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Abstract 

The objective of this project is to investigate feasibility of visual combined with olfactory sensing and multi-
modal collaborative intelligence for the perception of diseases, especially the contagious ones, among a 
population of dairy cattle. The idea is to develop artificially intelligent systems that can generate low-
dimensional representations about presence of diseases by learning from visual and olfactory sensory inputs, 
which are high-dimensional and noisy. The idea of in-cooperating visual and olfactory intelligence is a brilliant 
one; this is because the olfactory intelligence of animals and insects are predominant over visual intelligence 
and that olfactory intelligence are currently barely decoded computationally, i.e, no computational models 
outperform the olfactory perceptional capability of moths being widely studied. This is because in contrast 
to high-resolution camera sensors reaching many mega pixels, state-of-the-art volatile organic compounds 
sensing arrays called electronic nose achieve only tens of pixels and can only sense ppm maybe ppb 
concentration level (1 000 000 to 1 000 times lower than insects). The invention of multi-layer and large 
artificial neural networks for attempting to encode of human visual perceptual intelligence in a computational 
manner has achieved breakthrough in high-performance artificial intelligence systems. Newer models often 
contain one or more architectural modules which encodes cognitive science findings such as memory, contrast, 
analogy, anticipation of consequences, reasoning, knowledge in physics.  We  are targeting the derivation of 
a heterogeneous deep architecture combining the visual and olfactory branches their collaborative 
intelligence. 

The scope of this project is to evaluate the potential of the proposed approach in a real world setup and to 
clarify technical challenges. Two specific scenarios are targeted: 

• Digital dermatitis (DD). DD is a highly contagious disease and causes severe pain and lameness. The
visual features of DD could be arched back, dropped neck and head owing to reduced strength in
weight bearing by the infected foot. These are detected  via  3D  RGB-D  (Red Green Blue - Depth)
imaging. Another visual feature is the abnormal gait patterns of the in- fected foot owing to reduced
locomotive abilities. These can be detected via gait analysis in videos.

• Mastitis. Mastitis is a bacterial inflammation in udders. It is relatively frequently occur-ing, highly
contagious and causes pain, reduced milk production and low-quality milk. The visual features of
mastitis could be elevated temperatures in infected region of udders. This can be detected by infrared
thermography. Another visual feature could be abnormal smells owing to elevated concentrations of
emitted volatile organic compounds owing to bacterial microbiological processes. This can be detected
by electronic nose (or VOC gas sensors).

Detection of DD was investigated via extraction of geometric features of arched back as well as dropped 
neck and head of cattle suffering pain. A commercial low-cost 3D imager (RGB-D) imager (Intel Realsense 
D435) and its SDK (Software Development Kit) is used for 3D RGB-D imaging for 3D perception while cattle 
are standing in the milking robot. 3D models of cattle’s back and neck are obtained via converting of point 
cloud to mesh in software Meshlab. Within the limited sample set of cattle, although variations in arched 
angels in back and neck were found, no cattle showed signs  of lameness, which was consistent with the 
ground truth. Gait and behavior analysis of these  cattle in the panorama images and videos collected were 
hindered owing to that occlusions and that the activities of the animals are very limited (most of time they 
are standing or lying). Activity recognition in cattle was studied using a internet scraped image data of cattle 
in heat (estrous cycles) via deep convolution neural network model. Our conclusion is that by combining of 3D 
RGB-D based shape analysis, combined with gait and behavior analysis in videos, automatically and 
accurately assessment of DD is technically and practically feasible with the benefit of requiring only few low-
cost visual sensors for monitoring of multiple even a large group of animals. 

Detection of mastitis was investigated using a thermal imaging camera (Flir tau2, spectral band: 7.5 
13.5µm, sensitivity: < 60mK), the spatial and temporal variations in temperature of udder area of cattle while
they are getting milked in milking robot were investigated. Within the limited sample set, obvious individual 
variations in mean temperatures and their standard deviations were 



shown. Ground truth of whether one of more of the cattle had mastitis infection was not accurately 
identified, it was with high-confidence from laboratory analysis that no cattle had mastitis during the data 
collection period. The conclusion is that passive infrared thermography definitely could provide useful data 
for extraction of information about the health of udders and cattle harmlessly and low-costly (Only 1 sensor is 
needed). Variations in lighting condition and differences in shape and size of udder and the standing positions 
of cattles were found to provide considerable artifacts and noise to the recorded thermograms. Activity of cow 
is considered to influence overall temperature but not their spatial distributions. The problem of 
reconstruction of an approximately true model of the object, i.e., mastitis-presented udder and healthy 
udder via measurement data and prior knowledge such as the forward operator could be solved via inverse 
problem methods. Machine learning techniques come into play by constructing a model architecture with 
parameters being learned from data. We provide theoretical considerations in solving the non-linear inverse 
problem with unknown operator. The development of the theoretical and algorithmic framework will 
generate a wide range of applications within passive sensing such as acoustic emission and and passive 
infrared thermography for various applications. 

Detection of mastitis was also studied by artificial olfaction. VOCs operating remotely or in the ambient 
without the need for guiding gas through a chamber such as in tunable diode laser absorption spectroscopy. 
The sensing of odorants using a traditional laboratory gas chromatography - mass spectroscopy  (GC-MS) of 
24 milk samples (15 infected and 9 healthy controls) for the purpose      of identifying volatile organic 
compounds (VOC) biomarkers for mastitis infected milk were carried out. However, owing to accidental 
unknown bacteria development during the storage and transport of the samples contributed from dairy 
farms. The GC-MS results become more complicated. On the other hand, the existence of unique VOC 
biomarkers has been confirmed through a doctoral research carried out by Hettinga, et al., at Wageningen 
University in the Netherlands and others [5, 3, 4, 10, 6, 8, 3, 15, 13]. These studies showed that mastitis milk 
infected by bacterial - streptococcus aureus, coagulase-negative staphylococci, streptococcus uberis, 
streptococcus dysgalatiae, escherichia coli has a much higher overall concentrations in VOCs and several 
VOCs are identified as unique biomarkers for mastitis. These biomarkers are 2,3-butadione, Ethyl acetate, 2-
methylbutanal, 2-pentanane, Isopentanol, Acetoin, Ethyl butyrate and few others. We know that VOCs are 
high-dimensional data, their patterns both in diversity (which VOCs) and concentrations can be complicated 
by a number  of conditions. The identification of unique biomarkers shall be globally true, invariant to 
individual differences and variations in conditions affecting their generation. The discovery of a reliable 
biomarker in itself a research topic which is out of the scope of this project. We carried out hyperspectral 
imaging Fourier transform infrared spectroscopy for the detection of VOCs emitted by  fungi causes 
degradation. This experiment showed that a key barrier in successful detection of VOCs are that their 
concentrations are extremely low (ppt to ppb). Such extremely low concentrations of molecules are beyond 
the detection limit of available gas sensors (Normally ppm some down to ppb range). Chemoresistive 
nanosensor arrays using sensing elements made of nanowires, nanotubes and graphenemay may mimic 
biological nose to detect more sensitively VOC molecules via changing their electrical resistance. The number 
of nanosensing elements can never go close to the number of olfactory receptors of human, dogs and insects. A 
photo ionization detector (PID) type gas sensor with detection limit of 1 ppb is planned to be tested in 
laboratory where the PID sensor is exposed to the head space of mastitis infected milk and healthy controls. 
The PID sensor can only detect overall VOC concentration levels not be able to know which VOCs are 
present. One of the electronic noses which has been widely used for artificial olfactory research is called 
Cyranose. Cyranose contains 32 nanocomposite sensing elements. Testing of Cyranose for mastitis detection 
has been considered. 

