
1.  Introduction
An inherent challenge with multiphase flow processes in porous media, such as water-alternate-gas inva-
sions for oil recovery or CO2 injection for geologic storage, is that fluid displacements are irreversible, that 
is, they are history-dependent and exhibit hysteresis (Spiteri & Juanes, 2006). Hysteresis can be rate-de-
pendent or rate-independent. Here, we examine rate-independent hysteresis in three-phase systems based 
on an energy landscape exhibiting metastability and barriers. Thus, we approach fluid displacements qua-
si-statically as a series of small changes of pressure or saturation. This is a reasonable approximation for 
slow displacement at pore scale where capillary forces typically dominate over viscous forces and gravity 
(Hilfer & Øren, 1996). At darcy (or, core) scale, hysteresis in two-phase systems emerges as the difference 
between drainage and imbibition capillary pressure curves (Pαβ(Sβ)-curves), where capillary pressure is the 
difference in phase pressures p between nonwetting (α) and wetting (β) phases (i.e., Pαβ = pα − pβ), and Sβ is 
wetting-phase saturation. Collectively, the shape of Pαβ(Sβ)-curves depends on porous structure, pore-scale 
fluid displacements, saturation history, and wetting state. Morrow (1970) interpreted Pαβ(Sβ)-curves ther-
modynamically as a sequence of reversible and irreversible pore-scale fluid displacements, termed “isons” 
and “rheons,” respectively, that describe transitions between capillary equilibrium states (i.e., local energy 
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minima). Here, isons describe smooth changes of capillary pressure and saturation, while rheons, being re-
sponsible for energy dissipation and hysteresis (Morrow, 1970), describe instabilities that arise when a fluid 
invades a pore region accompanied by abrupt pressure jumps and spontaneous fluid redistributions in other 
parts of the pore space at almost constant saturation. This phenomenon, also called Haines jumps with co-
operative behavior (Haines, 1930), has been investigated in two-phase flow in numerous experimental and 
numerical studies (e.g., Andrew et al., 2015; Armstrong & Berg, 2013; Berg et al., 2013; Cueto-Felgueroso 
& Juanes, 2016; Helland et al., 2017; Holtzman et al., 2020; Måløy et al., 1992; Moebius & Or, 2012; Mor-
row, 1970; Zacharoudiou & Boek, 2016, and others).

For three-phase flow, hysteresis and irreversible displacements are more complex and much less explored. 
This is due to several reasons. Displacement behavior vary significantly with immiscible and near-miscible 
fluid systems, the spreading behavior of oils on gas/water interfaces, and different wetting orders of the 
three phases (Alhosani et al., 2019; Hui & Blunt, 2000; Keller et al., 1997; Khishvand et al., 2016; Scanziani 
et al., 2020; van Dijke & Sorbie, 2002). At the pore scale, double displacements (Helland & Jettestuen, 2016; 
Helland et al., 2019; Keller et al., 1997; Khishvand et al., 2016; Øren & Pinczewski, 1995), where a continu-
ous phase displaces a second isolated phase that displaces a third continuous phase, and multiple displace-
ment chains (Jettestuen et al., 2021; Scanziani et al., 2020; van Dijke & Sorbie, 2003), where the continuous 
phases displace a chain of several isolated fluid ganglia, make three-phase flow different to two-phase flow. 
Further, three-phase experiments are time-consuming and challenging, while three-phase pore-scale sim-
ulations are computationally demanding (Helland et al., 2019; Jettestuen et al., 2021). They both rely on 
having established the relevant two-phase saturation history prior to the investigation. Finally, a two-phase 
displacement occurs with saturation change in one of two directions, while a three-phase saturation path 
can take infinitely many directions. Thus, measuring a sufficient amount of Pαβ(Sβ)-curves for main and 
nested hysteresis loops in three-phase systems at relevant conditions is hardly achievable.

The standard approach to deal with hysteresis of Pαβ(Sβ)-curves is to use correlations, equipped with a hyster-
esis loop logic model and a trapping model relating endpoint saturations (e.g., Helland & Skjæveland, 2004; 
Land, 1968; Lenhard, 1992; Lomeland & Ebeltoft, 2013; Skjæveland et al., 2000; Spiteri et al., 2008, and 
others). While this is practical, it requires several fitting parameters that lacks a firm physical basis. Other 
approaches seek to eliminate hysteresis by adding new state variables based on Minkowski functionals 
(like interfacial area) in the incomplete Pαβ(Sβ)-function (Hassanizadeh & Gray, 1993; McClure et al., 2018), 
whereas emerging theories circumvent Pαβ(Sβ)-curves and hysteresis completely (Hansen et  al.,  2018). 
Cueto-Felgueroso and Juanes (2016) developed a two-phase discrete-domain model for hysteresis that de-
scribes Haines jumps as irreversible transitions among metastable states in a rugged energy landscape. The 
method envisions the porous medium as a discrete set of compartments, each with their own given energy 
function and local saturation. This facilitates simulations of pressure-controlled displacement, which cal-
culates saturations for a prescribed series of capillary pressures, and saturation-controlled displacement, 
which mimics displacement at infinitesimally low rate and calculates capillary pressures for a prescribed 
series of global saturations. The latter displacement mode enforces a global saturation constraint that leads 
to fluid redistribution among compartments (cooperative behavior) and pressure fluctuations, consistent 
with saturation-controlled pore-scale simulations (Helland et al., 2017). Discrete-domain methods can be 
viewed as upscaling procedures from pore to core scales, as compartment energies are extensive properties 
(Cueto-Felgueroso & Juanes, 2016). Similar methods have also been used in other scientific fields (Dreyer 
et al., 2010, 2011; Fraternali et al., 2011; Puglisi & Truskinovsky, 2005).

