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Abstract

The objective of this project is to investigate feasibility of visual combined with olfactory sensing and multi-
modal collaborative intelligence for the perception of diseases, especially the contagious ones, among a
population of dairy cattle. The idea is to develop artificially intelligent systems that can generate low-
dimensional representations about presence of diseases by learning from visual and olfactory sensory inputs,
which are high-dimensional and noisy. The idea of in-cooperating visual and olfactory intelligence is a brilliant
one; this is because the olfactory intelligence of animals and insects are predominant over visual intelligence
and that olfactory intelligence are currently barely decoded computationally, i.e, no computational models
outperform the olfactory perceptional capability of moths being widely studied. This is because in contrast
to high-resolution camera sensors reaching many mega pixels, state-of-the-art volatile organic compounds
sensing arrays called electronic nose achieve only tens of pixels and can only sense ppm maybe ppb
concentration level (1 000 000 to 1 000 times lower than insects). The invention of multi-layer and large
artificial neural networks for attempting to encode of human visual perceptual intelligence in a computational
manner has achieved breakthrough in high-performance artificial intelligence systems. Newer models often
contain one or more architectural modules which encodes cognitive science findings such as memory, contrast,
analogy, anticipation of consequences, reasoning, knowledge in physics. We are targeting the derivation of
a heterogeneous deep architecture combining the visual and olfactory branches their collaborative
intelligence.

The scope of this project is to evaluate the potential of the proposed approach in a real world setup and to
clarify technical challenges. Two specific scenarios are targeted:

e Digital dermatitis (DD). DD is a highly contagious disease and causes severe pain and lameness. The
visual features of DD could be arched back, dropped neck and head owing to reduced strength in
weight bearing by the infected foot. These are detected via 3D RGB-D (Red Green Blue - Depth)
imaging. Another visual feature is the abnormal gait patterns of the in- fected foot owing to reduced
locomotive abilities. These can be detected via gaitanalysisinvideos.

e Mastitis. Mastitis is a bacterial inflammation in udders. It is relatively frequently occur-ing, highly
contagious and causes pain, reduced milk production and low-quality milk. The visual features of
mastitis could be elevated temperatures in infected region of udders. This can be detected by infrared
thermography. Another visual feature could be abnormal smells owing to elevated concentrations of
emitted volatile organic compounds owing to bacterial microbiological processes. This can be detected
by electronic nose (or VOC gas sensors).

Detection of DD was investigated via extraction of geometric features of arched back as well as dropped
neck and head of cattle suffering pain. A commercial low-cost 3D imager (RGB-D) imager (Intel Realsense
D435) and its SDK (Software Development Kit) is used for 3D RGB-D imaging for 3D perception while cattle
are standing in the milking robot. 3D models of cattle’s back and neck are obtained via converting of point
cloud to mesh in software Meshlab. Within the limited sample set of cattle, although variations in arched
angels in back and neck were found, no cattle showed signs of lameness, which was consistent with the
ground truth. Gait and behavior analysis of these cattle in the panorama images and videos collected were
hindered owing to that occlusions and that the activities of the animals are very limited (most of time they
are standing or lying). Activity recognition in cattle was studied using a internet scraped image data of cattle
in heat (estrous cycles) via deep convolution neural network model. Our conclusion is that by combining of 3D
RGB-D based shape analysis, combined with gait and behavior analysis in videos, automatically and
accurately assessment of DD is technically and practically feasible with the benefit of requiring only few low-
cost visual sensors for monitoring of multiple even a large group of animals.

Detection of mastitis was investigated using a thermal imaging camera (Flir tau2, spectral band: 7.5
13.5um, sensitivity: <60mK), the spatial and temporal variations in temperature of udder area of cattle while
they are getting milked in milking robot were investigated. Within the limited sample set, obvious individual
variations in mean temperatures and their standard deviations were



shown. Ground truth of whether one of more of the cattle had mastitis infection was not accurately
identified, it was with high-confidence from laboratory analysis that no cattle had mastitis during the data
collection period. The conclusion is that passive infrared thermography definitely could provide useful data
for extraction of information about the health of udders and cattle harmlessly and low-costly (Only 1 sensor is
needed). Variations in lighting condition and differences in shape and size of udder and the standing positions
of cattles were found to provide considerable artifacts and noise to the recorded thermograms. Activity of cow
is considered to influence overall temperature but not their spatial distributions. The problem of
reconstruction of an approximately true model of the object, i.e., mastitis-presented udder and healthy
udder via measurement data and prior knowledge such as the forward operator could be solved via inverse
problem methods. Machine learning techniques come into play by constructing a model architecture with
parameters being learned from data. We provide theoretical considerations in solving the non-linear inverse
problem with unknown operator. The development of the theoretical and algorithmic framework will
generate a wide range of applications within passive sensing such as acoustic emission and and passive
infrared thermography for various applications.

Detection of mastitis was also studied by artificial olfaction. VOCs operating remotely or in the ambient
without the need for guiding gas through a chamber such as in tunable diode laser absorption spectroscopy.
The sensing of odorants using a traditional laboratory gas chromatography - mass spectroscopy (GC-MS) of
24 milk samples (15 infected and 9 healthy controls) for the purpose of identifying volatile organic
compounds (VOC) biomarkers for mastitis infected milk were carried out. However, owing to accidental
unknown bacteria development during the storage and transport of the samples contributed from dairy
farms. The GC-MS results become more complicated. On the other hand, the existence of unique VOC
biomarkers has been confirmed through a doctoral research carried out by Hettinga, et al., at Wageningen
University in the Netherlands and others [5, 3, 4, 10, 6, 8, 3, 15, 13]. These studies showed that mastitis milk
infected by bacterial - streptococcus aureus, coagulase-negative staphylococci, streptococcus uberis,
streptococcus dysgalatiae, escherichia coli has a much higher overall concentrations in VOCs and several
VOCs are identified as unique biomarkers for mastitis. These biomarkers are 2,3-butadione, Ethyl acetate, 2-
methylbutanal, 2-pentanane, Isopentanol, Acetoin, Ethyl butyrate and few others. We know that VOCs are
high-dimensional data, their patterns both in diversity (which VOCs) and concentrations can be complicated
by a number of conditions. The identification of unique biomarkers shall be globally true, invariant to
individual differences and variations in conditions affecting their generation. The discovery of a reliable
biomarker in itself a research topic which is out of the scope of this project. We carried out hyperspectral
imaging Fourier transform infrared spectroscopy for the detection of VOCs emitted by fungi causes
degradation. This experiment showed that a key barrier in successful detection of VOCs are that their
concentrations are extremely low (ppt to ppb). Such extremely low concentrations of molecules are beyond
the detection limit of available gas sensors (Normally ppm some down to ppb range). Chemoresistive
nanosensor arrays using sensing elements made of nanowires, nanotubes and graphenemay may mimic
biological nose to detect more sensitively VOC molecules via changing their electrical resistance. The number
of nanosensingelementscannevergoclosetothe numberofolfactory receptors of human, dogs and insects. A
photo ionization detector (PID) type gas sensor with detection limit of 1 ppb is planned to be tested in
laboratory where the PID sensor is exposed to the head space of mastitis infected milk and healthy controls.
The PID sensor can only detect overall VOC concentration levels not be able to know which VOCs are
present. One of the electronic noses which has been widely used for artificial olfactory research is called
Cyranose. Cyranose contains 32 nanocomposite sensing elements. Testing of Cyranose for mastitis detection
has beenconsidered.

A test-purpose state of the art sensors and data acquisition system was configured, and real-life data
collection trials were carried out at the center for animal research (As Gard SHF). Machine learning
algorithms was tested for early detection of lameness and mastitis.

® 3D RGB-Dimaging
3D models of the back of the cattle were obtained, although individual differences were detected,
among the cattle analyzed no cattle showed features of abnormal shape of her back. This is
consistent with the ground truth.



Feature detection algorithm based on ORB (Oriented FAST (Features for Accelerated Segment Test)
and Rotated BRIEF(Binary Robust Independent Elementary Features)) was used for detecting
keypoints of lam and healthy cattle. Keypoints of healthy cattle forms a straight line while those of
lam cattle formed a broken and curved line.

® Activity recognition
A pre-trained (on MS COCO dataset) deep convolution neural network model called faster R-CNN with
Inception Resnet was retrained and used for heat detection. This model was benchmarked as the most
accurate model among common mainstream models [11].

® |nfrared thermography
Infrared thermograms of 25 cattle were collected. Preliminary analysis of mean temperature and their
standard deviations were used to classify homogeneous and non-homogenous udder skin
temperature distributions. Solving non-linear inverse problem with unknown forward operators were
studied at a theoretical level and implementation of computational code needing more resources will
be conducted in a main project.

® GC-MS

28 milk samples were analyzed with GC-MS at NMBU. Heat map of VOCs are generated.
Dimensionablity reduction via principle component analysis using singular value decomposition
projected the 24 data samples on a 2D plane of 2 principle components. These samples are
segmented as 5 clusters. GC-MS based VOCs analysis can accurately classify milk samples but this
method needs sample preparation and cannot be integrated in process. We did not find the same VOC
biomarkers as reported in the literature; we doubt the milk samples were degraded during storage
and produce artifacts in data. We think the detection of total VOC concentrations by low cost PID
sensors could provide a promising qualitative screening tool.

Furthermore, we have evaluated Hyperspectral imaging (short wavelength infrared and visual near
infrared)analysis of milk in powder form after removing water for detection of mastitis causing pathogens
such as Escherichia coli (E. coli), Streptococcus uberis and Staphylococcus aureus. A bioradar sensor for
respiratory pattern monitoring is also considered to provide useful information. These cannot be conducted
within this project.

Results from this project will be published in relevant journals (Inverse problem in passive infrared
thermography to Inverse problem journal in preparation or Neurips (Neuro information process-
ing)workshop inverse problem meets deep learning) and conferences (Activity recognition to interna- tional
conference of computer vision and pattern recognition (CVPR), Learning in spherical data to CVPR, or
Neurips workshop deep learning through information geometry). A main research project was submitted to
NFR’s biotek program in 2018 and resubmitted to NFR’s Fripro program in 2020. A resubmission to
Landbruksdirektoratet in 2021 is planned.