A test-purpose state of the art sensors and data acquisition system was configured, and real-life data 
collection trials were carried out at the center for animal research (Ås Gård SHF). Machine learning 
algorithms was tested for early detection of lameness and mastitis. 

• 3D RGB-D imaging
3D models of the back of the cattle were obtained, although individual differences were detected,
among the cattle analyzed no cattle showed features of abnormal shape of her back. This is
consistent with the ground truth.



Feature detection algorithm based on ORB (Oriented FAST (Features for Accelerated Segment Test) 
and Rotated BRIEF(Binary Robust Independent Elementary Features)) was used for detecting 
keypoints of lam and healthy cattle. Keypoints of healthy cattle forms a straight line while those of 
lam cattle formed a broken and curved line. 

• Activity recognition
A pre-trained (on MS COCO dataset) deep convolution neural network model called faster R-CNN with
Inception Resnet was retrained and used for heat detection. This model was benchmarked as the most
accurate model among common mainstream models [11].

• Infrared thermography
Infrared thermograms of 25 cattle were collected. Preliminary analysis of mean temperature and their
standard deviations were used to classify homogeneous and non-homogenous udder skin
temperature distributions. Solving non-linear inverse problem with unknown forward operators were
studied at a theoretical level and implementation of computational code needing more resources will
be conducted in a main project.

• GC-MS
28 milk samples were analyzed with GC-MS at NMBU. Heat map of VOCs are generated.
Dimensionablity reduction via principle component analysis using singular value decomposition
projected the 24 data samples on a 2D plane of 2 principle components. These samples are
segmented as 5 clusters. GC-MS based VOCs analysis can accurately classify milk samples but this
method needs sample preparation and cannot be integrated in process. We did not find the same VOC
biomarkers as reported in the literature; we doubt the milk samples were degraded during storage
and produce artifacts in data. We think the detection of total VOC concentrations by low cost PID
sensors could provide a promising qualitative screening tool.

Furthermore, we have evaluated Hyperspectral imaging (short wavelength  infrared  and  visual near 
infrared)analysis of milk in powder form after removing water for detection of mastitis causing pathogens 
such as Escherichia coli (E. coli), Streptococcus uberis and Staphylococcus aureus. A bioradar sensor for 
respiratory pattern monitoring is also considered to provide useful information. These cannot be conducted 
within this project. 

Results from this project will be published in relevant journals (Inverse problem in passive infrared 
thermography to Inverse problem journal in preparation or Neurips (Neuro information process- 
ing)workshop inverse problem meets deep learning) and conferences (Activity recognition to interna- tional 
conference of computer vision and pattern recognition (CVPR), Learning in spherical data to CVPR, or 
Neurips workshop deep learning through information geometry). A main research project was submitted to 
NFR’s biotek program in 2018 and resubmitted to NFR’s Fripro program in 2020. A resubmission to 
Landbruksdirektoratet in 2021 is planned. 
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Chapter 1 

Introduction 

Breakout of contagious diseases such as mastitis owing to bacterial inflammation in udder, digital 
dermatitis (DD) causing lameness, BRSV (Bovine Respiratory Syncytial Virus, causing cough), BCoV (Bovine 
Corona Virus, causing diarrhea) virus infections, causes significant economic losses. Lameness caused by DD or 
other infections, which is a contagious and extremely painful, is one of the most significant welfare and 
productivity issues livestock farming. These causes direct economic losses of hundreds of millions NOK 
every year. In addition, use of antibiotics in livestock and antibiotic resistance imposes health risks to human 
consumers. Today for prevention of some of the diseases, such as Mastitis and lameness no effective vaccines 
are available; neither are there low-cost and non-invasive methods available for safe and effective screening. 
Alternative methods of using wearable sensors and lab on a chip, which usually measures value of a single 
physical parameter, are either non-effective or very costly. 

Today, the public actions in fighting against breakout of contagious diseases have been concentrated on 
restricting contact and limit mobility of the animals, for example, to carry out blood tests when buying and 
selling the animals, and to require immediately reporting when one sick case is suspected, to confine the 
scope of spreading. These defensive actions have been effective; however, it is a reactive action and its 
detection is dependent on the observations of the farmers. It is not proactive, thus, not effective in disease 
prevention. This is evidenced by TINE who expressed their worries that diseases are extremely contagious 
and spreading rapidly also during the incubation period when no observations of sickness are possible. Neither 
can farmers timely isolate sick cattle when it gets sick during nighttime. As response to the urgent need of 
establishing technologies and methods to proactively fight again contagious diseases and for increasing 
productivity in general, TINE has initiated a Norwegian Agriculture DataCloud (Landbrukets Datasky) project. 
The basic idea is to collect available data from various sources and attempt to make use of the data through 
cloud computing. Real-time data are not available at the moment, but the Landbrukets Datasky project team 
are working on implementing real time data in order to possibly realize timely and early warning of risks of 
contagious diseases. 

There are currently some measurements are integrated with milking robots such as chromatography, somatic 
bacterial counting, and measure volume and flow rate of milking. Those measurements are insufficient to 
detection mastitis timely. Value losses caused by mastitis infection increases drastically when mastitis is 
detected in bulk tank milk and in later stages, because this means a large volume milk has been 
contaminated. 

The research community of Precision Livestock Farming have been focused on the development of 
either wearable sensors such as vital parameters sensors, or lab on a chip type of solution.  So  far, only GPS 
sensor based bells have been widely worn by relatively large animals. Other wearable sensors that normally 
need direct contact with the body of the animals can be easily destroyed. Lab on a chip solution is difficult 
to use, and can be too expensive for use on a regular basis. Machine vision and fusion of electronic tongue, 
electronic nose and vision have been investigated for forestry mapping, lameness monitoring and food 
safety research. However, they have not been investigated for early warning of risks of contagious diseases 
in livestock. At NORCE, we have researched the  use of nanosensor array for olfactory perception of disease, 
and using various sensors for non-invasive detection of rot due to fungi in wood. 
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We proposed and investigated artificial sensory perception, i.e., 360◦ panorama imaging, 3D RGB-D imaging, 
infrared thermography and artificial olfactory (GC-MS) perceptions for DD and mastitis detection. 360◦ 

imaging camera was used for registration of images and videos data for extracting knowledge about 
abnormal appearance and activity patterns; 3D RGB-D imaging was utilized for generating 3D shape 
descriptors; infrared thermal camera for detection of abnormal skin temperature distributions; and 
nanosensor arrays for smelling bad odor (volatile organic compounds). The artificial sensory perception system 
utilized low-cost, non-contact, non-invasive sensors to provide continuous and real-time data for monitoring 
of single and multiple animals, and used artificial intelligence for perception for uncovering underlying 
diseases, thus provided an adequate and low-cost solution for avoiding economic losses. 

The primary object of the project was to evaluate feasibility of the proposed artificial sensory 
perception concept for non-invasive and continuous monitoring of livestock to enable early warning of risk of 
contagious diseases, using detection of lameness and mastitis pathogens in milk as two cases. 

