right) with P = 4 for different realizations of ξ . 

Fig. 15. Limit cycle oscillations for an uncertain inlet velocity for probe 1 © (left) and probe 6 © (right) of the reference and the corresponding stochastic simulation with 

P = 4 for different realizations of ξ . 
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lizations of ξ , show a very good agreement with the reference 

imulation. 

When looking at the signals of the horizontal velocity u that 

ere measured for probe 3 © and 5 ©, the situation is similar to 

hat was already indicated in the phase portraits. In Fig. 16 , where 

ll realizations or samples are shown, we can observe that stan- 

ard igPC predicts spurious oscillations at probe 3 © and cannot re- 

roduce the correct amplitudes. In addition, another fact becomes 

lear at this point: standard igPC is not able to reconstruct a mono- 

onic frequency shift between the realizations. The signal of stan- 

ard igPC at probe 5 © exhibits only a few predominant frequencies. 

hese frequencies can be detected following the red lines, which 

orrespond to ξ ∈ [ −1 , −0 . 9] and ξ ∈ [0 . 9 , 1] . Contrary to standard

gPC, each realization created by igPC-ATI can be assigned its own 

ime scale based on the information available from τ (ξ , t) . The fre- 

uency shift predicted by Monte Carlo can therefore be reproduced 

ell by asynchronous time integration. 

Based on the signals of Fig. 16 , PDFs are created for MC and

gPC-ATI ( Fig. 17 ). In contrast to case A, in which all realiza-

ions have the same frequency, the realizations are slightly shifted 

gainst each other for case B. Therefore, the PDFs at the corre- 

ponding snapshot have a larger support, what is adequately repre- 

ented by igPC-ATI. In summary, igPC-ATI can reproduce the phase 

hift and predicts the amplitudes of the limit cycle very well, while 

tandard igPC fails. 

.4. Computational costs 

As part of the development of this work, simulations were also 

arried out with NigPC (standard and with time warping as pro- 
t

12 
osed in Mai and Sudret [37] ), by means of which the stochas- 

ic quantities could be reproduced at given times and spatial lo- 

ations. The quality of the results is comparable to that of stan- 

ard igPC and igPC-ATI. A computational cost comparison between 

igPC (standard and with time warping) and igPC (standard and 

ith ATI) is prone to sub-optimal implementations and other soft- 

are constraints, such as memory allocation. We only comment on 

onceptual aspects that may reveal advantages and disadvantages 

f the respective methods. 

The igPC method (standard or with ATI) may be well suited 

or the study of unsteady fields. In the cases investigated, we ob- 

erve that the limit cycles are well resolved in time and space. 

nce the gPC coefficients – which are actually unsteady, spatial 

elds – are obtained, it is simple to carry out thorough uncer- 

ainty quantification, where the evolution of uncertainties can be 

ccurately tracked in time and space. We observed that the igPC- 

TI method is more expensive than the igPC counterpart, mainly 

ue to the computational cost involved in solving the momentum 

quation. The latter is associated with a four-dimensional tensor 

 E ξ (�i � j �k �m 

) ) in igPC-ATI and with a three-dimensional tensor 

 E ξ (�i � j �k ) ) in igPC. 

If only the convective part 
∑ P 

i =0 

∑ P 
j=0 E ξ

(
�i � j �k 

)
( u i · ∇) u j of 

he expanded Navier–Stokes equations is considered as an exam- 

le, we observe that the double sum above consists of as many 

erms as E ξ

(
�i � j �k 

)
contains non-zero entries for a fixed k . If we 

ssume that the total computational cost for evaluating the mo- 

entum equation is dominated by the number of terms in the 

ummations, we conclude that the number of non-zero entries of 

he aforementioned tensors is an indicator of the computational 

ime needed for solving the momentum equation. 
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Fig. 16. Signals of the normalized u -velocity for probe 3 © and 5 © and different realizations of ξ compared to Monte Carlo. Realizations for | ξ | > 0 . 9 are marked in red. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 17. PDFs of the normalized u -velocity for probe 3 © and 5 © and different snapshots of one period T ref of the limit cycle related to Re = 100 . 
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The computational cost related to the solution of the pressure- 

orrection equation is comparable in both igPC and igPC-ATI, 

hereas the cost required for solving the ODE for the scalar vaue 

˙ (only needed in the igPC-ATI method) is negligible. 