Abstract

Malet med dette prosjektet er @ undersgke muligheten for visuell kombinasjon med olfaktorisk sensing og
multimodal intelligens for oppfatningen av sykdommer, spesielt de smittsomme, blant melkekyr. Ideen
er a utvikle kunstig intelligens systemer som kan generere lavdimensjonale representasjoner om
tilstedevaerelse av sykdommer ved a laere av visuelle og olfaktoriske signal, som er hgydimensjonale og
stgyende. ldeen om samarbeidende visuell og olfaktorisk intelligens er banebrytende. Dette er fordi
luktintelligensen hos dyr og insekter er dominerende i forhold til visuell intelligens, og at kognitiv
prosessen forbindet med luktintelligens for @gyeblikket knapt dekodes algoritmisk. Dette er i motsetning til
hgyopplgselige kamerasensorer som nar mange megapiksler, de beste sensor for & male flyktige
organiske gasser (VOC) som kalles elektronisk nese, bare oppnar titalls piksler og bare kan kjenne ppm,
kanskje ppb konsentrasjonsniva (1 000 000 til 1000 ganger lavere enn insekter). Oppfinnelsen av flerlags og
store kunstige nevrale nettverk for a forsgke @ kode menneskelig visuell perseptuell intelligens pa en
algoritmisk mate har oppnadd et gjennombrudd i hgyytelses kunstige intelligenssystemer. Nyere
modeller inneholder ofte en eller flere arkitektoniske moduler som koder for kognitive vitenskapelige
funn som minne, kontrast, analogi, forventning om konsekvenser, kausalitet, kunnskap i fysikk. Vi retter
oss mot avledningen av en heterogen, dyp arkitektur som kombinerer de visuelle og olfaktoriske grenene
deres samarbeidene intelligens.
Omfanget av dette prosjektet er @ evaluere potensialet i den foreslatte tilnaermingen i et reelt

verdensoppsett og a avklare tekniske utfordringer. To spesifikke scenarier er malrettet:

o Digital dermatitt(DD). DD er en svaert smittsom sykdom og forarsaker alvorlig smerte og halthet. De
visuelle egenskapene til DD kan vaere buet rygg, tapt nakke og hode pa grunn av redusert styrke i
vektbaering av den infiserte foten. Disse blir oppdaget via 3D RGB-D (Rgd Grgnn Bla -Dybde)
bildebehandling. Et annet visuelt egenskapet er unormale gangmgnstre for den infiserte foten pa
grunn av reduserte lokomotivevner. Disse kan oppdages via ganganalyse i videoer.

e Mastitt. Mastitt er en bakteriell betennelse i jur. Det forekommer relativt ofte, er veldig
smittsomt og forarsaker smerte, redusert melkeproduksjon og melk av lav kvalitet. De visuelle
egenskapene til mastitt kan veere forhgyede temperaturer i infisert omrade av jur. Dette kan
oppdages ved infrargd termografi. Et annet visuelt egenskapet kan vaere unormal lukt pd grunn av
forhgyede konsentrasjoner av utslipp av VOC pa grunn av bakterielle mikrobiologiske prosesser. Dette
kan oppdages med elektronisk nese (eller VOC gas sensorer).

Pavisning av DD ble undersgkt ved ekstraksjon av geometriske properti ved buet rygg, ogsa nakke-og
hodehode som lider av smerte. En kommersiell lavkostnad 3D-kamera (RGB-D)(Intel Realsense D435) og
dens SDK (Software Development Kit) brukes til 3D RGB-D bildebehandling for 3D-oppfatning mens kyr
star i melkeroboten. 3D-modeller av kyrs rygg og nakke oppnas ved a konvertere punktsky til mesh i
programvaren Meshlab. Innenfor det begrensede prgvesettet med kyr, selv om det ble funnet
variasjoner i buede grader i rygg og nakke, viste ingen kyr tegn pa halthet, noe som var i samsvar med
sannheten. Gang- og atferdsanalyse av disse kyr i panoramabildene og videoene som ble samlet inn ble
hindret pa grunn av at okklusjoner og at aktivitetene til dyrene er sveert begrenset (mesteparten av
tiden de star eller ligger). Aktivitetsgjenkjenning hos kyr ble studert ved hjelp av skrapte bildedata pa
internett av kyr i heat (estrous sykluser) via dyp konvolusjon nevrale nettverksmodell. Konklusjonen var er
at ved & kombinere 3D RGB-D-basert bildeanalyse, kombinert med gang- og atferdsanalyse i videoer,
automatisk og ngyaktig vurdering av DD er teknisk og praktisk gjennomfgrbar med fordelen av a kreve
bare noen fa billige visuelle sensorer for overvaking av flere til og med en stor gruppe dyr.

Deteksjon av mastitt ble undersgkt ved hjelp av et termisk kamera (Flir tau2, spektralband: 7, 5 - 13, 5
mum, fglsomhet: < 60mK), de romlige og tidsmessige variasjonene i temperaturen pa juromradet hos kyr
mens de blir melket i melkrobot ble det undersgkt. Innenfor det begrensede prgvesettet ble tydelige
individuelle variasjoner i giennomsnittstemperaturer og deres standardavvik vist. Sannhet om hvorvidt et av
flere av kyr hadde mastittinfeksjon, ble ikke identifisert ngyaktig, det var med hgy tillit fra laboratorieanalyse
at ingen kyr hadde mastitt i Igpet av datainnsamlingsperioden.



Konklusjonen er at passiv infrargd termografi definitivt kan gi nyttige data for utvinning av informasjon om
helsen til jur og kyr ufarlig og billig (bare 1 sensor er ngdvendig). Variasjoner i lysforhold og forskjeller
i form og stgrrelse pa juret og staende stillinger til kyr ble funnet a gi betydelige gjenstander og stay til de
registrerte termogrammene. Aktivitet av ku anses a pavirke den totale temperaturen, men ikke deres
romlige fordeling. Problemet med rekonstruksjon av en tilneermet sann modell av objektet, dvs.
mastitt-presentert jur og sunn jur via maledata og forkunnskaper som den fremre operatgren, kan
Igses via inverse problemmetoder. Maskinlaeringsteknikker spiller inn ved a konstruere en modellarkitektur
med parametere som laeres av data. Vi gir teoretiske betraktninger for a Igse det ikke-lineaere inverse
problemet med ukjent operatgr. Utviklingen av det teoretiske og algoritmiske rammeverket vil
generere et bredt spekter av applikasjoner innen passiv sensing som akustisk utslipp og og passiv infrargd
termografi for forskjellige applikasjoner.

Pavisning av mastitt ble ogsa studert av kunstig olfaksjon. VOC som opererer eksternt eller i
omgivelsene uten behov for a lede gass gjennom et kammer, for eksempel i avstemmelig diode-
laserabsorpsjonsspektroskopi. Oppdagelsen av luktsto'er ved bruk av et tradisjonelt laboratorium
gasskromatografi - massespektroskopi (GC-MS) av 24 melkeprgver (15 infiserte og 9 sunne kon-troller) for a
identifisere biomarkgrer for VOC for mastittinfisert melk ble utfgrt. Pa grunn av utilsiktet ukjent
bakterieutvikling under lagring og transport av prgvene bidro imidlertid fra melkeproduksjon. GC-MS-
resultatene blir mer kompliserte. Pa den annen side har eksistensen av unike VOC-biomarkgrer blitt bekreftet
giennom en doktorgradsundersgkelse utfgrt av Hettinga et al. Ved Wageningen University i Nederland og
andre [5, 3, 4, 10, 6, 8, 3, 15, 13]. Disse studiene viste at mastittemelk infisert av bakterie - streptococcus
aureus, koagulase-negative stafylokokker, streptococcus uberis, streptococcus dysgalatiae, escherichia coli har
en mye hgyere total konsentrasjon i VOC, og flere VOC er identifisert som unike biomarkgrer for mastitt.
Disse biomarkgrene er 2,3-butadion, etylacetat, 2-metylbutanal, 2-pentanan, isopentanol, acetino,
etylbutyrat og fa andre. Vi forstar at VOC er hgydimensjonale data, deres mgnstre bade i mangfold (hvilke
VOC) og konsentrasjoner kan kompliseres av en rekke forhold. Identifikasjonen av unike biomarkgrer skal
vaere globalt sant, uforanderlig i forhold til individuelle forskjeller og variasjoner i forhold som pavirker deres
generasjon. Oppdagelsen av en palitelig biomarker i seg selv et forskningstema som er utenfor omfanget av
dette prosjektet. Vi utfgrte hyperspektral avbildning Fourier transform infrargd spektroskopi for pavisning
av VOC som sendes ut av sopp forarsaker nedbrytning. Dette eksperimentet viste at en viktig barriere i
vellykket deteksjon av VOC er at konsentrasjonen er ekstremt lav (ppt til ppb). Slike ekstremt lave
konsentrasjoner av molekyler er utenfor deteksjonsgrensen for tilgjengelige gassensorer (normalt ppm
noen ned til ppb-omradet). Kjemoresistive nanosensorarrays som bruker sensingelementer laget av
nanotrader, nanorgr og grafen, kan etterligne biologisk nese for & oppdage mer fglsom VOC-molekyler ved
a endre deres elektriske motstand. Antallet nanosensingelementer kan aldri komme i naerheten av antall
luktreseptorer fra mennesker, hunder og insekter. En foto-ioniseringsdetektor (PID) type gassfgler med
deteksjonsgrense pa 1 ppb er planlagt a bli testet i laboratorium der PID-sensoren blir utsatt for headspace
til mastittinfisert melk og sunne kontroller. PID-sensoren kan bare oppdage samlede VOC-
konsentrasjonsnivaer, og kan ikke vite hvilke VOCer som er tilstede. En av de elektroniske nesene som har blitt
mye brukt til kunstig olfaktorisk forskning kalles Cyranose. Cyranose inneholder 32 nanokompositt
sensingelementer. Testing av Cyranose for pavisning av mastitt har blitt vurdert.