The main objective was realized through the following 4 sub-objectives (SO). 
Completed SO 1. Configured adequate visual and artificial olfactory sensing systems for lameness and 

mastitis pathogens detection via 3D RBG-D imaging, infrared thermal imaging, 360 ◦. imaging, and GC-MS 
analysis. 

Completed SO 2. Collected videos and images of cattle and VOC data in milk at Ås farm SHF. Dataset: 3D 
RGB-D imaging of 23 cattle, infared thermograms of udder of 25 cattle, GC-MS data of 28 samples. 

Completed SO 3. Algorithms for detection of lameness and mastitis pathogens in milk. 

 
• Keypoints detection based on ORB algorithm for back shape descriptor extraction. 

• 3D model construction using Meshlab toolbox. 

• Fast RCNN with Inseption RESNET deep neural network model trained for activity recognition. 

• Statistical analysis of infrared thermograms data for classification. Algorithms for solving inverse problem 
with unknown forward operator such as based Bayesian inversion and combining deep generative 
models are considered theoretically. 

• Principle component analysis was used for dimensionality reduction and clustering of GC-MS data. 

Completed SO 4. Evaluated feasibility visual and olfactory sensing system in detection of lameness and 
mastitis pathogens in milk. 
Visual and olfactory sensing system showed interesting results. Given the continued dedication in collecting 
and managing the database and constructing high-performance machine learning models either via domain 
expertise and/or with automated model searching pipeline, these artificially intelligent systems will with no 
doubt be an independent tool for future precision livestock farming. We point out that VOC sensing down 
to concentration level of ppb to ppt is a challenging task, however nano electronic nose are under rapid 
development. Combing with neuro-morphic computing chip and neural computing engine, real-time processing 
and inferences without the need of storage of large amount of data enables real-world deployment of these 
systems. 
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Chapter 2 

Data collection 
 

Dataset is a most important infrastructure for building machine learning models for learning a low- 
dimensional representation in high-dimensional data. A good rule of thumb is that the number of samples 
need to be roughly 10 times the number of Vapnik–Chervonenkis (VC) dimensions of the model. This means 
millions of data for normal size deep neural nets. Indeed, it is not only about the absolute number of samples 
but also their distributions. Redundant data deteriorates training performance. To enable good 
generalization of the model, the distribution of training data and distribution of testing data needs to be 
similar. To create a large scale and high quality dataset is not a trivial task. Many open datasets find with 
labeled training data for the machine learning and artificial intelligence community to use freely. One 
example is the activity recognition task dataset. Data are well chosen, consistent, and usually in a format 
easy to load such as .csv or .png. However, this is not the case for industrial applications where data is rather 
limited. An emerging learning concept called few shot and one shot learning is interesting for limited data. 
Currently, error rate of few short learning algorithms are considerably high. 

A dataset using a panoramaic lens, a depth imager, an infrared thermal camera was collected at the 
Åsgård farm in December 2018. GC-MS dataset was obtained in September 2019. A statistical overview of 
the dataset shall be provided, however, given the limited scope, this does not make sense at the pre-project 
phase. 

Data such as milked volume and flow speed for each cattle with their identification number are 
available as additional data. Currently these data are not used. Figure [milk_robot_data] shows examples 
of the milk volume data. 

 
 

 
 

Figure 2.1: Milk volume data collected in milk robot. 
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2.1 3D RGB-D dataset 

RGB-D data is streamed as a video and stored as a .bag file which was converted to .ply and .png files. 
Depth data in csv format was extracted using intel realsense SDK rs-convert. This imaging setup enables the 
reconstruction of back and neck 3D model of the cattle. Figure 2.2 shows the intel realsense RGBD camera. 2.3 
shows an example of RGBD images. 

 

 
Figure 2.2: RGB-D(depth)for 3D model reconstruction of back and neck of the cattle while getting milked in 
the milking robot. 

 
 

 

Figure 2.3: An exmaple of RGBD images. 
 

2.2 360◦ panorama dataset 

Figure 2.4 shows the 360◦ panorama camera mounted at the roof railing at the Ås farm for video streaming. 
360-degree panorama camera enables wide field-of-view imaging using a single lens, but at the cost of 
distortions. The distortions cause failure in object recognition task when using convolution kernels normally 
used for perspective images. Methods for learning in hemispherical and spherical data is summarized in 
previous work part. 

 
2.3 Long wavelength infrared thermography dataset 

Passive infrared thermal camera can be used to image temperature field of a scene. By choosing a camera 
with a high spatial resolution (a large number of pixels) and a high sensitivity (how small difference in 
temperature is distinguishable), a dense and precise temperature field can be obtained. Heterogeneity in 
temperature field could indicate heterogeneity in thermal conductivity and capacity of the medium giving no 
ambient inputs such as lighting or other thermal convection which attributes to the local discontinuity in 
temperature fields. By transferring the data into frequency domain via discrete Fourier transform, certain 
features are revealed. Figure 2.6 shows the long wavelength infrared thermal camera for udder surface 
temperature field imaging while the cattle get milked in the milking robot. 2.7 shows an example of infrared 
thermal camera image. 
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Figure 2.4: 360-degree panorama camera for video streaming. 
 

Figure 2.5: An example of 360◦ panorama images. 

 
2.4 GC-MS dataset 

The purpose of using laboratory gas chromatography - mass spectroscopy for the profiling of volatile organic 
compound contents in milk samples (both mastitis pathogen infected milk and healthy controls) is to 
identify distinct biomarkers that distinguishing the two groups. Essentially, this means dimensionality 
reduction in feature space. When considering olfactory perception of human or dogs, the basic idea is to identify 
the odorants that give the distinct smell when milk gets spoiled or when milk comes from a sick cow. An 
important question needs to be answered is that how low concentrations of odorants can be sniffed by 
dogs comparing to how low concentrations is detected by a GC-MS 



7  

 
 

Figure 2.6: Long wavelength infrared thermal camera for udder surface temperature field imaging while the 
cattle get milked in the milking robot. 

 

Figure 2.7: An example of infrared thermal camera image. 

 
spectroscopy. Olfactory receptor of dogs can detect odorants at concentrations at low as 1-2 parts per trillion 
(ppt), which is 10,000-100,000 times more sensitive than human, and is 1,000,000 times more sensitive than a 
normal GC-MS with detection limit of 1 ppm. This is the main bottleneck that LAS (laser absorption 
spectroscopy), GCMS, FTIR (Fourier transform infrared spectroscopy) are not able to achieve sniffing out 
disease while dogs even human can. Emerging nanosensing elements such as using metal oxide 
semiconductor (MOS) nanowire, carbon nanotubes, graphene, nanocantilever holds promise to achieve lower 
detection limit, research remains at the laboratory. 

For electronic nose, commercially available electronic nose devices find many. We have investigated PEN3 
and cyranose for headspace gas analysis. The term “headspace” is referred as the gas directly surrounding a 
sample. The constituents of the sample which have a high volatility will generally be present in the 
headspace in higher concentrations. Low volatile compounds are less likely to be found in a sample. 
Consequently, the concentration of molecules present in the headspace is not proportional to the 
concentration of the same molecules in liquid or solid sample. PEN3 is one that appeared in 
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several research papers. There are 10 MOS in PEN3, all different types and heated up at specific 
temperatures (350◦C - 500◦C) in order to catch the widest range of volatile compounds. Cost is 19800 Euro. 
MOS are calibrated in-house with reference gas standards; by experience I can honestly say there is very 
little drifting over time and lifetime of sensors is several years, depending on how it is operated by users. It 
gets rid of humidity by automatically heating up the measuring chamber at 110◦C. PEN3 is a complex 
electronic nose for fingerprinting and recognition that is worldwidely known for being one of the leaders in 
the sector. 

