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ABSTRACT 

Seal wear in hydraulic cylinders results in fluid leakage, and 

instability of the piston rod movement. Therefore, regular 

inspection of seals is required using automated approaches to 

improve productivity and to reduce unscheduled 

maintenance. In literature, successful attempts have been 

made using acoustic emission-based condition monitoring to 

classify the seal wear.  However, limited attempts have been 

made to implement automated approaches to classify seal 

wear using acoustic emission features. Therefore, this article 

presents an automated approach for rapid and 

computationally economical diagnosis of seal wear using 

acoustic emission. The experiments were performed at 

varying pressure conditions on a hydraulic test rig that can 

simulate fluid leakage conditions similar to that of hydraulic 

cylinders. From the acoustic emission spectrum, the 

frequency bands were identified with peak power and by 

heterodyning the signal. This technique results in 10X 

downsampling without losing the information of interest. 

Further, the signal was divided into smaller “snapshots” to 

facilitate rapid diagnosis. In these tests, the diagnosis was 

made on short-time windows, as low as 0.3 seconds in length.  

A set of time and frequency domain features were designed, 

and the Support Vector Machine (SVM) was trained on 60 % 

of the test cases generated with seals of three different 

conditions. The SVM was able to accurately classify the 

status irrespective of the pressure conditions, with an 

accuracy of ~99 %. Therefore, the proposed automated seal 

wear classification technique based on acoustic emission and 

SVM can be used for real-time monitoring of seal wear in 

hydraulic cylinders. 

Keywords: Piston rod seal, Fluid leakage, Acoustic 

Emission, and Support Vector Machine. 

1. INTRODUCTION 

Reciprocating hydraulic seals play a crucial role in 

preventing fluid leakage in hydraulic cylinders. In hydraulic 

cylinders, a typical rod seal system consists of a wiper, 

excluder seal, primary seal, secondary seal, and rod bearing 

elements. Whereas a piston seal system includes piston seal 

and piston bearing elements. Seal wear in a hydraulic 

cylinder can result in internal and external fluid leakage.  

Internal fluid leakage due to seal wear can cause a) reduction 

of force exerted by the cylinder b) instability of the piston rod 

movement, and c) reduction in linear velocity. Whereas 

external fluid leakage due to seal wear can result in all the 

problems associated with internal leakage in addition to d) 

increased risk of injury to the operator due to fluid spill e) fire 

hazard risk, and f) environmental contamination. Considering 

the risk associated with internal and external fluid leakage, it 

is important to avoid unpredictable failure of seals (Barillas 

et al., 2018; Shanbhag et al., 2021; Zhao & Wang, 2019). 

Machine learning techniques have been used widely for 

condition monitoring processes and in combination of 

different sensor data measurement, including AE method 

(Ince et al., 2010). Thus, machine learning in combination 

with AE method, would enable development of rapid and 

accurate assessment of condition monitoring method of the 

current health of the seal and can also automatically classify 

different stages of seal wear.  

In the literature, numerous attempts have been made to study 

fluid leakage due to seal wear from hydraulic cylinders using 

different condition monitoring techniques. For instance, 

several attempts have been made to monitor fluid leakage 

using a pressure sensor. Pressure signal-based features such 
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as residual pressure error (An & Sepehri, 2005), Root Mean 

Square (RMS) from the level two and level four Wavelet 

coefficients (Goharrizi & Sepehri, 2011), Wavelet packet 

energy variance (Zhao et al., 2015), Energy from the 

frequency band (Tang et al., 2010), Instantaneous value from 

the first Intrinsic Mode Functions (IMF’s) (Goharrizi & 

Sepehri, 2012), state estimation error from the Adaptive 

Robust Observer (ARO) technique (Garimella & Yao, 2005) 

were proposed to monitor fluid leakage.  Using the pressure 

sensor-based condition monitoring technique, it was possible 

to identify fluid leakage as low as 0.124 L/min. In other 

literature, the feasibility of a vibration sensor to monitor fluid 

leakage due to seal wear was assessed (Tan et al., 2000; 

Yunbo et al., 2001).  Vibration-based feature dBVrms was 

proposed to monitor fluid leakage due to seal wear. In recent 

times, the Acoustic Emission (AE) sensor is used extensively 

to monitor fluid leakage because of its high frequency range. 