In this work, we present a discrete-domain approach to characterize three-phase displacements with hys-
teresis in porous media. We accomplish this by formulating the interfacial free energy as a sum of energy 
contributions from the respective phases and derive evolution equations for each phase that relates each 
individual energy contribution to its phase saturation and phase pressure. By imposing constraints that cou-
ple the equations together and ensure the sum of all saturations is one, we obtain the desired conditions for 
equilibrium that relate the capillary pressures to the appropriate change in interfacial free energy. Hence, 
the developed approach is easily adaptable to an arbitrary number of fluid phases. As the two-phase meth-
od of Cueto-Felgueroso and Juanes (2016) employs an evolution equation for the wetting-phase saturation 
that directly relates capillary pressure and interfacial free energy, our approach is a required generalization 
of their method to investigate hysteresis in porous media containing three (or more) fluid phases. With the 
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developed method, we show that metastability and the inclusion of various saturation constraints gives rise 
to irreversible three-phase displacements with cooperative behavior and fluid redistribution, accompanied 
by fluctuations of capillary pressures and saturation trajectories.

2.  Method
We consider a porous medium saturated with three continuous fluids, gas (g), oil (o), and water (w), that are 
connected to their respective fluid reservoirs. Assuming the multiphase system is isothermal with incom-
pressible fluids of constant composition, the thermodynamic potential for Gibbs free energy is

   
 

   
, ,

,
g o w

G p V F� (1)

where pα is pressure and Vα is volume of phase α. Here, we introduce the phase-specific Helmholtz free 
energy, Fα, which models the energy contribution from phase α to the fluid/fluid and fluid/solid interfacial 
free energies. This splitting strategy borrows ideas from pore-scale modeling of three-phase displacement 
where interfacial properties, like interfacial tension and contact angle, are formulated as the sum of indi-
vidual phase contributions (Helland & Jettestuen, 2016; Helland et al., 2019; Jettestuen et al., 2021). We also 
assume this Helmholtz energy is a function of its own phase volume only, that is, Fα = Fα(Vα).

Following Cueto-Felgueroso and Juanes (2016), let us now divide the porous medium into N compartments 

with equal pore volumes Vp. The global (or, average) phase saturation is    1 ,
1 N

i iS s
N

 where sα,i is local 

saturation of phase α in compartment i. We introduce phase-specific compartment energy densities fα,i as 
functions of their own saturations, fα,i = fα,i(sα,i), so that     1 , ,( )N

p i i iF V f s . Similarly, for Gibbs energy we 
obtain    1 ,

N
p i iG V g . With this compartment description, Equation 1 becomes
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Minimization of G with respect to sα,i yields an equation per saturation per compartment. The resulting set 
of 3N equations is uncoupled and neglects that the sum of phase saturations must equal one in all compart-
ments. To handle this problem, still by treating the compartment saturations sα,i as independent variables, 
we introduce N constraints that couple the three saturations together in each compartment:




 
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 
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,
, ,

1 1 0, 1, , .
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g o w
s i N� (3)

In the numerical model, we set the left-hand side of Equation 3 equal to a small positive number ϵ. The 
method of Lagrange multipliers is a suitable approach to solve such constrained minimization problems. 
Thus, we introduce the function
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where s is a vector of the 3N compartment saturations and     1, , Nλ  is a vector of Lagrange multipli-
ers corresponding to the N constraints (3). Minimization of  with respect to each sα,i amounts to solving 






 ,
0

is


. Parameterizing the solutions in iteration-time t yields 3N evolution equations for the compart-

ment saturations:
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where α = g, o, w and i = 1, …, N. We solve Equation 5 for given pressures pα and energies fα,i to find equi-
librium states of the compartment saturations, using the explicit Euler method for the iteration-time steps. 
We assume Equation 5 has been made dimensionless by scaling with a characteristic pressure. As we cal-
culate equilibrium states, this scaling will only impact the rate of convergence while the solutions remain 
the same.

The compartment saturations reach equilibrium states when 



, 0is

t
. Equation 5 implies that this occurs 

when the capillary pressures for all fluid pairs αβ = go, ow, gw satisfy

 
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When the third phase is absent or immobile, dsα,i = −dsβ,i, and we can write Equation 6 as   



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s
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This is the equilibrium states for a two-phase system, consistent with the single saturation approach of 
Cueto-Felgueroso and Juanes (2016).