PEN3 is an analytical instrument which basically consists of a combination of an array of 10 different 
metal oxide sensors and pattern recognition software. The electronic nose is capable to recognize simple or 
complex mixtures of organic vapors after an appropriate training period. The results are determined 
through statistical methods like euclid, correlation, factor analysis (PCA) or discriminant function analysis 
(DFA). The system can be used for fast quality control applications in the food and chemical industry. 
Environmental and safety applications are also possible. 

The detection limit of the PEN3 is in the range of 1ppm. Sensors with good selectivity for sulfur organic 
compounds, methane, hydrogen, alcohol and hydrocarbons are used. 

The analytical system has a special sampling system integrated, which by an automatic control 
(autoranging) prevents an overloading of the sensors and also leads to a better and faster qualitative and 
quantitative. The system is easy to handle. We recommend only a short training. 

You can use the PEN as a standalone device without pre-treatment of gas streams or together with a 
headspace sampler or with our Trap and thermal Devices (EDU) to enhance the selectivity of the sample. 
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Chapter 3 

Data analysis for mastitis and digital 
dermatitis detection 

 
3.1 Theoretical framework and state-of-the-art 

3.1.1 360◦ vision 

Convolutinal neural networks (CNNs) for spherical data The main challenge of convolutional operation in 
spherical data is that rotation non-equivalence. When sliding the convolutional filters across a perspective 
image, this operation is translational. However, for hemispherical or spherical data, the imaging domain is non-
Euclidean, the convolution involves rotation of 3D orthogonal group, SO(3). Coors et al.[17] presented a novel 
convolutional kernel which is invariant to latitudinal distortions via projection of a regular sampling pattern 
to its tangent plane. Similarly, Su et al.[14] proposed an adaptive CNN kernels applied to the equirectangular 
projection of sphere, i.e., the CNN kernels are alike the ones for the locally projected patches. 

Cohen et al.[16] presented a novel way treating convolution on spherical data as a three dimensional 
manifold, i.e., special orthogonal group (SO(3)) and using generalized Fourier transform for fast group 
correlation. Subsequently, Esteves et al.[18] modeled 3D data with multi-valued spherical functions and 
proposed a novel spherical convolutional network that implements exact convolutions on the sphere by 
realizing them in the spherical harmonic domain. Yu et al.[24] pointed out that spherical CNN loses the 
object’s location and overlarge bandwidth is required to preserve a small object’s information on a sphere. 
And they proposed a novel grid-based spherical CNN (G-SCNN) which transforms a spherical image to a 
conformal grid map to be the input to the S2/SO3 convolution. Defferrard et al. and Perraudin et al. [21, 22] 
presented a graph based spherical CNN named DeepSphere. Their idea is to model the sampled sphere as a 
graph of connected pixels and using the length of the shortest path between two pixels as an approximation 
of the geodesic distance between them. Yang et al. [29]generalized the grid-based CNNs to a non-Euclidean 
space by taking into account the geometry of spherical surfaces and propose a Spherical Graph Convolutional 
Network (SGCN) to encode rotation equivariant representations. 

Tens of new models are proposed for visual understanding in spherical data recently. Zhao et al. 
[30] proposed a 360◦ detector named Reprojection R-CNN by combining the advantages of both ERP and PSP, 
which generates spherical bounding boxes. The method was evaluated on a synthetic dataset for detection of 
salient objects like person and train. Wang et al. [23] used a modified RCNN model for object detection in 
synthesized dataset 360GoogleStreetView. Chou et al. [25] a real-world 360◦ panorama dataset containing 
common objects of 37 categories. Lee et al. [27] proposed to project spherical images onto an icosahedral 
spherical polyhedron and apply convolution on transformed images. Figure 2.4 shows a panorama camera using 
the panorama lens of Immervision mounted at the roof railing at Ås farm. 2.5 shows an example of 
dewarped panorama image. Figure 3.13 shows a research done on the detection of lameness via detection 
of small change in shape of back and neck. 
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3.1.2 Non-linear dimensionality reduction via manifold learning 

We utilize a multi-modal sensory approach for collaboratively detection of a underlying early stage disease. 
We consider firstly knowledge generation from each of the uni-modal sensing methods individually. The 
focus are on methods which can be applied to different sensing modalities such as 3D depth imaging data, 
panorama vision, infrared thermograms and GC-M data. These methods include dimensionality reduction via 
concepts such as subspace and union of subspaces (UoS), manifold learning [19]. They model signal as low-
dimensional subspace embedded in a high-dimensional ambient space. Two- and three-dimensional manifolds 
are components of geometrical model of the objects [2]. Learning theory development such as using 
reproducing kernel Hilbert space or Banach space as well as metric and manifold learning model learning of a 
model from examples essentially the learning of relationships (including distances) between observations. 

Riemannian manifold learning (RML)has been proposed for nonlinear dimensionality reduction 
(NLDR)[1]. A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its 
intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian 
normal coordinates (RNC). The method can learn the data’s intrinsic geometric structure, yielding uniformly 
distributed and well organized low-dimensional embedding data. 

Riemannian metric is a concept of distance expressed by means of a smooth positive definite symmetric 
bilinear form defined on the tangent space at each point. Distance functions and loss functions play 
important roles in machine learning to obtain good models. Similar to learning in Hilbert space vs. Banach 
space, Riemannian geometry generalize Euclidean geometry. The notion of a directional derivative of a 
function from multivariable calculus is extended in Riemannian geometry to the notion of a covariant 
derivative of a tensor. Many concepts and techniques of analysis and differential equations have been 
generalized to the setting of Riemannian manifolds. A distance- preserving diffeomorphism between 
Riemannian manifolds is called an isometry. This notion can also be defined locally, i.e. for small 
neighborhoods of points. Any two regular curves are locally isometric. However, the existence of a local 
isometry imposes strong compatibility conditions on their metrics: the Gaussian curvatures at the 
corresponding points must be the same. In higher dimensions, the Riemann curvature tensor is an important 
pointwise invariant associated with a Riemannian manifold that measures how close it is to being flat. An 
important class of Riemannian manifolds is the Riemannian symmetric spaces, whose curvature is not 
necessarily constant. These are the closest analogues to the "ordinary" plane and space considered in 
Euclidean and non-Euclidean geometry. Pseudo-Riemannian geometry generalizes Riemannian geometry to 
the case in which the metric tensor need not be positive-definite. Finsler manifolds is a generalization of 
Remannian manifolds. 

Perrault et al. [9] studied algorithms for preserving original geometry (such as distances, angles, areas, 
volume, etc) of the data after performing non-linear dimension reduction. The approach is based on 
augmenting the output of an embedding algorithm with geometric information embodied in the 
Riemannian metric of the manifold. The Riemannian metric allows one to compute geometric quantities 
(such as angle, length, or volume) for any coordinate system or embedding of the manifold. Figure 3.1 shows 
the transformation of data in Euclidean space to non-Euclidean manifold space while keeping isometries. 