AE based features such as RMS, mean frequency, median 

frequency and band power were proposed to monitor fluid 

leakage due to seal wear (Chen et al., 2007; Shanbhag et al., 

2020b, 2020a). Using AE-based features, it is possible to 

monitor fluid leakage as low as 1.0 L/min (Chen et al., 2007). 

It is evident from the literature that a sufficient number of 

studies has been conducted to monitor fluid leakage using 

different sensor-based features. However, few studies have 

been proposed for automatically classifying the seal wear 

using signal-based features in combination with machine 

learning techniques. 

In recent times, monitoring of reciprocating seals, and rotary 

seals using data-driven techniques have gained significant 

research attention. In the literature (Ramachandran et al., 

2019) used Particle Swarm Optimization (PSO) with SVM to 

monitor fluid leakage due to wear of reciprocating seals. 

Features from force signals were used as an input for the 

PSO-SVM model. Mean Square Error (MSE) and Mean 

Absolute Error (MAE) were lower for the PSO-SVM model 

when compared to the Genetic Algorithm (GA)-SVM and 

Optimized Distributed Gradient Boosting System 

(XGBoost). In the other work (Ramachandran & Siddique, 

2019) a Multi-Layered Perceptron Neural Network (MLP-

NN) model was used for the seal wear classification. Torque-

based features such as RMS, peak, mean, and Square Mean 

Rooted Absolute Amplitude (SRA) were used as inputs for 

the MLP-NN model. The classification accuracy of 92.86 % 

was observed for the MLP-NN model when compared to the 

logistic (89.29 %) and random forest classifiers (89.29 %). 

To monitor internal leakage in hydraulic cylinders (Zhang & 

Chen, 2021) proposed optimization deep belief network 

(DBN) combined with the Complete Ensemble Empirical 

Model Decomposition with Adaptive Noise (CEEMDAN) 

technique to classify the AE signal acquired when the system 

was not leaking, and at different severities of internal 

leakages such as small, medium and severe internal leakage. 

Using the proposed method, a classification accuracy of up to 

93 % was observed.  

From literature, it is evident that several seal wear 

classification studies have been conducted using a 

combination of condition monitoring approaches and 

machine learning techniques. However, to the authors’ 

knowledge, there exist limited attempts to classify the 

external leakage due to different types of seal wear using AE 

and automated classification techniques. Therefore, this 

article proposes an automated classification technique based 

on AE features and the SVM technique. To this end, 

experiments were conducted on a hydraulic test rig under 

various pressure conditions with seals at three different 

degrees of wear; unworn, semi-worn and worn. The recorded 

AE signal of each stroke is then processed to produce features 

based on time and frequency domain, serving as input to the 

SVM classifier. 

2. METHODOLOGY 

2.1. Experimental details 

A custom-built test rig was used in this study, consisting of 

an electromechanical cylinder and a hydraulic cylinder head, 

to conduct experiments for studying different types of seal 

wear using AE, –see Figure 1-a). The test rig was designed to 

simulate the fluid leakage conditions due to seal wear that is 

typically observed in hydraulic cylinders. The movement of 

the piston rod (extension and retraction strokes) is driven by 

a spindle and nut that converts rotary to translatory motion. 

As shown in Figure 1-b), the pressurized flange consists of 

three bearing strips to withstand arising side loads, the piston 

rod seals act as fluid sealing. The pressurized fluid for the 

flange in the test rig is supplied through the hydraulic power 

pack and pressure is controlled through pressure relief valves. 

A servomotor encoder is used in the test rig to control the 

piston rod position and to record the number of times the 

piston rod passes through the pressurized flange. There is 

dwell time of one second at both ends of the piston rod stroke 

i.e. between changing from extension and retraction and vice 

versa. 

Table 1. Process parameters. 