En advansert sensorer og datainnsamlingssystem ble konfigurert, og virkelige datainnsamlingsforsgk ble
utfert ved senter for dyreforskning (As Gard SHF). Maskinlaeringsalgoritmer ble testet for tidlig pavisning
av halthet og mastitt.

e 3D RGB-D avbildning
3D-modeller av baksiden av kyr ble oppnadd, selv om det ble oppdaget individuelle forskjeller,
blant kyr som ble analysert, viste ingen kyr funksjoner med unormal form pa ryggen. Dette er i
samsvar med sannheten.
Funksjonsdetekteringsalgoritme basert pa ORB (Oriented FAST (Features for Accelerated Seg-ment
Test) og Rotated BRIEF (Binary Robust Independent Elementary Features)) ble brukt til 3 oppdage
kritiske punkter fra lam og sunt kyr. Mgnsteren for sunne kyr danner en rett linje mens lam av
kyr dannet en avbrudd og uregelmessig linje.

o Aktivitetsgjenkjenning



En pre-trent (pa MS COCO datasett) dyp konvolusjon nevrale nettverksmodell kalt raskere R-
CNN med Inception Resnet ble omskolert og brukt til heat deteksjon. Denne modellen ble
vurdert som den mest ngyaktige modellen blant vanlige modeller [11].

e Infrargd termografi
Det ble samlet inn infrargde termogrammer pa 25 kyr. Forelgpige analyser av gjennomsnittstem-
peratur og deres standardavvik ble brukt til 3 klassifisere homogene og ikke-homogene fordeler pa
jurhudtemperatur. A Igse ikke-linezere inverse problemer med ukjente fremoveroperatgrer ble
studert pa et teoretisk niva, og implementering av beregningskode som trenger flere ressurser vil bli
utfgrt i et hovedprosjekt.

e GC-MS
28 melkeprgver ble analysert med GC-MS ved NMBU. Varmekart over VOC genereres. Dimensjon-
sreduksjonsreduksjon via prinsippkomponentanalyse ved bruk av singular verdi-dekomponering
projiserte de 24 datasamplene pa et 2D-plan med 2 hovedkomponenter. Disse prgvene er seg-
mentert som 5 klynger. GC-MS-basert VOC-analyse kan klassifisere melkeprgver ngyaktig, men
denne metoden trenger forberedelse av prgven og kan ikke integreres i prosessen. Vi fant ikke de
samme VOC-biomarkgrene som rapportert i litteraturen; vi tviler pa at melkeprgvene ble nedbrutt
under lagring og produserer gjenstander i data. Vi tror deteksjonen av totale VOC-
konsentrasjoner av lave PID-sensorer kan gi et lovende kvalitativt screeningverktgy.

Videre har vi evaluert Hyperspectral imaging (kort bglgelengde infrargd og visuell nzer infrargd) analyse
av melk i pulverform etter fjerning av vann for pavisning av mastitt som forarsaker patogener som
Escherichia coli (E. coli), Streptococcus uberis og Staphylococcus aureus . En bioradar -sensor for
andedrettsmgnsterovervaking anses ogsa a gi nyttig informasjon. Disse kan ikke gjennomfgres innenfor dette
prosjektet.

Resultatene fra dette prosjektet vil bli publisert i relevante tidsskrifter (Invers problem i passiv
infrargd termografi til Inverse problem journal under forberedelse eller Neurips (Neuro informasjons-
behandling) workshop invers problem mgter dyp lzsering) og konferanser (Aktivitetsgjenkjenning til
internasjonal konferanse om datasyn og mgnster anerkjennelse (CVPR), Laering i sfeeriske data til CVPR,
eller Neurips workshop dyp leering gjennom informasjonsgeometri). Et hovedforskningsprosjekt ble levert til
NFRs biotek-program i 2018 og sendt inn pd nytt til NFRs Fripro-program i 2020. Det er planlagt en
nyinnlevering til FFL/JA forskingsmidler i 2021.
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Chapter 1

Introduction

Breakout of contagious diseases such as mastitis owing to bacterial inflammation in udder, digital
dermatitis (DD) causing lameness, BRSV (Bovine Respiratory Syncytial Virus, causing cough), BCoV (Bovine
CoronaVirus, causing diarrhea) virus infections, causes significant economic losses. Lameness caused by DD or
other infections, which is a contagious and extremely painful, is one of the most significant welfare and
productivity issues livestock farming. These causes direct economic losses of hundreds of millions NOK
every year. In addition, use of antibiotics in livestock and antibiotic resistance imposes health risks to human
consumers. Today for prevention of some of the diseases, such as Mastitis and lameness no effective vaccines
are available; neither are there low-cost and non-invasive methods available for safe and effective screening.
Alternative methods of using wearable sensors and lab on a chip, which usually measures value of a single
physical parameter, are either non-effective or very costly.

Today, the public actions in fighting against breakout of contagious diseases have been concentrated on
restricting contact and limit mobility of the animals, for example, to carry out blood tests when buying and
selling the animals, and to require immediately reporting when one sick case is suspected, to confine the
scope of spreading. These defensive actions have been effective; however, it is a reactive action and its
detection is dependent on the observations of the farmers. It is not proactive, thus, not effective in disease
prevention. This is evidenced by TINE who expressed their worries that diseases are extremely contagious
and spreading rapidly also during the incubation period when no observations of sickness are possible. Neither
can farmers timely isolate sick cattle when it gets sick during nighttime. As response to the urgent need of
establishing technologies and methods to proactively fight again contagious diseases and for increasing
productivity in general, TINE has initiated a Norwegian Agriculture DataCloud (Landbrukets Datasky) project.
The basic idea is to collect available data from various sources and attempt to make use of the data through
cloud computing. Real-time data are not available at the moment, but the Landbrukets Datasky project team
are working on implementing real time data in order to possibly realize timely and early warning of risks of
contagious diseases.

There are currently some measurements are integrated with milking robots such as chromatography, somatic
bacterial counting, and measure volume and flow rate of milking. Those measurements are insufficient to
detection mastitis timely. Value losses caused by mastitis infection increases drastically when mastitis is
detected in bulk tank milk and in later stages, because this means a large volume milk has been
contaminated.

The research community of Precision Livestock Farming have been focused on the development of
either wearable sensors such as vital parameters sensors, or lab on a chip type of solution. So far, only GPS
sensor based bells have been widely worn by relatively large animals. Other wearable sensors that normally
need direct contact with the body of the animals can be easily destroyed. Lab on a chip solution is difficult
to use, and can be too expensive for use on a regular basis. Machine vision and fusion of electronic tongue,
electronic nose and vision have been investigated for forestry mapping, lameness monitoring and food
safety research. However, they have not been investigated for early warning of risks of contagious diseases
in livestock. At NORCE, we have researched the use of nanosensor array for olfactory perception of disease,
and using various sensors for non-invasive detection of rot due to fungi in wood.



Weproposedandinvestigated artificial sensory perception, i.e.,360° panoramaimaging, 3D RGB-D imaging,
infrared thermography and artificial olfactory (GC-MS) perceptions for DD and mastitis detection. 360°
imaging camera was used for registration of images and videos data for extracting knowledge about
abnormal appearance and activity patterns; 3D RGB-D imaging was utilized for generating 3D shape
descriptors; infrared thermal camera for detection of abnormal skin temperature distributions; and
nanosensorarrays for smelling bad odor (volatile organic compounds). The artificial sensory perception system
utilized low-cost, non-contact, non-invasive sensors to provide continuous and real-time data for monitoring
of single and multiple animals, and used artificial intelligence for perception for uncovering underlying
diseases, thus provided an adequate and low-cost solution for avoiding economic losses.

The primary object of the project was to evaluate feasibility of the proposed artificial sensory
perception concept for non-invasive and continuous monitoring of livestock to enable early warning of risk of
contagious diseases, using detection of lameness and mastitis pathogens in milk as two cases.

The main objective was realized through the following 4 sub-objectives (SO).

Completed SO 1. Configured adequate visual and artificial olfactory sensing systems for lameness and
mastitis pathogens detection via 3D RBG-D imaging, infrared thermal imaging, 360 °. imaging, and GC-MS
analysis.

Completed SO 2. Collected videos and images of cattle and VOC data in milk at As farm SHF. Dataset: 3D
RGB-D imaging of 23 cattle, infared thermograms of udder of 25 cattle, GC-MS data of 28 samples.

Completed SO 3. Algorithms for detection of lameness and mastitis pathogens in milk.

Keypoints detection based on ORB algorithm for back shape descriptor extraction.
® 3D model construction using Meshlab toolbox.
® Fast RCNN with Inseption RESNET deep neural network model trained for activity recognition.

e Statisticalanalysisofinfrared thermograms data for classification. Algorithms for solvinginverse problem
with unknown forward operator such as based Bayesian inversion and combining deep generative
models are considered theoretically.

® Principle component analysis was used for dimensionality reduction and clustering of GC-MS data.

Completed SO 4. Evaluated feasibility visual and olfactory sensing system in detection of lameness and
mastitis pathogens in milk.
Visual and olfactory sensing system showed interesting results. Given the continued dedication in collecting
and managing the database and constructing high-performance machine learning models either via domain
expertise and/or with automated model searching pipeline, these artificially intelligent systems will with no
doubt be an independent tool for future precision livestock farming. We point out that VOC sensing down
to concentration level of ppb to ppt is a challenging task, however nano electronic nose are under rapid
development. Combing with neuro-morphic computing chip and neural computing engine, real-time processing
and inferences without the need of storage of large amount of data enables real-world deployment of these
systems.



Chapter 2

Data collection

Dataset is a most important infrastructure for building machine learning models for learning a low-
dimensional representation in high-dimensional data. A good rule of thumb is that the number of samples
need to be roughly 10 times the number of Vapnik—Chervonenkis (VC) dimensions of the model. This means
millions of data for normal size deep neural nets. Indeed, it is not only about the absolute number of samples
but also their distributions. Redundant data deteriorates training performance. To enable good
generalization of the model, the distribution of training data and distribution of testing data needs to be
similar. To create a large scale and high quality dataset is not a trivial task. Many open datasets find with
labeled training data for the machine learning and artificial intelligence community to use freely. One
example is the activity recognition task dataset. Data are well chosen, consistent, and usually in a format
easy to load such as .csv or .png. However, this is not the case for industrial applications where data is rather
limited. An emerging learning concept called few shot and one shot learning is interesting for limited data.
Currently, error rate of few short learning algorithms are considerably high.

A dataset using a panoramaic lens, a depth imager, an infrared thermal camera was collected at the
Asgard farm in December 2018. GC-MS dataset was obtained in September 2019. A statistical overview of
the dataset shall be provided, however, given the limited scope, this does not make sense at the pre-project
phase.

Data such as milked volume and flow speed for each cattle with their identification number are
available as additional data. Currently these data are not used. Figure [milk_robot_data] shows examples
of the milk volume data.

Figure 2.1: Milk volume data collected in milk robot.



2.1 3D RGB-D dataset

RGB-D data is streamed as a video and stored as a .bag file which was converted to .ply and .png files.
Depth data in csv format was extracted using intel realsense SDK rs-convert. This imaging setup enables the
reconstruction of back and neck 3D model of the cattle. Figure 2.2 shows the intel realsense RGBD camera. 2.3
shows an example of RGBD images.