 
3.1.3 Artificial olfaction 

The nanosensor array microsystem shall have more pixels such as 100 (10 x 10 array). This nanoarray SoC 
(system on chip) can be integrated with micro hotplate and on-chip automatic calibration. It is adequate for 
profiling complex mixtures of odours containing hundreds of volatile organic compounds (VOCs) at 
concentrations down to ppb. Artificial intelligence algorithms, especially deep neural network models (DNNs) 
and algorithms are developed to de-mix odours and recognize a presenting diseaseous odour from the 
response patterns registered by the nanoarray. Both the nanoarray and DNN models and algorithms have 
not been investigated by the research community today and will be developed in this project to achieve 
breakthrough. Microarray analysis for gene expressions have gone from obscurity to being almost ubiquitous in 
biological research within few years, we trust that this is likely a case for the ubiquitous use of nanoarray for 
breath profiling and uncovering underlying health conditions. This is 
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Figure 3.1: Metric learning and manifold in machine learning 

 
because that, firstly, diagnostics based on VOC biomarkers provides a completely painless, non-invasive, and low-
cost method with potential to be integrated with the sensing platform of a smart phone for everywhere and 
anytime health care. Secondly, it is, in nature, a highly-sensitive sensing modality, thus, enabling early-stage 
disease detection, which is deterministic in successful disease treatment. The high-sensitivity and early-stage 
detection advantage is rendered by the high-mobility, long-diffusion length and high permeability of gaseous 
particles, which contrasts with traditional biomarkers carried in cells, blood, urine and faeces. When comparing 
to otherwise modern diagnostic imaging methods such as X-ray computed tomography, Ultrasonic and 
Magnetic Resonance Imaging, which utilize reflected and scattered waves by an abnormality to reconstruct its 
image for diagnostics, although are extremely powerful and robust, often have difficulties in distinguishing 
early-stage diseaseous cells. 

Disease and other diseases prediction through identification of VOC biomarkers in exhaled breath has 
been extensively investigated. Consensus findings on VOC biomarkers researcher are that a number of VOCs are 
associate with diseases or other diseases invariant to other subject characteristics; and that the association is 
rather deviations in concentrations of a small cluster of VOCs from normal ranges of concentrations rather 
than the presence or non-presence of a certain VOC or certain VOCs. The VOCs’ concentration patterns are 
subject characteristics-invariant, and they solely depend on disease or non-disease . These studies are truly 
ground-breaking, especially remarkable are the pioneering research carried out by Professor Hossam Haick 
at Technion-Israel University of Technology. Gas Chromatography-Mass Spectroscopy is a benchmark 
analytical equipment for laboratory gas analysis. Gas sensing utilizing otherwise laser absorption spectroscopy 
such as Tuneable diode laser absorption spectroscopy (TDLAS) can also achieve very low detection limits (of 
the order of ppb), however, these techniques have limitations in detecting multiple gases simultaneously 
(even for TDLAS), therefore it finds limited use in breath analysis. Professor Charles M. Lieber at Harvard 
University made the first nanowire nanosensor using silicon nanowire and is leading silicon and MOS nanowires 
based MOSFET (MOS Field Emission Transistor) for future nanoelectronics. From a commercial maturity point 
of view, a number of companies in Europe and USA have commercialized nanosensors. These include 
Sensigent , Vista Therapeutics (Founded by Professor Charles M. Lieber at Harvard University), and 
NanosensorsTM. We studied a type of piezoresistive nanosensors made by NanosensorsTM. 
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Although ground-breaking research has been carried out by world-renowned groups, many challenges remain 
which hinders its application clinically. These include the intrinsic challenges with the chemo- resistive 
nanosensors such as humidity interferences, cross-reactivity, long-term drift, stability, and relatively short 
life-time. The latter shortcomings are because, simply speaking , the sensing materials changes their electrical 
resistivity through changing their carrier densities owing to adsorption and absorption of gas molecules; the 
adsorption and absorption processes are not 100% reversible, thus leaving a non-virgin sensing interface 
impairing sensitivity. These challenges, however, will be tackled in this research through on-board auto-
calibration. Except for these challenges, in our viewpoint, the dimensions of the nanosensor array (21 sensors 
[12] or 14 sensors [7]) investigated in the state-of-the-art research [2-26] are insufficient for adequate sensing 
of VOCs in breath as a complex system. This is because that breath data are high-dimensional data. The 
breath samples are constituted of commonly 100-200 VOCs with various concentrations (The total VOCs of 
biological origin is about 1877), and they are dependent to the so-called subject characteristics such as age, 
gender, alcohol, smoke, drug, disease, geographical, location (why the person live), historical exposure of 
exogeneous VOCs, and other metabolic, pathological, and physiological processes associated parameters. 

The insufficient dimensionality of nanoarrays is not likely owing to non-awareness but owing to 
technical difficulties in constructing such as high-dimension array. As to our best understanding, the 
bottleneck in hindering achieving a large nanoarray does not lie in the creation of nanostructures and 
nanomaterials, it is rather lie in a smart CMOS integration of sensing layer with circuitries such as signal 
conditioning, digital signal processing, auto-calibration, and temperature control of micro hotplate. 
Important issues also include low noise, input and output signal range, signal resolution, accuracy, and 
sampling rates . In this aspect, we see that the method used for manufacturing the gold nanoparticles 
nanosensor array by Professor Hossam Haick’s group can be a reason that larger array at 32-pixels failed. CMOS 
integration of nanosensors for gas sensing both for silicon nanowire which can be made by top-down approach 
and other semiconductor nanowire made by bottom-up approach was studied. IBM has made large scale 
production of silicon nanowire transistors. Engineering design of CMOS interface electronics for nano-bio-
sensor platform on nanometer CMOS technology have been studied. It is worth noting of a new development 
in CMOS integrated graphene as imaging sensors for multispectral and hyperspectral imaging could provide 
this research an approach in fabricating CMOS integrated 100-pixels nanoarray. 

Our second opinion is that artificial intelligence, especially DNN models and algorithms, which have 
been produced ground-breaking results in visual perception and speech recognition, shall be developed for 
olfactory perception. In this aspect, current research front has been limited to traditional algorithms such as 
principle component analysis, linear discriminant analysis and discriminant factor analysis (DFA) binary 
classifiers, using only 4 data points from sensor response curves. In evaluating whether DNN models and 
algorithms are promising methods, we reviewed findings in neuroscience in understanding of mammal’s 
olfactory intelligence and can perceive the common features between olfactory and visual intelligence. 
Thus, we will be focusing on developing new DNN models and algorithms for robust artificial olfactory 
perception. It is not impossible that novel DNN models could be constructed, giving a novel nanoarray data 
structure. Furthermore, hyperspectral sensor provides both spatial (providing structural/geometrical 
information) and spectral (providing chemical information) information, we think that algorithms developed for 
hyperspectral imaging can be useful for nanoarray. 

A more recent work published in 2018 confirmed that 3-Methyl-butanoic acid was a stable end product 
and its production correlated well with the growth of Staph. aureus at different temperatures and in different 
mixtures with other pathogens (except Salmonella Enteritidis) in sterile milk. 

 
3.1.4 Activity recognition in video 

The detection of lameness in cow using computer vision has been researched. Figure 3.9 shows work done 
on gait analysis for detection of lameness in cattle. We did not carry out gait analysis within this project 
because TINE suggested us to focus on mastitis detection. 
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Figure 3.2: Cyranose320 and other enoses including PID sensor. 
 