Setup Hydraulic test rig 

Seal material 
Polyether-based polyurethane 

elastomer 

Coating on piston 

rod 

Cladded coating of a cobalt-

based alloy 

Fluid Water glycol 

Speed 100 mm/s 

Pressure 10, 20, 30, 40 Bar 

Stroke length 600 mm 

Number of strokes 5 

AE data acquisition 1 MS/s 

AE amplifier gain 40 dB 

Seal condition Unworn, Semi-worn and worn 
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Figure 1. a) Circuit diagram of hydraulic test rig, b) Schematic front view of piston rod seal and bearing strips arrangement in 

the cylinder head, c) Piston rod seals used in the study. 

To perform condition monitoring studies, only the upper 

piston rod seal was replaced with unworn seal (no grooves), 

semi-worn seal (minor grooves) and worn seal (major 

grooves). Fluid leakage was observed in the test rig for all the 

experiments when semi-worn or worn seal was used in the 

cylinder head (Figure 1-c)). For each seal condition, 

experiments were performed for five strokes and at four 

different pressure conditions (10, 20, 30 and 40 Bar). Each 

stroke consists of full extension and retraction of piston rod 

in either direction (600 mm). Other parameters are 

summarized in Table 1. 

2.2. AE data acquisition details and bandpass filtering 

In this study, the AE sensor (AE frequency range: 50-400 

kHz and resonant frequency: 150 kHz) was mounted on the 

piston rod because the piston rod is in direct contact with the 

piston rod seal. To secure a good signal transfer path, the AE 

sensor was mounted on the piston rod using adhesive bond 

and industrial duct tape. The AE sensor was connected to the 

AE channel in data acquisition setup via a pre-amplifier 

(Gain: 40 dB) using a five-meter-long coaxial cable. The AE 

data acquisition for all the experiments was performed at 1 

MS/s. In the previous condition monitoring studies conducted 

by (Shanbhag et al., 2020a), the AE frequency range related 

to seal wear was observed to be in the AE frequency range of 

50-100 kHz. Therefore, all the AE signals were subjected to 

bandpass filtering in the AE frequency range of 50-100 kHz. 

The AE signal after bandpass filtering for the unworn, semi-

worn and worn seals are represented in Figure 2 a)-c). The 

maximum amplitude of the AE signal for the semi-worn and 

worn seals is higher compared to that of the unworn seal. 

However, the maximum amplitude of the AE signal of semi-

worn and worn seals is nearly same. Therefore, Power 

Spectral Density (PSD) is calculated from the bandpass 

filtered AE signal to understand the difference between AE 

signals recorded from experiments performed using unworn, 

semi-worn and worn seals (Figure 2-d)). From the PSD plot, 

the maximum magnitude for the worn seal>semi-worn 

seal>unworn seal. However, classification based solely on 

PSD was found to be insufficient for automation specially 

under varying pressure conditions. Therefore, additional 

features extracted from time and frequency responses were 

evaluated.  

Figure 2. Bandpass filtered AE signal due to a) unworn seal, b) semi-worn seal and c) worn seal; d) PSD plot calculated from 

the Figure 2 a)-c) (Bandpass filtered range=50-100 kHz, Pressure=20 bar, Stroke number=2, AE signal from extension of 

rod).
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2.3. Processing AE signal 

Raw AE signals are sampled at a very high sample rate of 1 

MS/s. Such high sample rate entails significant storage usage 

besides requiring high computational power for signal 

processing and communication. As the peak energy content 

was observed only in the range of 50-100 kHz, a bandpass 

filter was applied to isolate this band in the AE signal. The 

signal processing steps prior to supplying features to the 

SVM classifier is described in Figure 3. After detecting the 

peak power band in the AE signal, the heterodyne operation 

is performed. In heterodyne operation, the Fast Fourier 

Transform (FFT) of the signal is calculated and the frequency 

band of interest, namely 50-100 kHz is shifted to the origin, 

and the remainder of the FFT amplitudes are set to zero 

(Bechhoefer, 2018). In this way, a new FFT is obtained that 

contains the frequency content of interest but is downshifted 

to 0 – 50 KHz. The inverse FFT is then calculated, and the 

new signal can be down sampled to a new sample rate of 100 

kHz while holding all the information of interest. This 

approach resulted in a reduction of file size by ~70%, which 

is highly beneficial for further exploration of data-driven 

techniques for health state classification and storing data for 

online monitoring. The resultant signal is split into short-time 

windows of as low as 0.28 s. Further, several time and 

frequency domain features are calculated on these short-time 

windows of AE signal.