/ -
4 Intel'Realsense

D435 depth
imager

LS

Figure 2.2: RGB-D(depth)for 3D model reconstruction of back and neck of the cattle while getting milked in
the milking robot.

Figure 2.3: An exmaple of RGBD images.

2.2 360° panorama dataset

Figure 2.4 shows the 360° panorama camera mounted at the roof railing at the As farm for video streaming.
360-degree panorama camera enables wide field-of-view imaging using a single lens, but at the cost of
distortions. The distortions cause failure in object recognition task when using convolution kernels normally
used for perspective images. Methods for learning in hemispherical and spherical data is summarized in
previous work part.

2.3 Long wavelength infrared thermography dataset

Passive infrared thermal camera can be used to image temperature field of a scene. By choosing a camera
with a high spatial resolution (a large number of pixels) and a high sensitivity (how small difference in
temperature is distinguishable), a dense and precise temperature field can be obtained. Heterogeneity in
temperature field could indicate heterogeneity in thermal conductivity and capacity of the medium giving no
ambient inputs such as lighting or other thermal convection which attributes to the local discontinuity in
temperature fields. By transferring the data into frequency domain via discrete Fourier transform, certain
features are revealed. Figure 2.6 shows the long wavelength infrared thermal camera for udder surface
temperature field imaging while the cattle get milked in the milking robot. 2.7 shows an example of infrared
thermal camera image.
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Figure 2.5: An example of 360° panorama images.

2.4 GC-MS dataset

The purpose of using laboratory gas chromatography - mass spectroscopy for the profiling of volatile organic
compound contents in milk samples (both mastitis pathogen infected milk and healthy controls) is to
identify distinct biomarkers that distinguishing the two groups. Essentially, this means dimensionality
reduction in feature space. When considering olfactory perception of human or dogs, the basic idea is to identify
the odorants that give the distinct smell when milk gets spoiled or when milk comes from a sick cow. An
important question needs to be answered is that how low concentrations of odorants can be sniffed by
dogs comparing to how low concentrations is detected by a GC-MS
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Figure 2.6: Long wavelength infrared thermal camera for udder surface temperature field imaging while the
cattle get milked in the milking robot.

Figure 2.7: An example of infrared thermal camera image.

spectroscopy. Olfactory receptor of dogs can detect odorants at concentrations at low as 1-2 parts per trillion
(ppt), which is 10,000-100,000 times more sensitive than human, and is 1,000,000 times more sensitive than a
normal GC-MS with detection limit of 1 ppm. This is the main bottleneck that LAS (laser absorption
spectroscopy), GCMS, FTIR (Fourier transform infrared spectroscopy) are not able to achieve sniffing out
disease while dogs even human can. Emerging nanosensing elements such as using metal oxide
semiconductor (MOS) nanowire, carbon nanotubes, graphene, nanocantilever holds promise to achieve lower
detection limit, research remains at the laboratory.

For electronic nose, commercially available electronic nose devices find many. We have investigated PEN3
and cyranose for headspace gas analysis. The term “headspace” is referred as the gas directly surrounding a
sample. The constituents of the sample which have a high volatility will generally be present in the
headspace in higher concentrations. Low volatile compounds are less likely to be found in a sample.
Consequently, the concentration of molecules present in the headspace is not proportional to the
concentration of the same molecules in liquid or solid sample. PEN3 is one that appeared in
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several research papers. There are 10 MOS in PEN3, all different types and heated up at specific
temperatures (350°C - 500°C) in order to catch the widest range of volatile compounds. Cost is 19800 Euro.
MOS are calibrated in-house with reference gas standards; by experience | can honestly say there is very
little drifting over time and lifetime of sensors is several years, depending on how it is operated by users. It
gets rid of humidity by automatically heating up the measuring chamber at 110°C. PEN3 is a complex
electronic nose for fingerprinting and recognition that is worldwidely known for being one of the leaders in
the sector.

PEN3 is an analytical instrument which basically consists of a combination of an array of 10 different
metal oxide sensors and pattern recognition software. The electronic nose is capable to recognize simple or
complex mixtures of organic vapors after an appropriate training period. The results are determined
through statistical methods like euclid, correlation, factor analysis (PCA) or discriminant function analysis
(DFA). The system can be used for fast quality control applications in the food and chemical industry.
Environmental and safety applications are also possible.

The detection limit of the PEN3 is in the range of 1ppm. Sensors with good selectivity for sulfur organic
compounds, methane, hydrogen, alcohol and hydrocarbons are used.

The analytical system has a special sampling system integrated, which by an automatic control
(autoranging) prevents an overloading of the sensors and also leads to a better and faster qualitative and
guantitative. The system is easy to handle. We recommend only a short training.

You can use the PEN as a standalone device without pre-treatment of gas streams or together with a
headspace sampler or with our Trap and thermal Devices (EDU) to enhance the selectivity of the sample.



Chapter 3

Data analysis for mastitis and digital
dermatitis detection

3.1 Theoretical framework and state-of-the-art

3.1.1 360’ vision

Convolutinal neural networks (CNNs) for spherical data The main challenge of convolutional operation in
spherical data is that rotation non-equivalence. When sliding the convolutional filters across a perspective
image, this operation s translational. However, for hemispherical or spherical data, the imaging domain is non-
Euclidean, the convolution involves rotation of 3D orthogonal group, SO(3). Coors et al.[17] presented a novel
convolutional kernel which is invariant to latitudinal distortions via projection of a regular sampling pattern
to its tangent plane. Similarly, Su et al.[14] proposed an adaptive CNN kernels applied to the equirectangular
projection of sphere, i.e., the CNN kernels are alike the ones for the locally projected patches.

Cohen et al.[16] presented a novel way treating convolution on spherical data as a three dimensional
manifold, i.e., special orthogonal group (SO(3)) and using generalized Fourier transform for fast group
correlation. Subsequently, Esteves et al.[18] modeled 3D data with multi-valued spherical functions and
proposed a novel spherical convolutional network that implements exact convolutions on the sphere by
realizing them in the spherical harmonic domain. Yu et al.[24] pointed out that spherical CNN loses the
object’s location and overlarge bandwidth is required to preserve a small object’s information on a sphere.
And they proposed a novel grid-based spherical CNN (G-SCNN) which transforms a spherical image to a
conformal grid map to be the input to the S2/SO3 convolution. Defferrard et al. and Perraudin et al. [21, 22]
presented a graph based spherical CNN named DeepSphere. Their idea is to model the sampled sphere as a
graph of connected pixels and using the length of the shortest path between two pixels as an approximation
of the geodesic distance between them. Yang et al. [29]generalized the grid-based CNNs to a non-Euclidean
space by taking into account the geometry of spherical surfaces and propose a Spherical Graph Convolutional
Network (SGCN) to encode rotation equivariant representations.

Tens of new models are proposed for visual understanding in spherical data recently. Zhao et al.

[30] proposed a 360° detector named Reprojection R-CNN by combining the advantages of both ERP and PSP,
which generates spherical bounding boxes. The method was evaluated on a synthetic dataset for detection of
salient objects like person and train. Wang et al. [23] used a modified RCNN model for object detection in
synthesized dataset 360GoogleStreetView. Chou et al. [25] a real-world 360° panorama dataset containing
common objects of 37 categories. Lee et al. [27] proposed to project spherical images onto an icosahedral
spherical polyhedron and apply convolution on transformed images. Figure 2.4 shows a panorama camera using
the panorama lens of Immervision mounted at the roof railing at As farm. 2.5 shows an example of
dewarped panorama image. Figure 3.13 shows a research done on the detection of lameness via detection
of small change in shape of back and neck.



3.1.2 Non-linear dimensionality reduction via manifold learning

We utilize a multi-modal sensory approach for collaboratively detection of a underlying early stage disease.
We consider firstly knowledge generation from each of the uni-modal sensing methods individually. The
focus are on methods which can be applied to different sensing modalities such as 3D depth imaging data,
panorama vision, infrared thermograms and GC-M data. These methods include dimensionality reduction via
concepts such as subspace and union of subspaces (UoS), manifold learning [19]. They model signal as low-
dimensional subspace embedded in a high-dimensional ambient space. Two- and three-dimensional manifolds
are components of geometrical model of the objects [2]. Learning theory development such as using
reproducing kernel Hilbert space or Banach space as well as metric and manifold learning model learning of a
model from examples essentially the learning of relationships (including distances) between observations.

Riemannian manifold learning (RML)has been proposed for nonlinear dimensionality reduction
(NLDR)[1]. A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its
intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian
normal coordinates (RNC). The method can learn the data’s intrinsic geometric structure, yielding uniformly
distributed and well organized low-dimensional embedding data.

Riemannian metric is a concept of distance expressed by means of a smooth positive definite symmetric
bilinear form defined on the tangent space at each point. Distance functions and loss functions play
important roles in machine learning to obtain good models. Similar to learning in Hilbert space vs. Banach
space, Riemannian geometry generalize Euclidean geometry. The notion of a directional derivative of a
function from multivariable calculus is extended in Riemannian geometry to the notion of a covariant
derivative of a tensor. Many concepts and techniques of analysis and differential equations have been
generalized to the setting of Riemannian manifolds. A distance- preserving diffeomorphism between
Riemannian manifolds is called an isometry. This notion can also be defined locally, i.e. for small
neighborhoods of points. Any two regular curves are locally isometric. However, the existence of a local
isometry imposes strong compatibility conditions on their metrics: the Gaussian curvatures at the
corresponding points must be the same. In higher dimensions, the Riemann curvature tensor is an important
pointwise invariant associated with a Riemannian manifold that measures how close it is to being flat. An
important class of Riemannian manifolds is the Riemannian symmetric spaces, whose curvature is not
necessarily constant. These are the closest analogues to the "ordinary" plane and space considered in
Euclidean and non-Euclidean geometry. Pseudo-Riemannian geometry generalizes Riemannian geometry to
the case in which the metric tensor need not be positive-definite. Finsler manifolds is a generalization of
Remannian manifolds.

Perrault et al. [9] studied algorithms for preserving original geometry (such as distances, angles, areas,
volume, etc) of the data after performing non-linear dimension reduction. The approach is based on
augmenting the output of an embedding algorithm with geometric information embodied in the
Riemannian metric of the manifold. The Riemannian metric allows one to compute geometric quantities
(such as angle, length, or volume) for any coordinate system or embedding of the manifold. Figure 3.1 shows
the transformation of data in Euclidean space to non-Euclidean manifold space while keeping isometries.