The computational cost associated with NigPC directly depends 

n the spatial and time resolution desired. For example, the com- 

utational cost derived from NigPC is clearly smaller than the one 

ssociated with igPC if only evaluations at a few spatial locations 

nd instants of time within a period of the limit cycle are needed. 

n contrast, if highly resolved fields in time and space are required, 

he methods igPC and igPC-ATI may become competitive with re- 

pect to NigPC (standard or time warping) in terms of computa- 

ional efficiency. The tests we made depend on one random vari- 
13 
ble only, but if we extrapolate clock-times to multi-variate prob- 

ems, it seems that igPC might be more performing than NigPC for 

mall polynomial order p and moderate number of uncertain in- 

ut variables n . More work should be done on this matter before 

rawing final conclusions. 

. Discussion and conclusions 

Intrusive generalized polynomial chaos has been applied to the 

ármán vortex street. The difference com pared to the standard 

gPC approach is the implementation of a local time for each real- 

zation via asynchronous time integration, which enables to prop- 

rly capture limit cycles with stochastic frequency. Using different 
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ow setups that increase in complexity, we demonstrate the capa- 

ilities and limits of igPC in its standard form and with ATI: 

- Standard igPC is suitable for the computation of time- 

dependent, space-dependent PDFs of periodic flow fields 

with deterministic oscillation frequency. One such problem 

is the Kármán vortex street, subject to a stochastic viscos- 

ity. A small number of terms in the expansion ( P + 1 = 5 ) is

sufficient to ensure a good representation of the individual 

trajectories in the phase portraits. Results based on P = 1 

for (steady) statistic fields EE , EV , VE and VV are already a 

good estimate. Relevant applications for standard igPC could 

be confined flows in the laminar regime, where uncertain- 

ties in the temperature affect the viscosity of the fluid. 

- Standard igPC cannot provide reliable results for problems 

with stochastic frequencies. Only the quantities EE and EV 

are correctly reproduced. Limit cycles are not well recovered. 

We observe large deviations for the trajectories and unusual 

dynamics, as already described in previous works. 

- We demonstrate that the ATI-method, which was originally 

introduced for linear ODEs, can be successfully applied to 

the incompressible Navier–Stokes equations. This technique 

offers a remedy to problems with stochastic QoIs under the 

assumption that the frequency is a smooth function of the 

random inputs. We demonstrate that the trajectories of the 

limit cycles are in very good agreement with the determin- 

istic reference. The statistic fields and the PDFs match the 

results of Monte Carlo simulations. 

Further extensions of this numerical method could combine the 

enefits from non-intrusive and intrusive approaches. Since an un- 

table fixed point ˙ τ ∗ can make it difficult to solve the ODE for ˙ τ , 

t is desirable that the stochastic clock τ ( ξ, t) is known in advance.

uch a relation could be determined beforehand by NigPC and time 

arping (with small values of polynomial order p). Additionally, 

f we know where in the parameter space the frequency is non- 

mooth, we could introduce igPC-ATI separately on the piecewise 

mooth regions. 

The present work contributes to the understanding of the gPC 

ethod for the solution of unsteady, periodic laminar flow prob- 

ems. 
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ppendix A. Discretization of the stochastic incompressible 

avier–Stokes equations 

In this appendix we propose a method to solve the discretized 

ersions of Eqs. (27) and (28) to compute the modes in (8) . 

To avoid the well-known checkerboard problem, we use 

hie and Chow interpolation on collocated grids, where pres- 

ure and velocity are decoupled [53] . Additionally, we imple- 

ent a predictor-corrector scheme, better known as fractional-step 

ethod, which was developed by [54] and improved by Goda [55] . 

s this algorithm allows to solve the pressure equation only once 

er time step, it is widely used in unsteady flow simulations. First, 

he intermediate stochastic velocity modes u 

∗
k 

are calculated by 

dding the pressure gradient evaluated at time step n . This can be 

enoted as the predictor step: 

u 

∗
k 
− u 

n 
k 

�t 
= H 

n 
k −

1 

ρ
∇p n k , (A.1) 
14 
here �t is the time step and the term H 

n 
k represents the gPC 

xpanded convective and diffusive terms derived in Eq. (28) : 

 

n 
k = −

P ∑ 

i =0 

P ∑ 

j=0 

E ξ

(
�i � j �k 

)
( u 

n 
i · ∇) u 

n 
j + 

P ∑ 

i =0 

P ∑ 

j=0 

E ξ

(
�i � j �k 

)
νi ∇ 

2 u 

n 
j . 