 

Figure 3. AE signal processing procedure.

2.4. Time and frequency domain features 

To automate the classification of the health state of the seals, 

a set of time and frequency domain statistical features are 

generated (Table 2). In an earlier work (Shanbhag et al., 

2020b) showed that AE band power and power spectral 

density could be utilized for separating the three seal wear 

conditions. However, to improve the robustness of the 

automated detection in short time window using an SVM 

classifier, several other statistical features were introduced to 

accomplish rapid and autonomous detection. These features 

form an n-dimensional feature space for fault classification 

using SVM. These are statistical measures often used for 

feature extraction on vibration signatures such as mean, 

standard deviation, RMS and higher order moments such as 

skewness (3rd), kurtosis (4th), crest factor, and spectral spread. 

These features are calculated on time-domain (𝛿1 − 𝛿8) and 

on frequency domain (𝛿9 − 𝛿16).   These features were earlier 

tested with vibration signatures (Li et al., 2011) and current 

signatures (Kandukuri et al., 2019) and proven to be capable 

of capturing the statistical properties of the signal for 

automated classification.  

2.5. SVM Classifier 

In the previous section, a set of 16 features based on the time 

and frequency domain statistical parameters of the AE signal 

have been calculated. Since the tests are performed using 

known fault severities, the SVM classifier may be trained 

using a portion of the data. Then, the remaining data may be 

utilized to test the SVM classifier to determine the health 

stage and classifier performance. This process is detailed in 

Figure 4. The SVM classifier is chosen because of its 

mathematical rigor unlike black-box models like artificial 

neural networks. Besides, SVM’s complexity does not 

increase with data dimensionality unlike its counterparts such 
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as decision tree classifiers, besides being highly efficient on 

large datasets (Dobrzycki et al., 2019). The SVM classifier 

distinguishes classes by drawing an optimum hyperplane in a 

multidimensional hyperspace spanned by the feature set. This 

is achieved by solving an optimization problem (Vapnik, 

2000). The mathematical formulation of the linear SVM 

classification for two class (binary) case is discussed in this 

section. However, the same concept can be extended to 

multiclass linear and nonlinear problems. Consider the 

training dataset with inputs 𝑥𝑖 ∈ ℝ𝑚 and binary outputs 𝑦𝑖 ∈
{±1} and (𝑥𝑖 , 𝑦𝑖) ∈ ℝ𝑚 × {±1},   𝑖 = 1,2, … 𝑁. 

Through training, the SVM classifier derives a decision 

function given by  

𝑓𝑤,𝑏(𝑥) = sgn(𝑤𝑥 + 𝑏), 

where 𝑤  is the coefficient vector and 𝑏  is the bias of the 

hyperplane and sgn is the binary signature function. Ideally, 

the following condition should be satisfied by the hyperplane 

of the classifier: 

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1,      𝑖 = 1,2, … 𝑁. 

 

Table 2. Time and frequency domain features calculated on AE signal snapshot. 

Time domain Significance Frequency domain Significance 

𝛿1 = ∑
𝑥(𝑛)

𝑁

𝑁

𝑛=1

 
Mean value of signal in time domain.  

𝛿9 = ∑
𝑠(𝑘)

𝐾

𝐾

𝑘=1

 

Mean value of the amplitudes of 

frequency response.  

𝛿2 = √∑
(𝑥𝑛−𝑓1)2

𝑁

𝑁
𝑛=1   

Variance of the signal in time domain.  
𝛿10 =  ∑

(𝑠(𝑘) − 𝛿9)2

𝐾

𝐾

𝑘=1

 
Variance in the frequency 

response.  