 
Figure 3.3: VOC profiles obtained by GCMS analysis by Hettinga without Ethanol. 
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Figure 3.4: VOC profiles obtained by GCMS analysis by Hettinga with Ethanol. 

 
3.1.5 Inverse problem in infrared thermography using a deep generative model as prior 

Image processing such as reconstruction (computational imaging) as in compressive sensing, denoising, 
inpainting and machine learning can be cast into an inverse problem. On the other hand, deep generative 
models such as generative adversarial network can be learned using examples. The learned model can be 
used as prior in Bayesian inversion scheme [20]. Figure [inv_dgm] shows a general framework under 
development at NORCE Technology and Energy department. 

Figure 3.11 shows a summary of a number of research been conducted on infrared thermography for the 
evaluation of udder health. 

Figure 3.10 shows a workflow for solving inverse problem in active infrared thermography. The 
experimental data are collected in a set up for landmine detection using microwave induced thermal wave  
propagation.  The forward process are governed by  the Maxwell’s electrodynamics equations 
coupled to the heat equation (Laplace equation), both are partial differential equations. The objective 
function of the inverse problem is formulated as a l2 norm, i,e., a non-linear least squares minimization problem. 
This minimization problem is solved by generic algorithm and pattern search algorithm. This is a clever 
approach for utilizing measured data most. However, for the case of passive infrared 
thermography, the underlying thermal imbalance and thermal diffusion process are unknown, neither are inputs 
from the ambient such as lighting conditions be defined accurately. In the problem formulation of inverse 
problem, this means that the transformation matrix (often denoted as A) which mapping the input (often 
denoted as x) into the output (often denoted as y)is unknown, in addition to that the input is unknown. 
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Figure 3.5: VOC profiles obtained by GCMS analysis by Philipiak with Ethanol as the main VOC. 

 
3.2 Results and discussion 

3.2.1 3D RGB-D 

The depth data is calibrated and 3D model of the back and neck of the cattle is reconstructed. RGB-D 3D 
perception has important applications within mobile robots and autonomous vehicles for 3D simultaneous 
localization, mapping and navigation. Super-resolution 3D imaging in certain applications combined with a Lidar 
sensor provides possibility for small change detection such as the case of arched back and neck when cattle 
suffering pain. 3D convolution kernels is an extension of 2D kernels and can be constructed in tensorflow, 
pytorch or keras without much difficulty. 

Figures 3.14 and 3.15 shows the 3D model obtained from RGBD imaging of four cows. Algorithms for 
feature detection and and description include speeded up robust features (SURF)), 

scale-invariant feature transformer (SIFT), FAST, BRIEF and ORB. SURF is a scale- and rotation- invariant 
detector and descriptor. They are usually implemented on gray-scale images. SURF uses an integer 
approximation of the determinant of Hessian blob detector, which can be computed with 3 integer 
operations using a precomputed integral image. Its feature descriptor is based on the sum of the Haar 
wavelet response around the point of interest. These can also be computed with the aid of the integral 
image. ORB is an efficient alternative to SIFT and SURF. Opencv has easy interfaces for implementing feature 
detection and description algorithms by calling the class and running functions such as create(), detect(), 
compute(). As shown in 3.16 and 3.17, a direct implementation of the feature 
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Figure 3.6: The 2018 result showed that 3-Methyl-butanoic acid is a good biomarker. 

 
detector and descriptor algorithms cannot produce satisfactory results. 

By focusing on the back region via simply cropping the images, as shown in Figure 3.18 classification of 
lameness and healthy status are transformed into distinguishing the shape connecting the keypoints detected. 
The keypoints of healthy cow makes a straight line while that of the lameness makes a broken and non-straight 
lines. 

Shape descriptors extraction could result in interesting feature vectors for classification of lameness and 
healthy cows. 

The openPose library provide methods for real-time multi-person to jointly detect human body, 
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Figure 3.7: VOC analysis using a single type commercial MOS gas sensor. 
 
 

 

Figure 3.8: Results of VOC analysis using a single type commercial MOS gas sensor. 
 

Figure 3.9: Lameness detection using gait analysis. 

 
hand, facial, and foot keypoints (in total 135 keypoints) on single images. Most of the pose and gait analysis 
algorithms and toolboxes are designed for human. Because cows body geometrical arrangement, kinematics and 
dynamics are different from human, adaptions are needed. To obtain robust detection, the algorithms need to 
distinguish normal individual variations such as normal variations in geometrical shape of lame cow and healthy 
cow. The robustness and accuracy can be improved by comparing not only differences in these features 
between different individuals but also the same individuals at different time period such as when lame and 
when healthy. An important factor to consider is that 
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Figure 3.10: Workflow for solving inverse problem in active infrared thermography. 

 
for human visual perception, human considers context and understands the whole situation also in a longer 
time perspective, this is a fundamental challenge in computer vision. Human understands that a cow dropped 
her head or arch her back because they she needs to reach food or avoid collision, the understanding of 
whether a cow is lame or not under adequate understanding of an entire scene is necessary but 
challenging. 

The results of using edge detection is shown in Figure 3.19. When edges are extracted, the edges of the 
back can be segmented and its straightness calculated by comparing a straight line model. 

 
3.2.2 Activity recognition 

Figure 3.20 shows results for heat detection using a pre-trained convolution neural network model. A 
transfer learning technique is used. The pre-trained model is re-trained by using custom training images 
with labels. The pre-trained model is then used for detection of activity, in this case, mounting on another 
cow indicating on heat in unseen images. 

 
3.2.3 Infrared thermography 

Quantitative computational imaging such as by converting the observed sensor signal, in this case, it is the 
surface temperature fields to an unmeasured variable such as thermal conductivity fields. This is done via 
solving an inverse problem. The inverse problem is defined as a nonlinear least squares minimization 
problem, i.e., the l2 norm of difference between forward simulated data as to measured 
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Figure 3.11: Summary of previous research on udder health monitoring using infrared thermography. 
 

 
Figure 3.12: General framework for solving inverse problem using machine learning. 
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Figure 3.13: Lameness detection using RGBD imaging. 
 

Figure 3.14: 3D model of cows no.1 and 2. 
 

Figure 3.15: 3D model of cows no.3 and 4. 

 
data. The forward simulated data are obtained by using the governing equation of the forward process with its 
parameters given by an initial guess. The optimization algorithms need to find the direction of updating to 
approach gradually. 

Although in passive thermography setup, no active thermal source is applied. We adopt the assumption 
that the temperature distribution inside the udder satisfies the homogeneous linear heat equation [28]. 

 

ρ(x)c(x)∂tT (x, t) + ∇ · (−κ(x)∇T (x, t)) = 0 (3.1) 

Figure 3.21 shows the mean temperature and standard deviation of udders of 23 cows. We see that 
individual differences exist both their mean temperature and in the homogeniety of distributions. Figures 3.22 
and 3.23 shows that roughly the temperature fields can be separated as to their homogeneity. This is however 
considerably subjective and not quantitative. 
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Figure 3.16: Keypoints via the ORB algorithms for lameness cow. 
 

Figure 3.17: Keypoints via the ORB algorithms for healthy cow. 