The energy functions fα,i(sα,i) contain concave and convex segments (peaks and valleys) to describe metasta-
bility in a rugged energy landscape. Stable and metastable states satisfy Equation 6. In addition, the interfa-
cial free energy must belong to convex segments with local minima of Gibbs free energy. In the two-phase 

case these valleys satisfy 




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2
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f
s

 where fi = fα,i + fβ,i. A peak in fi represents an energy barrier that must be 

overcome in a transition from the current to the next, adjacent, metastable state. In the three-phase system, 
where fi = fg,i + fo,i + fw,i, the metastable states satisfy Equation 6 while the second derivatives of the phase 
contributions fα,i to the interfacial free energy must satisfy the following conditions (see Appendix A):
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Equation 7 is the equilibrium locus, that is, the states that correspond to metastable compartment satura-
tions for any phase pressure combination.

The interfacial free energies fi describe stability of multiphase displacements in compartments representing ir-
regular pore structures. At the pore level, interfaces in two-phase systems stabilize at the entrance of pore throats 
during drainage and in wider pore openings during imbibition according to Laplace's equation, Pαβ = 2σαβCαβ, 
where σ is interfacial tension and C is mean interface curvature. These metastable states belong to valleys in 
the interfacial energy fi that describe reversible displacements. Fast and irreversible interface displacements 
(Haines jumps) occur through wide pore openings during drainage and through narrow pore throats during 
imbibition, representing transitions across barriers separating adjacent energy valleys in fi. Consequently, the 
local saturation intervals for both reversible and irreversible displacements will in general differ for drainage 
and imbibition, leading to hysteresis. Thus, we can interpret the local saturation interval of an energy barrier in 
fi as the saturation interval shared by irreversible jumps in opposite directions (drainage and imbibition).

Three-phase systems achieve metastability when Equations 6 and 7 are satisfied. The behavior of gas in-
vasion through pore spaces containing oil in pore centers and water in pore corners is very similar to the 
two-phase scenario described above. However, for double displacements, where gas displaces an oil slug 
that in turn displaces water, metastable states can also correspond to configurations where either the trail-
ing gas/oil interface or the leading oil/water interface is located in a wider pore opening while the other 
interface is located at the entrance of a pore throat, depending on the size of the oil slug (or, local oil satu-
ration) (Helland et al., 2019). Therefore, the local saturation intervals of reversible displacements (energy 
valleys) and interfacial jumps (energy barriers) described by fi is in general different for two-phase systems 
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and three-phase systems. We also note that for two-phase systems, the way we split fi into individual phase 
contributions fα,i and fβ,i is somewhat arbitrary as it is sufficient to use evolution equations for one of the 
phases in this case (Cueto-Felgueroso & Juanes, 2016). However, in three-phase systems, the splitting of fi 
into phase contributions fg,i, fo,i and fw,i must be done with care to ensure the model describes the desired 
case. In future work, we will construct the energy contributions fα,i for various three-phase systems and fit 
the model to pore-scale simulations and pore-scale experiments.

3.  Three-Phase Displacement Protocols
Equation 5 offers the opportunity to investigate various three-phase displacement modes, like invasion un-
der preservation of a constant global saturation, or invasion controlled by prescribed global saturations. 
This is an important capability because many experimental setups for core-scale three-phase flow facilitate 
injection of one phase and production of a second phase, while the saturation of the third phase is constant 
(Bradford & Leij, 1995, 1996; Lenhard & Parker, 1988). Such experiments can also examine how the pres-
ence of a disconnected phase (e.g., fluid ganglia) impacts storage or recovery of other fluids in porous rock. 
Other applications, like three-phase saturation-path tracking, require control of two of the saturations. This 
feature is particularly useful for predicting three-phase capillary pressure curves along a saturation tra-
jectory obtained from core-scale measurements of three-phase relative permeability curves (Alizadeh & 
Piri, 2014; Zolfaghari & Piri, 2017).

Introducing a global saturation constraint for one or more phases α,

 


  ,
1

1 const,
N

i
i

S s
N

� (8)

will couple the saturation Equation 5 for the different compartments together. Despite global saturations 
are fixed under such constraints, significant redistribution of local saturations among compartments can 
occur, possibly accompanied by three-phase capillary pressure fluctuations. Here we apply Equation 5 to a 
range of different three-phase displacement protocols.

3.1.  Gas-Pressure Controlled Displacement (PG)

This case prescribes all phase pressures pg, po, and pw. Gas invasion (retraction) occurs by increasing (de-
creasing) pg in small specified steps Δp after each converged state of Equation 5, consistent with standard 
methods for measuring static capillary pressure curves in rock samples. The N compartment constraints (3) 
must hold for all iteration times. Thus,


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Combining Equations 5 and 9 yields expressions for the Lagrange multipliers that we update in every iter-
ation step:
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3.2.  Gas-Pressure Controlled Displacement With Constant Global Oil Saturation (PGSO)

This case prescribes phase pressures pg and pw. As for the previous case, gas invasion (retraction) occurs 
by increasing (decreasing) pg stepwise after each equilibrium state. We preserve global oil saturation So 
by enforcing constraint (8) on the oil phase, while treating the oil pressure po as the associated Lagrange 
multiplier. Together with Equation 3 we now have N + 1 constraints that must hold for all iteration times. 
Equation 8 implies that

HELLAND ET AL.