3.1.3 Artificial olfaction

The nanosensor array microsystem shall have more pixels such as 100 (10 x 10 array). This nanoarray SoC
(system on chip) can be integrated with micro hotplate and on-chip automatic calibration. It is adequate for
profiling complex mixtures of odours containing hundreds of volatile organic compounds (VOCs) at
concentrations down to ppb. Artificial intelligence algorithms, especially deep neural network models (DNNs)
and algorithms are developed to de-mix odours and recognize a presenting diseaseous odour from the
response patterns registered by the nanoarray. Both the nanoarray and DNN models and algorithms have
not been investigated by the research community today and will be developed in this project to achieve
breakthrough. Microarrayanalysis for gene expressions have gone from obscurity to being almost ubiquitous in
biological research within few years, we trust that this is likely a case for the ubiquitous use of nanoarray for
breath profiling and uncovering underlying health conditions. This is
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Figure 3.1: Metric learning and manifold in machine learning

because that, firstly, diagnostics based on VOC biomarkers provides a completely painless, non-invasive, and low-
cost method with potential to be integrated with the sensing platform of a smart phone for everywhere and
anytime health care. Secondly, it is, in nature, a highly-sensitive sensing modality, thus, enabling early-stage
disease detection, which is deterministic in successful disease treatment. The high-sensitivity and early-stage
detection advantage is rendered by the high-mobility, long-diffusion length and high permeability of gaseous
particles, which contrasts with traditional biomarkers carried in cells, blood, urine and faeces. When comparing
to otherwise modern diagnostic imaging methods such as X-ray computed tomography, Ultrasonic and
Magnetic Resonance Imaging, which utilize reflected and scattered waves by an abnormality to reconstruct its
image for diagnostics, although are extremely powerful and robust, often have difficulties in distinguishing
early-stage diseaseous cells.

Disease and other diseases prediction through identification of VOC biomarkers in exhaled breath has
been extensively investigated. Consensus findings on VOCbiomarkers researcher are thata number of VOCs are
associate with diseases or other diseases invariant to other subject characteristics; and that the association is
rather deviations in concentrations of a small cluster of VOCs from normal ranges of concentrations rather
than the presence or non-presence of a certain VOC or certain VOCs. The VOCs’ concentration patterns are
subject characteristics-invariant, and they solely depend on disease or non-disease . These studies are truly
ground-breaking, especially remarkable are the pioneering research carried out by Professor Hossam Haick
at Technion-Israel University of Technology. Gas Chromatography-Mass Spectroscopy is a benchmark
analytical equipment for laboratory gas analysis. Gas sensing utilizing otherwise laser absorption spectroscopy
such as Tuneable diode laser absorption spectroscopy (TDLAS) can also achieve very low detection limits (of
the order of ppb), however, these techniques have limitations in detecting multiple gases simultaneously
(even for TDLAS), therefore it finds limited use in breath analysis. Professor Charles M. Lieber at Harvard
University made the first nanowire nanosensor using silicon nanowire and is leading silicon and MOS nanowires
based MOSFET (MOS Field Emission Transistor) for future nanoelectronics. From a commercial maturity point
of view, a number of companies in Europe and USA have commercialized nanosensors. These include
Sensigent , Vista Therapeutics (Founded by Professor Charles M. Lieber at Harvard University), and
NanosensorsTM. We studied a type of piezoresistive nanosensors made by NanosensorsTM.
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Although ground-breaking research has been carried out by world-renowned groups, many challenges remain
which hinders its application clinically. These include the intrinsic challenges with the chemo- resistive
nanosensors such as humidity interferences, cross-reactivity, long-term drift, stability, and relatively short
life-time. The latter shortcomings are because, simply speaking , the sensing materials changes their electrical
resistivity through changing their carrier densities owing to adsorption and absorption of gas molecules; the
adsorption and absorption processes are not 100% reversible, thus leaving a non-virgin sensing interface
impairing sensitivity. These challenges, however, will be tackled in this research through on-board auto-
calibration. Except for these challenges, in our viewpoint, the dimensions of the nanosensor array (21 sensors
[12] or 14 sensors [7]) investigated in the state-of-the-art research [2-26] are insufficient for adequate sensing
of VOCs in breath as a complex system. This is because that breath data are high-dimensional data. The
breath samples are constituted of commonly 100-200 VOCs with various concentrations (The total VOCs of
biological origin is about 1877), and they are dependent to the so-called subject characteristics such as age,
gender, alcohol, smoke, drug, disease, geographical, location (why the person live), historical exposure of
exogeneous VOCs, and other metabolic, pathological, and physiological processes associated parameters.

The insufficient dimensionality of nanoarrays is not likely owing to non-awareness but owing to
technical difficulties in constructing such as high-dimension array. As to our best understanding, the
bottleneck in hindering achieving a large nanoarray does not lie in the creation of nanostructures and
nanomaterials, it is rather lie in a smart CMOS integration of sensing layer with circuitries such as signal
conditioning, digital signal processing, auto-calibration, and temperature control of micro hotplate.
Important issues also include low noise, input and output signal range, signal resolution, accuracy, and
sampling rates . In this aspect, we see that the method used for manufacturing the gold nanoparticles
nanosensor array by Professor Hossam Haick’s group can be areason thatlarger array at 32-pixels failed. CMOS
integration of nanosensors for gas sensing both for silicon nanowire which can be made by top-down approach
and other semiconductor nanowire made by bottom-up approach was studied. IBM has made large scale
production of silicon nanowire transistors. Engineering design of CMOS interface electronics for nano-bio-
sensor platform on nanometer CMOS technology have been studied. It is worth noting of a new development
in CMOS integrated graphene as imaging sensors for multispectral and hyperspectral imaging could provide
thisresearch anapproachinfabricating CMOS integrated 100-pixels nanoarray.

Our second opinion is that artificial intelligence, especially DNN models and algorithms, which have
been produced ground-breaking results in visual perception and speech recognition, shall be developed for
olfactory perception. In this aspect, current research front has been limited to traditional algorithms such as
principle component analysis, linear discriminant analysis and discriminant factor analysis (DFA) binary
classifiers, using only 4 data points from sensor response curves. In evaluating whether DNN models and
algorithms are promising methods, we reviewed findings in neuroscience in understanding of mammal’s
olfactory intelligence and can perceive the common features between olfactory and visual intelligence.
Thus, we will be focusing on developing new DNN models and algorithms for robust artificial olfactory
perception. It is not impossible that novel DNN models could be constructed, giving a novel nanoarray data
structure. Furthermore, hyperspectral sensor provides both spatial (providing structural/geometrical
information) and spectral (providing chemical information) information, we think that algorithms developed for
hyperspectralimaging can be useful for nanoarray.

A more recent work published in 2018 confirmed that 3-Methyl-butanoic acid was a stable end product
and its production correlated well with the growth of Staph. aureus at different temperatures and in different
mixtures with other pathogens (except Salmonella Enteritidis) in sterile milk.

3.1.4 Activity recognition in video

The detection of lameness in cow using computer vision has been researched. Figure 3.9 shows work done
on gait analysis for detection of lameness in cattle. We did not carry out gait analysis within this project
because TINE suggested us to focus on mastitis detection.
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Table 4

Recent applications of electronic-nose technologies for the noninvasive early diagnosis of
gastrointestinal diseases.

2

Disease 1 Location Sample N= E-Nose Model Sensor Type/No. References
BAD BAD Urnine 110 Fox 4000 MOS 18 [76]
Cancer Colon  Breath 26 Experimental GNP 14 [98]
Colon Fecal 157 Cyranose 320 CBPC 32 [5]
CRCIBD  Colon Urine 92 WOLF EC8 NDIR 2.PID 1 [2]
IBD Intestine  Urine 62 Owlstone FAIMS [99,100]
Colon  Fecal 83 Cyranose 320 CBPC 32 101
IBS Colon  Fecal 182 Experimental GC-MOS 1 [102]
Colon  Breath 234 V&F Airsense IMR-MS [z71
D Colon Fecal 100 Experimental GC-MOS 1 [103]
LOS Systemic Fecal 76 Cyranose 320 CBPC 32 [93]
NEC Colon Fecal 27  Cyranose 320 CBPC 32 [104]

! Disease abbreviations: BAD = Bile acid diarrhea; CRC = Colorectal cancer; IBD = Inflammatory bowel disease;
IBS = Irritable bowel syndrome; ID = Infectious diarrhea; LOS = Late-onset sepsis; NEC = Necrotizing enterocolitis.
% Sensor type abbreviations and number in sensor array: CBPC = carbon black polymer composite; EC =
electrochemical sensor; FAIM = field asymmetric ion mobility spectroscopy; GC = gas chromatography; GNP = gold
nanoparticles; IMR-MS = ion molecule reaction-mass spectrometry; IMS = ion mobility spectrometry; MOS = metal
oxide semiconductor, NDIR = non-dispersive infra-red (optical devices); PID = photo-ionization detector.

Figure 3.2: Cyranose320 and other enoses including PID sensor.

3836 HETTINGAETAL.

Table 1. Quantity of volatile metabolites in the milk samples’

Mastitis pathogen
Metabolite Staph. aureus CNS Strep. uberis  Strep. dysgalactiae E. coli Control*
Acetaldehyde 7.4 x 10% 6.4 x 10" 2:8:10% 1.4 100 2.7 %1 08 1.20¢10%
2,3-Butadione 1.1x10% 5.0 % 10" 5.6 % 10°"° 1.4 x 10°* 1.5% 10" 0" )
2-Butanone 2.1 x 10% 3.2 x10™ 1.4 x 10%° 7.0 x 10> 5.0 x 10°*" 3.0 x 10%
Ethyl acetate 1.1x10% 0" 5.0 x 10" 2.0 x 10® 6.9 10™ o ,
3-Methylbutanal 2.8 x 10™ 2.7 x 105 8.8 x 10" 4.5 % 10™ 4.6 x 10" 6.4 X 10°
2-Methylbutanal 3.7 % 10™ 5.9 x 10* 2.7x 10% 2.7 x 10 0° | o
2-Pentanone 8.1 x110% 8.3x 10" 3.6 x 10" 7.1% 10 9.6 % 10°*" 0"
Acetic acid 6.0 x 10™ 51x10% 2.7 xi10f B:dac 10%H 9.8 x 10™ 3.7 %100
Isopentanol 7.3 % 10% 1.1 % 105 o : 1.3 % 10™ 3.9x 10" 0o
Acetoin 8.2 x 10 3.2x 10" 3.6 x 10™ 0" i 0 ) o
Ethyl butyrate 7.2 x 10% 0" . 7.2 % 10" 1.0 x 10 3.3 % 107 0" )
Butyric acid 2.9 x 10%° 2.0 x 10™ 7.8 x 10* 1.0 x 105 1.0 x 106t 4.15 x 10%
Ethyl 2-methyl butyrate 2.2 x 10% 3.6x 10:3" oP ) o° ‘ QP o
Ethyl 3-methyl butyrate 9.6 x 10" 46 % 10% 3.2 % 107 2.8 x 10% 0 0
3-Methyl butyrate 1.4 x 10° 0 0 7.2 % 10* 0 0
2-Methyl butyrate 6.0 x 10° 0 0 ) 0 _ ] i 0
2-Heptanone 1.7x% 10" 1.9x 10® 1.0 x 10™* 1.3 x 105 3.2 x 10° 2.0 x 10*
Butyl butyrate 1.2 x 10 0° 0 0" 0° i 0"
Ethyl hexanoate 3.7 x 10° 7.6 x 10% 6.4 x 10 9.2 x 10*® 2.2 x 10 0"

**“Means within a row with different superscripts differ (P < 0.05).
'"Numbers are mean area values (arbitrary units) of the different volatiles of the samples that did contain the compounds of interest.
*Milk from cows without clinical mastitis and with low SCC.