 
3.2.4 Artificial olfaction: GC-MS data and Cyranose 

The sample preparation process and analysis procedure used for GC-MS analysis is described as below which is 
the same as Hettinga’s work on the material and methods part. Ethanol which is a common VOC, was listed in 

Hettinga’s Ph.D thesis but not in his article published on Journal of Dairy Science. 
Compounds released from milk were collected on a train of traps filled with different solid sorbents to 

cover all components having a number of carbon atoms ranging from 4 to 15. They were analysed by GC-MS 
after thermal desorption of VOC from the collecting traps. 

Figure 3.26 shows the VOC profiles of the 28 milk samples analyzed by GCMS. Only for reference purpose, 
Figure 3.28 shows results of the detection of odorants owing to fungi development in wood. What the result 
show is that no gas detected comparing to background, this is consistent with that the 
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Figure 3.18: Comparing keypoints detected of healthy and lameness cows. 
 

Figure 3.19: Comparing edges detected of healthy and lameness cows. 

 
concentration of odorants giving the distinct smell of rot is much lower than the detection limit of the 
hyperspectral imaging Fourier transform infrared spectroscopy. 

The following results are shared by Sensigent Inc. They are not produced within this project,  but as 
references, the results are interesting and relevant. The Cyranose 320 was used to measure the headspace 
of three kefir products supplied by the customer. The customer requested a quick preliminary test to 
determine if the kefir products could be differentiated. Initial test results indicate each of the kefir samples 
can be distinguished from one another based on the headspace measurements. In a subsequent test, the 
Cyranose identified each kefir sample correctly when measured as an unknown. The identification accuracy was 
100% with high statistical confidence. This shows the measurement protocol and results are robust and can 
be used for identification of the customer’s kefir products. Follow up testing after 9 days refrigeration reveals 
the kefir products are well-discriminated from one 
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Figure 3.20: Activity detection using a pre-trained convolution neural network model 
 

Figure 3.21: Mean and standard deviation in temperature of 23 cows 

 
another. Aging produces dramatic changes in each of the products and the change is revealed along 3 new 
vectors (unique vector for each kefir) with principal direction along principle component 2. There is also 
greater intraclass variability in the aged products. Samples of the aged kefir products tested as unknowns are 
identified correctly as the aged product and not fresh. 

Figure 3.29 illustrates headspace measurement set-up using Cyranose. Figure 3.30 shows the new 
unknown samples are represented by a star symbol with a label (1, 2 or 3) confirming the class identify of the 
sample tested. Figure 3.31 shows that the aged products are better discriminated from one another than 
the fresh products, and the variability (intraclass distance) is also greater. Age-related changes are identified 
along different vectors as projected onto 2-D plots, with most of the variance occurring along PC2 (now 25% 
of total). Once trained, the Cyranose was then used to identify new (unknown) aged kefir samples presented 
for measurement. In this case, neither the product class (BB kefir, Dvd Kefir, Zakvaska) or the age (fresh, aged) 
was known during the measurements. Each of the 
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Figure 3.22: Infrared thermal images of cows showing homogeneous and non-homogeneous temperature fields 
 

Figure 3.23: Temperature profile across the center of the udder in verticle direction. 
 

 
Figure 3.24: GCMS analysis samples. 

 
samples tested was identified as belonging to the correct product class with a 5-star statistical rating 
(goodness of fit). Numerically, the probability estimate was very high (nearly 1.0 or 100%) and the intraclass 
distance was very low (mostly <3). The 3.2% Dvd kefir product exhibited great variation 
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Figure 3.25: GCMS analysis sample images. 

 
with aging than the other products. In Figure 2 the new unknown samples are represented by a star symbol 
with a label (1, 2 or 3) to identify the sample tested. 

 
3.2.5 Visual-olfactory data fusion via graph convolution neural networks 

Graph convolution neural networks provides a flexible architecture for dealing more complex inputs such 
as multi-modal data and spherical data. This is currently not studied much within the project. 
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Figure 3.26: Heat map of VOC contents in the 28 samples being analyzed by GCMS. 
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Figure 3.27: Principle component analysis av GCMS data. 
 
 

Figure 3.28: For reference only: detection of odorants via hyperspectral imaging FTIR. 
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Figure 3.29: Headspace VOC measurement by Cyranose. 
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Figure 3.30: PCA for sample clustering with Cyranose data. 
 
 

 
 
 

Figure 3.31:  PCA for sample clustering with Cyranose data. 
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Chapter 4 

Conclusion 
 

We investigated detection of lameness via extraction of geometric features of arched back and dropped neck 
and head of cattle suffering pain. A commercial low-cost RGB-D imager (Intel Realsense D435) and its SDK 
(Software Development Kit) is used for RGB-D imaging for 3D perception while a cattle is standing in a 
milking robot. 3D models of cattle’s back and neck are obtained via converting of point cloud to mesh in 
software meshlab. Within the limited sample set of cattles, although variations in arched angels in back and 
neck were found, no cattle showed signs of lameness, which was consistent with the ground truth. Gait and 
behavior analysis of these cattle in the panorama images and videos collected were hindered owing to that 
occlusions and that the activities of the animals are very limited (most of time they are standing or lying). 
Nevertheless, gait analysis - targeting imbalance and behavior (targeting estrus cycle detection) via deep 
convolution neural network models using open dataset was done. Our conclusion is that the combination of 
RGB-D perception, combined with gait and behavior analysis, health and welfare conditions including digital 
dermatitis and mastitis of cattle can be accurately assessed automatically with need of only few low-cost 
visual sensors for monitoring of multiple even a large amount of animals. 

By using a thermal imaging camera (Flir tau2, spectral band: 7.5 13.5µm, sensitivity: 
< 60mK), the spatial and temporal variations in temperature of udder area of cattle while they are getting 
milked in milking robot were investigated. Within the limited sample set, obvious individual variations in 
mean temperatures and their standard deviations were shown. Ground truth of whether one of more of the 
cattle had mastitis infection was not accurately identified, it was with high-confidence from laboratory analysis 
that no cattle had mastitis during the data collection period. The conclusion is that passive infrared 
thermography definitely could provide useful data for extraction of information about the health of udders and 
cattle, harmlessly and low-costly (Only 1 sensor is needed). Variations in lighting condition owing to difference 
in shape and size of udder and their physical size and standing position were found to provide false input, 
which could be eliminated by simply not not using lighting during infrared thermal imaging. Activity of cow is 
considered to influence overall temperature but not their spatial distributions. Discrete Fourier transform 
and wavelet transform were used for image processing. Inversion algorithms for reconstructing images of 
udder for values of thermal conductivity and thermal capacity could provide a super-resolved image of 
mastitis infected area. 

Artificial olfaction finds tremendous significant applications given adequate sensor for VOCs operating 
remotely or in the ambient without the need for guiding gas through a chamber such for tunable diode laser 
absorption spectroscopy. The sensing of odorants using a traditional laboratory gas chromatography - mass 
spectroscopy of 24 milk samples (15 infected and 9 healthy controls) for the purpose of identifying volatile 
organic compounds (VOC) biomarker for mastitis infected milk were not successful. The reason being that 
unknown bacteria developed during the storage and transport of the samples contributed from dairy farms 
complicated the samples. Whilst, a doctoral research carried out in a university in the Netherlands showed 
that ethanol is a distinct biomarker for mastitis. Indeed, the discovery of a reliable biomarker in itself a 
research topic which is out of the scope of this project. A trial of using hyperspectral Fourier transform 
infrared spectroscopy for the detection of odorants conducted by us failed to detect any gas owing to that 
the concentration of odorants could 
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be order or magnitude lower than ppm range. Such low concentrations need MOS chemoresistive gas 
sensors, especially those emerging sensing elements made of nanowire, nanotubes and graphene for their 
higher sensitivity. A photo ionization detector (PID) type gas sensor calibrated for the detection of ethanol 
at ppm range is tested in laboratory where the PID sensor is exposed to the head space of mastitis infected 
milk and healthy controls. 