10.1029/2021WR029560

5 of 16



Water Resources Research
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By inserting Equation 5 into Equations 11 and 9, we obtain
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and
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respectively. Equations 12 and 13 constitute N + 1 equations that we solve for the Lagrange multipliers po 
and λ1, …, λN in every iteration step. Displacement protocol PGSO conforms to standard methods for meas-
uring static three-phase capillary pressure curves under circumstances where one of the defending phases 
(oil) cannot exit the rock sample.

3.3.  Gas-Saturation Controlled Displacement (SG)

This case prescribes phase pressures po and pw. Gas invasion (retraction) occurs by increasing (decreasing) 
global gas saturation Sg in small specified steps Δs after each converged state of Equation 5, while we calcu-
late pg. For each target gas saturation, we initialize the compartment gas saturations as sg,i ±Δs and adjust 
the compartment oil and water saturations correspondingly, so,i ∓Δs/2 and sw,i ∓Δs/2. Obviously, the com-
partment saturations at equilibrium will differ from this initial configuration. Equation 8 enforces the target 
global gas saturation, so that pg becomes the associated Lagrange multiplier. Thus,





  
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Equations 13 and 14 constitute N + 1 equations that provide solutions for pg and λ1, …, λN in every iteration 
step. The saturation-controlled displacement mode SG mimics three-phase flow where gas invasion or with-
drawal occurs at infinitesimally low rate.

3.4.  Gas-Saturation Controlled Displacement With Constant Global Oil Saturation (SGSO)

This case prescribes water pressure pw and calculates pg and po. Gas invasion (retraction) occurs by increas-
ing (decreasing) the global gas saturation Sg in small specified steps Δs after each equilibrium state, while 
global oil saturation So is fixed. For each target gas saturation, we initialize compartment saturations as sg,i 
±Δs and sw,i ∓Δs. We enforce Equation 8 on both the gas and oil phases, so that both pg and po are Lagrange 
multipliers. Together with Equation  3 we now have N  +  2 constraints. Equations  12–14 constitute the 
N + 2 equations from which we calculate the Lagrange multipliers pg, po, λ1, …, λN in every iteration step. 
Displacement protocol SGSO is an approximation to three-phase flow where gas invasion or withdrawal 
occurs at infinitesimally low rate while the oil saturation is preserved. We note that this strategy can also be 
used to predict three-phase capillary pressure curves along any saturation path given a set of target oil and 
gas saturations.

4.  Results
We apply the method to elucidate three-phase displacements and hysteresis behavior for the previously 
described displacement protocols, using synthetic and oscillatory energy density functions to capture en-
ergy barriers and metastability. To this end, we make advantage of the energy functions employed in the 
single-saturation, two-phase approach (Cueto-Felgueroso & Juanes, 2016):
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             ( ) log 1 log 1 cos , 1, , ,i i i i i i i i if s s s s s s c K s i N� (15)

where si is the wetting-phase compartment saturation, ω represents the strength of the wetting state, K re-
flects the number of minima in each compartment, and ci, i = 1, …, N, describe the barriers between energy 
minima that are responsible for the hysteresis. If ω varies among compartments, the system has a fractional 
wetting state, whereas a constant and uniform ω (as we use in this work) describes a uniform wetting state. 
Cueto-Felgueroso and Juanes (2016) showed that refining Equation 15 into a higher number of domains N, 
which increases the number and density of metastable states, will dampen pressure fluctuations in satura-
tion-controlled displacement and result in smoother capillary pressure curves while the level of capillary 
pressure and hysteresis persists. Our numerical examples demonstrate the same behavior in three-phase 
systems.

In the multiple saturation approach, we construct phase-specific energy contributions fα,i(sα,i) that ensure 
the equilibrium solutions (6) for fluid pair αβ are consistent with the solutions from the single-saturation 
approach for two-phase systems using Equation 15. We accomplish this with

                   , , , , , , ,( ) log 1 cos , , , , 1, , ,i i i i i i if s s s s c K s g o w i N� (16)

where the parameters for each fluid pair αβ satisfy K = Kα = Kβ, ω = ωβ − ωα, and ci = cα,i + cβ,i (for even in-
tegers K). As we explore displacements constrained by stepwise saturation changes Δs, we specify a satura-
tion interval [smin, smax] that we require all compartment saturations to be located within. If a compartment 
saturation reaches one of these limits, that compartment is static and excluded from the further saturation 
evolution based on Equation 5 and Lagrange multipliers. Thus, the number of possible metastable states 
decreases toward the end of the displacement process, possibly accompanied by more severe pressure fluc-
tuations. Here, we use smin = 0.001 and smax = 0.999. This approach also offers a means to include residual 
saturations that may vary with compartment. The simulations presented here achieve equilibrium states 
when all compartment saturations change by less than 10−8 during an iteration step.