𝛿3 = √∑
𝑥(𝑛)2

𝑁

𝑁

𝑛=1

 

RMS value (energy) of the signal in time 

domain.  𝛿11 =  ∑
(𝑠(𝑘) − 𝛿9)3

𝐾

𝐾

𝑘=1

 
Non-normalized 3rd order 

moment of the frequency 

response.  

𝛿4 = max(|𝑥(𝑛)|) Max value of the signal  
𝛿12 =  ∑

(𝑠(𝑘) − 𝛿9)4

𝐾

𝐾

𝑘=1

 
Non-normalized 4th order 

moment of the Fourier response.  

𝛿5 =
∑ (𝑥(𝑛) − 𝛿1)3𝑁

𝑛=1

𝛿2
3(𝑁 − 1)

 
Normalized 3rd order moment (skewness) 
of the signal. A measure of asymmetry of 

distribution around its mean.  

𝛿13 =
∑ 𝑘𝑠(𝑘)𝐾

𝑘=1

∑ 𝑠(𝑘)𝐾
𝑘=1

 
The features 𝛿13 − 𝛿16  are 

statistical features taking into 

account the spectral location of 
the frequency content. The 

features are similar to mean, 

variance, skewness and kurtosis, 
but are sensitive to the region in 

the spectrum where the frequency 

content is present.  

𝛿6 =
∑ (𝑥(𝑛) − 𝛿1)4𝑁

𝑛=1

𝛿2
4(𝑁 − 1)

 
Normalized 4th order moment (kurtosis) 

of the signal. Denotes the spikiness or 

impulsive nature of the signal.  
𝛿14 =  √

∑ (𝑘 − 𝛿13)2𝐾
𝑘=1

𝐾
 

𝛿7 =
𝛿4

𝛿3

 
Crest factor - Ratio of max value to the 

total energy of the signal. A signal with 

high max value and low overall energy is 

indicative of narrow-band disturbances.   

𝛿15 =
∑ (𝑘 − 𝛿13)3𝑠(𝑘)𝐾

𝑘=1

𝐾𝛿14
3  

𝛿8 =  
𝛿4

(
1
𝑁

∑ √|𝑥(𝑛)|𝑁
𝑛=1 )

2

 

 
Clearance factor – ratio of max value to 

the squared mean value of square roots. 

This factor typically decreases with 

increase in faults, eg. in bearing faults.    

𝛿16 =
∑ (𝑘 − 𝛿13)4𝑠(𝑘)𝐾

𝑘=1

𝐾𝛿14
4  

Where 𝑥(𝑛)   is the signal 

time series, 𝑛 = 1,2, … 𝑁. 

 Where 𝑠(𝑘)   is the 

frequency spectrum, 𝑘 =
1,2, … 𝐾. 

 

Among the hyperplanes satisfying the equation, the optimal 

hyperplane is the one with maximum distance to the closest 

point. Based on the structural risk minimization inductive 

method, the training of the SVM is to minimize the 

guaranteed risk bounds as follows:  

min 𝐽(𝑤, 𝑒, 𝑏) =
1

2
𝑤𝑇𝑤 +

1

2
𝐶 ∑ 𝑒𝑖

2𝑁
𝑖=1 , 

where 𝑒𝑖 is a slack variable, 𝑒𝑖 ≥ 0, which accumulates the 

error in case an optimal solution is infeasible. The SVM 

algorithm considers only the boundary data to define the 

optimal hyperplane, making it highly efficient even with 

large sets of data and dimensionality. The SVM can work 

with both linear and nonlinear classification problems. For 

the classification of seal health, a quadratic SVM is 

employed. 
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Figure 4. SVM classifier. 