We have evaluated Hyperspectral imaging (short wavelength infrared and visual near infrared)analysis 
of milk in powder form after removing water for detection of mastitis causing pathogens such as Escherichia 
coli (E. coli), Streptococcus uberis and Staphylococcus aureus. A bioradar sensor for respiratory pattern 
monitoring is also considered to provide useful information. These cannot be conducted within this project. 

The scope of this research is limited to feasibility studies such that the size and quality of dataset 
generated is considerably limited so as for the signal processing and machine learning algorithms. Results 
obtained in this pre-project with very limited scope show that visual and olfactory sensory perception could 
provide necessary and sufficient information about health and welfare condition of animals at a low cost and 
ambient sensing manner without need for animals to carry a sensor each. Early-stage mastitis infected cattle 
can be detected by collaboratively fusion of data from gait and behavior analysis, infrared thermography 
imaging, and detection of mastitis biomerkers. Early-stage digital dermatitis infected cattle can be detected 
via fusion of data from RGBD perception, gait and behavior analysis. Hyperspectral imaging and bioradar 
provides additional useful data. 
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Chapter 5 

Future work 
 

Figure 5.1 shows a nanosensory array based on MOS nanowires, carbon nanotubes and graphene for high-
sensitively and high-selectively detection of VOCs. The nanoarray generates a large dataset, which is obtained 
using a sample size of 100 clinical tests and continuous data streaming with a sampling rate of 100 Hz per 
analysis. Nanosensor responses over the entire analysis period (usually seconds to few minutes) will be 
recorded using sampling frequency of 100 Hz such that both the temporal and dynamic properties of the 
interaction between sensor and analytes are recorded to provide robust features for clustering and 
classification of odours. Our idea is to develop a 10 x 10 (100 pixel) nanosensor array and interface circuit 
integrated with CMOS compatible fabrication for high-dimensional and robust sensing; this is shown in 
Figure 1. It enables standardized nanosensor array chips for compatibility with other electronics and 
communication protocols. The 10 x 10 nanosensor array is made of metal oxide nanowire (such as tin oxide 
(SnO2), zinc oxide (ZnO), copper oxide (CuO)), graphene and carbon nanotubes as sensing elements. Their 
sensing characteristics are controlled by doping with various metal nanoparticles, applying organic 
functional compounds, and utilizing temperature modulation. New DNN models and algorithms will be 
developed; this is shown in Figure 2. This development needs to develop a method to encode the sensor 
responses patterns into image data format suitable for further adaptation of established DNN models and 
algorithms. Another method is based on encoding of the sensor response patterns into time-series waveform 
data, then adopting methods used for speech recognition. We believe that either existing DNN models and 
algorithms can generate interesting results, or else new DNN models and algorithms can be inspired by 
mimicking the olfactory intelligence. 

 
 
 

 
 

Figure 5.1: Nanosensor array for high-sensitively and high-selectively detection of VOCs. 

Figure 5.2 shows the neuro-information processing system for knowledge discovery based on multilayer 
deep artificial neurual networks and encoding-decoding system. 

Our ambition in digitalized agriculture and aquaculture calls for robust sensory technologies  for 
uncovering knowledge in biological systems with focus on diseases and stress detection, feeding 
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Figure 5.2: Neuro-information processing system for olfactory knowledge discovery. 

 
monitoring and phenotyping. We think hyperspectral imaging and artificial olfactory excellently fulfils these 
requirements, because they provide quantitative chemical information in a high-dimensional feature space, 
which under known temperature and pressure, represents a complete knowledge of the biological system. 
Hyperspectral cameras catch reflected electromagnetic radiations characteristic to different materials in 
hundreds of contiguous bands, thus provides 2D mapping of chemicals and their abundances. Unique to 
biological systems, volatile organic compounds (VOCs), which are often emitted as results of metabolism of 
pathogens, carry important signatures of diseases. Highly sensitive olfaction systems such as dogs’ nose and 
insects’ antenna, possible also electronic nose made of highly sensitive MOS nano-sensors and tuneable diode 
laser absorption spectroscopy (TDLAS), as well as hyperspectral imaging cameras at the long wave infrared 
region (LWIR), can capture VOC information over a long distance (hundreds of meters). Furthermore, we 
think, by exploring the collaborative interaction of visual and olfactory perception as inspired by 
neurocognitive research findings , a new paradigm of artificial intelligence and machine learning could be 
generated in this project. This new paradigm may be an extension of Markov random field model, automatic 
kernel selection-based support vector machine, and brain-inspired intelligence models. When connecting the 
state-of-the-art technologies in hyperspectral imaging and olfactory sensing to digitalized agriculture, for 
example, for disease detection, we found there remain many tough challenges (in both performances and 
costs of both hardware and software). We believe the right pathway is to utilize hyperspectral cameras and 
olfaction sensory of dogs or insects combined with an electronic nose to identify biological system-invariant 
features, which can be adequately captured by fewer sensors and bands for a specific problem, leading to 
simple and low-cost but intelligent sensory system. To do this, we need a visual-olfactory multi-modal 
dataset and a robust learning algorithm making use of multi-sensory information collaboratively. Thus, this 
project develops new multimodal sensory and computational methodologies for diseases detection using visual-
olfaction bimodal sensing. A large high-dimensional dataset is generated using simultaneously hyperspectral 
imaging cameras and electronic noses for two severe and representative diseases, i.e., mastitis in dairy 
cattle and moth in crops . Figure 1 illustrations the specific problem cases, the new sensory methodologies, 
and our initiative in establishing a new open dataset for promoting artificial intelligence research. We strive 
to develop computational methods that learn in hyperspectral imaging data and olfactory data in a 
collaborative manner for higher accuracy and speed in classification tasks suffering from curse of 
dimensionality. This is inspired by neurocognitive studies in visual- olfactory cross-modal integration in 
human. We will be focusing on abstracting underlying the physical, statistical, mathematical, geometrical 
(projection) and neurocognitive principles such as to adaptively build new models upon the state-of-the-art 
ones. Performance in mastitis and moth detection of our methods are compared to baseline methods such 
as support vector machine, discriminative analysis, and principle component analysis. Figure 2 depicts the 
computational methodologies we are focusing 
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on, and some of the state-of-the-art methods we will use as baseline methods for comparison. 
 

 
Figure 5.3: Illustrations of the specific problem cases, the new sensory methodologies, and our initiative 
in establishing a new open dataset for promoting artificial intelligence research. 

 
 
 

Figure 5.4: Computational methodologies we are focusing on, and some of the state-of-the-art methods we will 
use as baseline methods for comparison. 

Figure 5.5 shows the results of a neuromorphic chip for hardware realization of neural computing using 
electronic nose data [26]. 
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Figure 5.5: Future in-process real-time processing using neuromorphic chips. 
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