First, we demonstrate the discrete-domain method on a small number of compartments for a water-wet 
state where oil is intermediate-wet phase and gas is nonwetting phase (Hui & Blunt, 2000; van Dijke & 
Sorbie, 2002). This implies ωw > ωo > ωg and cw,i > cg,i > co,i > 0, i = 1, …, N. We set N = 3, K = 4, ωw = 11, 
ωo = 6, ωg = 1,    0.1, 0.2, 0.3wc ,    0.001, 0.03, 0.05oc , and    / 2g w oc c c . We simulate a two-phase 
oil/water hysteresis loop consisting of primary drainage and imbibition by applying Equation 5 on the two 
phases, using Δp = 0.1 for pressure-controlled displacement and Δs = 0.005 for saturation-controlled dis-
placement. Figure 1 shows that pressure-controlled Haines jumps create irreversible saturation jumps at 
constant pressure. Such an event is a jump in one of the compartment saturations across an energy barrier 
separating two metastable states of Gibbs free energy, while the other compartment saturations stay in their 
energy valleys. Overall, this generates a stepwise staircase shape on the Pow(Sw)-curves, where steep and 
smooth curve segments represent reversible displacements within the same energy valleys. Haines jumps in 
saturation-controlled mode occur as abrupt, irreversible pressure drops (drainage) or increases (imbibition) 
at constant global saturation. While these events also create a jump across an energy barrier in one com-
partment, the other compartment saturations move in the opposite direction to maintain the global target 
saturation. Hence, fluid redistribution among compartments occurs. Reversible displacements follow the 
same branches of the Pow(Sw)-curves as the pressure-controlled displacements. Overall, the Pow(Sw)-curves 
obtain nonmonotonic sawtooth shapes which we also observe in the evolution of compartment saturations. 
The peaks (during drainage) and valleys (during imbibition) of the capillary pressure fluctuations in satu-
ration-controlled displacement coincide with the capillary pressure levels in pressure-controlled displace-
ment, which indicates high precision in the simulations of both displacement modes.