Figure 3.3: VOC profiles obtained by GCMS analysis by Hettinga without Ethanol.
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Mastitis detection by volatile metabolites

Table 4.1. Quantity of volatile metabolites in the milk samples. Numbers are mean area
values (arbitrary units) of the different volatiles of the samples which did contain the
components of interest.

Mastitis Pathogen

Metabolite ! Staph. CNS:2 Strep. Strep. E. coli Control 3
aureus uberis dysgalactiae

Acetaldehyde 7.4x10%*  6.4x10'b  2.8x10%P  1.4x105%b 2.7x10°sb 1 2x108b
Ethanol 1.1x10%»  1.6x105b  1.6x106>  5.8x106b 1.3x1082 ob
2,3-Butadione 1.1x108a 5.0x10%1ab  56x10%ab 1 4x]103ab 1.5%104b ob
2-Butanone 2.1x10%s  3.2x10%b  1.4x106ab  70x105ab 5.0x10%2b  3.0x1082
Eth. acetate 1.1x1082  0b 50104  2.0x10'P 6.9x105*  0Fb
3-Meth.butanal  2.8x107*  2.7x1062  8.8x10'®  4.5x10%" 4.6x101b 6.4x10% b
2-Meth.butanal  3.7x10%a  5.9x104a  2.7x103b  2.7x103b ob ob
2-Pentanone 8.1x10%*  8.3x10%b  3.6x10*F  7.1x104=b 9.6x105%ab Qb
Acetic acid 6.0x106a 5.1x105b 2.7x108ab 3 4x]1()6 ab 9.8x106a 3.7x106ab
[sopentanol 7.3x108a  1.1x108=b Qb 1.3x105b 3.9x106b Qb
Acetoin 8.2x105a  3.2x10%bd  3.6x103b Qb 0b ob

Eth. butyrate 7.2x10%= Qb 7.2x10%b  1.0x10%b 3.3x10%=> Qb
Butyric acid 2.9x1062b  2.0x105¢  7.8x10%¢  1,0x106abe 1.0x106abe 4 2x]1(62
Eth. 2-meth.but. 2.2x10*»  3.6x10%% Qb ob ob ob

Eth. 3-meth.but. 9.6x104=» 4.6%102b 3.2x103b 2.8x103b 0b 0b
3-Meth.but. 1.4%10% 0 0 7.2%10% 0 0
2-Meth.but. 6.0x104 0 0 0 0 0
2-Heptanone 1.7x10%2  1.9x10®  1,0x10%2b  1.3x10%ab 3.2x10%>  2.0x101P
Butyl but. 1.2x104= Qb ob ob ob ob

Eth. hexanoate  3.7x10%*  7.6x10%% 6.4x10't  9.2x104"b 2.2x1052 (t14

a,b.¢ Means within a row with different superscripts differ (P < 0.05)

! Eth. = Ethyl; Meth. = Methyl; But. = Butyrate

2 CNS = coagulase-negative staphylococei

3 Milk from cows without clinical mastitis and with low somatic cell count

Figure 3.4: VOC profiles obtained by GCMS analysis by Hettinga with Ethanol.

3.1.5 Inverse problem ininfrared thermography using a deep generative model as prior

Image processing such as reconstruction (computational imaging) as in compressive sensing, denoising,
inpainting and machine learning can be cast into an inverse problem. On the other hand, deep generative
models such as generative adversarial network can be learned using examples. The learned model can be
used as prior in Bayesian inversion scheme [20]. Figure [inv_dgm] shows a general framework under
development at NORCE Technology and Energy department.

Figure 3.11 shows a summary of a number of research been conducted on infrared thermography for the
evaluation of udder health.

Figure 3.10 shows a workflow for solving inverse problem in active infrared thermography. The
experimental data are collected in a set up for landmine detection using microwave induced thermal wave
propagation. The forward process are governed by the Maxwell’s electrodynamics equations
coupled to the heat equation (Laplace equation), both are partial differential equations. The objective
function of theinverse problem isformulated asa/2norm, i,e., a non-linear least squares minimization problem.
This minimization problem is solved by generic algorithm and pattern search algorithm. This is a clever
approach for utilizing measured data most. However, for the case of passive infrared
thermography, the underlying thermal imbalance and thermal diffusion process are unknown, neither are inputs
from the ambient such as lighting conditions be defined accurately. In the problem formulation of inverse
problem, this means that the transformation matrix (often denoted as A) which mapping the input (often
denoted as x) into the output (often denoted as y)is unknown, in addition to that the input is unknown.
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Table 2 Median concentrations of VOCs released or consumed by Staphylococcus aureus
miedian concentrations [ppbv]

Compound CAS m/z for SIM medium 15h 30h 45h 60 h

propanal 123-38 L 10.62 14.22 8.932 .04
3-miethyl-2-butenal 107-86-8 B4 1526 1832 3415 5.708 5.348
B4 1 556 201 6453 5537 5775

i 177.4 268.5 2479
E B4 < LOD < LOD 0.259 0.394 0.381
2054 1908 176 11066 3815

9.328 '&17 X

50170 43 28 6.4 3r42 10227 1417.4

3 590-86-3 - 37 403.3 2764.3 4779.3 48185
8-84-2 - 5586 658.5 2044.5 1698.6 1299.5

21.24 59.4

21.32 52.62

3-miptind-1-Eatanc 123-51-3 0 0 0 27.65 210.0
ethanc ** &l 17:5 = 0 89.57 237.0 6173.0 116951
186 &R < LoD T aooe 140.6 279.3

116096 4 < LOD = LoD < LOD 1135 231.0

a5.84 6799

45, & o ] L 880.5 25666

EINE] 97.35

B | C 1.973 55624

outyl acetate 123-86-4 56, 73 ] a 0 ] 0239
108645 0 0 < LoD 0.852

LOD 1.938

LOD 3788

BO-62-6 - 15.99 1479 2027 28.65 31.93

2104 3606 559.4 Fo1.5

3.657 8.134 10.24

106-99-0 4 < LOD < LOD 4.941 4.342 4313

4545 14.37 21.8%

106-97-8 8 st 0703 1.274 2.504 4.329

E LOD l.687 4,789

246546 & 1 344 < LOD 4.7943 11.32 13.73

091 0a1 1951 3441 4.902

Eold numbers indicate significant difference (KnuskalWalliz test) in VOC concentrations between bacteris cultures and medium headspace (p < 0.05). Ethanal,
2-methylpropansl. 3- methylbutanal and methyl methacrylate were analyzed in TI. mode & indicated by **, while the remaining compounds wene analyzed in

Figure 3.5: VOC profiles obtained by GCMS analysis by Philipiak with Ethanol as the main VOC.

3.2 Results and discussion

3.2.1 3D RGB-D

The depth data is calibrated and 3D model of the back and neck of the cattle is reconstructed. RGB-D 3D
perception has important applications within mobile robots and autonomous vehicles for 3D simultaneous
localization, mapping and navigation. Super-resolution 3D imaging in certain applications combined with a Lidar
sensor provides possibility for small change detection such as the case of arched back and neck when cattle
suffering pain. 3D convolution kernels is an extension of 2D kernels and can be constructed in tensorflow,
pytorch or keras without much difficulty.

Figures 3.14 and 3.15 shows the 3D model obtained from RGBD imaging of four cows. Algorithms for

feature detection and and description include speeded up robust features (SURF)),
scale-invariant feature transformer (SIFT), FAST, BRIEF and ORB. SURF is a scale- and rotation- invariant
detector and descriptor. They are usually implemented on gray-scale images. SURF uses an integer
approximation of the determinant of Hessian blob detector, which can be computed with 3 integer
operations using a precomputed integral image. Its feature descriptor is based on the sum of the Haar
wavelet response around the point of interest. These can also be computed with the aid of the integral
image. ORB is an efficient alternative to SIFT and SURF. Opencv has easy interfaces for implementing feature
detection and description algorithms by calling the class and running functions such as create(), detect(),
compute(). Asshownin3.16 and 3.17, adirectimplementation of the feature
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Figure 3.6: The 2018 result showed that 3-Methyl-butanoic acid is a good biomarker.

detector and descriptor algorithms cannot produce satisfactory results.

By focusing on the back region via simply cropping the images, as shown in Figure 3.18 classification of
lameness and healthy status are transformed into distinguishing the shape connecting the keypoints detected.
The keypoints of healthy cow makes a straight line while that of the lameness makes a broken and non-straight
lines.

Shape descriptors extraction could result in interesting feature vectors for classification of lameness and
healthy cows.

The openPose library provide methods for real-time multi-person to jointly detect human body,
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Figure 3.7: VOC analysis using a single type commercial MOS gas sensor.
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Figure 3.9: Lameness detection using gait analysis.

hand, facial, and foot keypoints (in total 135 keypoints) on single images. Most of the pose and gait analysis
algorithms and toolboxes are designed for human. Because cows body geometrical arrangement, kinematics and
dynamics are different from human, adaptions are needed. To obtain robust detection, the algorithms need to
distinguish normal individual variations such as normal variations in geometrical shape of lame cow and healthy
cow. The robustness and accuracy can be improved by comparing not only differences in these features
between different individuals but also the same individuals at different time period such as when lame and
when healthy. An important factor to consider is that
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Figure 3.10: Workflow for solving inverse problem in active infrared thermography.

for human visual perception, human considers context and understands the whole situation also in a longer
time perspective, this is a fundamental challenge in computer vision. Human understands that a cow dropped
her head or arch her back because they she needs to reach food or avoid collision, the understanding of
whether a cow is lame or not under adequate understanding of an entire scene is necessary but
challenging.