(A.2) 

System (A.1) is solved coupled, which means that a new solver 

ust be written for the expanded system and the deterministic 

olver cannot be used here. The final velocity at the new time level 

equires the gradient of the pressure at time step n + 1 . The equa-

ion for the corrector step reads 

u 

n +1 
k 

− u 

n 
k 

�t 
= H 

n 
k −

1 

ρ
∇p n +1 

k 
. (A.3) 

y means of subtracting Eq. (A.1) from (A.3) , an expression for ve- 

ocity correction u 

n +1 
k 

− u 

∗
k 

results in 

u 

n +1 
k 

− u 

∗
k 

�t 
= − 1 

ρ
∇ ̂

 p k , (A.4) 

n which ˆ p k is an abbreviation for the pressure correction p n +1 
k 

−
p n 

k 
. By applying divergence to Eq. (A.4) and making use of the con- 

inuity constraint ∇ · u 

n +1 
k 

= 0 , one can write the Poisson equation 

or the pressure correction ˆ p k as 

 

2 ˆ p k = 

ρ

�t 
∇ · u 

∗
k . (A.5) 

he pressure correction can be solved individually for every mode 

 of pressure ˆ p because the modes are decoupled. As a last step, 

q. (A.4) is used to obtain the velocity field at the new time step 

 + 1 and the pressure is corrected by p n +1 
k 

= p n 
k 

+ ˆ p k . 

ppendix B. Stochastic expansion of the clock speed ˙ τ

The deterministic equation for the clock speed already men- 

ioned in Eq. (19) reads 

d 

dt 
˙ τ ( ξ, t) = −α0 ˙ τ ( ξ, t)�( ξ, t)) + α1 (1 − ˙ τ ( ξ, t)) , (B.1)

here �( ξ, t) is defined at a specific location as 

= 

(
u ( ξ, t) − u 

(r) (t) 
)

· F 

(r) ( u 

(r) (t)) . (B.2) 

he reference solution associated with F 

(r) ( u 

(r) (t)) is the case 

e = 100 , which corresponds to the realization ξ = 0 . In detail, 

nly the phase of a single point in the domain of this reference 

odel is used. In our work, this point belongs to Probe 2 ©. Insert- 

ng the formulation in Eq. (B.2) for � into Eq. (B.1) , we arrive at

he expression 

d 

dt 
˙ τ ( ξ, t) = −α0 ˙ τ ( ξ, t) 

[(
u ( ξ, t)) − u 

(r) (t) 
)

· F 

(r) 
]

+ α1 

(
1 − ˙ τ ( ξ, t) 

)
, 

(B.3) 

here we have neglected the argument of F 

(r) ( u 

(r) (t)) for reasons 

f readability. After applying the gPC expansion and the stochastic 

rojection on the polynomial basis, the equation reads 

d ̇ τk 

dt 
= −α0 

P ∑ 

i =0 

P ∑ 

j=0 

E ξ

(
�i � j �k 

)
˙ τi 

[(
u j − u 

(r) (t) 
)

· F 

(r) 
]

+ E ξ( �k ) α1 − α1 ˙ τk , (B.4) 

n which the dependency on ξ and t of some variables is again not 

hown because of readability purposes. Note that P is chosen iden- 

ical for the velocity u and the clock time ˙ τ , since these quantities 

how a similar convergence behavior with respect to P . 

This ODE is solved using the implicit Euler method and its be- 

avior is strongly dependent on the parameters α0 and α1 . The 

umerical values selected in this work for igPC-ATI ( P = 4 ) are 

= 8 e − 5 and α = 10 . 
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