We proceed with corresponding three-phase displacements by introducing gas at Sw = 0.4 after the pres-
sure-controlled imbibition. Figure 2 presents results for a gas invasion-retraction hysteresis loop using both 
PG and SG displacement protocols. The Pgo(1 − Sg)- and Pgw(1 − Sg)-curves have identical shapes and differ 
only by the constant Pow. They display similar behavior as the two-phase case. Energy barriers connect-
ing the equilibrium locus of Gibbs free energy represent instabilities. In three-phase systems we cannot 
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construct these barriers because compartment-saturation paths are not known a priori. This differs from 
two-phase systems where saturation changes in one of two directions. A Haines jump in SG mode occurs 
when the saturation state in one compartment jumps across a barrier to another state in the neighbor 
energy valley, while compensating saturation changes occur in the other compartments to maintain the 
global, target gas saturation. For the transition of states during gas invasion marked by magenta and cyan 
circles in Figure 2, sg,1 increases at the expense of lower so,1 and sw,1 in compartment 1, while in the other 
compartments sg,2 and sg,3 decrease at the expense of higher so,2, sw,2, so,3, and sw,3. The global saturation paths 
show that the overall result for this change of states is slightly higher Sg and Sw and lower So. This emerges as 
a characteristic feature for Haines jumps in SG mode: Gas invasion (retraction) occurs with accompanying 
water invasions displacing oil, or oil invasions displacing water, leading to abrupt directional changes of the 
saturation path (that is, oil and water saturation jumps). Reversible displacements within the same energy 
valleys aim at driving the saturation path back on track so that equilibrium states in PG and SG modes 
coincide between Haines jumps. The main observation is that saturation paths in SG mode display a char-
acteristic stepwise staircase shape, while in PG mode they consist of gas-saturation jumps intertwined with 
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Figure 1.  Demonstration of the discrete-domain approach for a two-phase oil/water system using N = 3 and K = 4. Top, left: Capillary pressure curves 
for primary drainage and imbibition. Top, right: Evolution of local saturations for compartment 1 (blue), 2 (red), and 3 (green). The large circles show the 
compartment saturations for the corresponding three capillary pressures highlighted on the Pow(Sw)-curves. Bottom, left: Gibbs free energy for compartment 1 
(blue), 2 (red), and 3 (green), as functions of compartment water saturations for the three Pow shown by circles on the Pow(Sw)-curves. The convex segments are 
the equilibrium locus (bold curves), the concave segments are energy barriers (dash-dotted curves), and the circles show the three metastable compartment 
states for the three Pow shown on the Pow(Sw)-curves. Bottom, right: Phase-specific energies fo,i and fw,i used in the simulations for the three compartments, and 
total compartment energies (fo,i + fw,i, i = 1, 2, 3), as functions of compartment water saturations. The convex segments are the equilibrium locus (bold curves).
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more steady saturation changes. Differences in compartment-saturation evolution confirm the behavior: 
SG mode shows significant fluid redistribution among compartments and saturation fluctuations, while PG 
mode shows stepwise, monotonically increasing or decreasing compartment saturations.
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Figure 2.  Demonstration of the discrete-domain approach with N = 3 and K = 4 for a three-phase system. Top row, left: Three-phase capillary pressure 
curves for a gas invasion-retraction hysteresis loop, using PG and SG displacement modes. Gas invasion occurs at Sw = 0.4 after two-phase oil/water imbibition 
(Figure 1). Top row, right: Three-phase saturation paths, where the large circles show the saturations for the corresponding three states on the Pαβ(1 − Sg)-
curves. Middle row, left: Equilibrium locus of Gibbs free energy, obtained from Equation 7, for compartment 1 (blue), 2 (red), and 3 (green), as functions of 
compartment liquid saturations, for the three capillary pressures shown by large circles on the Pαβ(1 − Sg)-curves. Middle row, right: Phase-specific energy 
functions fα,i(sα,i), α = g, o, w, i = 1, 2, 3, used in the simulations. Bottom row: Evolution of local saturations for compartment 1 (blue), 2 (red), and 3 (green) for 
the gas invasions with displacement modes SG (solid curves) and PG (dashed curves). The large circles show compartment saturations for the states highlighted 
on the Pαβ(1 − Sg)-curves.
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The parameters ωα and cα,i in Equation 16 make it possible to explore hysteretic three-phase displacements at 
other realistic wetting states. A weakly oil-wet system (Hui & Blunt, 2000; van Dijke & Sorbie, 2002), where 
water is intermediate-wetting phase and gas nonwetting phase, requires ωo > ωw > ωg, cg,i > 0 > co,i > cw,i, and 
cg,i > |cw,i|, i, …, N. In a strongly oil-wet system (Hui & Blunt, 2000; van Dijke & Sorbie, 2002), where gas is 
intermediate-wetting phase and water nonwetting phase, we must have ωo > ωg > ωw, cg,i > 0 > co,i > cw,i, and 
|co,i| < cg,i < |cw,i|, i, …, N. To explore three-phase hysteresis for these oil-wet states, we use a slightly larger 
system with N = 6 and K = 8. Further, ωo = 11, cw,i is evenly spaced between cw,1 = −0.15 and cw,6 = −0.01, 
and co,i = −0.001, i = 1, …, 6. Then, for the weakly oil-wet state, ωw = 6, ωg = 1, and cg,i = −1.2cw,i, and for 
the strongly oil-wet state, ωw = 1, ωg = 6, and cg,i = −0.5cw,i, i = 1, …, 6. We add a water-wet case for com-
parison, with parameters ωw = 11, ωo = 6, ωg = 1, cw,i evenly spaced between cw,1 = 0.01 and cw,6 = 0.15, 
co,i = 0.001, and   , , , / 2g i w i o ic c c , i = 1, …, 6. Figure 3 presents two- and three-phase results from sim-
ulations of these wetting states, using Δp = 0.05 in PG mode and Δs = 0.0025 in SG mode. These steps are 
sufficiently small to capture all metastable states. The three-phase hysteresis loops begin at Sw = 0.5 on the 
pressure-controlled two-phase imbibition curve. The capillary pressure curves capture the expected differ-
ences in pressure levels for the different wetting states, and they all show the same characteristic Haines 
jump behavior. In SG mode, the three-phase capillary pressure curves and saturation paths fluctuate due to 
Haines jumps. For intervals with reversible displacements both the capillary pressure curves and saturation 
paths coincide in PG and SG mode. The compartment-saturation profiles show fluctuations in SG mode, 
particularly for the water-wet state, which indicates fluid redistribution among compartments, while for 
PG mode, these curves are stepwise and monotonic curves. Further, the compartment-saturation profiles 
exhibit hysteresis and show that fluid distributions vary with wetting state.

Along with the hysteresis loops, we also simulate gas invasion in PG mode from Sw = 0.3 and Sw = 0.7 to 
investigate saturation-dependencies of the three-phase capillary pressures in the presence of hysteresis. 
Simple capillary-tube bundle models, where hysteresis is absent, predict that two of the capillary pressures 
are functions of one saturation, as follows (Hui & Blunt, 2000; van Dijke & Sorbie, 2002): Pgo(Sg) and Pow(Sw) 
(water-wet state), Pow(So) and Pgw(Sg) (weakly oil-wet state), and Pgo(So) and Pgw(Sw) (strongly oil-wet state). 
In each case, the remaining capillary pressure is a function of two saturations. However, our simulated 
results deviate from this idealized description, which we attribute to the inherent hysteresis of the method 
and chosen energy functions. Instead we find that all three capillary pressures depend on two saturations. 
For example, the simulated saturation paths at constant Pow in Figure 3 shows that Pow depends on two sat-
urations although significant oil displacement (especially in the water-wet system) indicates strong Sw-de-
pendency. Further, the Pgo(1 − Sg)-curves (water-wet state) and Pgw(Sw)-curves (strongly oil-wet state) for the 
three PG-based gas invasions do not coincide, implying that also these capillary pressures are functions of 
two saturations.