The results of using edge detection is shown in Figure 3.19. When edges are extracted, the edges of the
back can be segmented and its straightness calculated by comparing a straight line model.

3.2.2 Activity recognition

Figure 3.20 shows results for heat detection using a pre-trained convolution neural network model. A
transfer learning technique is used. The pre-trained model is re-trained by using custom training images
with labels. The pre-trained model is then used for detection of activity, in this case, mounting on another
cow indicating on heat in unseen images.

3.2.3 Infrared thermography

Quantitative computational imaging such as by converting the observed sensor signal, in this case, it is the
surface temperature fields to an unmeasured variable such as thermal conductivity fields. This is done via
solving an inverse problem. The inverse problem is defined as a nonlinear least squares minimization
problem, i.e., the I2norm of difference between forward simulated data as to measured
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Table 1: Evaluation of udder health using Infrared Thermography.

IRT camera Breed/Species Findings Diagnosis Reference

FLIRThermacam Dairy cow 2.7°C change in udder surface Clinical mastitis Scott e al.,2000
temperature

FLIRInframetrics 760 Holstein Friesian cow 1.02°C variation of udder surface Clinical Mastitis Berry et al., 2003
temperature

FLIRInframetrics 760
Thermal Cammera

IR Flex-Cam S,
FLUKE TI 20™
FlexCam S

FLIR System Serie-i
FLIR 760 IR Scanner
FLUKE TiS0FT
Flexcam

FLIR T™M

FLIR i5 camera

FLIR T440

Dairy cow

Ayrshire and Holstein-
Friesian

Brown Swissand Holstein
cows

Gir cows

Brown Swiss
Sheep

Dairy Cow

Goat

Holstein Friesian
Holstein Friesian

crossbred cows
Holstein Frisian

2.0°C increase of teat end temperature
1 to 1.5°C increase in udder surface
temperature

0.9 to 1.5°C change in udder surface
temperature

change in udder surface temperature is
1.75-2.54°C

2.35°C change in udder surface
temperature

change in udder surface temperature is
0.17 to 0.24°C

2.06°C differences in the surface
temperatures of udder by E. coli infusion
4.92 °C temperature difference

at teat end

Change of 2 to 3°C in udder surface
temperature

0.72 to 1.05°C higher than healthy
quarter.

Change of 1.35°C in udder surface
temperature between positive and
negative CMT scored quarter

Subclinical mastitis
Clinical mastitis

Subclinical mastitis

Subclinical mastitis

Subclinical mastitis

Subclinical and
Clinical Mastitis

Kunc ef al.,2007
Hovinen et al., 2008

Colak et al.,2008
Porcionato et al.,

2009

Polat et al.,2010

Martins et al.,2013

Induced acute mastitis Metzner ef al.,2014

Subclinical mastitis
Subclinical mastitis
Subclinical and

Clinical mastitis
Subclinical mastitis

Alejandro ef al 2014
Bortolami ef al., 2015
Sathiyabarathi e al.,

2016
Dogiovani et al,2016

Figure 3.11: Summary of previous research on udder health monitoring using infrared thermography.

Machine learning married with inverse
problem theory: a software framework

Figure 3.12: General framework for solving inverse problem using machine learning.



Figure 3.14: 3D model of cows no.1 and 2.

Figure 3.15: 3D model of cows no.3 and 4.

data. The forward simulated data are obtained by using the governing equation of the forward process with its
parameters given by an initial guess. The optimization algorithms need to find the direction of updating to
approach gradually.

Although in passive thermography setup, no active thermal source is applied. We adopt the assumption
that the temperature distribution inside the udder satisfies the homogeneous linear heat equation [28].

o(x)c(x)0:T(x,t)+V - (-k(x)VT(x,t))=0 (3.1)

Figure 3.21 shows the mean temperature and standard deviation of udders of 23 cows. We see that
individual differences exist both their mean temperature and in the homogeniety of distributions. Figures 3.22
and 3.23 shows that roughly the temperature fields can be separated as to their homogeneity. This is however
considerably subjective and not quantitative.
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Figure 3.17: Keypoints via the ORB algorithms for healthy cow.

3.2.4 Artificial olfaction: GC-MS data and Cyranose

The sample preparation process and analysis procedure used for GC-MS analysis is described as below which is
the same as Hettinga’s work on the material and methods part. Ethanol which is a common VOC, was listed in
Hettinga’s Ph.D thesis but not in his article published on Journal of Dairy Science.
Compounds released from milk were collected on a train of traps filled with different solid sorbents to
cover all components having a number of carbon atoms ranging from 4 to 15. They were analysed by GC-MS
after thermal desorption of VOC from the collecting traps.
Figure 3.26 shows the VOC profiles of the 28 milk samples analyzed by GCMS. Only for reference purpose,
Figure 3.28 shows results of the detection of odorants owing to fungi development in wood. What the result
show is that no gas detected comparing to background, this is consistent with that the
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Figure 3.19: Comparing edges detected of healthy and lameness cows.

concentration of odorants giving the distinct smell of rot is much lower than the detection limit of the
hyperspectral imaging Fourier transform infrared spectroscopy.

The following results are shared by Sensigent Inc. They are not produced within this project, but as
references, the results are interesting and relevant. The Cyranose 320 was used to measure the headspace
of three kefir products supplied by the customer. The customer requested a quick preliminary test to
determine if the kefir products could be differentiated. Initial test results indicate each of the kefir samples
can be distinguished from one another based on the headspace measurements. In a subsequent test, the
Cyranoseidentified each kefirsample correctlywhen measuredasanunknown. The identification accuracy was
100% with high statistical confidence. This shows the measurement protocol and results are robust and can
be used for identification of the customer’s kefir products. Follow up testing after 9 days refrigeration reveals
the kefir products are well-discriminated from one
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Figure 3.20: Activity detection using a pre-trained convolution neural network model
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Figure 3.21: Mean and standard deviation in temperature of 23 cows
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another. Aging produces dramatic changes in each of the products and the change is revealed along 3 new
vectors (unique vector for each kefir) with principal direction along principle component 2. There is also
greater intraclass variability in the aged products. Samples of the aged kefir products tested as unknowns are
identified correctly as the aged product and not fresh.

Figure 3.29 illustrates headspace measurement set-up using Cyranose. Figure 3.30 shows the new
unknown samples are represented by a star symbol with a label (1, 2 or 3) confirming the class identify of the
sample tested. Figure 3.31 shows that the aged products are better discriminated from one another than
the fresh products, and the variability (intraclass distance) is also greater. Age-related changes are identified
along different vectors as projected onto 2-D plots, with most of the variance occurring along PC2 (now 25%
of total). Once trained, the Cyranose was then used to identify new (unknown) aged kefir samples presented
for measurement. In this case, neither the product class (BB kefir, Dvd Kefir, Zakvaska) or the age (fresh, aged)
was known during the measurements. Each of the
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Figure 3.23: Temperature profile across the center of the udder in verticle direction.

sample [m17 [MRs  [Blood Agar (A) [Blood Agar (AN]vRBA CRE__ [WRSA [ESBL _ |cowlD Quartar|Growth - Molde results
M1 6 93 145 2149] RF(HF)[Negative Counts of plates inoculatated
M2 6 106 5 2149] LF(VF)|S. aureus (sparse growth) X =possible presence, itneed
M3 Overgrowth Overgrowth X X 2149] RR(HB)|Negative
M4 8 118 33 X 2149] LR(VB)|S. aureus
M5 40 37 X 1518| RF(HF)|Negative
MG 23 187 320 X 1518 LF(VF)|CNS
M7 13 Overgrowth 1518 RR(HB)|Negative
M8 28 33 1518 LR(vB)[(Mixed growth (contaminated?)
M3 28 350 12 bd 1388 RF(HF)|5. aureus
MI0 1 114 30 X 1388 LF([VF)|Negative
MI11 268 1s 311 Overgrowth X X 1388 RR{HB)|Mixed growth (contaminated?)
M12 18 205 128 1388 LR(VB)|Comybecterium bovis
M13 1 300 2 1275 RF(HF)
M14 12 2 Overgrowth 66 1275 LF(VF)
M15 Overgrowth 2 Overgrowth Overgrowth Overgrowth| X X X 1225 RR(HB)
M16 7 237 13 X 1225 LR(VB)
M17 n 192 10 X 1228 RF(HF)|Negative
M18 55 Overgrowth 98 Overgrowth X 1228 LF(VF)|E. coli
M19 Overgrowth 1228 RR(HB)|Mixed growth (contaminated?)
M20 3 8 Overgrowth 30 1228 LR(VB)[Mixed growth (contaminated?)
M21 62 320 17 X 21 RF(HF)|Negative
M22 3 50 20 X 21 LF([VF)|Negative
M23 47 2 Overgrowth 124 X 821 RR(HB)|Negative
M24 19 2 X 21 LR(VB)|Negative
M25 7 (gruops of colonies) 2583 RF(HF)[Negative
M26 70 Overgrowth 279 X 2583 LF([VF)|CNS
M27 326 Overgrowth 300 X 2583 RR(HB)[cNS
M28 57 2% 183 X 2583 LR(VB)[CNS
2149
Quarter|(Growth - Molde results

RF(HF)[Negative |

LF{VF)(S. aureus (sparse growth)

RR[HB) |Negative

LR{VB]|S. aureus

Figure 3.24: GCMS analysis samples.

samples tested was identified as belonging to the correct product class with a 5-star statistical rating
(goodness of fit). Numerically, the probability estimate was very high (nearly 1.0 or 100%) and the intraclass
distance was very low (mostly <3). The 3.2% Dvd kefir product exhibited great variation
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Figure 3.25: GCMS analysis sample images.

with aging than the other products. In Figure 2 the new unknown samples are represented by a star symbol
with a label (1, 2 or 3) to identify the sample tested.