3. RESULT AND DISCUSSION 

The short-time samples of AE signals were prepared, and the 

features described in Section 2.4 were calculated and labelled 

according to the known seal health condition as “Unworn”, 

‘Semi-worn’ and ‘Worn’. The total dataset consisted of 1200 

labelled samples equally distributed between the three health 

conditions and obtained under four different pressure 

conditions, 10, 20, 30 and 40 bar. The features described in 

Table 2 were calculated to produce the multidimensional 

hyperspace for the SVM classifier. To analyze the features, 

the mean values of all the 16 features were calculated over 

the entire sample set consisting of a total of 1200 samples 

(400 samples for each health condition). Further, the ratio of 

the mean of the features in the semi-worn and worn 

conditions are compared to the healthy. The results, shown in 

Figure 5, depict that a majority of the features present an 

increasing trend with the deterioration of the bearing seal. In 

particular, the time domain and frequency domain standard 

deviations (𝛿2, 𝛿10), the time domain rms and peak value 

(𝛿3, 𝛿4)  , the 3rd and 4th order moments in the frequency 

domain, ( 𝛿11, 𝛿12) ,and the ratio of spectral spread of 

skewness (𝛿15) appear to be highly sensitive to seal health 

variations. Although, the monotonicity in trend appears to be 

consistent over the mean values of the features, 

dimensionality reduction on the feature space did not result 

in similar accuracy with the SVM classifier, due to variations 

in the features in each time sample. Hence all the 16 features 

were considered to produce a high accuracy (>99%).  

In this work, 60% of the data was used to train the SVM and 

40% (480 cases) were utilized to test the SVM classifier. The 

training was performed using ‘hold out’ validation with 

randomized split and is repeated several times to ensure 

consistent accuracy. The box constraint for the SVM was set 

at 1. The training time for the SVM classifier was 7.6628 

seconds, and the classification time of the trained classifier 

per case was 2.27E-4 seconds while the feature extraction per 

case as described in Section 2.3 was about 0.8 seconds. These 

metrics indicate that the trained classifier is suitable for rapid 

detection and classification of the seal condition. All the 

calculations were performed on an Intel Xeon X5660 CPU 

with 12 GB of ram. 

The results from the classification are presented in the form 

of a confusion matrix in Figure 6, along with the true positive 

rates (TPR). The overall accuracy on the test cases were 

found to be 99.2%. The worn seals were accurately classified 

in all the cases irrespective of the pressure conditions, while 

in one case the unworn seal was classified as a semi-worn and 

the most errors were made in the classification of the semi-

worn seal with one misclassification as an unworn seal and 

two misclassifications as worn. Compared to the literature, in 

this work a very high classification accuracy was observed in 

classifying different seal wear conditions in the hydraulic test 

rig (Table 3).  

 

Figure 5. Variation of mean value of features depending on 

seal health. 

 

 

Figure 6. Confusion matrix showing test accuracy of SVM 

classifier. 

Table 3. Comparison of classification accuracy with 

literature. 

Literature Sensor Technique  

Maximum 

classification 

accuracy 

Ramachandran 

& Siddique, 

2019 

Torque MLP-NN 92.86 % 

Zhang & 

Chen, 2021 
AE CEEDMAN 93 % 

This paper* AE SVM 100 % 
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4. CONCLUSION 

In this article, an automatic seal wear classification technique 

was proposed based on AE and SVM. Experiments were 

performed on a hydraulic test rig using different seal wear 

types and at different pressure conditions. The AE signal was 

processed using the bandpass filtered technique to filter out 

the noise due to other parts that were present in the test rig. 

From the bandpass filtered AE signal, a set of time domain 

and frequency domain features were extracted after pre-

processing the signals to achieve data compression without 

loss of useful information. A quadratic kernel SVM classifier 

was trained and tested on AE data under three different seal 

wear conditions, and four different pressure conditions with 

very short time samples for rapid classification. Worn seal 

case was classified accurately under all the conditions, 

whereas accuracy of 99.4 % and 98.1 % were observed for 

the unworn and semi-worn cases, respectively. The high 

accuracy of seal wear classification using AE features and the 

SVM technique indicates that it can be used by the hydraulic 

industry for real-time monitoring of seal wear. The authors 

intend to further investigate automation of the peak energy 

band selection and data compression techniques in the future, 

towards development of continuous online monitoring and 

fault classification using AE signals.  
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