Finally, we explore three-phase PGSO and SGSO displacements in a large water-wet system with constant 
global oil saturation So = 0.3, established after a two-phase pressure-controlled imbibition. We use N = 24, 
K = 14, ωw = 26, ωo = 14, ωg = 2, cw,i evenly spaced between cw,1 = 0.05 and cw,24 = 0.15, co,i evenly spaced 
between co,1 = 0.001 and co,24 = 0.05, and   , , , / 2g i o i w ic c c , i = 1, …, 24. To capture all metastable states 
of this large system, we use Δs = 0.001 (SGSO) and Δp = 0.05 (PGSO). Figure 4a shows Pow(Sw)-curves for 
two-phase hysteresis loops, as well as results from the subsequent PGSO- and SGSO-simulations of main 
and nested three-phase hysteresis loops for gas invasions and gas retractions. For these displacement pro-
tocols all three capillary pressures vary during the displacement. Even in PGSO mode, Pgo and Pow display 
nonmonotonic variations, implying significant redistribution of the globally preserved oil phase. A sharp 
increase (or, drop) of Pgo leads to a corresponding drop (or, increase) of Pow for prescribed Pgw. For gas inva-
sion in PGSO mode Pow increases almost monotonically, while Pgo vary nonmonotonically around the same 
pressure level. Three-phase pore-scale simulations of the same process explain this observation (Helland 
et al., 2019): A double displacement in which gas displaces a disconnected oil phase through wide and nar-
row pore channels, that in turn pushes oil/water interfaces further into narrower pore spaces, leads to non-
monotonic Pgo and increasing Pow. The three-phase capillary pressure curves from SGSO simulations display 
a more irregular sawtooth structure than the two-phase curves due to significant oil redistribution among 
compartments. The so,i(1 − Sg)-curves show that this redistribution generally is different in PGSO and SGSO 
simulations so that the corresponding three-phase capillary pressure curves also deviate from each other.
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For this system we also simulate main and nested hysteresis loops with PG and SG mode, starting at Sw = 0.3 
from the two-phase pressure-controlled imbibition. In this case, the capillary pressure curves for PG and 
SG modes are more aligned with each other and SG mode also displays a more regular sawtooth structure 
than SGSO mode, see Figure  4b. Because the saturation paths for gas invasion and gas retraction vary, 
nested hysteresis loops are not fully contained within the main hysteresis loop. This is in contrast to the 
PGSO and SGSO cases where the saturation path is enforced. The SG and SGSO simulations in Figure 4 
display severe pressure fluctuations near the end of the displacement processes. This is an effect of exclud-
ing compartments where saturations have reached their limits smin or smax, which significantly reduces the 
number of possible metastable states in subsequent calculations. Still, SG simulations of this large system 
exhibit less significant capillary pressure fluctuations in most of the saturation interval, while the stepwise, 
staircase features of the saturation paths in SG mode are less prominent, compared with smaller systems 
(Figures 1–3). Thus, increasing the system size (i.e., N and K) yields smaller fluctuations because the den-
sity and number of metastable states increases, while hysteresis persists. This shows the potential of the 
discrete-domain approach as a method for upscaling three-phase capillary pressure curves with hysteresis 
from pore scale to larger scales where such fluctuations vanish.

Another feature which makes the discrete-domain approach attractive for upscaling is that the compart-
ment interfacial free energies are extensive properties. Therefore, energy functions defined on a highly 
resolved compartmentalization of a porous medium (e.g., where each compartment describes only a few 
pores) can easily be constructed for coarser compartment resolutions. This allows simulations with the 
discrete-domain method on different scales. Coarsening of the energy functions could to some extent elim-
inate or moderate the energy valleys and barriers, resulting in smoother capillary pressure curves on coarse 
scales. Pore-scale simulations on segmented rock images (e.g., Helland et al., 2019, 2017; Zacharoudiou & 
Boek, 2016) or flow experiments with microtomographic imaging of pore-scale fluid distributions on rock 
samples (e.g., Alhosani et al., 2019; Berg et al., 2013; Khishvand et al., 2016; Paustian et al., 2021; Scanziani 
et al., 2020) provide valuable data to validate and test such workflows for upscaling. The coarsening may 
result in a single compartment for the entire porous sample. This allows for utilizing the discrete-domain 
approach on larger cores by stitching together several such porous samples, where each sample corresponds 
to a compartment with a statistically representative energy function.