3.2.5 Visual-olfactory data fusion via graph convolution neural networks

Graph convolution neural networks provides a flexible architecture for dealing more complex inputs such
as multi-modal data and spherical data. This is currently not studied much within the project.
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Figure 3.26: Heat map of VOC contents in the 28 samples being analyzed by GCMS.
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Figure 3.29: Headspace VOC measurement by Cyranose.
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Method: DANO1 Test: What Kind of Product is the Sample?
Classes: Score Plot in Canonical Space with Autoscale
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Chapter 4

Conclusion

We investigated detection of lameness via extraction of geometric features of arched back and dropped neck
and head of cattle suffering pain. A commercial low-cost RGB-D imager (Intel Realsense D435) and its SDK
(Software Development Kit) is used for RGB-D imaging for 3D perception while a cattle is standing in a
milking robot. 3D models of cattle’s back and neck are obtained via converting of point cloud to mesh in
software meshlab. Within the limited sample set of cattles, although variations in arched angels in back and
neck were found, no cattle showed signs of lameness, which was consistent with the ground truth. Gait and
behavior analysis of these cattle in the panorama images and videos collected were hindered owing to that
occlusions and that the activities of the animals are very limited (most of time they are standing or lying).
Nevertheless, gait analysis - targeting imbalance and behavior (targeting estrus cycle detection) via deep
convolution neural network models using open dataset was done. Our conclusion is that the combination of
RGB-D perception, combined with gait and behavior analysis, health and welfare conditions including digital
dermatitis and mastitis of cattle can be accurately assessed automatically with need of only few low-cost
visual sensors for monitoring of multiple even a large amount of animals.

By using a thermal imaging camera (Flir tau2, spectral band: 7.5 13.5um, sensitivity:

< 60mK), the spatial and temporal variations in temperature of udder area of cattle while they are getting
milked in milking robot were investigated. Within the limited sample set, obvious individual variations in
mean temperatures and their standard deviations were shown. Ground truth of whether one of more of the
cattle had mastitisinfection was not accurately identified, it was with high-confidence from laboratory analysis
that no cattle had mastitis during the data collection period. The conclusion is that passive infrared
thermography definitely could provide useful data for extraction of information about the health of udders and
cattle, harmlessly and low-costly (Only 1 sensor is needed). Variations in lighting condition owing to difference
in shape and size of udder and their physical size and standing position were found to provide false input,
which could be eliminated by simply not not using lighting during infrared thermal imaging. Activity of cow is
considered to influence overall temperature but not their spatial distributions. Discrete Fourier transform
and wavelet transform were used for image processing. Inversion algorithms for reconstructing images of
udder for values of thermal conductivity and thermal capacity could provide a super-resolved image of
mastitis infected area.

Artificial olfaction finds tremendous significant applications given adequate sensor for VOCs operating
remotely or in the ambient without the need for guiding gas through a chamber such for tunable diode laser
absorption spectroscopy. The sensing of odorants using a traditional laboratory gas chromatography - mass
spectroscopy of 24 milk samples (15 infected and 9 healthy controls) for the purpose of identifying volatile
organic compounds (VOC) biomarker for mastitis infected milk were not successful. The reason being that
unknown bacteria developed during the storage and transport of the samples contributed from dairy farms
complicated the samples. Whilst, a doctoral research carried out in a university in the Netherlands showed
that ethanol is a distinct biomarker for mastitis. Indeed, the discovery of a reliable biomarker in itself a
research topic which is out of the scope of this project. A trial of using hyperspectral Fourier transform
infrared spectroscopy for the detection of odorants conducted by us failed to detect any gas owing to that
the concentration of odorants could
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be order or magnitude lower than ppm range. Such low concentrations need MOS chemoresistive gas
sensors, especially those emerging sensing elements made of nanowire, nanotubes and graphene for their
higher sensitivity. A photo ionization detector (PID) type gas sensor calibrated for the detection of ethanol
at ppm range is tested in laboratory where the PID sensor is exposed to the head space of mastitis infected
milk and healthy controls.

We have evaluated Hyperspectral imaging (short wavelength infrared and visual near infrared)analysis
of milk in powder form after removing water for detection of mastitis causing pathogens such as Escherichia
coli (E. coli), Streptococcus uberis and Staphylococcus aureus. A bioradar sensor for respiratory pattern
monitoring is also considered to provide useful information. These cannot be conducted within this project.

The scope of this research is limited to feasibility studies such that the size and quality of dataset
generated is considerably limited so as for the signal processing and machine learning algorithms. Results
obtained in this pre-project with very limited scope show that visual and olfactory sensory perception could
provide necessary and sufficient information about health and welfare condition of animals at a low cost and
ambient sensing manner without need for animals to carry a sensor each. Early-stage mastitis infected cattle
can be detected by collaboratively fusion of data from gait and behavior analysis, infrared thermography
imaging, and detection of mastitis biomerkers. Early-stage digital dermatitis infected cattle can be detected
via fusion of data from RGBD perception, gait and behavior analysis. Hyperspectral imaging and bioradar
provides additional useful data.
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Chapter 5

Future work

Figure 5.1 shows a nanosensory array based on MOS nanowires, carbon nanotubes and graphene for high-
sensitively and high-selectively detection of VOCs. The nanoarray generates a large dataset, which is obtained
using a sample size of 100 clinical tests and continuous data streaming with a sampling rate of 100 Hz per
analysis. Nanosensor responses over the entire analysis period (usually seconds to few minutes) will be
recorded using sampling frequency of 100 Hz such that both the temporal and dynamic properties of the
interaction between sensor and analytes are recorded to provide robust features for clustering and
classification of odours. Our idea is to develop a 10 x 10 (100 pixel) nanosensor array and interface circuit
integrated with CMOS compatible fabrication for high-dimensional and robust sensing; this is shown in
Figure 1. It enables standardized nanosensor array chips for compatibility with other electronics and
communication protocols. The 10 x 10 nanosensor array is made of metal oxide nanowire (such as tin oxide
(Sn02), zinc oxide (Zn0O), copper oxide (CuO)), graphene and carbon nanotubes as sensing elements. Their
sensing characteristics are controlled by doping with various metal nanoparticles, applying organic
functional compounds, and utilizing temperature modulation. New DNN models and algorithms will be
developed; this is shown in Figure 2. This development needs to develop a method to encode the sensor
responses patterns into image data format suitable for further adaptation of established DNN models and
algorithms. Another method is based on encoding of the sensor response patterns into time-series waveform
data, then adopting methods used for speech recognition. We believe that either existing DNN models and
algorithms can generate interesting results, or else new DNN models and algorithms can be inspired by
mimicking the olfactoryintelligence.

Nanosensor array gas sensor die SoC for integration with mobile
vertically integrated (3D IC) and embedded platforms

= ---with CMOS read-out circuitry

i
~

||||||||| Micro hotplate for e L
| temperature modulation 2 =2 L=
L ||| ||| || Interdigitated electrodes J-ﬁfovel circuit design"\"fcr- high-resolution, high

./ sampling rates, high SINR, arid accurate sensing

Nanowires® loaded on conductive
olymer with catalysts or i il I
ctionalizing compounds

Figure 5.1: Nanosensor array for high-sensitively and high-selectively detection of VOCs.

Figure 5.2 shows the neuro-information processing system for knowledge discovery based on multilayer
deep artificial neurual networks and encoding-decoding system.

Our ambition in digitalized agriculture and aquaculture calls for robust sensory technologies for
uncovering knowledge in biological systems with focus on diseases and stress detection, feeding
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Figure 5.2: Neuro-information processing system for olfactory knowledge discovery.

monitoring and phenotyping. We think hyperspectral imaging and artificial olfactory excellently fulfils these
requirements, because they provide quantitative chemical information in a high-dimensional feature space,
which under known temperature and pressure, represents a complete knowledge of the biological system.
Hyperspectral cameras catch reflected electromagnetic radiations characteristic to different materials in
hundreds of contiguous bands, thus provides 2D mapping of chemicals and their abundances. Unique to
biological systems, volatile organic compounds (VOCs), which are often emitted as results of metabolism of
pathogens, carry important signatures of diseases. Highly sensitive olfaction systems such as dogs’ nose and
insects’ antenna, possible also electronic nose made of highly sensitive MOS nano-sensorsand tuneable diode
laser absorption spectroscopy (TDLAS), as well as hyperspectral imaging cameras at the long wave infrared
region (LWIR), can capture VOC information over a long distance (hundreds of meters). Furthermore, we
think, by exploring the collaborative interaction of visual and olfactory perception as inspired by
neurocognitive research findings , a new paradigm of artificial intelligence and machine learning could be
generated in this project. This new paradigm may be an extension of Markov random field model, automatic
kernel selection-based support vector machine, and brain-inspired intelligence models. When connecting the
state-of-the-art technologies in hyperspectral imaging and olfactory sensing to digitalized agriculture, for
example, for disease detection, we found there remain many tough challenges (in both performances and
costs of both hardware and software). We believe the right pathway is to utilize hyperspectral cameras and
olfaction sensory of dogs or insects combined with an electronic nose to identify biological system-invariant
features, which can be adequately captured by fewer sensors and bands for a specific problem, leading to
simple and low-cost but intelligent sensory system. To do this, we need a visual-olfactory multi-modal
dataset and a robust learning algorithm making use of multi-sensory information collaboratively. Thus, this
project develops new multimodal sensory and computational methodologies for diseases detection using visual-
olfaction bimodal sensing. A large high-dimensional dataset is generated using simultaneously hyperspectral
imaging cameras and electronic noses for two severe and representative diseases, i.e., mastitis in dairy
cattle and moth in crops . Figure 1 illustrations the specific problem cases, the new sensory methodologies,
and our initiative in establishing a new open dataset for promoting artificial intelligence research. We strive
to develop computational methods that learn in hyperspectral imaging data and olfactory data in a
collaborative manner for higher accuracy and speed in classification tasks suffering from curse of
dimensionality. This is inspired by neurocognitive studies in visual- olfactory cross-modal integration in
human. We will be focusing on abstracting underlying the physical, statistical, mathematical, geometrical
(projection) and neurocognitive principles such as to adaptively build new models upon the state-of-the-art
ones. Performance in mastitis and moth detection of our methods are compared to baseline methods such
as support vector machine, discriminative analysis, and principle component analysis. Figure 2 depicts the
computational methodologies we are focusing
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on, and some of the state-of-the-art methods we will use as baseline methods for comparison.
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Figure 5.3: Illustrations of the specific problem cases, the new sensory methodologies, and our initiative
in establishing a new open dataset for promoting artificial intelligence research.
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Figure5.4: Computationalmethodologies weare focusing on, and some of the state-of-the-art methods we will
use as baseline methods for comparison.

Figure 5.5 shows the results of a neuromorphic chip for hardware realization of neural computing using
electronic nose data [26].
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