5.  Conclusions
This work presents a discrete-domain approach to three-phase displacements with rate-independent hys-
teresis in porous media. Constrained energy minimization leads to evolution equations for compartment 
saturations that collectively describe a wide range of three-phase displacements, including reversible and 
irreversible pressure- and saturation-controlled displacements with or without preservation of one of the 
defending phases. Saturation-controlled invasion, which mimics flow controlled by low rate, shows that 
three-phase irreversible displacements occur with significant fluid redistribution among compartments. 
This leads to abrupt capillary pressure jumps as previously seen in two-phase systems, and in addition, 
abrupt saturation changes and fluctuating saturation paths, which we find is a new characteristic feature 
for three-phase displacements. Both pressure and saturation jumps decrease with increasing system size. 
Three-phase displacements with a preserved saturation exhibit the most substantial fluid redistributions, 
and in these cases both pressure- and saturation-controlled displacement generate nonmonotonic capil-
lary pressure curves, consistent with quasi-static pore-scale simulations (Helland et al., 2019; Jettestuen 
et al., 2021). The presented discrete-domain approach is a fast and tractable method to investigate three-
phase hysteresis in porous media. As the method uses saturation evolution equations phase by phase, it can 
easily be adapted to an arbitrary number of phases. A current drawback is that the compartments are not 
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Figure 3.  Application of the discrete-domain approach to water-wet (left column), weakly oil-wet (middle column), and strongly oil-wet (right column) states, 
using N = 6 and K = 8. First row: Two-phase oil/water capillary pressure curves for primary drainage and imbibition from pressure- and saturation-controlled 
simulations, representing the displacement history before gas invasion. Second row: Saturation paths for hysteresis loops of gas invasion (from Sw = 0.5) and gas 
retraction from PG- and SG-simulations, as well as saturation paths from PG-simulations of gas invasions at Sw = 0.3 (dashed curves) and Sw = 0.7 (dash-dotted 
curves). Third row: Capillary pressure curves for the hysteresis loops and the gas invasions from Sw = 0.3 (dashed curves, Pgo in green and Pgw in black) and 
Sw = 0.7 (dash-dotted curves, Pgo in green and Pgw in black). Fourth, fifth, and sixth row: Evolution of local saturations in a compartment subset {1, 2, 3} during 
the hysteresis loops with SG (solid curves) and PG (dashed curves) displacement protocols.
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spatially correlated and hence they are all accessible for invasion. In future work we will use spatially de-
pendent energy functions from pore-scale experiments and pore-scale simulations to validate the approach 
and to evaluate effects of wetting state on three-phase irreversible displacement. As compartment energies 
are extensive quantities, establishing a direct link between pore scale and the compartmental description 
will provide a reliable upscaling method. Finally, compartment energies tailored to match pore-scale data 
will reveal whether the energy functions themselves exhibit hysteresis and if they require other state varia-
bles (like interfacial area) to describe uniquely drainage and imbibition.

Appendix A:  Criteria for Metastability in Three-Phase Systems
We consider a three-phase system in a single compartment (N = 1) and omit compartment subscripts i. 
Without loss of generality we also set Vp = 1. Then the Lagrange function in Equation 4 becomes
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For optimization of a function g with n variables under m constraints using Lagrange multipliers, the  
Lagrange function  will have m + n variables. Then, a sufficient condition for a local minimum is that the 
2m + 1, …, m + n leading principal minors of the bordered Hessian matrix have the sign (−1)m. In our case, 
g is the Gibbs free energy which is function of the three saturations sg, so, sw (n = 3) and subject to one con-
straint with Lagrange multiplier λ (m = 1). Thus, we must ensure that the third and fourth leading principal 
minors of H are both negative. The third leading principal minor is the determinant of the upper left 3 × 3 
submatrix, while the fourth is the determinant of the entire bordered Hessian.

Inserting expressions for the second derivatives into Equation A2 yields
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Figure 4.  Three-phase hysteresis behavior during alternate gas invasions and gas withdrawals for the case with N = 24 and K = 14. (a) Top, left: Two-phase 
oil/water capillary pressure curves for primary drainage and imbibition representing the displacement history before gas invasion. Top, right: Three-phase 
saturation paths from simulations with constant global oil saturation (PGSO and SGSO). Second row: Three-phase capillary pressure curves for the main 
hysteresis loop and a nested hysteresis loop from PGSO and SGSO simulations. Third row: Evolution of local saturations in a subset of compartments  
{1, 4, 10, 14} during the first gas invasion for displacement protocols SGSO (solid curves) and PGSO (dashed curves). (b) Saturation paths (left) and capillary 
pressure curves (right) from PG- and SG-simulations of two gas invasion/withdrawal cycles, demonstrating nested hysteresis-loop behavior for three-phase 
displacements. Initial global water saturations for the first gas invasions are Sw = 0.7 (PGSO and SGSO) and Sw = 0.3 (PG and SG).
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The third leading principal minor of H is
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while for the fourth leading principal minor we obtain




                        

2 22 2 2 2 2

2 2 2 2 2 2det 1 .g go o w w

g o o w g w

f ff f f fH s
s s s s s s

� (A5)

Note that the fluid pair included in Equation A4 depends on the order of rows in the Hessian matrix while 
Equation A5 remains the same. Consequently, in Equation A4 the sign of the second derivatives that is re-
quired for a local minimum will apply to all fluid pairs αβ = go, ow, gw. Thus, a local minimum of Gibbs free 
energy g must satisfy the criteria for the phase-specific energy functions fα given by both Equations 6 and 7.

Data Availability Statement
Data were not used, nor created for this research.
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